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Continuum Calogero–Moser Model

We recall that the focusing continuum Calogero–Moser model is

given by

iut + uxx − 2iuΠ+∂x |u|2 = 0 (CCM)

with Π+ : L2 → L2+ = {f ∈ L2 : supp f̂ ⊂ [0,∞)}.

We recall the Lax pair formulation

Lu = −i∂x − uΠ+u

Pu = i∂2
x + 2uΠ+∂xu
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Turbulent Threshold

Theorem

For any sufficiently small ε > 0, there exist initial data u0 ∈ H∞
+ (R)

with M(u0) = 2π + ε, a time T ∈ (0,∞], and a solution u(t) to

(CCM) such that for all s > 0, u ∈ CtH
s
x ([0,T )× R) and

lim
t↗T

∥u(t)∥Hs = +∞.

In particular, if T = ∞, then we have the bounds

∥u(t)∥Hs ≳ ts .
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Dispersive Decay

Theorem (Dispersive decay)

Given a set of initial data U ⊂ H∞
+ which is bounded and

equicontinuous in L2+ and satisfies ⟨x⟩u0 ∈ L2 for all u0 ∈ U,

|u(t, z)| ≲ |t|−
1
2 ∥u0∥L1

[
1 +M(u)(1 + (Im z)−1)

]
(1)

uniformly for Im z > 0, u0 ∈ U, and all times of existence t.
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Explicit formula

Due to Killip-Laurens-Vişan, see [2], we recall

Theorem (Explicit formula)

For any H∞
+ (R) solution u(t) to (CCM) with initial data satisfying

⟨x⟩u0 ∈ L2,

u(t, z) = 1
2πi I+

{
(X + 2tLu0 − z)−1u0

}
for all Im z > 0 and all times of existence t.

Here,

I+(f ) := f̂ (0+) =

∫
R
f (x)dx

X̂f (ξ) := i df̂dξ (ξ)
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Dispersive decay

Proof.

Let

A(t, z ; f ) = (X + 2tLf − z)−1, A0(t, z) = A(t, z ; 0).

Then by the explicit formula and a resolvent identity,

2πiu(t, z) = I+A(t, z ; u0)u0

= I+A0(t, z)u0 + 2tI+A0(t, z)u0Π
+u0A(t, z ; u0)u0.

We focus on the first term, I+A0(t, z).
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Dispersive decay

Proof continued.

The first term can be expressed as

I+A0(t, z)u0 = I+
{
(X − 2it∂x − z)−1u0

}
= I+

{
(e−it∆Xe it∆ − z)−1u0

}
= I+

{
e−it∆(X − z)−1e it∆u0

}
= I+

{
(X − z)−1[e it∆u0]

}
=

1

2πi
[e it∆u0](z).

Dispersive decay (equiv. Poisson integral) yields∣∣I+A0(t, z)u0
∣∣ ≲ |t|−1/2∥u0∥L1 .
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Dispersive decay

Proof continued.

The second term is treated by appeal to A0:

|2tI+A0(t, z)u0Π
+u0A(t, z ; u0)u0| ≲ |t|1/2

∥∥u0Π+u0A(t, z ; u0)u0
∥∥
L1

≲ |t|1/2∥u0∥2L2∥A(t, z ; u0)u0∥L∞ .

We write A(t, z ; u0) as a series expansion about A0(t, z), to find

∥A(t, z ; u0)u0∥L∞ ≲ |t|−1
[
1 + (Im z)−1

]
∥u0∥L1

uniformly for an L2-equicontinuous family U. This completes the

proof of the theorem.
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Dispersive Decay

Theorem (Dispersive decay)

Given a set of initial data U ⊂ H∞
+ which is bounded and

equicontinuous in L2+ and satisfies ⟨x⟩u0 ∈ L2 for all u0 ∈ U,

|u(t, z)| ≲ |t|−
1
2 ∥u0∥L1

[
1 +M(u)(1 + (Im z)−1)

]
(2)

uniformly for Im z > 0, u0 ∈ U, and all times of existence t.
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Solitons

We recall that CCM admits a stationary soliton solution

Q(x) =

√
2

x + i
,

which is the unique nonzero minimizer of the energy and has mass

M(Q) = 2π.
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Stability

Theorem

Fix c > 0. For all ε > 0 there exists δ > 0 such that if u0 ∈ H1

satisfies

∥u0 − Q∥H1 < δ

and the maximal lifespan solution u(t) satisfies ∥u(t)∥Ḣ1 ≥ c , then

inf
λ>0; θ,y∈R

∥uλ,θ,y (t)− Q∥H1 < ε

for all times of existence t.
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Stability

Lemma (Uniform lower bound in Ḣ1)

Suppose there exist ε > 0 and u0 ∈ H∞
+ such that ∥u0∥2L2 ≤ 2π + ε

and such that Lu0 has an eigenvalue in (−∞,−cε] for some c > 0.

Let u denote the corresponding maximal lifespan solution to

(CCM). Then

∥u(t)∥Ḣ1 ≳ c

uniformly for all times of existence t.

Lemma (Existence of negative eigenvalue)

For any ε > 0, the Lax operator L(1+ε)Q has a negative eigenvalue

in (−∞,−ε].
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Turbulent Threshold

Theorem

For any sufficiently small ε > 0, there exist initial data u0 ∈ H∞
+ (R)

with M(u0) = 2π + ε, a time T ∈ (0,∞], and a solution u(t) to

(CCM) such that for all s > 0, u ∈ CtH
s
x ([0,T )× R) and

lim
t↗T

∥u(t)∥Hs = +∞.

In particular, if T = ∞, then we have the bounds

∥u(t)∥Hs ≳ ts .
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Turbulent Threshold

Proof.

We construct initial data uε0 → Q in H1 as ε → 0 satisfying

• M(uε0) ≤ 2π + ε

• Luε0
has an eigenvalue ≲ −ε (equiv. ∥uε(t)∥Ḣ1 ≳ 1)

• uε0 ∈ S(R)
• {uε0} is L2-equicontinuous

Fix ε and consider the corresponding (local) solution uε(t).
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Turbulent Threshold

Proof continued.

We know that for all t, there exists λ(t), θ(t), y(t) such that∥∥uελ(t),θ(t),y(t)(t)− Q
∥∥
H1 < ε.

Then λ(t) is the characteristic width of uε(t).

We want λ(t) → 0 and already know λ(t) ≲ 1.
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Turbulent Threshold

Proof continued.

Define

q(t, x) = e−iθ(t)λ(t)−1/2Q(λ−1(x−y(t))) =
e−iθ(t)λ(t)−1/2

√
2

λ(t)−1(x − y(t)) + i
.

The dispersive decay implies

|q(t, z)| ≤ |q(t, z)− uε(t, z)|+ |uε(t, z)|
≲ (Im z)−1/2∥q(t)− uε(t)∥L2 + |t|−1/2∥uε0∥L1

[
1 + (Im z)−1

]
≤ (Im z)−1/2ε+ |t|−1/2∥uε0∥L1

[
1 + (Im z)−1

]
.

Let z(t) = y(t) + iλ(t). Then

λ(t)−1/2 ≲ λ(t)−1/2ε+ |t|−1/2∥uε0∥L1
[
1 + λ(t)−1

]
.
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Turbulent Threshold

Proof continued.

Taking ε sufficiently small,

λ(t)−1/2 ≲ |t|−1/2∥uε0∥L1
[
1 + λ(t)−1

]
|t|1/2 ≲ ∥uε0∥L1

[
λ(t)1/2 + λ(t)−1/2

]
|t|1/2 ≲ ∥uε0∥L1

[
1 + λ(t)−1/2

]
.

Therefore λ(t) ≲ |t|−1 for sufficiently large t. Since uε is either

global or blows up in finite time, this concludes the proof.
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Below the Threshold

Corollary

For all c, ε, s > 0 there exists initial data u0 ∈ H∞
+ such that

M(u0) < 2π and ∥u0 −Q∥L2 < ε for which the global solution u(t)

satisfies

inf
t∈R

∥u(t)∥Ḣs ≤ c .
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Proof of Corollary

Proof.

We recall that in the main theorem, we considered initial data

uε0 → Q in H1 such that

• ∥uε(t)∥Ḣ1 ≳ 1

• uε0 ∈ S(R)
• {uε0} is L2-equicontinuous

Below mass 2π, we have a priori Hs -bounds [1]. If we assume that

a lower bound exists, then we reach a contradiction by the previous

argument.
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Thank you!
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