Turbulent threshold and dispersive decay for the continuum Calogero–Moser model

Matthew Kowalski, *joint work with James Hogan* April 9, 2024

University of California, Los Angeles

We recall that the focusing continuum Calogero–Moser model is given by

$$iu_t + u_{xx} - 2iu\Pi^+ \partial_x |u|^2 = 0$$
 (CCM)

with $\Pi^+: L^2 \to L^2_+ = \{f \in L^2: \operatorname{supp} \hat{f} \subset [0,\infty)\}.$

We recall the Lax pair formulation

$$\mathcal{L}_{u} = -i\partial_{x} - u\Pi^{+}\overline{u}$$
$$\mathcal{P}_{u} = i\partial_{x}^{2} + 2u\Pi^{+}\partial_{x}\overline{u}$$

Theorem

For any sufficiently small $\varepsilon > 0$, there exist initial data $u_0 \in H^{\infty}_+(\mathbb{R})$ with $M(u_0) = 2\pi + \varepsilon$, a time $T \in (0, \infty]$, and a solution u(t) to (CCM) such that for all s > 0, $u \in C_t H^s_{\times}([0, T) \times \mathbb{R})$ and

$$\lim_{t\nearrow T}\|u(t)\|_{H^s}=+\infty.$$

In particular, if $T = \infty$, then we have the bounds

 $\|u(t)\|_{H^s}\gtrsim t^s.$

Theorem (Dispersive decay)

Given a set of initial data $U \subset H^{\infty}_+$ which is bounded and equicontinuous in L^2_+ and satisfies $\langle x \rangle u_0 \in L^2$ for all $u_0 \in U$,

$$|u(t,z)| \lesssim |t|^{-rac{1}{2}} ||u_0||_{L^1} [1 + M(u)(1 + (\operatorname{Im} z)^{-1})]$$
 (1)

uniformly for Im z > 0, $u_0 \in U$, and all times of existence t.

Explicit formula

Due to Killip-Laurens-Vişan, see [2], we recall

Theorem (Explicit formula)

For any $H^{\infty}_{+}(\mathbb{R})$ solution u(t) to (CCM) with initial data satisfying $\langle x \rangle u_0 \in L^2$,

$$u(t,z) = \frac{1}{2\pi i} I_{+} \Big\{ (X + 2t\mathcal{L}_{u_0} - z)^{-1} u_0 \Big\}$$

for all Im z > 0 and all times of existence t.

Here,

$$\mathbf{I}_{+}(f) := \widehat{f}(0+) = \int_{\mathbb{R}} f(x) dx$$
$$\widehat{\mathbf{X}}\widehat{f}(\xi) := i \frac{d\widehat{f}}{d\xi}(\xi)$$

Proof.

Let

$$A(t,z;f) = (X + 2t\mathcal{L}_f - z)^{-1}, \quad A_0(t,z) = A(t,z;0).$$

Then by the explicit formula and a resolvent identity,

$$2\pi i u(t,z) = I_{+}A(t,z;u_{0})u_{0}$$

= $I_{+}A_{0}(t,z)u_{0} + 2tI_{+}A_{0}(t,z)u_{0}\Pi^{+}\overline{u_{0}}A(t,z;u_{0})u_{0}.$

We focus on the first term, $I_+A_0(t,z)$.

The first term can be expressed as

$$\begin{split} I_{+}A_{0}(t,z)u_{0} &= I_{+}\left\{ (X-2it\partial_{x}-z)^{-1}u_{0}\right\} \\ &= I_{+}\left\{ (e^{-it\Delta}Xe^{it\Delta}-z)^{-1}u_{0}\right\} \\ &= I_{+}\left\{ e^{-it\Delta}(X-z)^{-1}e^{it\Delta}u_{0}\right\} \\ &= I_{+}\left\{ (X-z)^{-1}[e^{it\Delta}u_{0}]\right\} \\ &= \frac{1}{2\pi i}[e^{it\Delta}u_{0}](z). \end{split}$$

Dispersive decay (equiv. Poisson integral) yields

$$|I_+A_0(t,z)u_0| \lesssim |t|^{-1/2} ||u_0||_{L^1}$$

The second term is treated by appeal to A_0 :

 $\begin{aligned} |2tI_{+}A_{0}(t,z)u_{0}\Pi^{+}\overline{u_{0}}A(t,z;u_{0})u_{0}| &\lesssim |t|^{1/2} \|u_{0}\Pi^{+}\overline{u_{0}}A(t,z;u_{0})u_{0}\|_{L^{1}} \\ &\lesssim |t|^{1/2} \|u_{0}\|_{L^{2}}^{2} \|A(t,z;u_{0})u_{0}\|_{L^{\infty}}. \end{aligned}$

We write $A(t, z; u_0)$ as a series expansion about $A_0(t, z)$, to find

$$\|A(t,z;u_0)u_0\|_{L^{\infty}} \lesssim |t|^{-1} [1+(\operatorname{Im} z)^{-1}] \|u_0\|_{L^1}$$

uniformly for an L^2 -equicontinuous family U. This completes the proof of the theorem.

Theorem (Dispersive decay)

Given a set of initial data $U \subset H^{\infty}_+$ which is bounded and equicontinuous in L^2_+ and satisfies $\langle x \rangle u_0 \in L^2$ for all $u_0 \in U$,

$$|u(t,z)| \lesssim |t|^{-\frac{1}{2}} ||u_0||_{L^1} [1 + M(u)(1 + (\operatorname{Im} z)^{-1})]$$
(2)

uniformly for Im z > 0, $u_0 \in U$, and all times of existence t.

We recall that CCM admits a stationary soliton solution

$$Q(x)=\frac{\sqrt{2}}{x+i},$$

which is the unique nonzero minimizer of the energy and has mass

$$M(Q)=2\pi.$$

Theorem

Fix c > 0. For all $\varepsilon > 0$ there exists $\delta > 0$ such that if $u_0 \in H^1$ satisfies

$$\|u_0-Q\|_{H^1}<\delta$$

and the maximal lifespan solution u(t) satisfies $\|u(t)\|_{\dot{H}^1} \ge c$, then

$$\inf_{\lambda>0;\;\theta,y\in\mathbb{R}}\|u_{\lambda,\theta,y}(t)-Q\|_{H^1}<\varepsilon$$

for all times of existence t.

Lemma (Uniform lower bound in \dot{H}^1)

Suppose there exist $\varepsilon > 0$ and $u_0 \in H^{\infty}_+$ such that $||u_0||^2_{L^2} \le 2\pi + \varepsilon$ and such that \mathcal{L}_{u_0} has an eigenvalue in $(-\infty, -c\varepsilon]$ for some c > 0. Let u denote the corresponding maximal lifespan solution to (CCM). Then

$$\|u(t)\|_{\dot{H}^1}\gtrsim c$$

uniformly for all times of existence t.

Lemma (Existence of negative eigenvalue)

For any $\varepsilon > 0$, the Lax operator $\mathcal{L}_{(1+\varepsilon)Q}$ has a negative eigenvalue in $(-\infty, -\varepsilon]$.

Theorem

For any sufficiently small $\varepsilon > 0$, there exist initial data $u_0 \in H^{\infty}_+(\mathbb{R})$ with $M(u_0) = 2\pi + \varepsilon$, a time $T \in (0, \infty]$, and a solution u(t) to (CCM) such that for all s > 0, $u \in C_t H^s_{\times}([0, T) \times \mathbb{R})$ and

$$\lim_{t\nearrow T}\|u(t)\|_{H^s}=+\infty.$$

In particular, if $T = \infty$, then we have the bounds

 $\|u(t)\|_{H^s}\gtrsim t^s.$

Proof.

We construct initial data $u_0^{\varepsilon} \rightarrow Q$ in H^1 as $\varepsilon \rightarrow 0$ satisfying

- $M(u_0^{\varepsilon}) \leq 2\pi + \varepsilon$
- $\mathcal{L}_{u_0^{arepsilon}}$ has an eigenvalue $\lesssim -arepsilon$ (equiv. $\|u^{arepsilon}(t)\|_{\dot{H}^1}\gtrsim 1$)
- $u_0^{\varepsilon} \in \mathcal{S}(\mathbb{R})$
- $\{u_0^{\varepsilon}\}$ is L^2 -equicontinuous

Fix ε and consider the corresponding (local) solution $u^{\varepsilon}(t)$.

We know that for all t, there exists $\lambda(t), \theta(t), y(t)$ such that

$$\left\|u_{\lambda(t),\theta(t),y(t)}^{\varepsilon}(t)-Q\right\|_{H^{1}}<\varepsilon.$$

Then $\lambda(t)$ is the characteristic width of $u^{\varepsilon}(t)$.

We want $\lambda(t)
ightarrow 0$ and already know $\lambda(t) \lesssim 1$.

Define

$$q(t,x) = e^{-i\theta(t)}\lambda(t)^{-1/2}Q(\lambda^{-1}(x-y(t))) = \frac{e^{-i\theta(t)}\lambda(t)^{-1/2}\sqrt{2}}{\lambda(t)^{-1}(x-y(t))+i}.$$

The dispersive decay implies

$$\begin{split} |q(t,z)| &\leq |q(t,z) - u^{\varepsilon}(t,z)| + |u^{\varepsilon}(t,z)| \\ &\lesssim (\operatorname{Im} z)^{-1/2} \|q(t) - u^{\varepsilon}(t)\|_{L^{2}} + |t|^{-1/2} \|u_{0}^{\varepsilon}\|_{L^{1}} \big[1 + (\operatorname{Im} z)^{-1}\big] \\ &\leq (\operatorname{Im} z)^{-1/2} \varepsilon + |t|^{-1/2} \|u_{0}^{\varepsilon}\|_{L^{1}} \big[1 + (\operatorname{Im} z)^{-1}\big]. \end{split}$$

Let $z(t) = y(t) + i\lambda(t)$. Then $\lambda(t)^{-1/2} \lesssim \lambda(t)^{-1/2} \varepsilon + |t|^{-1/2} ||u_0^{\varepsilon}||_{L^1} [1 + \lambda(t)^{-1}].$

Taking ε sufficiently small,

$$egin{aligned} &\lambda(t)^{-1/2}\lesssim |t|^{-1/2}\|u_0^arepsilon\|_{L^1}ig[1+\lambda(t)^{-1}ig]\ &|t|^{1/2}\lesssim \|u_0^arepsilon\|_{L^1}ig[\lambda(t)^{1/2}+\lambda(t)^{-1/2}ig]\ &|t|^{1/2}\lesssim \|u_0^arepsilon\|_{L^1}ig[1+\lambda(t)^{-1/2}ig]. \end{aligned}$$

Therefore $\lambda(t) \leq |t|^{-1}$ for sufficiently large t. Since u^{ε} is either global or blows up in finite time, this concludes the proof.

Corollary

For all $c, \varepsilon, s > 0$ there exists initial data $u_0 \in H^{\infty}_+$ such that $M(u_0) < 2\pi$ and $||u_0 - Q||_{L^2} < \varepsilon$ for which the global solution u(t) satisfies

 $\inf_{t\in\mathbb{R}}\|u(t)\|_{\dot{H}^{s}}\leq c.$

Proof.

We recall that in the main theorem, we considered initial data $u_0^\varepsilon \to Q$ in H^1 such that

- $\|u^{\varepsilon}(t)\|_{\dot{H}^1}\gtrsim 1$
- $u_0^{\varepsilon} \in \mathcal{S}(\mathbb{R})$
- $\{u_0^{\varepsilon}\}$ is L^2 -equicontinuous

Below mass 2π , we have a priori H^s -bounds [1]. If we assume that a lower bound exists, then we reach a contradiction by the previous argument.

Thank you!

* P. Gérard and E. Lenzmann.

The Calogero–Moser derivative nonlinear Schrödinger equation.

Preprint arXiv:2208.04105.

 * R. Killip, T. Laurens, and M. Vişan.
 Scaling-critical well-posedness for continuum Calogero–Moser models.

Preprint arXiv:2311.12334.