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Problem 1: Consider F : M, (R) — S,,(R) given by F(A) = AA* —I.

a) Show 0 is a regular value of F.

Solution: To show 0 is a regular value of F', we must check that dFp has full rank for all
B € F710. Let B € F~10 be arbitrary. Then BB? = I, since F(B) = 0.

Notice dFp is a linear map from Tg(M,(R)) = M,(R) to Tp(S,(R)) = S,(R). (These are
vector spaces over R and hence have a single global chart making them into a manifold; moreover,
for V' a vector space and x € V, T,V = V. If you are interested in proving this, set up a linear
isomorphism ¢ : V — R* and observe d¢, = ¢).

To say dFp has full rank is to say it is surjective, since dim(M,(R)) > dim(S,(R)). Thus, we
need to check the map dFg : M, (R) — S, (R) is surjective.

We may compute:

F(B+tA) — F(B) (B+tA)(B+tA)—1—-0

dFp(4) = lim " = i i
_ iy BB HIBA'+IAB' + AN
5 t
_ .. tBA'+tAB' 4+ {?AA?
- tgr(l) t

— BA' 4+ AB' + <lim t) AA' = BA' + AB
t—0

Hence dFp : M,(R) — S,(R) is the map that sends A to BA" + AB". This is indeed surjective.
To see this, let C' € S,,(R) be an arbitrary symmetric matrix. Let A = %CB. Then

1 1 1 1
dFg(A) = BA' + AB' = §B(CB)t + §CBBt = §BBtCt +50=C

where we used BBY = I and C* = C.

Since C € S,(R) was arbitrary, we conclude dFp is surjective, and hence of full rank.
Since B € F~10 was arbitrary, we conclude 0 is a regular value of F.




b) Deduce O, (R) C M, (R) is a submanifold.

Solution: By the regular value theorem, F~10 = {B € M,(R) : BB' = I} = O,(R) is a
submanifold of M, (R).

¢) Find the dimension of O, (R) and compute 77(0,(R)) as a subspace of T7(M,(R)) = M, (R).

Solution: The regular value theorem also tells us, moreover, that the codimension of {0} in
S.(R) is equal to the codimension of F~10 = O,(R) in M,(R). The codimension of {0} in
Sp(R) is the dimension of S, (R) minus the dimension of 0, which is "ZQi — 0= "2% Hence
the codimension of O, (R) in M, (R) is "2;". Meanwhile, dim(M,,(R)) = n?, so that O,(R) has

n2+n _ nzfn
2 - 2

dimension n? —

In fact, we even know by regular value theorem that Tg(0,(R)) C Ts(M,(R)) = M,(R)
is just the kernel of dFp : M,(R) — S,(R). Hence, T;(0,(R)) = ker(dF;). Recall by part A
that dFj(A) = TA* + AI' = A + A. Hence, ker(dF;) = {A € M,(R) : A"+ A = 0}, i.e. the
skew-symmetric matrices. Thus, T7(O,(R)) is the set of skew-symmetric matrices.




Problem 2: Show T2 x S™ is parallelizable for any n > 1.

Recall an n-manifold M is parallelizable if and only if the tangent bundle is trivial, i.e. TM = M xR"
as vector bundles.

Fact: A k-dimensional bundle E over M (with «# : E — M the projection map) is trivial if
and only if there exist vector fields (sections of the vector bundle) Vi, ..., Vs : M — E with {Vi(p)}r_,
linearly independent in E, = 7~ !p for each p € M.

Lemma: S! is parallelizable.

Proof: View S! ¢ C = R? as a submanifold. By G&P’s definition, we may view for z = e’ € S' ¢ C
and ROV, 2, U, C S € C = R? some local parameterization around z (say ¢(t) = e®)
T.S' = im(déy,)
ei(t0+3h)_eit0 ish

Here, d¢, : R — R? has d¢y,(s) = limy_o € ———=°— =zlimp .o ¢ h_l = zlimy_,q sie®*? = (i2)s.
Hence im(d¢y,) = {(iz)s : s € R}. Next,

TS' = {(z,v) : v € T,S* Cc R?} Cc ' x R?
We have a nonvanishing tangent vector field given by V : St — T'S! sending V(z) = (z,iz) € T'S*

(or V(z) = % ., or V((z,9)) = (—y,z)). Since {iz} is a linearly independent set in 7,S* for each
z € S*, we conclude T'S" is trivial, isomorphic to S x R. In particular, S* is parallelizable. [J

Lemma: When viewing S” C R**!, NS” is trivial, i.e. NS® = 8™ x R.
Proof: For x € S™, we have N,S" = (T,,S")1 = {sz : s € R} C R"*!. Moreover,
NS"™ = {(z,v) : v € N,S" C R"*'} ¢ §" x R**!
To see NS™ is trivial, it suffices to give a nonvanishing normal vector field V : ™ — NS™. Of

course, this is accomplished by V(z) = (z,z) € NS™. Since {z} is a linearly independent set in
N, S™ for each x € S™, we conclude N S™ is trivial and isomorphic to S™ x R. [J

Fact: T(M x N) = 73, TM & 7wy TN as vector bundles over M x N.
Corollary: The product of parallelizable manifolds is parallelizable.

Proof: Let M, N be parallelizable n and m manifolds respectively. Then
T(M x N)=myTM&ryTN =7y,(MxR")@ny(N xR™)

=MXxXNXR*"®MxNxR™=Mx N xR*"™ O

Solution: We have T2 x S™ = S1 x S' x S™. Since S! is parallelizable, it suffices to check S* x S™
is parallelizable. Meanwhile,

T(S* x 8™) = 75 (TSY) ® 75 (TS™) = (S* x 8™ X R) @ 75n (TS™) = 75a (S™ x R) @ 7 (TS™)
= 5 (NS™) @ 15 (TS™) = 15 (NS™ @ TS™) = w5 (8™ x R™1) = S x §™ x R™ !
Hence S x S™ is parallelizable, and the result follows. [J

Remark: (i) The direct sum refers to fiber product. (ii) T'S™ is trivial iff n = 1,3, 7.




Problem 3: Let m : M; — M be a smooth map between connected manifolds such that dm, : T,M; —
T (p)M2 is an isomorphism for all p € M.

a) Show that if M; is compact, then 7 is a covering space projection.

Theorem: (Stack of Records) Suppose f : X — Y is smooth, X is compact, and
dim(X) = dim(Y). Then for all y € Y regular, y has an evenly covered neighborhood,
y € V with f~'y = {@1,...,2,}, z; € U; open disjoint, f|y, diffeomorphisms from U; to V, and
v =uU;.

Proof: Since y is regular, each df,, is an isomorphism (by dimension considerations). Then f~ly
is a compact 0-manifold (by codimension in X of f~!y equal to codimension of y in Y'). Hence it
is a finite set, f~ly = {z1, ..., x, }. For the moment, assume n > 0.

By the inverse function theorem, we have an open neighborhood W; of x; such that F'(W;) is open
and F|w, is a diffeomorphism. We may insist the W; are disjoint; otherwise, shrink to an open
subset (still containing x;). The image will remain open, and the restriction of a diffeomorphism
is again a diffeomorphism.

Let V! = n;F(W;). Each F(W;) is open and contains y (and there are finitely many ) so
that V' is open and contains y.

Let U = (Flw,)"Y(V') = F7'V' N W;, which is of course also open, and contains ;.
Since the W; are disjoint, so too are the U;. By construction, F|y : U/ — V' is a diffeomorphism
(it is a further restriction of F'|w,).

Finally, shrink one last time! Writing U’ = ;U] and Z = X \ U’, we see Z is closed in
X, and hence compact. So F(Z) is compact and hence closed. Then V = V' \ F(Z) is
open and contains y (since f~ly is disjoint from Z, entirely contained in U’). Finally, set
Ui = (Fly;)~'V = F7'V N U]. This is again open and contains x;. Moreover, F|y, : U; — V is a
diffeomorphism. Each U; is disjoint since each U! was. Finally, F~1V N Z = () by construction,
so that F~1V C U;U/. Hence F~'V = L;U;.

Finally, we address the n = 0 case. If f~'y is empty, it suffices to find a neighborhood of
y whose preimage is empty. This is possible, since if every open neighborhood of y intersects with
F(X), then y is in the closure of F'(X), which is closed (since it is compact in Hausdorff space V). O

Solution: Note 7 is surjective. For this, notice w(M7) C Ms is compact and hence closed in M.
It suffices to show (by connectedness of Ms) that it is open, as it is indeed nonempty.

To see that it is open, let y € w(M;) be arbitrary. Write y = w(z) for some x € M;.
Since dm, is an isomorphism by assumption, we have 7 is a local diffeomorphism, with
wly : U = V a diffeomorphism (and 2 € U C My, y = w(x) € V C M; open). In particular,
V C w(M,) is an open neighborhood of y in w(M;). Hence w(M;) is open in Ms, as desired. So
7T(M1) = MQ.

Finally, applying stack of records to arbitrary y € M, we see that y has an evenly cov-
ered neighborhood, so that 7 is indeed a covering map. [J




b) Give an example where M, is compact but 7 is not a covering space projection.

We construct an example 7 : R — S!. It suffices to have dr; : R = T,R — Tﬁ(t)Sl to be an
isomorphism for each ¢t € R, yet for m to not be surjective (so that it cannot be a covering space
projection).

Let 7(t) = ¢/® ¢ S for some smooth function f : R — R. Then dm(1) = if’(t)e’f®),
so that dm;(s) = if’(t)e’®s. This is a linear map between one-dimensional spaces and hence
is invertible if and only if it is nonzero. It is nonzero if and only if f/'(¢) # 0. Thus, we need
f(t) #0 for any t € R.

Let f(t) = arctan(t). Then indeed f'(t) = H% is always nonzero for any ¢ € R. More-

over, f(t) € (—n/2,7/2) for all t € R, so that 7(t) C {e? € S': —7/2 < § < w/2} # S'. Hence 7
is not surjective, and we have the desired counterexample.




Problem 4: Let F*(M) denote the k-forms on M. Let U,V C M be open.
a) Explain how the SES 0 — F(UUV) = F(U)® F(V) = F(UNV) — 0 arises.

Definition: A 1-form or covector is a section of T*M. It is of the form df, an evaluation at f
map for smooth function f: M — R (in fact it is in bijection with these).

A k-form is a section of \*T*M = (/\k TM) (and can be thought of as a function on

M to A*T*M c AT*M). It can be written as a sum of k-fold wedges (exterior powers) of
1-forms, and can be thought of as a function, w(Xy, ..., Xx) returning a real number. Recall

We have |w A7 = (—1)*npAw|and |d(w; Aws) = dwy Awy + (=1)Fwi Adwy |

Note A" T M has dimension (}) (where n = dim(M)) with basis dx;, A ... Adx;,, i1 < ... <.

Remark: Note that F*(M) = QF(M) is a C>°(M)-module, and (M) is a graded C>° (M )-algebra
via wedge, but is also a cochain complex via d (dimension goes up).

Solution: We view these as cochain complexes since we are dealing with cohomology. To
obtain this SES, we need an SES

0 FFUUV) & FHU) e FHV) L FFUNV) -0
for each 0 < k < n, such that the maps commute with d. We define
fi(s) = (slu, slv)

gk (t,w) = tlunvy — wlunv

These are C°°(M)-linear, as is necessary. It is clear im(fx) C ker(gx). Conversely, (¢, w) € ker(gx)
may be glued since they agree on the intersection, so we have equality.

Meanwhile, anything in ker(fy) is zero on all of U UV and hence 0. Finally, gi is surjec-
tive, since if w € F¥(U NV), pick a partition of unity of U UV subordinate to the open cover
{U,V}. Then we may find smooth functions from U UV to [0, 1] with ¢ << U, <<V (compact
support), and with ¢ +1 = 1 on UN V. Then ¢w may be viewed as an element of F*(U), and
Yw as an element of F*(V). Finally, gx(¢w, —tw) = w. Hence g is surjective.

As a last remark, notice d is linear and commutes with restriction, and d*> = 0. So we
have an SES of cochain complexes.




b) Write down the LES in de Rham cohomology associated to the SES in part a and describe explicitly how
the map HX (U NV) 5 HERL(U U V) arises.

This requires the Zig-Zag Lemma.

Lemma: (Zig-Zag) Given an SES of modules 0 — A* 4, B* % ©* 5 0 of cochain complexes, we have
# #

an LES ... — HF(A*) f—) H*(B*) L HF(C*) 3, HF*T1(A*) — ... of cohomology groups. (Recall the kth

cohomology group is the kernel of the next map mod the image of the previous).

Proof: We will use d to denote the maps in each cochain, through abuse of notation, but they will be in-
dexed occasionally by the domain, making it clear which map we are referring to.

The map f# is induced as follows: for x € ker(dx), fx(z) € ker(dgk) since d(fz) = f(dz) = 0. So we
have ker(d4x) — ker(dgr) — H*(B) by modding out by im(dgk—1). But then im(d 4x—1) factors through, giving

#
our desired map H*(A) Ll H¥*(B). This justifies the well-definedness of the map [z] — [f(x)]. Similarly we may

obtain g#.

To get the map J, we need to diagram chase. Start with x € ker(dox). Find y € Bk with gy, (y) = =.
Now dy € BF*! has gp11(dy) = d(gry) = dz = 0, so that dy € ker(gy41) = im(fr11). So it has a unique preimage
z € AFtL. Observe fyiodz = d(frr12) = d(dy) = 0, and fy1o is injective, so that dz = 0. Hence 2z € ker(d 45+1).

If ¥ € B* also has gi(y') = =, then y — ¢y’ € ker(gy) = im(fg), so that we have an a € AF with
fr(a) = y—y'. Note z is the preimage of dy under fjy1; if 2’ is the preimage of dy’, then z — 2z’ maps to d(y —y’).
Meanwhile, fr+1(da) = d(fi(a)) = d(y —y’). Hence z — 2’ = da by injectivity of fx41. This shows [z] = [2/] in
HF1(A).

Define the map ker(dor) — H¥t1(A) via x — [2]. To see it factors through im(dgr—1), notice for v € C*~1,
taking « = dy, notice we may select 3y’ € B*~1 with g_19’ = v, so that = dy = dgr_1y’ = gr(dy’). Thus, we
may select y = dy’ € BF as our preimage. Then we select the unique z € A*t1 with fry12 = dy = 0. So we
must select z = 0. Hence our map sends dy +— [0]. Thus indeed it factors through the image and we get a map

HF(C) 2, H**+1(A). Explicitly, this map sends [z] to [z], where z € (fk+1)_1(d(glzlz)) is arbitrary.

C°°(M)-linearity of & is easy to verify. It is also easy to see we at least get a cochain complex, since
g# f# = (gf)# = 0 and dg# ([z]) = 6([gr()]) = [2], where z € (fr11)~ 'dz is arbitrary, though this is a singleton
since f is injective. Then fiy12 = dx = 0 since z is closed (i.e. in the kernel of this d). Hence z = 0, so
§9#([z]) = [0], and dg# = 0. Finally, f#5([z]) = f#[z] = [f(2)], where z € f];Llldgk_lz is arbitrary. Hence
F#6([z]) = [w] for w € d(glzlx) arbitary. Hence [w] = [0], so that f#§ = 0.

So all the images are contained in the appropriate kernels. To check reverse containments, let [z] be in
ker(f#) (with [z] € H*(A*), k > 0). Then f#[z] = [fx(z)] = [0], so that fi(z) = dy. Then &[gx_17] = [x] (where
gr_17 is indeed closed since dgp_17 = grfx(z) = 0), so [x] € im(5). Next, if [z] € ker(¢#), then gp(x) = dy
if Kk > 0, and gi(x) = 0 if K = 0. In the former case, select y with gr_1(y) = 7. Then notice gi(z — dy) = 0.
Let z =2 —dy. If k =0, let z = z. In either case, z € ker(gr) = im(fx), so fx(w) = z for some w. Moreover,
fr41(dw) = dz = 0 (in both cases), so dw = 0, so w is closed. So f#([w]) = [2] = [z], so [z] € im(f#). Finally, if
[x] € ker(6), then for z € (fk+1)_1(d(g,;1(z))) arbitrary, z = dw for some w. Then d(fx(w)) = fx+12 € d(ggl(x)).
So there is some A € g,;l(x) with d(fx(w)) = dX, and gg(X) = . Notice gi(fr(w)) = 0, so gi(fx(w) — ) = =z,
with fi(w) — X closed (since d(fx(w) — A) = 0). So [z] € im(g#) as desired. O]

Solution: We can make our map a bit more explicit in our case. The map & proceeds as follows: start-
ing with [w] (for w € F¥(U N'V)), first we consider a form ¢t on U and a form s on V via the partition of unity
described in part a, taking ¢ = ¢w, s = —1w. Then we apply d to get dt = d(¢w) and ds = —d(¢w). Finally,
these forms are glued together to get a form 7 on U UV, where the compatibility condition amounts to noticing
that dt|ynv — ds|uny = dw = 0. Our map then has §([w]) = [n]. It sends a closed k-form on U NV to a closed
(k 4+ 1)-form on U UV by splitting into two non-closed forms, applying d (so that they agree on their intersection),
and gluing.




Problem 5: Let 7 :S™ — M (for n > 1) be a covering space projection with M orientable. Show every
closed k-form on M is exact (for 0 < k < n).

Solution: Recall
R k=0,n
B = ’
ar(5") {0 0<k<n
It suffices to show each H%.(M) = HE.(S™) is injective for 0 < k < n. Fix k. We define a left
inverse 7, as follows: Let w be a k-form on S™. For any evenly covered U C M, let ¢; : U — U;
be the smooth inverse of 7|y, (which is a diffeomorphism from U; to U), for i = 1,...,q. Then

n(U, i) = ¢} (w|y,) is a k-form on U, and so too is O(U) = % L nU,3) = % L1 0 (wlu,)-

i

In fact, we may find a unique k-form 6 on M with 0|y = 6(U) for each evenly covered U C M. To
do this, notice for any p € U with ¢; as described above, and p; = ¢;(p), we have

q q

OD)p (X1, s Xi) = 7 D (1l K Xi) = < 3 (0

=1 i=1

U:)ps ((d9i)p X1, -.s (di)p X))

Ui))m)ilea cey ((d(ﬂ

14 - 13 - B

= azwm(((d(w Ui))pi) le) = 6 pri((dwm) 1X1> 000y (d,’TPi,) le)
i=1 =1

which is independent of choice of U containing p (it only depends on the points in the fiber, p1, ..., pq €

7~ 'p). Hence, 0 given by 6, = 6(U),, for some U > p evenly covered makes 6 a well-defined k-form

on M, with 0|y = 0(U) for any evenly covered U. Such a 0 is clearly unique, and we define m,w = 6

in this way. We have for any evenly covered U C M,

Ui)

q
(o)l = = 5 67w
q =1

Next, for w a k-form on M, notice

q q

(dmw)ly = d((Tuw)lp) = gzd@(w 0) = éZ@(dw

i=1 =1

u;) = (medw)|y

Hence dm.w = m.dw, so that 7, sends closed forms to closed forms and exact forms to exact forms (if
dw = 0, then dm,w = 0, and if w = dn, then m,w = m.dn = dm,n). Thus 7, can be viewed as a map
from HE,(S™) to HYp(M). Finally,

(rer o)y = = 3 d(Fw)lv) = = 3wy = wly

q 4o

i=1
Hence m,.7*w = w. Since
Hc]icR(M) — HgR(Sn) = HCIJCR(M)

composes to the identity, we see 7* is injective. Since HC’l“R(S") =0 for 0 < k < n, we conclude
Hk (M) =0 for 0 < k < n, so that every closed k-form on M is exact.

Remark: Note M is also an m-manifold: consider an evenly covered chart of M. It is diffeo-
morphic to open subsets of S™, which are n-manifolds.

Note for n > 1, S™ is a simply connected covering space of M, and therefore must be a uni-
versal cover. Thus, deck transformations act transitively on the fibers. This gives an alternative
proof using S /G = M.




Problem 6: Calculate the singular homology of R™ \ {z1,...,z;}.

Solution: Pick disjoint open balls B; > x; (with B; € R™). Let U = R™ \ {z1,...,2;}, and let
V = Ul_;B; 2 Ll_;R", where = here denotes homeomorphic. Notice UUV = R", and UNV =
U, (Bi \ {z;}) = Ul_,S"! where = here denotes homotopy equivalent. Applying Mayer-Vietoris
for singular homology, we get an LES

e — Hk+1(UU V) — Hk(Uﬂ V) — Hk(U) @Hk(V) — Hk(UU V) — . = Ho(UU V) —0

For 0 < k < n—1, notice we have H(UUV') = Hi(R™) = 0 since 0 < k < n. Meanwhile, H(UNV) =
Hy (Ui, 8" 1) = @l (Hg(S™ 1)) = 0 since 0 < k < n — 1. Finally, Hp(V) = @5 H(R") = 0.
Hence our exact sequence gives

0— H,(U)®0—0

so that Hy,(U) =0 for 1 <k < n—1. For k = 0, we have H;(R") = 0, Hy(R") = Z, Ho(Ll!_, 5" 1) =
Z', and Ho(UL_;R"™) = Z!, giving an exact sequence

057 - H(U)®Z - Z -0

Since Hy(U) is free (with rank the number of path components), we conclude Hy(U) = Z (and U is
path connected).

Next, for k = n — 1, we have H,(R") = 0, H, ,(U_,S"') = Z', H, ;(J'_;R") = 0 and
H,_1(R™) =0if n > 1. This gives

0-Z' - H,_1(U)®0—0
so that H,,_1(U) = Z!. Finally, for k > n, we get
0— Hy(U)®0 — 0

since H, (V) = H,(UUV) = H,(UNV) =0 for k > n. We conclude H(U) = 0 for k > n. Hence
forn > 1,

Z k=0
. O0<k<n-1
Hy(R™\ {21, ..., 3}) = 7 k1
0 k>n

For n =1, R\ {z1,...,2;} is the disjoint union of [ + 1 open intervals, which is homotopy equivalent
to [ + 1 points, so that
ZHY k=0

Hk(Rl\{xl,...,a:l}): {O k‘>0




Problem 7:

a) Explain what is meant by adding a handle to a 2-sphere for a two dimensional orientable surface in
general.

Solution: Adding a handle to surface M is to remove two disjoint disks from M and gluing a
cylinder (with each boundary circle glued to the boundary of one of the removed disks).

b) Show that a 2-sphere with a positive number of handles attached can not be simply connected.

Solution: Define M, = 52 and My = My, with a handle attached to the image of My in My_.
Contracting the image of the sphere gives us the usual genus g compact orientable surface.

Recall x(M,) = 2 — 2g. Notice that the orientable genus g surface can be obtained by a
polygon with 4g-sides, so this can be proved directly if desired (x(My) = 1 — 2g + 1 since pairs
of edges are identified, and all vertices end up being identified). We will instead show it using
induction. A torus can be formed using a square, and ends up having one O-cell, two 1-cells,
and one 2-cell, for x(T?) =1 -2+ 1 = 0. Meanwhile, x(A#B) = x(A) + x(B) — x(5") for a
connected sum of n-manifolds. Moreover, x(S™) =1+ (—1)™. For n = 2, this gives

x(Mo) = X(§%) = 1+ (-1)? =2=2-2.0

X(My) = x(My_1#T?) = x(My_1) + x(T?) — x(S?) = x(My_1) — 2

If x(Mg—1) =2 —2(g — 1), it follows by the above that x(M,) = 2 — 2g. Thus, by induction,
X(My) = 2 — 2g as desired.

Now notice HIx(M,) = R = H2p(M,). To see this, notice T? is a connected, compact,
orientable 2-manifold without boundary. Hence the same is true for its connected sums. Thus
each H),(M,) = R by connectedness, and each H7,(M,) = R by being a compact orientable
2-manifold without boundary. (Or, use Poincare duality).

Then 2 — 2g = x(My) = 1 — dimg H:p(M,) + 1 = 2 — dimg Hip(M,). Thus, Hip(M,) = R,
On the other hand, if M, is simply connected, m1(M,) = 0. Then H;(M,) = 0 as it is the
abelianization of 1 (My).

We can apply universal coefficients to get Hqi(M,) ®z R = H;(My;R), so Hi(Mg;R) = 0.
We can apply it again to get H'(M,;R) = (Hy(My;R))* = 0. Finally, we can apply De Rham’s
Theorem to get H'(My;R) = Hip(M,). Finally, 0 = H'(M;R) & Hin(M,) = R?9. Hence
g=20.0

10



Theorem: (Universal coefficients) For k any ring, H;(M; k) = H;(M) ® k @ Tory (H;—1(M), k), and
H'(M;k) = Hom(H;(M), k) ® Ext(H;—1(M), k). More generally, for R a PID and G an R-module,
we have H'(M; G) = Homg(H;(M; R),G) ® Extg(H;_1(M; R),G).

Note Tor(A, B) = Tor(B, A) = Tor(Torsion(A), B), so it vanishes if either is torsion free. Moreover it
commutes with limits (and direct sums and products) and Tor(Z/nZ, B) = ker(B = B). Ext(A, B)
commutes with sums in the first entry, is 0 if A4 is free, and Ext(Z/nZ, B) = coker(B - B) = B/nB.
Also, Extgr(R/(u), B) = B/uB. Extr(A, B) =0 if A is projective or B is injective.

For k = R, we see H;(M;R) = H;(M) ® R, where Tor is 0 since R is torsion free. Similarly,
H'(M;R) = H;(M;R)*, since Extg(R¥,R) = 0 since R* is free and hence projective. Same for
kE=Q.

For k = Z/pZ, H;(M;F,) = H;(M)®F, ®ker(H;_, (M) 2 H;_,(M)) and H'(M;F,) = H;(M;F,)*.

Theorem: (Poincare Duality) For M a compact orientable n-manifold without boundary,
H¥(M) = H,_(M). This can also be done over any coefficient ring, but in particular, for Z/27Z,
orientability is free.

Theorem: (De Rham’s Theorem) For a smooth manifold, H%, (M) = Hy,(M;R)* = H*(M;R) via
c] — fcw). The second isomorphism is just by universal coefficients.

Corollary: A compact manifold X of odd dimension n has Euler characteristic 0.

Proof: We have for any field &,

n n n

x(X) = Z(—l)i rank(H;(X)) = Z(—l)i dimg (H; (X) 2 k) = Z(—l)i dimy, H;(X; k)

i=0 i=0 i=0
Taking k = Z/27 = Fo, we get orientability and Poincare duality for free, so we get

n n

X(X) = (-1)"dimg, H;(X;2/2Z) =Y (~1)" dimg, H"*(X; Z/2Z)
=0 i=0

= " (—1) dimp, (H,—s(X;2/22))* = > _(~1)" dimg, H,—;(X; Z/2Z)
i=0 1=0

—1)™ Y (—1)7 dimp, H;(X;2/2Z) = (-1)"x(X)

3=0

Hence (1 — (—1)™)x(X) = 0. For n odd, this gives 2x(X) =0= x(X) =0. O
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Problem 8: Define the degree of a smooth map f : S — S? (and show it is well-defined if needed). Show
there exists a smooth map f : S? — S? of degree k for each k € Z.

There are a few equivalent notions of degree. We can write, for f : X — Y, deg(f) as the sum of
signed preimages of a regular value of f, defined as I(f,{y}) for any regular value y. Recall I(f, Z)
is the sum over all z € f~'Z of £1, depending on if df,T,X + T,Z preserves orientation of 7,Y.
Thus for degree purposes, we count z € f~'y +1 or —1 depending on if df, T, X = T,Y preserves
orientation. For XY equidimensional, this amounts to saying det(df,,) is positive or negative.

Alternatively, use Hatcher’s definition, which says deg(f) is just the integer which gives the
map on top homology, Z = H,(X) — H,(Y) = Z. Over R, this is still multiplication by an integer.
For de Rham cohomology, we have H™(X) =2 R and H"(Y) = R via integration over the fundamental
class (i.e. a generator of H, (X) for X compact orientable). Our map f*: H"(Y) — H™(X) ends up

having /Xf*w:deg(f)/yw.

Finally, we can use local degree with Hatcher’s definition. Pick y in the image with finitely
many preimage points. Pick balls near those points not containing any of the other preimage points,
and look at the degree of the induced map. (If it is a homeomorphism, it is +1).

Solution: Hatcher’s proof for a degree £ map from S™ — S™ works as follows: collapse the
complement of k disks in S™ to a point, leaving a wedge of k copies of S™. Then send each copy of
S™ to S™ either via the identity or via reflections. Notice in the image, each point has precisely k
preimages, and it is a local homeomorphism near these points, so provided we flip all the —1 to +1
via reflection, this gives us degree k.

Alternatively, take f : S? — S? which sends (,¢) — (kf,¢). Then for w = g(0,¢)do A de,

we have
fro= [ 1e@.0)nds) = [ gbofé0ndbe ) ndser)
S2 S2 S2
™ 2m
= k0, p)kdd Ndop =k k0, ¢)dod
[ oo omannas =k [ [ g0, )avas
T 27k ™ 2m
= [ st = [ [ ooyt~ [

]

Remark: See Fall 2012 Problem 4 for a generalization using a different argument.

12



Problem 9: Explain how Stokes Theorem gives the classical divergence theorem.

Theorem: (Stokes) Let M be a smooth oriented n-manifold with boundary, and let w be a compactly
supported (n — 1)-form on M. Let ¢ : 9M — M be the inclusion map. Then

/ i*wz/ dw
oM M

Remark: Functions are 0 forms. We can think of applying d as follows: d of a O-form gives a
1-form, and this can be thought of as the gradient. d of a 1-form gives a 2-form, and this can be
thought of as curl. Finally, d of a 2-form gives a volume form, and this can be thought of as divergence.

To get Green’s Theorem, let D C R? with P, smooth R-valued functions on D. To com-
pute fBD Pdzx + Qdy, we can apply Stokes to w = Pdx + Qdy to get

P
/ Pdx + Qdy = / d(Pdz + Qdy) = / (@ — a—)dm Ady
oD D p Oz oy
Similarly, for divergence theorem, take w = Pdy A dz + Qdz A dx + Rdx A dy. See Fall 2018 Problem
5 for full details.
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Problem 10:

a) Show any F : ™ — St x ... x §! := T* is null-homotopic (homotopic to a constant map).

The universal cover of a product is the product of universal covers. The universal cover of S! is
R, so that 7% has universal cover R¥. Recall a universal cover X is simply connected, i.e. has
7m1(X) =0. Given amap h: Y — X and a covering X’ of X, then h lifts to a map g: Y — X’ if
and only if h,(m1(Y)) C p«(m(X’)). If the spaces aren’t path connected we may care about base
point, in which case we need h.(m1 (Y, yo)) C ps(m( X', z)) where z(, € p~'h(yo).

Since X’,Y are both simply connected in our case, this property is satisfied (as both
7 (X") = w(Y) = 0), and our map F : S — T* factors through to ™ — R¥ — T*. The first
of these maps is homotopic to the constant map via a straight line homotopy, or using the fact
that R* is contractible. This then descends to a homotopy on maps from S” — T*, making F
homotopic to a constant map, as desired.

b) Show there exists a map F : T" := S! x ... x §1 — S™ that is not null-homotopic.

Solution: Taking Ian’s solution, pick U C T™ with U =2 R", and map 7" to T"/(T™ \ U), which
is a 1-point compactification of U and hence homeomorphic to S™. Points in the image of U are
the only ones that have finite preimage sets; near the unique preimage of such a point, the map is
a local homeomorphism; hence the degree of this map is £1 rather than 0. (Such a map can be
made smooth if needed). O

c¢) Show that every map F: S™ — S™ x S™2 x ... Xx S™ nj + ...+ ng =n, k > 2, has degree 0. (You may
take F' to be smooth).

Let 7; denote the projection S™ X ... x S™ — S™. Let w; be a non-vanishing (necessarily closed)
ni-form on S™. Take w = AF_ 7*w;. Then w is a non-vanishing closed n-form on S™ x ... x S™*.

Notice, then,
k

F*w= /\ F*rfw;
i=1

Meanwhile, F*7¥w; is a closed n;-form on S™, and since 0 < n; < n, it is exact (since H"™(S™) = 0).

Write F*mfw; = df;. Then
k k
Frow= \do=d (91 AN d0¢>
i=1 =2

So F*w is exact, and hence | gn F*w = 0 (by Stokes or by isomorphism on top cohomology with
R). If we take the w; to be volume forms, then w is a volume form, so fsn w # 0. This shows F
has degree 0. (Alternatively, notice w is non-vanishing and pointwise must give a basis for the n
forms on S™, as that space is 1-dimensional). O
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Notes

Low Dimensional Manifolds

Compact 0-manifolds are just finite sets with discrete topology. Compact connected 1-manifolds are
[0,1] (if we allow for boundary), and S* = RP" (which does not have boundary). Hence for M a
compact 1-manifold, 0M is finite of even size.

It turns out compact connected 2-manifolds without boundary are homeomorphic if and only
if diffeomorphic if and only if homotopy equivalent. The only ones are T2, RP?, and connected sums
thereof. The Oth sum is S2, and we have the relation T?#RP? = RP?>#RP?#RP> (can be checked
via polygon construction). Moreover, RP?#RP? is the Klein bottle. In general, M, = T2H.. #T?
and N, = RP*#.. #RP? (g times).

The polygon construction for M, (orientable) is a 4g-gon labeled ai,bi,ay,by,as2,...,b;, with
a;, @) having opposite orientation and b;, b, having opposite orientations. For N, (non-orientable),

we can do a 2g-gon all clockwise with labels a1, a1, az,as, ..., a4, ag.

A connected sum of m-manifolds involves cutting disks D™, on from each of the two mani-
folds, and two disks from S”, and gluing these. You can mimick this construction with polygons to
get the desired polygon constructions.

For M a compact connected 2-manifold with boundary, notice OM is a compact 1-manifold
without boundary, since 9°M = (). Hence OM is a disjoint union of circles. Gluing disks here
removes these boundaries, so we see every compact connected 2-manifold with boundary can just be
obtained from deleting disks from a compact connected 2-manifold without boundary.

Euler Characteristic

We have x(A#B) = x(A) + x(B) — x(S™) for n-manifolds A, B. Moreover, x(A U B) =
x(4) + x(B) — x(AN B), and x(A4 x B) = x(A) - x(B).

As some basics, x(T?) =1—-2+1=0, x(S?) =1—0+1 =2, and x(RP?) = 1—1+1 = 1. Moreover,
X(Mgy) =2 —2g, and x(Ny) = 2 — g. These can be seen directly from the polygon construction.

An alternative proof for x(7?) is to recall T2 = S! x S'. Then x(S!) = 1 —1 = 0 (or use
the really high-powered fact that it is compact and odd-dimensional). Then y(S! x S) =0-0= 0.

Recall that X x S! has n-cells of the form (en,eq) and (e,_1,e1). Hence we have
Cn + cn_q cells, Wherg ¢, denotes the number of n-cells of X (with ¢.; = 0). Hence
XX x 81 =300 o (=) (es + i) = Yip(=1) e+ (=1) - 30, (1) = Deim1 = x(X) = x(X) =0.
Alternatively, x(X x S') = x(X) - x(S!) = 0.

For k-fold covering spaces M — M, we have x(M) = k - x(M).
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Definitions and Useful Examples

A closed submanifold is an imbedded manifold with a closed image. An imbedded manifold is an
immersed manifold via an injective map whose domain is homeomorphic to its image. An immersion
just has df, non-vanishing.

G&P’s definition for M C RY takes T,M = im(d¢y), where ¢ : R® — U ¢ M C RY is a
chart with ¢(0) = p.

A topological manifold is a locally Euclidean metric space. Alternatively, we can say it is lo-
cally Euclidean and Hausdorff. Then it is metrizable if and only if it is paracompact. We need
second countable to get embedding. It is second-countable if and only if it is o-compact, which,
in the connected case, is equivalent to paracompact and hence metrizable (otherwise, we just get
o-compact = paracompact). Recall o-compact says union of countably many compact subspaces,
paracompact says locally finite subcover, and second-countable says countable base, where a base
covers and has, for each © € B; N By a base element B, > x with B, C B; N Bs.

For a smooth manifold, we just need to give an atlas: charts that cover and whose transition
functions are smooth.

Fun fact: a manifold is homotopy equivalent to its interior, and every continuous map is
homotopic to a smooth map.

Algebraic Topology

The homology of a disjoint union is the sum of homologies. To get the homology of a wedge X VY
where p € X and g € Y are glued (with (X, p), (Y, q) good pairs), take the good pair (X UY, {p, q}).
Then by Hatcher 2.13, since H;({p,q}) = 0 for all i > 0, we instantly see H;(X VY) = H;(X LUY)
for i« > 1. For i = 1, we get an isomorphism via abelianizing the result from Van Kampen to get
Hi(XVY) = H(X)® H(Y) = H(X UY). This leaves Hy(X VY) = Hy(X) & Ho(Y).

To get top homology, note by Hatcher Theorem 3.26 that if M is closed connected, its top
homology is Z if and only if it is orientable, and is 0 otherwise. Moreover, H,_1(M) is free if M
is orientable, and has one Z/27Z summand otherwise. Finally, if M is compact connected but with
boundary, use Lefshetz duality with Z or Z/27Z coefficients to get that the top homology is zero.
Alternatively, look at the double 2M of the manifold and see by Lee that if 2M is orientable, so too
is the regular domain M C 2M. Then see H,,(M) = H,+1(2M, M) = 0.
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2 Fall 2010

Problem 1: Let M be a connected smooth manifold. Show that for any two non-zero tangent vectors
vy € Ty, M and ve € T, M, there is a diffeomorphism ¢ : M — M such that ¢(x1) = z2 and dé(v1) = ve.

Solution: We do this in two steps: first find a (compactly supported) diffeomorphism of M sending arbitrary z € M
to arbitrary y € M. Then find a diffeomorphism of M which fixes arbitrary € M and sends arbitrary nonzero
wy € Ty M to arbitrary nonzero wa € Ty M. (Observe that in the first step, our original v; may be sent to a dif-
ferent vector, but that vector will still be nonzero since the derivative map of a diffeomorphism is a linear isomorphism).

We have an equivalence relation on M, where & ~ y if there is a (compactly supported, i.e. identity outside
of some compact set) diffcomorphism of M sending z to y. It is clear this is an equivalence relation. It suffices to
show that the equivalence classes are open, as then M may be written as a disjoint union of open sets. Since M is
connected, it will follow that there is only one equivalence class.

Let S C M be an equivalence class, and let x € S be arbitrary. Pick a chart ¢ : U — R™ with € U C M
and ¢(x) = 0. Let y € U be arbitrary. Then ¢(y) = (c1,...,cn) = ¢ € R" is nonzero. Consider X = > 7 | Ci%, the

constant vector field pointing in the direction of ¢. Take a bump function ¢ on R™ which is 1 on B(0, |c|) and 0 outside
of B(0,2|c|). Then ¢ X is a compactly supported vector field on R?, and hence on U (pushforward via (¢~1).). We
will be a bit sloppy and just say X itself is a vector field on U. It is 0 outside of some compact subset of U, and
hence can be globally extended to be 0 outside of this set. Thus we have a compactly supported global vector field Y
on M. This gives us a global flow ® : R x M — M with ®; = ®(¢, —) a diffeomorphism for each t € R.

Note that geometrically, Y is the same as X at and near z,y € ¢ 'B(0,|c]). Now 7(t) = ¢ (tc) gives a
curve in M with v(0) = z,v(1) = y. In fact, its image is entirely contained in B(0, |c|). Notice ¢(v(t)) = tc has
constant derivative of ¢, so it is integral to X. But since its image is entirely in B(0, |c|), it is integral to Y. Hence it

must be equal to ®(—, z). Soy = v(1) = ®(1,z) = ®1(x). So we have a diffeomorphism of M, namely ®1, sending z to y.

Since y € U was arbitrary, we conclude x € U C S. In particular, z € S was arbitrary and we found an
open neighborhood x € U contained in S. Hence S is open. By previous remarks, we conclude S = M.

For the second step, it suffices to do the following: give a flow on R"™ sending arbitrary nonzero v; € R™ to
arbitrary nonzero va2 € R™ at ¢ = 1, but fixing the origin throughout. This corresponds to a vector field on R™, which
may be bumped to be compactly supported and hence globally extended, but locally giving the same flow as long as
the relevant integral curve is in the compact subset which we are bumping (which may easily be arranged, since the
integral curve itself is compact).

To get the desired flow, it suffices to consider t — e!X, for X € My, (R), which is a Lie group homomorphism
from R to GLy(R). This gives us a flow on R™ via (t,v) — e!Xv. If A is a matrix sending vy to ve such that A = e,
then the flow (t,v) — e!Bv has the desired properties, since (1,v1) — eBv; = Av; = va. So it suffices to show that we
may find such a matrix A.

In fact, sl,(R), the set of skew symmetric matrices, surjects onto SO, (R) via B ~— eB. (Notice that if

G G
BT = —B, then B and BT commute, so that eBeB” = eB+B" =0 =1).

In this way, we may send v; to w, which differs from vy by a positive scalar multiple, via a matrix exponen-
tial by just using a matrix in SO, (R). For n > 1, this is always possible via rotation on a plane containing v and va.
Finally, we may send w to aw = vz (for a > 0) via the matrix exponential elog(e)!l (This proof doesn’t work in the
n = 1 case when v; is a negative multiple of v2).

Finally, in the n = 1 case, the only connected 1-manifolds are (up to diffeomorphism) (0,1),[0,1),[0,1] or S!.
In each case we can explicitly write down an orientation reversing diffeomorphism fixing a point. We can, via the first
step, assume WLOG that the point fixed is in the interior. In the first 3 cases, f(z) = 1 — z suffices, fixing x = 1/2.
In the last case, take a reflection followed by a rotation sending (1,0) back to (1,0). O

17



Problem 2: Let XY be submanifolds of R™. Prove that for almost every a € R", the translate X + a
intersects Y transversely.

Theorem: Let N, M be manifolds and X C M an embedded submanifold. Take {F, : s € S} a
smooth family of maps Fs : N — M (in the sense F : N x S — M given by F(s,z) = Fs(z) is
smooth). If F' is transverse to X, then Fy is transverse to X for almost all s € S.

Solution: Consider F' : X x R® — R" with F(z,a) = z + a (where X C R"). We claim F
is transverse to Y. For this, it suffices to show for each (x¢,a0) € F~1Y,

AF(20.00) T(wg,a0) (X X R") + T,,Y = T,R" =R"
where y = F(x0,a0) = xo + ag.
In fact, this will hold trivially, as we claim the first term already gives all of R™. Notice
dF(20,a0) * Tro,a0(X x R") = T,R™ = R"

is a linear map between vector spaces. Observe for a; € R™ arbitrary, we have
v(#) = (x0,a0 + a1t) € X x R™ is a curve going through (zg,ap) at time ¢ = 0. Hence
7'(0) = (0,a4) is a tangent vector in T}, q,(X x R™). (The tangent space of a product is the product
of tangent spaces). To get its image dF(;, q,)(0,a1), we may compute % l;—o (F o )(t). Since
(Fo)(t) = zo + ap + ait, we see this gives a; € R”. Since a; was arbitrary, we conclude dF;, q,)
is always surjective (so that F' is a submersion, though we don’t need this). Hence F intersects ¥’
transversally.

By the theorem, we conclude F, : X — R” intersects Y transversally for almost every
a € R™ Notice F, is the restriction of an automorphism 7, : R™ — R” to X (namely,
To(z) = x + a). Of course, Fo(X) = T,(X) = X + a. Then F, can be thought of as the
composition of the diffeomorphism ¢ : X = X + a followed by the inclusion i : X + a — R™. Then
d(Fp)goTwo X = dioddTy, X = di(Ty,+q(X + a)). Hence the condition of transversality of Fy, to Y is
equivalent to transversality of X + a to Y (which is to say i : X +a — R is transverse to Y). [
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Problem 3:
a) Show SL,(R) is a smooth submanifold.

Solution: It suffices to show 1 is a regular value of det : M, (R) — R. Since the tangent spaces
of these manifolds are themselves, we have

d(det) 4 : M,(R) — R
We claim this has full rank for all A € det™'(1). Notice

_ =il _
d(det) o(B) = lim det(A + hB) — det(A) ~ im det(A)(det(I + hA~'B) —1)
h—0 h h—0 h

. det(I+hA™1B) -1
= lim
h—0 h

Taking B = kA for k € R, we get

d(det) o(kA) = lim det((1 +:’“)I) -1 lim % = lim kn(1 + k)" = kn

Since k € R was arbitrary, we conclude d(det) 4 is surjective, and hence of full rank.

By the regular value theorem, SL,(R) = det (1) is a codimension 1 submanifold of M, (R). O

b) Identify its tangent space at the identity matrix.

Solution: By the regular value theorem, 775 Ly, (R) is the kernel of d(det); : M, (R) — R. Taking
A = I in the calculation above, we see

det(I + hB) —1
d(det)y(B) = tim U HRB) =1 gy
h—0 h
To see the last inequality, let A, ..., A, be the (generalized) eigenvalues of B. Then I + hB has
eigenvalues 1+ h)\; for i = 1,...,n. Hence, det(I + hB) = [[;_,(1+hX;) = 1+ h-tr(B)+h?-p(h),
where p(h) is a polynomial in h. From this, the limit is clear.

Finally, we have T;1SL, (R) = ker(d(det);) = ker(B > tr(B)) = {B € M,,(R) : tr(B) =0}. O
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¢) Show SL,(R) has trivial Euler characteristic.

Theorem: Poincare-Hopf: The Euler characteristic of a compact, connected orientable manifold
is 0 if and only if it has a non-vanishing vector field.

Solution: Let r : SL,(R) — SO,(R) be given by sending each matrix to its orthogonal
matrix in polar decomposition. (Writing A = UP with U € O,,(R) and P positive definite, we see
det(A) = 1sodet(U) det(P) = 1. However, det(P) > 0 and det(U) = 1, so det(U) = det(P) = 1,
and U € SO, (R)).

In fact, r is a retract, with (g0, ®) = idso,®). Even more is true! It turns out this is a
deformation retract! Take the straight line homotopy:

H: SL,(R) x [0,1] — SL,(R)

given by (A4,t) — %, where U = r(A). Notice the denominator is never 0, since for
A =UP, we have

(1—t)A+tU =U((1 —t)P +tI)

Note that U is invertible since it is orthogonal, and (1 — )P + tI has eigenvalues (1 —t)A; +¢ - 1,
where \; > 0 are the eigenvalues of P. Since this is a convex combination of positive values, it is
never 0.

Next, observe (A,0) ﬁ@ = A, and (A4,1) — ﬁ(U) = U. Hence, this is a homo-
topy between the identity on SL,(R), and the retract ¢ o r : SL,(R) — SL,(R) (where

i:SOn(R) — SL,(R) is the inclusion).

Hence SL,(R) deformation retracts to SO,(R). The latter is compact and connected: it
is certainly closed and connected since it is a connected component of the preimage of 0 under
A s AAT — T (see Spring 2010 Problem 1); it is bounded since each entry has norm at most 1.
By Poincare-Hopf, it suffices to show SO,,(R) has a nonvanishing vector field.

In fact, every Lie group has a nonvanishing vector field. To see this, let G be a Lie group,
and let 0 # v € T7G be a nonzero vector. Then since my : G — G given by mgy(h) = gh is a
diffeomorphism, we have d(mg)|; is an isomorphism between T;G and T,G. Define X a vector
field on G via X (g) = d(mg)|1(v). It is indeed nonvanishing (since v # 0 and d(mg)|s is bijective).

Hence by Poincare-Hopf, SO, (R) has Euler characteristic 0 (since it is compact connected
and has a non-vanishing vector field). Since SL,(R) is homotopic to SO, (R), we conclude that
SL,(R) has Euler characteristic 0 as well. [
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Problem 4:

a) Let fo, f1i : M — N be smooth. Define the notion of a chain homotopy between fi and f; (induced maps
on the cochain complexes Q*(N) — Q*(M)).

A cochain homotopy between f§ and f; is a collection of linear maps

Byt QU(N) — Q" 1(M)

mﬂﬁ—ﬁ=%+my

If we have such maps h, then f{ = f; as maps on cohomology, as follows: if w is a
closed form, dw = 0, so that ffw — ffw = d(h(w)) is exact, and so [ffw] = [fiw].

b) Let X be a smooth vector field on compact manifold M. Let ¢, : M — M be the flow generated by X,

i.e. the solution to %(m) = X (¢¢(x)) with initial condition ¢g(z) = x. Find an explicit chain homotopy

between ¢f and ¢7. Hint: Recall Cartan’s magic formula: Lxw = doixw +ix o dw.

(Prw)p—wp _
v =

Recall (Lxw)p = limp_,0 %h:o((ﬁ;w)p. (Pointwise, these things can be thought of as row vectors in

Ty M). In particular, notice

d d d
(La(@2 @y = 5 |omo(@1870)p = = |uo(BF4a)p = S li=s (7D
Then 1y
61y = (@5)p = | (Grlems(@fw)p)ds
1
- /0 (Lx ($1w))pds
1 1
— [ @oix(@iwpds + [ (ix o d(@iw))pds
0 0

- (4 ' ix(¢;w)ds)p +f “lix o (41(du))pds

The equality on the first term holds as follows: the form ¢ x ¢%w := n(t) may be written in local coordinates as a sum
of terms of the form oy (x1, ..., Tn)dx;; A... A dz;, . Taking d, we get terms of the form %dmj Adziy A...Ndx;, . To

integrate with respect to t, we may do this for each coefficient separately. On the other hand, if we first integrate and

3 [} agadt . . . .
foiafA For continuously differentiable functions and constant bounds,

Lon@ . o b, .
/O . dtfﬁj/o Fu(@)dt

This computation lets us define h : Q™ (M) — Q?~1(M) via

then apply d, we end up taking partials

we have the analytic property

So these terms indeed commute.

1
he = /0 (ix dlw)dt

Then notice
Plw — pfw = d(hw) + h(dw)

so that ¢7 — ¢§ = dh + hd as desired. [J

Remark: In particular, we have shown ¢] = ¢§ as maps on cohomology.
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Problem 5: Let w = Z?:o dxei_1 A dxe; be a 2-form on R??. We have S! acts on R?" via et € S!
corresponds to the linear map g, : R?” — R2" with block diagonal matrix of n copies of CCW rotation by

angle t. Define X (z) = d’tl'il(f)h:o for any = € R?".

a) Compute £xw and find a function f on R?*" with df = ixw.

First, write X in more standard notation. By their definition, for p = (21, ...,22,), we have
Xp = %gt(p)h:o, SO

Xp(225-1) = %(COS(t)l"zj—l(P) — sin(t)z2;(p))lt=0 = —72;(p)

Xp(23) = S (sin(t)s;1(p) + cos(t)az; (p)) = 2i-1(0)
So

" 0 0
X = e Y
< 12j O0x2j_1 T 18332;‘)

i=1
Notice

n n

(ixw)(Y) =w(X,Y) =) (dwgi_1 Adaey)(X,Y) =Y X(22i-1)Y (22:) — X (22:)Y (22i-1)
i=1 =1

= Z —x9;Y (x2;) — T2i—1Y (x2i-1)
=1

For f: R?" — R, we have

(@)(V) = (O fordz)(¥) = D fo ¥ (2)

Thus we seek a function f with f,;, = —z;. Taking f(x1,...,22,) = f% Zle T2, we see

(df)(Y) = (ixw)(Y)
for all Y, so that df = ixw. Finally,
Lxw =d(ixw) +ix(dw) = d(df) +ix(dw) = ix(dw) =0

where the last observation comes from the fact that

dw = d(z dro;_1 N\ d$2i> =0

g=I
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b) The S! action induces an action on S?"~!. Let P"~! be the quotient space of S?"~1 by this S* action.
Show that the quotient space has a natural structure of a smooth manifold, and that the tangent space
at a point € P*~! (i.e. the orbit of a point x € S?"~1) is the quotient of the tangent space T,,5*"~! by
the line spanned by X (z), for any = € z.

First, G = S = SO(2) is a compact Lie group. By Lee Theorem 21.10, the Quotient Manifold
Theorem, if G is a Lie group acting smoothly, freely and properly on a smooth manifold M, then
M/G is a topological manifold of dimension dim M — dim G, and has a unique smooth structure
with the property that the quotient map is a smooth submersion. By Corollary 21.6, every
continuous action by a compact lie group on a manifold is proper. Hence, we get proper for free.
To see G = S! acts freely on M = S§?"~! notice g;(z) = x for all z <= t = 0 (this is even true
for n =1, and n > 1 is stronger).

Hence M /G is a manifold of dimension 2n — 2. In particular, notice for any point x € S?"~1,
dry @ ToM — Tr)(M/G) is surjective, so dmy(TpM) = Ty (M/G). In particular,
T.,(M/G) = T, M/ ker(dr,). It suffices to compute drm.

But notice 7(x) € M/G is a regular value of 7, so by the regular value theorem, 7~'n(z) = G.x
is a 1-manifold in M, and T, (G.x) = ker(dmr,,).

Finally, T,(G.xz) can be computed as follows: notice v : R — G.z via y(t) = g(x) is a
curve in G.z with v(0) = z. Then +/(0) = X, is a tangent vector in T, (G.z). Notice it is nonzero
since X is non-vanishing on $?"~!  as seen from its coordinate expression. Hence, T,(G.z) is
spanned by X, so that T(,)(M/G) = T, M/span(X), as desired.
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c¢) Show w descends to a well-defined 2-form § on P"~! and that the 2-form is closed.

First, we view w as a 2-form on S?"~! by pulling back via i : $"~1 — R?". Write n = i*w.

For g € G (corresponding to angle t), m, : R*™ — R?" is a diffeomorphism. Notice then that

n

myw = Z d(x2i—1 0myg) A d(x2i 0omy)
i=1

n

= Z d(cos(t)x2i—1 — sin(t)x2:) A d(sin(t)x2i—1 + cos(t)z2:) = Z dzoi—1 AN dzro; = w

i=1 i=1

Moreover, let hy = m, : 2"~ — $2"7! be the restriction to S*"~!. Then notice i o hy = m, o i. Hence,
hyn = hyi*w = (iohg) 'w = (Mg oi)'w=i"Mmw=1i"w=n
So we see 7 is G-invariant.

Next, note that geometrically, X can be restricted to a vector field on S*"~1, since it is orthogo-
nal to p at each point p € S?"~!. Let Y be this vector field (with (i.Y), = X, for all p € 5'2"*1)‘

Next, define § a form on M/G as follows: 6(Xi,X2), = n(W,Z),, where n(q) = p, mW = X,
m+Z = Xa. To see the well-definedness, first, fix choice of gq. It suffices to check (by the fact that
7 is an alternating form) that 6 is well-defined regardless of choice of W. Thus, we must check
n(Wi,2Z)q = n(Wa, Z)q, where m,W1 = m.Wa. Then notice (W1 — Wa), is in the span of Yy, so it suffices
to check n(Y, Z)q = 0 for any Z. But

N, Z)q = (W)(X,i:2Z)q = (ixw)(ixZ)q = (df)(ixZ)q = (i"df)(Z)q = (d(f 09))(Z)q = 0
since f o1 is constant.

Hence 7 is well-defined independent of choice of vectors. To see it is independent of choice of g,
let g1, g2 have 7(¢q;) = p. Pick g € G with g.q1 = g2. Moreover, o hy = w. Hence, if W;, Z; € T,, (M)
map to X1, X, € T,(M/Q) respectively via (dm)g,, then since 7 is G-invariant, we have

n(Wi, Z1)q, = (hén)(Wl, Z1)q = 1((hg)«W, (hg)xZ)q = n(W2, Z2)q,
by the independence of the choice of vectors. So 6 is well-defined. Moreover,
(77°0)q(X,Y) = O () (me X, mY) = (X, Y')

by definition of . Hence 7*0 = 7, as desired.

Moreover, 6 is unique, since 7* is injective on forms, as follows: if 7*A = 0, then (7*A)(Y1,...,Yz)p =0
for all Y;, so that A(dnYa,...,drYx) = 0. Since dr is surjective, we conclude A = 0.

Now dn = d(i"w) = i*(dw) = 0, so that 0 = d(n"0) = 7*df. Since «” is injective, df = 0, and 6
is closed.
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d) Is 0 exact?

Skip!

Problem 6: If f:S™ — S™ has degree not equal to (—1)"*1, show f has a fixed point.

Suppose f does not have a fixed point. Then write
H:[0,1] x S" — 8"

)
)|

S
(1 =8)f(2) +(

—Z
—Z

deg(f) = (-1)"*. O

Notice H is well-defined since (1 —t)f(z) +t(—x) = 0 <= (1 —1t)f(x) = tx. Taking norms
of both sides, we see 1 —t = ¢, so t = 1/2, and f(x) = z. Since f has no fixed points, we see
(I —¢)f(x) + t(—x) # 0 for any t,z. Hence H is a homotopy between f and the antipodal map
S™ — S™ via x + —x, which has degree (—1)"*! as it is a composition of n + 1 reflections. Hence
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Problem 7:

a) Let G be a finitely presented group. Show that there is a topological space with fundamental group
™1 (X) =Yex

Create a wedge of circles, one for each generator of G. Attach a 2-cell via each relation. (Each
relation gives a loop and hence a map from S! to X, the 1-skeleton).

Notice that attaching this two cell makes the corresponding loop null-homotopic, as that
loop can be brought up through the 2-cell to make it nullhomotopic (in the disk). No other loops
are in the kernel - see Proposition 1.26 in Hatcher.

b) Give an example of X in the case of G = Z * Z.

Take X = St v St ]

¢) How many connected, 2-sheeted covering spaces does the space X from (b) have?

There are two ways to do this problem. First, we may use the correspondence that connected
covering spaces (keeping track of base-point) correspond to subgroups of m1(X) (with the
fundamental group of the covering space equaling that subgroup), and conjugacy classes of
subgroups correspond to ignoring the base point. The index corresponds to the number of sheets.
In this case, we are seeking index 2 subgroups of GG. Since they are normal, they are conjugate if
and only if they are equal. Moreover, quotienting out by the subgroup gives a surjective group
homomorphism to Z/27, and each index 2 subgroup appears precisely once as the kernel of such
a morphism. So we simply count surjective homomorphisms to Z/2Z, and there are 2x2 —1 =3
such morphisms (one of either a,b € G = (a,b) must go to 1 € Z/27Z).

Alternatively, we may use Hatcher’s correspondence for covering spaces. 2-sheeted con-
nected covering spaces of S' V S! correspond to connected graphs on 2 vertices, with each vertex
having 4 edges, 2 incoming and 2 outgoing, with one incoming edge a, one outgoing edge a, one
incoming edge b, and one outgoing edge b. (A loop, thus, counts as both incoming and outgoing).
It is easy to see there are only 3 such graphs.

Finally, the remark that connects these two constructions is the following observation: if
X = X is the Cayley-complex for a group G (i.e. X is constructed as in part a), we may
construct the universal cover X for X as follows: let the vertices of X be the elements of g. Let
there be directed edges from each g € G to gg, € G for each generator g,. Attach a 2-cell for
each loop determined by a relation (starting at any vertex in the graph).

Notice G acts on X by left multiplication, and this gives all of the deck transformations.
Moreover, X¢/G = Xg.

To get any other covering space, take Xg /H, where H C G is the corresponding sub-
group.

In the case of G = Z x Z, we have Xg = S'V S!, and the universal cover is an infinite
bipartite tree with each vertex having degree 4, with directed edges via right multiplication. If
we mod out by a finite index subgroup, we get the corresponding connected finite graph with the
properties described in the first paragraph.
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Problem 8: Let G be a connected topological group. Show that 71 (G) is abelian.

This requires the Eckmann-Hilton argument. Let X be a set with two binary operations (+, X), both
unital, and with
(a-b) x (c-d)=(axc)(bxd)

for all a,b,c,d € X. Then - = x and both are commutative and associative.

This can be used to show that the group objects in the category of groups are precisely the
abelian groups. Then we may use the fact that a functor sending terminal objects to terminal objects
and products to products sends group objects to group objects. Since a topological group is a group
object in the category of topological spaces, but also in the category of pointed topological spaces by
taking the point to be the identity, and 7; sends products to products (and in fact is a right adjoint)
and sends the terminal object, a one point space, to 0, the terminal object in Group, we conclude 7
must send topological groups to abelian groups.

Here is an alternative proof: we may apply Eckman-Hilton directly to define a second prod-
uct on 71 (G, e). Define

[V] x [a] = [y(t) - a(t)]

where - is the multiplication in G. Notice the RHS is still a loop, since v(0)a(0) = e* = e = y(1)a(1)
in G. Moreover, we may multiply homotopies pointwise to check that this is indeed well-defined.
We will apply the Eckman-Hilton argument to see X = o, where o is the composition operation in
m1(G, e), and hence that 7 (G, e) is abelian.

Notice x is unital, since the constant map ~(t) = e for all ¢ € [0,1] serves as a two-sided
unit. Moreover,

(la] > [8]) o ([¢] x [d]) = [a(#) - ()] o [e(t) - d(2)] = ([a] o [¢]) - ([b] o [d])

where the last step follows from the fact that o follows the first path at twice the speed from ¢t = 0
to t = 1/2, and then follows the second path at twice the speed from ¢ = 1/2 to t = 1. So both of
the last two loops follow [a(t) - b(t)] for ¢ = 0 to 1/2 (at twice the speed) and [c(¢) - d(¢)] for t = 1/2
tot =1 (at twice the speed).

Here is a direct proof that bypasses Eckman-Hilton: by construction, we see both operations
have the same unit, the constant map at e. Moreover,

)
o
=
Il
—~
o
X
)
~
o
—~
=
X
)
~
I
—~
)
o
=
~
X
—~
£,
o
o
~
Il
=
X
)

Hence (m1(G, e), o) is abelian, as desired.

Problem 9: If R™ and R™ are homeomorphic, then m = n.

R! can be distinguished from the rest since deleting a point leaves it disconnected. So assume
n,m > 1. Remove a point from each space and deformation retract them to S™ ! and S®~!, and then
take the (n—1)st homology to see H,,_1(S™ 1) = Z, so that, sincen—1 # 0, n—1 = m—1, and n = m.
Alternatively, take their one-point compactifications to see S™ = S™ so that H,(S™) = Z,
so that nm = m (since n # 0).
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Problem 10: Let N, be the genus g non-orientable surface, i.e. the connected sum of g copies of RP?.
Calculate 71 (N,) and the homology groups of Ng.

Recall the polygon construction of N, involving 2¢ sides and oriented edges a1, a1, az, as, ..., aq, a4 all
oriented CCW, with a 2-cell attached via the word a%...ag. From this we see

™1 (Ng) = (aq, ...,ag|a§...a§)
Abelianizing, we see that in our chain complex, we will get 0F = 2a; + 2a2 + ... + 2a4. From this,
it is easy to see Ha(Ny) = 0 since the corresponding map Z = Co, — Cy = Z9 via F — Y_7_| 2a; is

injective.

Moreover, C; — (Cj is the 0-map since there is only one vertex in the polygon construction,
so each edge maps to v — v = 0. Hence,

H(N,) =79/((2,...,2)) =29 x Z/2Z

Finally, Hy(N,) = Cy/0 = Cy = Z, and Hy(N,) = 0 for k > 2 since Cj = 0 for k > 2.

In short,
Z k=0
Hy(Ng) =797 ' xZ/)2Z k=1
0 E>1
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3 Spring 2011

Problem 1: If V is a smooth vector field on an n-manifold M and V,, # 0 for some p € M, show that we

may find a chart (U, z) around p with V = 3%1.

Since we only care about a local property, it suffices to prove this for M = R", p =0 and X, = %h} (where
we may get the last property by rotating and rescaling to get Xo to match as needed).

In general,

1o}
Xp = ij(P)@hv
J
Note f;(0) = 01,5 since Xo = ,9%1|0~

Let ¢: be a local flow corresponding to X near the origin. That is, find some U 3 0 and I = (—¢,¢)
with ¢ : I x U — U where for each p € U, we have

¢p: L = U

¢p(0) =P
Pp(t) = X, (1)
Define
w(al, ey a) = (b(al, (O,(127 wya))

For notational simplicity, we do the remainder of the proof for n = 2, but it easily generalizes.
We have X = fl(xvy)% + fQ(xay)%a with f = (f17f2) haVing f(07 0) = (170)

Now define ¢ (z,y) = ¢(z, (0,y)) on some open set. Notice

2 (z,y) = fW(,9))

To see this, notice
0 0
22 0(®Y) = 32001 (2) = Xo 4 0) = Xuew) = F(¥(2, 7))

Next, we claim (d¢)o = id. To see this, notice the first column of dipo is 2 ¢(z, (0,9))|o,0 and the second
column is -2 ¢(x, (0,y))|o,0- From previous remarks, the first is

oy
f@(@,9)l0,0 = f(¥(0,0)) = f((0,(0,0))) = £(0,0) = (1,0)

Meanwhile for (%qb(m, (0,9))l(0,0) fixes x = 0, and ¢(0, (0,y)) = (0,), so this equals (%(O,yﬂo,o = (0,1).
Hence, we see (dv)o = id.

By the inverse function theorem, 1 is invertible in some neighborhood of 0. Define (z,w) = ¥~ '(x,y) as a
new coordinate system around 0. (In general, write z = 1~ (Z)).

Notice

0 Oz 0 dy 0

0z  0z0x 9z 0y
Meanwhile, (z,y) = ¢(z,w), so (5%, 3%) = Zo(z,w) = f(¥(z,w)) = (fi(2,y), f2(x,y)) Thus we see

0 0 0
& - f1($7y)% + f2($7y)87y =X

as desired. OJ
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Problem 2:

a) Show Cartan’s magic formula: Lx = dix + ixd.

It suffices to work locally. Moreover, by linearity, it suffices to consider forms of the form
fdfl?l VAN dl‘n

First, we will show this holds for 0-forms. Then, we will show that if it holds for
k — 1-forms, then it holds for exact 1-forms wedged with k — 1-forms. Since each form
fdxy Ao ANdxy, = dxy A (fdzg A ... Adxy,), the result will follow.

To see this holds for 0-forms f, notice ix f = 0, so it suffices to check Lx f = ixdf = df (X) = X(f).

Recall .
£x(7) = i Bl =S _ S0

Where ¢y, is the flow corresponding to X. That is,

(Lx(f)), = lim 100D = F(p)

h—0 h

To compute (X f),, one must find a curve v going through p at t = 0 with 7/(0) = X,,. Then,
(X f)p = (f o79)'(0). Taking v(t) = ¢¢+(p), the result follows.

Next, suppose that the formula holds for all & — 1-forms. Consider dx A 1, where 7 is a
k — 1-form. Then using the fact that Lie derivative commutes with exterior derivative and that
the Lie derivative of a wedge follows product rule, we get

Lx(dzAn)=Lx(dx) An+deALx(n) =d(Lx(x)) An+dz A (ixdn+ dixn)
=d(X(x)) An+dx Nixdy+dz Adixn
Meanwhile, ix of a wedge follows the signed power rule, and d of a wedge does as well.
(ixd+ dix)(dz An) = (ixd)(dz An) + (dix)(dz An) = (ix)(—dz A dn) + (d)(ix (dz A n))
= —(ixdx) ANdn+dx A (ixdn) + (d)((ixdz) An—dz A (ixn)))
= —(ixdx) ANdn+dx A (ixdn) + d((ixdz) An) —d(dz A (ixn)))
= —(ixdz) ANdn+dz A (ixdn) + (dixdz) An+ (ixdz) A (dn) + dz A (dixn)
=dz A (ixdn) + d(X(z)) An+dx A (dixn)
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b) Use this to show that a vector field X on R? has local flows preserving volume if and only if it has
divergence 0.

Note that the flow preserves volume if and only if each pullback of the volume form w = dx AdyAdz
is equal to the volume form itself, i.e. ¢jw = w for small ¢. In particular, this implies Lx(w) =0
from the limit definition. Conversely, if Lx(w) = 0, then ¢ Lx(w) =0, so Lx (¢, w) = 0 (where
we may commute the @7 with the limit by continuity). Meanwhile, Ly (¢},w) = 4|y, ;w.
Since t;, was arbitrary, we see ¢fw is constant, so that ¢jw = ¢fw = w, as desired. (Do this
argument while fixing a point p; this holds for each point p).

Hence we see X preserves volume if and only if Lxw = 0. By Cartan’s magic formula,
Lxw = dixw + ixdw. However, dw = 0 since w is a volume form (and hence closed, since
dw would be a 4-form on a 3-dimensional space). Thus, Lxw = dixw, and we have for
M= At i

X preserves volume <= dixw =0 < d(X(z)dy ANdz — X(y)dz Ndz + X (2)dz Ady) =0

Note that ixw is a 2-form, so we merely needed to solve for the coefficients of the basis vectors
dx ANdy,dy Adz,dz A\ dz, which can be done by plugging in the appropriate basis vectors into 7xw.
Using the expression for X, we see

X preserves volume <= d(fdy Adz — gdx Adz+ hdx ANdy) =0 <= fuw+ g,w+h,w=0

= (fotgy+h)w=0 < fo+g,+h, =0 < div(X)=0

Problem 3:

a) Explain why there is a closed 2-form on R® — {0} which is not exact.

Since R? — {0} = S? and H?(S?) & R, the result follows.
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b) For ¢ a form as in part a, show fsﬁ ré
2@

is the degree of f. Include an explanation why the denominator

is nonzero.

First, write A™ C R™ as the subset {(z1,..., ) : Y.y 2; < 1}. For o : A™ — M, define

W= oc*w
o n

for closed n-forms w. Note c*w is an n-form on A", and we may integrate via usual integration
on n-dimensional subspaces of R".

This is independent of choice of w € [w] and o € [o].

Next, note f, : H,(M) — H,(N) sends [o] — [f o o]. Now

/Uf*wzfma*f*wz/n(foa)*w=/fm_fww

This holds for linear combinations of singular simplices (i.e. chains) as well, by linearity of the
integral. Next, for M, N closed connected orientable n-manifolds, H,(M) = H,(N) = Z. Let
[M] € H,(M) and [N] € H,(N) denote a generator of that group (called a fundamental class,
which corresponds to a choice of orientation).

Then f.[M] = k[N] for some k € Z. By definition, k = deg(f).

Then notice by the above computation

/ f*w:/ wz/ w:k;/ w:deg(f)/ w
[M] f«[N] k[N] [NV] [V]

Finally, a compact oriented embedded manifold admits a smooth triangulation, i.e. o; : A™ — M
with disjoint interiors, preserving orientation, and whose union is all of M. It turns out >, 0; =
[M] gives the fundamental class corresponding to this orientation. Finally, it turns out through

this choice of triangulation,
/ W = / w
(M] M

where the RHS is in the usual sense. So we see for all w,

| = /[M] f*w = deg(f) /[N] = deg(s) [

Moreover, recall we have an isomorphism [,, : H"(M) — R with w — [, w. (This is weaker
than de Rham’s Theorem). Hence if w is not closed, f[ N is nonzero. Alternatively, use problem

4 for the specific case of S2.

Remark: We have an induced map Hs(S?) ELN H5(S?%) which is multiplication by deg(f).

Tensoring with R gives, by universal coefficient, Hy(S?;R) EER H5(S%R) is also the multi-

plication by k map (my ® id). We get H3p(S?) = H(S%*R)* from de Rham’s theorem via
w > ([ = [ w). In this way we get two induced maps on Hy(S*R)* — H(S%*R)*: one by
dualizing the multiplication by k map (which is again a multiplication by k£ map), and the other
by going through Hy(S?%;R)* = H32,(5?) I, H2,(5?) = Hy(S?%R)*. Our argument shows these
induced maps are the same.
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Problem 4: Show without deRham’s Theorem that a 2-form on the sphere S? that has integral 0 is exact.

Lemma: (Poincare Lemma) Closed forms on contractible manifolds are exact.

Take A = S2\ N and B = 5%\ S where N and S are the north and south pole respectively.
Take U to be the southern hemisphere including the equator, and V' to be the northern hemisphere
including the equator. Note U C A,V C B.

Let w have fSZ w = 0. We get for free that dw = 0, since w is a top form.

Note w|4 = ijw is closed on A = S? \ N = R? (since pullback commutes with exterior
derivative; or because it is a top form). Hence, it is exact. So write i%yw = dn.

Similarly, izw = dr.

Next, by U NV = S! (a 1-manifold with measure 0 on S?) and U UV = S?, we have

Jyeo= [ et v = [ anlo+ [ @i

Note that if S2 is oriented with outward facing normal, then U, V both have opposite orientations on
OU = 0V = S'. By Stokes,

[ @lo = [ dw)= [ @iolao = [ als == [ 2o
@ = [ ale
Lo= [ Gls=nls)

So 7|g1 — st is exact by the S case of this result, i.e. that [, : H'(S') — R is an isomorphism.

Hence

Moroever, A N B deformation retracts to U NV = S, and so i* induces an isomorphism on
cohomology (with inverse r*). Since *(Y|ans — nlanB) = 7Yls1 — nls1 is exact, we conclude
YlanB — M| anp is exact.

Write v|ans — nlans = df for f: AN B — R. Pick a partition of unity pa << A, pp << B with
pa+pg=1on AUB = S2. Define

0— v—d(f-pa) onA
n+d(f-ps) onB

(Note A, B are open). Then on AN B, since y|anp — 7np = df , we have
Yang —d(f - pa)lane —nlane — d(f - pB)lans = d(f — f-pa—f - pB)lans =0

since pg + pp = 1. Hence 0 is well-defined. It is easy to see df = w, since this holds on open sets A
and B, with AU B = S2. Thus, w is exact, as desired. O
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Problem 5: Let U = R3\ {p1,...,pn}, where |p;] < 1 (i.e. they are strictly inside the unit sphere).
Suppose V : U — S? is a smooth map, considered as a unit vector field on U. Explain from basic facts why
the degree of Vg2 : S? — S? is equal to the sum of the indices of the vector field at each point py, ..., pp.

Recall the index of p; is the degree of the map Vg, : S; — S?, where S; = 0D;, and D; > p; is
a closed disk contained inside S?, containing p; but not containing p; for j # i. This degree is
independent of choice of D;.

Let W = D?\ U;D;. Then to give OW an outward pointing normal, we get S? disjoint
union with each dD; = S;, where the normal vector points outside for S? and inside for each S;

(since inside D; is outside W).

Since degree is just a signed sum of preimages of a regular value, and W is a disjoint union
of $? and Sy, ..., S,, (oriented in the opposite way), we see

deg(V|aw) deg V|5'2 Zdeg V|5'

where we subtract the usual degree deg(V|s,) to get their degree in the OW signed preimage
calculation.

On the other hand, recall

Theorem: Extension Theorem: f : X — Y a map between k-manifolds, X = oW. If f
can be extended to W, then deg(f) = 0.

Trivially, V|sw may be extended to all of W via V|w. Hence, deg(V|aw) = 0.

Thus,
deg(V]s2) Z deg(V|s;) Z indp, (V)

=1

Problem 6: Explain how an SES of chain complex gives rise to an LES of homology.

See Spring 2010 Problem 4.

Problem 7:
a) Define CP".

We have CP" = (C"*1\ {0})/ ~, where ~ is the equivalence relation on C"*! via (2, ..., 2,) ~
A20, -y 2n) for any A # 0 in C.
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b) Compute the homology and cohomology in Z-coefficients. If you use cell complexes, explain the attaching
maps.

Give CP™ a cell structure with one cell in each even dimension 0 through 2n. For n = 0, we get a point which is
also CP°. Suppose we can construct CP*~! in this way. Create CP™ by attaching a 2n-cell €2 = D2" to CP™~!
as follows:
¢: 8" —»cpr!
d(20, ..y 2Zn—1) = (20, .-, Zn—1]
Call the resulting space X = CP"~1! Ug D?". We show X = CP".

Note we may recognize CP"~! < CP” via [20, ..., Zn—1] — [20, ---, Z2n—1,0]. Moreover, we have a map

f:D* — CP”

AWQ, ooy AW —1, A

From the last coordinate we see A € Rt and from the norm squared of both sides, we see |A| = 1, so A = 1 and
(205 -+ 2n—1) = (W0, o, Wn—1).

Together, the inclusion and f induce a map from the disjoint union CP?~! U D2 ﬂ) CP™. We may
factor through to a map on X if io ¢ = f|g2n—1, i.e. if the points glued between CP"~! and D?” map to the same

points in CP™. This holds true: f|g2n—1(20,...,2n—1) = [20, ..., 2n—1,0] = i 0 ¢(20, ..., Zn—1), since Z?:_Ol |22 = 1.

Hence we get a map X 2y CP™ with (iU f) = gn for 7 : CP*~! U D?* — X the projection. Note g is
injective, since if g(z) = g(y), then write z = n(a),y = n(b) for a,b € CP"~! LI D?" (this is possible since 7 is
surjective). Then gm(a) = gm(b), so (iU f)(a) = (iU f)(b). If a, b are both in CP™~! or both in D?", the injectivity
of i and f respectively will imply a = b, so z = n(a) = w(b) = y. WLOG, assume a € CP"~! and b € D?".
Then i(a) = f(b). In particular, notice b € S?"~! since f(b) = i(a) has last homogenous coordinate 0, and hence
Z?;ol |b;|? = 1. Then since b € S?»~1  f(b) =i o0 ¢(b), and i o ¢(b) = f(b) = i(a). By injectivity of i, ¢(b) = a, so
that b ~ ¢(b) = a, and z = 7(a) = 7(b) = y.

Thus g is injective. Next, it is surjective, since the image of g is equal to the image of ¢ union with the
image of f. If [z0,...,2n] € CP"™, we either have z, = 0, in which case it is in the image of 7, or we may divide
through by z, and get an equivalent point [yo, ..., yn—1, 1] € CP". Dividing through by 1/1 + Z?;J lyil2, we get
an equivalent point [wo, ..., wn—1,t], with ¢ > 0 and 2 + E?:_ol |wi|2 =1,s0t =4/1— Z?:_ol |w;|? and this point

is in the image of f.

Finally, we have a continuous bijection from a compact space (X is compact since CP™',D2" are and =«
is surjective) to a Hausdorff space CP"™. Hence it is a homeomorphism. [J

From this the homology is clear since all maps are the O-map, so Hix(CP") = Z if 0 < k < 2n is even,
and Hj,(CP™) = 0 otherwise. Similarly, dualizing, we see the same complex, so we get H*(CP") = H},(CP") for all
k.

35



Problem 8:

a) Find the Z coefficient homology of RP?.

We will do the case of RP" for any n. Similarly to the previous problem, we can give RP" a CW-

structure via one cell in each dimension. We attach an n-cell to RP" ™! via the map S"* 2, Rp™1
the double cover. We can get a homeomorphism RP"™ " Uy D™ = RP"™ in this way. Moreover, the

cellular boundary formula tells us that the boundary of this n-cell (its coefficient in the unique
T

(n — 1)-cell) is the degree of the map S™~1 2 RP S RP"~!/RP""2 = §"~1  where we crush
all other cells to a point. To compute the degree of this, we notice the preimage of a point under
7 is a single point (and in fact this is a local homeomorphism near that point), provided we do
not choose the image of RP"~2 under 7. Moreover, the preimage of that point under ¢ is then two
antipodal points in S”~!. The degree of the antipodal map on S"~1 is (—1)". Hence if n is even,
these points have the same orientation, and if n is odd, they have opposite orientation. Counting
signed preimages, we see the degree of this map is 2 if n is even and 0 if n is odd. So we get a
chain complex

02Z—.. 5252257250
If n is even, the top map is 2, so H,(RP") = 0 since this is injective. Otherwise, the map is 0, so
H,(RP") = Z if n is odd. Meanwhile, notice Ho(RP"™) = Z in both cases, and for 0 < k < n, we

have
Z/2Z 0<k<nodd

0 0 < k <neven

L@(RP")—»{

In summary,

Z k=0

Z/2Z 0<k<nodd
Hi(RP") =<0 0 < k < n even

Z k =mn odd

0 k =n even

In particular, RP? has homology groups Z, Z/27.,0.

Remark: One may do the simpler case of RP? via the polygon constraction.

36



b) Explain (without Kunneth) how a nonzero element of the 3-homology with Z coefficients of RP? x RP?
arises.

Write RP? = ey U e; Uey and RP? = fy U f1 U fy as the cell decompositions of the two copies of
RP?. By previous remarks, de; = 0, dea = 2e1, and similarly for fi, f.

Then RP? x RP? has cells e; x f; of dimension i + j with boundary d(e; x f;) =
Oe; x f; + (—1)dimeig, x O0f;. In our case, there is one 0-cell eg x fo, two 1-cells eq x fo,e0 % f1,
three 2-cells e; x f1,eq X fa,€e2 X fo, two 3-cells e; X fa,es X f1 and one 4-cell ey X fs.

As we are concerned with Hs(RP? x RP?) = ker(ds)/im(8y), we notice
(93(61 X fg) = 7261 X f1

Os(e2 x f1) =2e1 X fi
So ker(93) = {(z,x) € Z* : x € Z}.
Similarly,
O4(e2 X fa) = 2e1 X fa +2e2 X f1
so im(8y) = span((2,2)) = {(z,z) € Z* : x € 2Z}. So we see H3(RP? x RP?) = Z/27.

In particular, our nonzero element is [e; X fo + ea X fi] (i.e. (1,1) € ker(9s)), which has
boundary 0 but is not itself a boundary.
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Problem 9:

a) State the Lefshetz Fixed Point Theorem.

Theorem: (Lefshetz Fixed Point Theorem) If f : X — X is a smooth function on a compact
orientable manifold with L(f) # 0, then f has a fixed point.

b) Show that the Lefshetz number of any map from CP?" to itself is nonzero and hence that every map from
CP?" to itself has a fixed point. (Hint: The cohomology ring is generated by the ond cohomology).

Definition: L(f) := I(A,T(f)), where T'(f) C X x X is the graph of f, and A = I'(id) is the
diagonal.

Definition: For f : X — Y and Z C Y with f h Z, we have I(f,2) = >, c;-150(z),
where o(z) = £1 is the orientation number of x, which is +1 if df, (T, X) ® T.Z = T.Y (equality
follows from transversality) gives the correct orientation on 7,Y, and —1 otherwise. If f is not
transverse to Z, find g & f homotopic with g h Z. This is always possible.

Then L(f) = > .. ;)= Lo(f), where Ly(f) = =1 is +1 if df, — I preserves orientation

on T,(X), and —1 otherwise. It is the degree of the map g : 9B — S"~! sending 2z — &8:;,

where B is a disk neighborhood of x not containing any other fixed points.

Remark: L(id) is the Euler characteristic.
For our purposes, here is an alternative more useful definition:
Definition: For f: X — X,

L(f) = (-D)*tr(fe : Hy(X;Q) = He(X;Q) = Y _(-1)*tr(f* : H*(X;Q) —» H¥(X;Q))

k>0 k>0

where the equality follows from the universal coefficient theorem.

Solution: Note the cup product gives a graded ring structure on H*(CP?") = Z[z]/(x>"*?)
(where z has grading 2), so the generator x € H? ((C]P’Z") in fact generates the whole ring, with
x U x generating H*(CP?"), and so on. (Note for 0 < k < 4n, H*(CP?") = Z if k is even and 0
otherwise).

So it suffices to know for our ring homomorphism f* : H*(CP?") — H*(CP?") what the
image of  is. Note f*x = kx € H?(CP*"). Hence f*(z") = k"2", and we have the trace of the
map f*: H™(X;Q) - H™(X;Q) for even m > 0 is the trace of the multiplication by £” map
Q — Q. is k™. For odd m it is 0, and for m = 0, since f*(1) =1, it has trace 1. Hence,

k2n+1 1

-1 t H2m PQ?L H2m H])Q’I’L -1 k'm _

# S5 sty - Hener) =1Ly 35w =
if k#1,and L(f) =2n+1if k=1. Wesee L(f) =0 — k # 1 and k*"*! =1, so k = 1 (since
k € Z is a an odd root of unity). Hence, we see by contradiction that L(f) # 0 for arbitrary f.
Hence, f has a fixed point.
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Problem 10: Compute explicitly the simplicial homology, with Z coefficients, of the surface of a
tetrahedron, thus obtaining the homology of the 2-sphere.

Recall a delta complex is a union of simplices glued via some gluing rules. In our case, we may write
the tetrahedron with vertices vg, v, v2, v3 as

X = [vg,v1,v2] U [vo,v1,v3] U [vg, v2,v3] U [v1, 2, v3]
i.e. the union of its faces. So we have four 2-simplices, six 1-simplies, and four 0-simplies (or

vertices). We may write Cy = Z* via the ordered basis [vg,v1,va], [vo, v1,v3], [vo, v, vs], [v1, V2, V3],

~

C; =2 Z5 via the ordered basis [vg,v1], [vo, va], [Vo, v3], [v1, va2], [v1,v3], [v2,v3] and Cp = Z* with the
obvious basis [vg], [v1], [ve], [v3].

Recall the boundary formula

We have our cell complex
0—)02:Z46—2>01:Z66—1>C():Z4—>0

Notice 07 has the 4 x 6 matrix

-1 -1 -1 0 0 0
1 0 0o -1 -1 0
0 1 0 1 0 -1
0 0 1 0 1 1

This has image (21, 22, ¥3,74) € Z* with 21 + x5 + 23 + 24 = 0. Note Z* — Z, the augmentation
map sending (z1,xa, T3, x4) — x1 + T2 + T3 + x4, is surjective and has kernel precisely im(9;), so

0> has the 6 x 4 matrix

1 1 0 0
-1 0 1 0
0 -1 -1 0
1 0 0 1
0 1 0 -1
0 0 1

1
It remains to check ker(dz) = Z, and ker(dy) = im(0z), so that H;(X) = 0 and H2(X) = Z (and
Hi(X) =0 for k > 2).

Row reduction shows ker(ds) = span((—1,1,—1,1)) = Z.

To see im(dz) D ker(d1), we need to check each basis vector of ker(d;) is in the image of O
(the reverse containment always holds). SKIP!
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4 Fall 2011

Problem 1: Let M be a compact smooth n-manifold. Show there exists an NV € N such that M can be
smoothly embedded into RY.

Since M is compact, we may cover it with finitely many charts U; € M with z; : U; — R”
diffeomorphisms for ¢ = 1,..., k. By the Shrinking Lemma, we may refine this open cover to an open
cover UleVi, with V; C U;.

Pick V; < v¢; << U; bump functions ¢; : M — R. Write

f = (wl c X, 7¢k : xk?dﬁa 71/}]6)

Note each z; is a map from U into R™ (so it itself has n components), and bumping allows us to
view it as a map M — R” (with agrees with 2; on V;). Then we have f : M — R" ¥ in this way.

For p € M, since p € V; for some i, we have ©; = 1 in a neighborhood of P, so that lo-
cally, ¥;x; = =z;. Then (df), = (d(¥121)p,....,d(Yrxr)p, d(¥1)p, ..., d(Yx)p) is injective, since
d(¢ix;)p = d(x;)p is injective since z; is a diffeomorphism. Since this holds for arbitrary p € M, we
get f is an immersion.

Suppose f(p) = f(q) for p,g € M. Since p € V; for some i, we have 1;(p) = 1, so ¥;(q) = 1
since f(p) = f(q). Hence q € U; since v; has support in U;. Then looking in a different

component, we see (1; - z;)(p) = (¥; - x;)(q). Since p,q € U;, we have ¢;(p)x;(p) = ¥i(q)x;i(q),
and since 1;(p) = ¥;(q) = 1, we have z;(p) = x;(q). So p = ¢ by injectivity of ;. Hence f is injective.

Finally, an embedding is an injective immersion whose image is homeomorphic to the do-
main. In this case, since M is compact, f : M — f(M) is a bijection from a compact space to a
Hausdorff space, and hence a homeomorphism. In general, from a compact space, it suffices to be an
injective immersion. Hence, f is an embedding, as desired.
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Problem 2: Prove RP” is a smooth manifold of dimension n.

Solution: Recall if a Lie group G acts on a manifold M freely, properly and smoothly, then M /G is
a manifold. (See Spring 2012 Problem 9 for the finite G case). Taking G = {1} which is a discrete
Lie group acting on M = S™ via the identity and antipodal map (1 and —1 respectively), it is clear
this action is free and smooth. Moreover, for compact G, properness is free. Hence M/G = RP" is a
smooth manifold. [J

Alternative solution: We can give RP" charts as follows: take U; = {[zg,...,x; = 1,...,2,] :
xz; € R} C RP". Its preimage in S™ is V; = {x € S™ : z; # 0}, which is open. Hence, U; is open in
the quotient topology.

Write U; — R" via [zg,...,xn] — (£20,.., 2= 252y Tt is clear this is well-defined as

z;’ T z; 0w

it is invariant under scaling. It is bijective, continuous, and its inverse is all continuous. The
transition maps are all smooth: we send (vg,...,%;,...,v,) € R"™ to [vg,...,1,...,v,] € RP" to

(:’)—2, s vi—;l, ”j}—:l, . Z—j), where v; := 1. This is clearly smooth (since v; # 0 on the intersection
U;nU;). O

Problem 3: Let M be a compact simply-connected n-manifold. Prove there is no smooth immersion
fi:M —T" where T" = S* x ... x St (n times).

Solution: If f : M — T™ is an immersion, it is a local diffeomorphism by dimension counting.
By the Stack of Records Theorem, Spring 2010 Problem 3, a local diffeomorphism from a compact
to a connected n-manifold is a covering map. Since M is simply connected, we conclude M is the
universal cover of 7" = S! x ... x S', which is R x ... x R = R®. Hence M = R", which is not
compact. By contradiction, no such immersion exists. [J

Alternative solution: Since M is simply connected, any f : M — T™ satisfies the lifting cri-
terion fom1 (M) C pem1(T™), where p : R™ — T" is the projection from the universal cover. Hence
we have a lift g : M — R™ with pg = f. If f is an immersion, since df = dp o dg, it follows g is an
immersion, and hence by dimension reasons, a local diffeomorphism. Hence it is an open map, so
g(M) C R™ is open and compact. By contradiction, no such immersion f may exist. O
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Problem 4: Give a topological proof of the fundamental theorem of algebra: every nonconstant single
variable polynomial with complex coefficients has at least one complex root.

Suppose p(z) = 2™+ > i, Ya;z, m > 0, has no roots in C. Notice for ¢ € [0, 1]

p(Z) ~t+(1—t).zm ="+t <mz aizi> = ® (]_—i—t <m§: ZZZ_Z>>
=0 =0

Select r > 0 with ") ! T‘ffjl < % (this is possible since this sum tends to 0 as r tends to infinity).

Then notice for z with |z| = r, we have
m—1 o m—1 o
14¢ — =r™|1+¢ —
(r(E )| e(E )

1=0
m—1 w m—1 a
2 >rm(1—t LY =71 —1/2)>7r™/2 >0
(Zm>D ( §m> (- t/2) 2™

=0

p(z) - t+ (1 —1t) 2™ = |z

m<1_t

So we see p(z) -t + (1 —t) - 2™ is nonzero for |z| = r and all t € [0,1]. Write S, = {z € C: |z| = r}.
Then

H:[0,1] x S, — S!

p(z) - t+(1—t)-2"

Ip(2) -t + (1 —1)- 2™
for ¢ € [0,1], z € S,.. Notice

H(t,z) =
is well-defined since the denominator is never 0
H(0,z) =2"/r™ = (z/r)™

H(1,z) = p(2)/lp(2)]

Since S, — St via z + (2/r)™ has degree m, so too does p(z)/|p(z)|. However, p(z)/|p(z)| can be
extended to W = {z € C : |z] < r} since p(z) has no roots. So degree of p(z)/|p(z)| : S, — S* is 0
by the Extension Theorem. Hence m = 0. But m > 0 by assumption, so we get a contradiction, and
conclude no such p(z) can exist. [

Problem 5: Let f: M — N be smooth. Let a be a p-form on N. Show d(f*a) = f*(da).

First, let o« be a O-form a = g Then d(f*a)(X) = d(g o f)(X) = X(g o f), while
F(da)(X) = (da)(f«X) = (f+X)(g) = X(go f). This holds for any vector field X, so that d(f*a) = f*(da)
as desired.

Next, suppose this holds for (kK — 1)-forms. Let o = dg A m, where n is a kK — 1 form and g is a
function. Then

d(f*a) =d(f"(dg An)) =d(f"dg A f*n) =d(f*dg) A f*n— fdg Nd(f"n)
=d(df*g) AN f'n— frdg A frdn=—f"dg A f*dn

Meanwhile,
f*(da) = f*(d(dg An)) = f*(~dg Ndn) = —f"dg A f*dn
So d(f*a) = f*(da).
Finally, observe every k-form can locally be written as a sum of terms of the form gdxi A ... Adxr = dx1 An

for a (k — 1) form 7, it follows by linearity (and the fact that it is enough to show this locally) that
ffdw = d(f*w) for every form.
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Problem 6:

a) What are the de Rham cohomology groups of a smooth manifold.

We have Qf(M) 4 Q1L (M) giving us a cochain complex, where Q!(M) is the vector space of
smooth i-forms on M. Then H'p(M) = ker(Q(M) 4, QM) /im(Q1 (M) 4, QYM)) is
simply the cohomology of this cochain.

b) State de Rham’s Theorem.

For M a smooth manifold, H},(M) = H;(M;R)* via w — ([c] = [ w)

Problem 7: Consider w = (22 + z + y)dy A dz on R3. Let i : S? — R3 be the inclusion map.

a) Calculate [, i*w.

We may apply Stokes Theorem, which applies to compact orientable manifolds, to see that for
B C R3 given by B = {z € R?: |z| < 1}, we have

/ i*w:/dw:/(2x+1)dw/\dy/\dz:/(2x+1)dwdydz=2fV+V:V
52 B B B

where V' = 47/3 is the volume of B, and T is the average value of x on the ball, which is 0 by
symmetry. Hence [g, i*w = 4n/3. O

b) Construct a closed form a on R? such that i*«a = i*w, or show that such an « does not exist.

Suppose « is a closed form on R? which has i*« = i*w. Then 47/3 = [, i*w = [, i*a = [ da =
J5 0= 0. By contradiction, no such closed form exists. [J
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Problem 8:

a) Let M be a Mobius band. Using homology, show that there is no retraction from M to M.

We use the LES for relative homology, taking (M,0M), which is a good pair by the Collar
Neighborhood Theorem, which ensures there is a neighborhood of the boundary which retracts
to it. Hence H,,(M,0M) = H,(M/OM).

Of course, dM = S! is just a circle. Moreover, M/OM = RP?, as is clear from the poly-
gon construction of each space. We have

0 — Hy(OM) 5 Hy(M) — Hy(RP?) — Ho(OM) > Ho(M)

If M retracts onto its boundary, then 7 o ¢ = id for some r : M — M, so that r, o i, = id, and i,
is injective. From this we may simplify to get an SES

0 — Hy(0M) 5 Hi (M) — Hy(RP?) — 0
since the map prior to the injective map i, on Hy must have image 0. Thus we have an SES

05 Z 7 5 7/2Z — 0

where we can compute H;(RP?) from the polygon construction, and Hy (M) = H;(S") because it
deformation retracts onto its central circle (see remark below). However, r, : Hy (M) — H1(OM)
then provides a splitting, so that this SES splits, and Z = Z & Z/2Z, a contradiction. So no such
retract exists. [

Remark: To see M deformation retracts onto its central circle, write M = [0,1]?/ ~,
where (z,0) ~ (1 — z,1) for each z € [0,1]. Write H : M x [0,1] — M via
H((z,y),t) = t(x,y) + (1 —t)(1/2,y). Observe for fixed ¢, these are well-defined maps from the
Mobius strip, since (z,0) — (tz + (1 —t)/2,0) ~ (1 —tx + (t —1)/2,1) = (—tx +¢t/2 +1/2,1),
and (1 —2,1) — (1 —2)+ (1 —1)/2,1) = (t/2 — tz + 1/2,1), so it is well-defined regardless of
choice of representative from (z,0) ~ (1 —z,1).

We see H(1, (x,y)) = (x,y) and H(O, (z,y)) = (1/2,y). Moreover, H(t,(1/2,y)) = (1/2,y) for
all ¢t. Hence this is a deformation retraction of M onto the subspace {1/2} x [0,1]/ ~, where
(1/2,0) ~ (1/2,1). Thus it is a deformation retraction onto the central circle S*, as desired.
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b) Let K be the Klein bottle. Show that there exist homotopically nontrivial simple closed curves ~yq,v2 on
K such that K retracts to vy; but does not retract to vs.

First, notice the Klein bottle is actually two copies of the Mobius band glued together at the
boundary circle. To see this, take K = [0,1]?/ ~ where we have (z,0) ~ (1 — z,1) for all
x € [0,1], and (0,y) ~ (1,y) for all y € [0,1]. Then notice [1/4,3/4] x [0,1]/ ~ is a Mobius
band, as is ([0,1/4] U [3/4,1]) x [0,1]/ ~, and these are glued along their boundary circles
{1/4} x [0,1] U {3/4} x [0,1]. For this problem, it suffices to consider just one of these Mobius
strips; lets consider the first copy.

This is indeed a circle, as follows: write v(t) = (1/4,2t) for 0 < ¢ < 1/2 and
v(t) = (3/4,2 — 2¢t) for 1/2 < t < 1. Since v(1/2) = (1/4,1) ~ (3/4,0), this is well-
define. Since y(0) = (1/4,0) ~ (3/4,1) ~ (1), we see this is a loop in K.

If K deformation retracts onto  (the boundary circle of each Mobius strip), then so too
does the Mobius strip (by simply restricting 7 : K — 7 to the subspace). By part a, this cannot
happen.

Meanwhile, the Klein bottle does retract onto its ”central circle” vy, = {1/2} x [0,1]. Write
r: K =7

r(z,y) = (1/2,9)

By the same computation as in part a, we see r(x,0) = (1/2,0) ~ (1/2,1) = r(1—=x,1). Moreover,
r(0,y) = (1/2,y) = r(1,y). Hence this is a well-defined map on the Klein bottle. Moreover,
r(1/2,y) = (1/2,y) for each y, so that it is a retract. Note that our deformation retract from part
a would not have factored through to a deformation retract for K.

Finally, we observe ~,7s are nontrivial loops in K. We get the non-triviality of 7, for
free, since i, : w1 (y2) — 71 (K) is injective (due to r.i. = id).

To get the non-triviality of +, notice that under the map r,. : m(K) — m(y2), it maps to
r o~y which is a curve as follows: r o y(t) = (1/2,2¢) for 0 < ¢ < 1/2 and ro(t) = (1/2,2 — 2t)
for 1/2 <t < 1. Thus r oy goes to 272, and hence is homotopically nontrivial in 7 (y2). Thus,
is homotopically nontrivial in 7 (K), as desired.
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Problem 9:

Let X be the topological space corresponding to a pentagon with edges a,a,a,a,a all

oriented CCW, and a 2-cell attached via a®. Compute the homology and cohomology groups of X with Z

coeflicients.

with maps

We have cell complex

That is, we have the chain complex

so that Hy(X) =0, H1(X) = Z/5Z, and Hy(X) = Z. Of course, Hy(X) =0 for k > 2.

For cohomology, we dualize the chain complex. Alternatively, apply universal coefficient theo-
rem. Dualizing the chain complex gives

which gives HO(X) = Z, H'(X) =0, H*(X) = Z/5Z, and H*(X) =0 for k> 2. O

Remark: Universal coefficient would give H(X) = Hom(H;(X),Z) ® Ext(H;—1(X),Z) (with
H_; =0), and we would get the same result.

0>Co=2Z 01272 —-Co=2Z—0

82F = ba

oha=v—v=0

0z2372%7 0

0 — Hom(Z,Z) = Z % Hom(Z,Z) = Z > Hom(Z,Z) = Z — 0
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Problem 10: Let X,Y be topological spaces and f,g : X — Y two continuous maps. Consider the
space Z obtained from the disjoint union Y U (X x [0, 1]) by indentifying (x,0) ~ f(x) and (x,1) ~ g(z) for
all x € X. Show that there is a long exact sequence of the form

= H (X)—> H,(Y)—> Hy(Z) > Hy1(X) — ...

We consider two long exact sequences for relative homology:

o =2 Ho(X x 0I) — Ho(X x I) —2 H (X x I, X x 0I) —2 ...

2 2 2 6

o —2 S H(Y) — I s H(2) —Y s HA(Z,Y) — 22—

For the top sequence, we consider the good pair (X x I,X x 9I), which is indeed a good pair, since a
neighborhood of 91 in I retracts onto 01, so that a neighborhood of X x 01 in X x I retracts onto X x 0I.
Here i : X x 0I — X x I is the inclusion map.

For the bottom sequence, we consider the good pair (Z,Y), which is indeed a good pair, since we
may take U C X x I which deformation retracts to X x 0I, and consider the image of Y U U in Z, the
quotient of Y U (X x I) via the given equivalence relation. Then this deformation retracts to the image of
Y U (X x 9I), which is just Y.

Let g denote the inclusion followed by the quotient in X x I — Y U (X x I) — Z. Then notice
q: X x I — Z induces a map on homology. Moreover, q|xxsr maps entirely to Y C Z (where by this we
mean the image of Y in Z, via the inclusion followed by quotient, which is just homeomorphic to Y'). Hence
q also induces maps on homology from X x 09I to Y and from the relative pairs.

In fact, notice X x I/(X x OI) 4, Z/Y is a homeomorphism. Since these are good pairs, we have
Ho(X x I,X xdI) £ H,(Z,Y) is an isomorphism (the terms may be replaced with the reduced homology
off the quotient spaces, and gs gives an isomorphism between them).

Next, notice X X I deformation retracts to X x {0} and to X x {1} (since I deformation retracts to
0,1 respectively). Hence each X x {0} — X x I and X x {1} — X x I give isomorphisms on homology.
Since Hy (X x 0I) = Hn(X x {0}) & Hn(X x {1}) = Hn(X) & H,(X), we have the top map

bwt Ho(X X 0I) = Hp(X) ® Ho(X) = Ho(X x I) = H,(X)

is surjective, with i.(a,b) = a + b. Since i. is surjective, we get ¢ = 0, and 9 in the top row is injective.
Thus H, (X x I, X x OI) is isomorphic to its image in H,—1(X x 0I) via J, and its image is the kernel of i..
Meanwhile, the kernel of i, is {(a,—a) € Hn—1(X)® Hp—1(X) :a € Hp—1(X)} ¥ Hp1(X).

Stringing together our isomorphisms, we see Hn(Z,Y) =2 H,(X X I,X x 0I) = ker(ix) & Hp_1(X),
we see our bottom long exact sequence is the desired long exact sequence. Moreover, notice the map
H,(Z,Y) & Hp—1(X) — Hn—1(Y) can be computed instead by going through the top row via our
isomorphism ¢.. The top composition then gives ¢ : Hn—1(X X 0I) = Hp1(X) ® Hpno1(X) = Hp-1(Y)
restricted to ker(ix) = {(a,—a) : a € Hpo—1(X)} = Hp—1(X).

The map g« : Ho (X x0I) = Hp(X)®Hp(X) — Hn(Y) is just the sum of the two maps H, (X x{0}) — H,(Y)
and H,(X x {1}) — Hup(T). The first of these maps is f. and the second is g, since this is how

X x {0} and X x {1} get mapped to Y C Z respectively. Thus the map ker(i.) — Hn(Y) just maps
(a,—a) = f«(a) + g«(—a) = (f+ — g«)(a). Hence, we get a long exact sequence

o Ho(X) L2295 7 (V) 25 Ha(2) >

where j : Y — Z is the inclusion. This gives the desired long exact sequence. [J
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5 Spring 2012

Problem 1: Explain from the viewpoint of transversality theory why the sum of the indices of a vector
field with isolated zeros on a compact orientable manifold is independent of the choice of vector field.

See G& P page 134-137 for further discussion.

Theorem: (Poincare-Hopf) Let M be a compact orientable manifold. If X is a vector field on M with only
finitely many zeroes, then the sum of the indices of the zeroes is the Euler characteristic of M.

Proof: We string together some black box results to prove this. Let ¢ : R X M — M be the (global) flow
corresponding to the vector field X.

First, for |¢| sufficiently small and nonzero, the fixed points of ¢: will correspond precisely to the zeroes of
X.

Next, since ¢ is a flow, it already gives us a homotopy between ¢; and ¢g = id for any ¢t. Hence, since Lef-
shetz number is homotopy invariant, we see L(¢¢) = L(¢po) = L(id) = x(M) for any ¢.

Moreover, take ¢¢ for t small enough. By previous remarks, its fixed points correspond to the zeroes of X,
which are isolated. Hence, its Lefshetz number is the sum of its local Lefshetz numbers at each fixed point (this is
true provided ¢ is a Lefshetz map, ). We have

L(¢¢) = Z Lp(¢t) = Z Lp(¢t)

PEM:¢+(p)=p pPEM:X =0

Finally, for p a fixed point of ¢¢, we have Ly(¢t) = indp(X).

From this we see x(M) = L(id) = L(¢t) = ZpeM:Xp:O Lp(¢t) = ZpeM:Xp:O indp(X), as desired. O

Problem 2: Define the Euler characteristic of a compact orientable manifold as the index sum from
the previous problem. Show (directly from this definition) that x(M,) = 2 — 2g, where M, is the genus g
compact orientable surface, a 2-sphere with ¢ handles attached.

The genus g compact orientable surface admits a vector field with one source, one sink, and 2g saddles by G&P page
125, which can be thought of as the oozing trajectory of liquid on a g-holed donut. The source is at the top, the sink
at the bottom, and a saddle at the top and bottom of each hole. The index of a source is +1. To see this, notice that
in a small ball around the source, we essentially obtain a map S' — S with (z,y) — (x,y). For a sink, we obtain
(z,y) — (—z, —y), and for a saddle, we obtain maps of the form (z,y) — (—=z,y). Thus their indices are +1,+1, —1

respectively. From this, we see the sum of the indices is 2 — 2g, as desired.

As an alternative approach to define source, sink and saddle is to look at the local Lefshetz numbers of the
flow ¢+ for small ¢. Since the local Lefshetz number is +1 depending on if d¢+ — I preserves or reverses orientation,
it suffices to consider the sign of its determinant. This corresponds to how the two eigenvalues of d¢; compare to 1.
Note that for a sink, all vectors contract towards the origin, so all eigenvalues are less than 1, so det((d¢: — I)p) is
positive. Similarly, for a source, all eigenvalues are larger than 1, so the determinant is again positive. Finally, for a
saddle, some vectors are contracting and some are expanding, so that there is one eigenvalue larger than one and one

eigenvalue smaller than one, and the determinant is negative.
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Problem 3: Suppose M is a triangulated compact orientable manifold (i.e. with a finite simplicial
complex structure).

a) Show that the alternating sum of the betti numbers Y";'_ (—1)*b; is also equal to the alternating sum
> h—o(—1)*ck, where ¢y, is the number of k-simplices.

Let O; denote the map C; — C;_1 in the chain complex with R coefficients, where
we define C_; = 0. Then we have C;/ker(9;) = im(0;) as vector spaces, so that
dimg C; = dimg ker(9;) + dimg im(9;). Meanwhile, dimg C; = ¢;, since the rank does not
change when using R-coefficients vs Z-coefficients.

Now
n n

> (—1)'e;i = (—1)'(dimg ker(d;) + dimp im(d;))
i=0 i=0

Meanwhile, H;(X;R) = ker(9;)/im(0;+1), so dimg H;(X;R) = dimg ker(9;) — dimpg im(9;+1).

Moreover, dimg H;(X;R) = b;, since by universal coefficient, H;(X;R) = H;(X) ® R, so that the

rank does not change. Thus

n n

> (=1 = > (—1)*(dimp ker(9;) — dimp im(8;41))

=0 =0

(—1)° dimg ker(;) + zn:(—l)i dimg im(9;)

i=1

- 104:

Il
o

(—1)" dimg ker(8;) + »_(—1)" dimg im(;)
? =0

= Z(fl)i(dimﬂ{ ker(0;) + dimg im(0;))
i=0

so the two are equal, as desired. [

b) Show that there exists a vector field with the sum of its indices equal to the number described in part a.
Do not worry about smoothness.

It suffices to exhibit such a vector field for A™, as then we can glue these vector fields as we glue
the simplices to get a vector field on M.

Define the vector field X on A™ \ JA™ to be a vector field pointing towards the center of the
interior of A™. This will make the center an n-dimensional sink, with corresponding index (—1)"
(we may insist the vector field near the center is just p = (z1, ..., zn) —= X, = (=21, ..., —2y)).

Since the boundary is the union of (n — 1)-simplices, we can repeat this process induc-
tively, describing what to do on the interior of each k-simplex. Each simplex will then contribute
a fixed point of index (—1)¥, so we will get the sum of the indices to be the sum of (—1)* times
the number of k-simplices, as desired.
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Problem 4: Suppose V is a smooth vector field on R? that is nonzero at (0,0,0). A vector field is said
to be gradient-like at (0,0,0) if there exists a nowhere zero function A(z,y, z) on that neighborhood such
that A\V = V f for some smooth function f.

a) Write V = (P, Q, R). Show that there exist functions P, @, R such that V is not gradient-like in a neigh-
borhood of (0,0,0) (despite still being nonvanishing at that point). (Hint: The orthogonal complement
of V taken at each point would have to be an integrable 2-plane field.)

Write w = Pdx+Qdy+Rdz. If V = (P, Q, R) is gradient-like, then Aw = df for some nonzero func-
tion A and some function f. Then w = %df, and dw =d (%) Adf, and wAdw = Adf ANd (%)/\df =0.

Take P = —y,QQ = x,R = 1. Then notice w = —ydx + xdy + dz, dw = 2dx A dy, and
w A dw = 2dx Ndy A dz # 0. Hence, w is not gradient-like.

b) Derive a general differential condition on (P, @, R) which is necessary and sufficient for V' to be gradient-
like in a neighborhood of (0,0, 0).

V = (P,Q, R) will be a gradient-like vector field if and only if w = Pdz + Qdy + Rdz, the dual
of V, has wAdw = 0, and this will happen if and only if V' is orthogonal to curl(V') (at each point).

To get the first equivalence, note by part a that if V is gradient-like, w A dw = 0. Con-
versely, suppose w A dw = 0. Since w is a non-vanishing 1-form on a 3-manifold (some open subset
of R? containing the origin), we see by Fall 2013 Problem 5 that ker(w) is integrable. Thus, there
exist submanifolds whose tangent space is ker(w), and hence whose normal space at each point
is V. By Spivak’s version of the Frobenius Theorem, found on page 192, we may even select a
new coordinate system on some open set U containing 0 which sends 0 to 0 and has the integral
manifolds to ker(w) as {¢ € U : z(q) = a} for each fixed a appropriately small. In particular, this
means the normal vector fields are parallel to the z-axis in this coordinate system, so that in this
coordinate system, V = f %. Since it is non-vanishing, we have f is nonzero, so taking A = %, we

see \V = %, which is the gradient of g(z,y, z) = (0,0, z). Hence V is gradient-like, as desired.

Finally, note that for f a O-form, df is a 1-form whose dual vector field is the gradient of
f. For w a l-form, dw is a 2-form whose dual is the curl of the dual of w. If w is a 2-form,
then dw corresponds to the divergence of the dual of w. From this correspondence, we see
wAdw =0 <= V L curl(V). (This can also be done just by writing out the coefficient of
dx Ady Adz in w A dw and identifying it as V' - curl(V)).
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Problem 5:

a) Define carefully the boundary map which defines the map from H,, to H,,_; that arises in the long exact
sequence arising from an SES of chain complexes.

b) Prove that the kernel of the boundary map is equal to the image of the map into the H,.

See Spring 2010 Problem 4.

Problem 6: Compute the homology of RP™ for each n > 1.

See Spring 2011 Problem 8a.

Problem 7:
a) Define CP".
b) Show that CP" is compact.

¢) Show that CP" has a cell decomposition with one cell in each dimension 0,2,4, ..., 2n.

See Spring 2011 Problem 7. The compactness follows from either the finite CW structure or the
observation that we may restrict our quotient C"*1/ ~ to S?"*1 (which is compact) and still get
CP™.
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Problem 8: Suppose a compact real manifold M has a finite cell decomposition with only even
dimensional cells. Is M necessarily orientable? Justify your answer.

If M only has even cells, then Hy(M) = 0. Thus, (M) cannot have a subgroup of index 2,
since otherwise we would have a surjection to Z/2Z which is abelian but not a quotient of the
abelianization. Thus, M cannot have any connected 2-sheeted covering spaces. In particular, the
orientation double cover of M must not be connected. Thus M is orientable.

Alternative Solution: By Hatcher Theorem 3.26, if M is a connected, closed and R-orientable
n-manifold, then H, (M;R) = R, and if not, then H,(M;R) C R is the subset {r € R : 2r = 0}.
Note an an orientable manifold is R-orientable for any ring R, and a non-orientable manifold is
R-orientable if and only if R has characteristic 2.

By Hatcher Corollary 3.28, for M a connected closed n-manifold, H,_1(M) is free if M is
orientable, and is the direct sum of a free abelian group and Z/27Z if M is not orientable.

If M is connected, compact, orientable and with boundary, then by Lefshetz duality,

H"(M) = Ho(M,0M) = HO@\//@)M) = 0 since M connected implies the quotient M/OM is
connected.

Solution: Let n = dim M. WLOG, M is connected, since otherwise, we may consider each
connected component separately.

The cell complex for M makes it so that all maps are 0. Hence H;(M) = C;, which is a free
abelian group generated by all the i-cells.

Note that we must have at least one cell in the top dimension, as the top dimensional cell of
dimension % will have interior homeomorphic to R*. Thus, we must have at least one n-cell. (In
particular, since M only has even cells, n is even.) This shows H,,(M) = C,, is not only free, but has
rank at least one.

Moreover, M must be without boundary, as otherwise, OM would be an (n — 1)-manifold, re-
quiring an odd (n — 1) dimensional cell. So M is connected and closed. By Hatcher Theorem 3.26,
H,(M) = Z if M is orientable, and H, (M) = 0 if M is non-orientable. (So these may be promoted
to if and only if). Hence H,, (M) has rank at most one.

So H,(M) has rank exactly one, and H,(M) = Z. From the above cases, we see M must be
orientable. [J
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Problem 9: Suppose that a finite group G acts smoothly on a compact manifold M and the action is
free, i.e. gx =12 <= g=ce.

a) Show M/G is a manifold.

Note that this more generally holds for infinite Lie groups acting freely, properly and smoothly
on a manifold. Moreover, if the Lie group is compact, the action is automatically proper. In
general, dim(M/G) = dim(M) — dim(G).

Solution: We show part b simultaneously. Let y € M/G, and write f~'y = {gi7, ..., g,} (Where
G ={g1,.-,9n}). These are all distinct by the freeness of the action. Pick charts on disjoint open
sets Uy, ...,U, C M with U; > g;z if and only if i = j. Set W; = ﬁ?zlgigj_lUj. Notice the W; are
still disjoint by the disjointness of the U; and still contain just g;z, but with the added benefit
that gkgleZ- = Wy. That is, if g1 = e is the identity, we have W; = g;W;. Pick a further open
set V1 C Wy so that V; is diffeomorphic to R™. Then set V; = g;V;. These are still disjoint, still
contain g;x, and we have the added benefit of ¢; : V; — R" diffeomorphisms.

Then notice V. = n(V1) = n(g;V1) = n(V;) € M/G is independent of choice of i, since
m(gz) = m(x) for any z € M, g € G. Moreover, 71V = LU, V;, which is open. Hence, V is open
in M/G.

Finally, notice 7|y, : V; — V is a homeomorphism for each V. It is clearly surjective. To see it is
injective, suppose m(z) = 7 (y) for z,y € V; = g;U. Then there exists g; € G with g;x = y. Hence
y € g;Vi = (9;9;)U = Vi, where g;9; = gr. Then y € V3 N'V;, so that we must have k = 4 by the
fact that these sets are disjoint. Hence g;g; = ¢;, and g; = e. Hence z = g;& = y. So 7 is injective.

Thus 7|y, : V; — V is bijective. It is open, since for W C V; open, n~tx(W) = L, g;W
is open, so that 7(W) is open in the quotient topology. Hence w(W) C V is open, so 7|y, is an
open map. Thus 7|y, is a homeomorphism.

Note y = w(z) > V, and V = V; 24 R s a homeomorphism. This makes M/G a mani-
fold of the same dimension as M, as we may find a chart for each point in M/G. In fact, note that
our choice of neighborhood V is also an evenly covered neighborhood, so that 7 is a |G|-sheeted
covering space projection. Finally, G acts on M as deck transformations of M over M/G. O

b) Show M — M/G is a covering space.

See the previous part. ]
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c¢) If HYo (M) = 0 for some k > 0, is HX,(M/G) necessarily 07 Prove your answer.

Lemma: Let G be a group (possibly infinite), and let H C G be a finite index subgroup. Then there exists a subgroup K C H C G with
[G: K] < oo and K 4 G.

Proof: Write n = [G : H]. G acts on its cosets G/H via left multiplication. This gives us a homomorphism ¢ : G — Sym(G/H) =~ Sp. Its
kernel is the intersection of all the stabilizers, K = ker(¢) = ﬁgegstab(gH), In particular, notice the stabilizer of H under this action is

precisely H, since g.H = H <= g € H. Hence, K C H. Moreover, G/K 2 im(¢) C Sp, so that [G : K] = |G/K| < n!. O

Corollary: Let N — N be a finite-sheeted covering map. Then there exists a covering M — N — N with M — N finite sheeted
and regular.

Proof: There is a Galois correspondence between covering spaces over N and subgroups of G = =j1(N). In one direction, apply
pxm1 to the covering map M -5 N to get the corresponding subgroup. In the reverse direction, given a subgroup H C G, the corresponding
cover is N'/H — N, where N’ is the universal cover of N. This correspondence reverses the lattice. The index of the subgroup corresponds

to the number of sheets of the cover. Finally, normal subgroups correspond to regular covers.

If N — N is a finite-sheeted cover, then N corresponds to a finite index subgroup H C G. Then by the lemma, we may find
K C H C G with K 4G and [G : K] < oco. Thus, K C H C G corresponds to covers M — N — N with M — N regular and finite-sheeted.
O

Proposition: Finite-sheeted covering maps induce an injection on de Rham cohomology.

Proof: Tt suffices to consider finite regular covers M — M/G, as follows: let N -2+ N be a finite-sheeted covering map. By the

corollary above, we may find a cover M — N — N with M a finite sheeted regular cover over N. Then we have M -+ N £ N. On
* N * *

cohomology, we get HYo(N) P HEL(N) T— HEL(M). If the composition HEp(N) T—L— HE (M) is injective, then p* is also

injective. Thus it suffices to show thatRfinite regular covers induces an injection on d@ Rham cohomology. Thus we consider covers of the

form M — M /G with G finite. (Each regular cover may be written in this way).

Let @ : M — M/G denote the covering space projection. To see w* is injective on de Rham cohomology, we construct a one-sided
inverse to 7™, a map 7w« : HsR(M) — HéCR(M/G) with 74 7* = id. We may follow the construction of w4 as in Spring 2010 Problem 5. Here
is an alternative (arguably better) construction. First, we construct my : Ak(M) — Ak(M/G) a map on forms. Then we show it commutes
with d, so that it gives us an induced map on cohomology. For w € Ak (M), consider the G-invariant form o = % ZgGG g*w € Ak(M).

Note dwg : TpM — Tp(M/G), for p = w(q), is an isomorphism since 7 is a local homeomorphism and M, M/G are manifolds of the same
dimension. Define 1 1
(w*u)p(Xl,...,Xk)=aq((d7r)q Xl,...,(dﬂ')q X))

where g € 7~ Lp is arbitrary. This is well-defined independent of choice of g, since from a = g*a for g € G, we get
=i =il _ o =il =i
ag(am gt Xy, o (@m g T X)) = (6% a)q((am) g T X, oy (dm) g T Xy

= (@) gq((dg)g(dm) 71 X1, ..., (dg)g(dm) g Xp)

Notice 7 0 g = 7, so that (dw)gq(dg)q = d(w 0 g)g = (dm)q, and (dg)q(dw)(;l = d(m)gq- Thus
(@)q((dm) g X1, o (dm) T 1 X)) = (@) gq((d9)g(dm) g 1 X1, ., (dg)g(dm) g 1 Xy)

= (@) gq((dm) g X1, ooy (dm) g Xp) = (e) g7 ((dm) 1 X1 o (dm) 1 X)

where q, = gq € 7\'_1p. Ranging over g € G, we see that our definition of w4 w was indeed independent of g.

Let n € Ak(M/G) be a form. Then notice w = 7*n € Ak(M) is already G-invariant, since g*w = g*n™*n = (7 0 g)*n = 7#*n = w. Notice
then
—1 —1
(a7 M) p(X1, ..., Xp) = (w*n)q((dw)q X1, (dm) g " Xp) = mp(X1, -y Xp)

Hence 74 gives a left inverse to ©* : Ak(M/G) — Ak(M) So the latter is injective as a map on forms.
Meanwhile, notice
1

(7 maw)qg (Y1, V) = (mxw)p((dm)g Y7, ..oy (dm) g Vy) = aq(Y1, ..., Y) = > (¥ w)q(Y, -0, Yg)

I ‘QGG

or in short
* 1 *

* = —— g
IGl gea

Now
* * * * 1 * 1 * *
1rd7r*=d1r7r*=d—Zg =7ng=729d=729 d=mn"med
Gl jea 1G] gea IGl jea Gl jJea
Since 7* is injective on forms and from the above computation,n 7#*drs = 7* 7, d, we conclude dryx = 7xd.
Thus 7, induces a map 7« : HEpL(M) — HE.(M/G) on cohomology, still with m.7* = id. Hence m* is also injective on coho-

mology (not just forms), as desired. [J

*
Solution: Applying the proposition, for p : M — M/G, we have H§R(M/G) <L> Hk(M) = 0, so that HsR(M/G) = 0.

(]

Remark: The proof also shows AR (M/G) is in bijection with G-invariant forms in A¥(M).
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Problem 10: Let M = RP? x RP?. Homology elements of a product manifold can arise as a product
of a cycle in one factor and a cycle in the other. Show that there is an element (and find it explicitly) of
Hs(M) that does not arise in this way.

[ See Spring 2011 Problem 8b. ]

6 Fall 2012

Problem 1:
a) Show SLy(R) is diffeomorphic to S* x R?.

Solution: To each matrix A € SL2(R), we have a unique polar decomposition A = OP where O
is orthogonal and P is positive semidefinite. Since 1 = det(4) = det(O)det(P), det(O) = +1 and
det(P) > 0, we see det(O) = 1 and det(P) = 1. In particular, O € SO2(R), and P is positive definite.
Note SO2(R) = S' since the special orthogonal 2 by 2 matrices correspond to rotations by an
angle 0 (so we have the bijection mapping to e € S*).

Meanwhile, if P is positive definite of determinant 1, we have

a b

P =

i
with ad — b?> = 1. In particular, a,d must be nonzero (and in fact positive, since PSD matrices have
nonnegative diagonal entries). Hence we may always write d = #. In fact, by Sylvester’s criterion,
any such matrix with ¢ > 0 and ad — b? > 0 must be positive definite. Hence the positive definite 2 by 2
determinant matrices P are in bijection with ordered pairs (a,b) with a > 0 and b € R arbitrary (where
we just selecct d = # to construct the corresponding matrix). Hence if SPD>(R) is the set of positive
definite 2 by 2 matrices of determinant 1,

SPDy(R) 2 {(a,b) € R? : a > 0} = (0,00) x R = R?

Conversely, for each O € SO2(R) and P € SPD(R), it is clear OP € SL2(R). Thus by polar decomposi-
tion we get
SLy(R) 2 SO2(R) x SPD2(R) = S* x R?

as desired. O

Remark: Regarding smoothness of polar decomposition, note that we pick P = VATA, and this
is continuous with respect to the entries of A € SL2(R) since eigenvalues vary continuously and square
roots are continuous. Moreover, we then have O = AP~', so that this also varies continuously in the
entries of A.

Alternative Solution: For A € SL2(R), Gram-Schmidt and QR decomposition gives A = QR,
with @ € O2(R) and R upper triangular with nonnegative diagonal entries. By the same argument as
above, we see det(Q) = det(R) = 1. Hence Q € SO2(R) = S' and R is of the from

ros
R= {0 l/r]
with » > 0 and s € R. Conversely, every @ € SO2(R) paired with any such R give QR € SLz(R). Hence
we again get SL2(R) =2 SO2(R) x (0,00) x R= S* x R%. [

Remark: This gives an alternative proof (to Fall 2010 Problem 3c) for the fact that SL2(R) has
trivial Euler characteristic: (X x S*) = 0 for any CW complex X.
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b) Show SLy(C) is diffeomorphic to S? x R3.

Via polar decomposition, for each A € SL2(C) we may write A = UP for unique U unitary and P positive
semidefinite and Hermitian. Note then det(U) = det(P) = 1, so U € SU>(C), and P is positive definite
Hermitian of determinant 1. On the one hand, we have

SU,(C) =~ §°

a —b 3 2

{b a] + (a,b) e S CC
where we notice every matrix in SUz(R) with first column (a, b) € C? has second column (—b, a), and has
la|? + 16> = 1 (from the determinant condition). Conversely, any such matrix is in SU>(R). Hence we get
the above diffeomorphism.

Meanwhile, if P is positive definite Hermitian of determinant 1, we have

o]

This has determinant ac — |[b|*> = 1. In particular we have a,c nonzero and ¢ = . Meanwhile, by
Sylvester’s criterion, such a matrix is positive definite if and only if @ > 0 and ac — |b|*> > 0. Hence we
have the positive definite Hermitian matrices of determinant 1 are in bijection with ordered pairs (a,b)
with a > 0 and b € C. So we have

1+[b|%
a

SLy(C) 2 SU(C) x (0,00) x C = 5% x R?

as desired. [

Problem 2: For n > 1, construct a nowhere vanishing smooth vector field on RP*" 1.

Definition: Vector fields X on M and Y on N are F-related for F': M — N if F. X}, = Yy, for each p € M.

Theorem: (Lee, Proposition 8.23) For N C M a submanifold, i : N <% M the inclusion map, and
X a vector field on M with X, € T,N C T, M for each p € N, there exists a vector field ¥ on N which is
i-related to X, i.e. has Y, = 9.X, = X, € T, N for each p € N.

Solution: Notice the vector field X, = ip on C* = R®" is tangent to S**~* C C", since p is or-
thogonal to ip, so that ip € T,S*" ™. Hence we have a vector field Y on $?"~! with Y, = ip for p € §*" 1.

The vector field Y corresponds to a section of the tangent bundle, S?"~! X, gt
Let 7 : §2"~1 — RP?"~! denote the projection. Then we have a morphism 7'S%"~* gz, T(RP2"71).

The composition gives §2"~1 Xy 7.g2n~1 LLN T(RP*™1). Write Z = dnoY. Then Z, = dn,Y,. We show
Zy = Z_p, i.e. dmpYy = dmw_,Y_,, so that this map factors through to a map V : RP?"~! — T(RP*"~!) with
Vom = Z. Then since Vr(p) = Zp = dmpYy € Tr(py (RP?" 1), we will get V is a vector field on RP?"~'. Since
Y is nonvanishing and dm, is injective (in fact, bijective, since it is a local diffeomorphism), we will get V is
a nonvanishing vector field on RP?"~! as desired.

Thus it just remains to check dmpY, = dn_,Y_,. Letting f : §2n—1 _y g2n—1 o the antipodal map
f(p) = —p, since wo f = 7, we see

dmp(Yp) = d(m o f)p(Yp) = drppdfpYp = dr_pdfpYp

Thus it just remains to check df,Y, = Y_,. Since Y}, = i.X, = dipX,, we have dfpY, = d(i o f),X,. Writing
g:R®™ — R® as g(x) = —z, we have o f = g|gan—1 = g o4, so that d(io f), X, = d(goi)p X, = dgpdip Xp =
dgpYp. However, g(z) = —z is linear so dg, = g. So dg,Yp, = =Y, = —ip =Y_,, as desired. O
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Problem 3: Let M C R™ be a smooth submanifold of dimension m < n—2. Show R™\ M is connected
and simply-connected.

Theorem: Extension Theorem: Let Z C Y be a closed submanifold, and C C X a closed set. Let
f: X =Y have f|c h Z. Then there exists a g : X — Y homotopic to f, with g h Z, and g = f on
a neighborhood of C.

Solution: Let p,q € R™ \ M. Select a path in R™ from 7 : [0,1] — R"™ from p to ¢q. Tak-
ing X =1[0,1], C = {0,1} € X closed, Y = R", Z = M C R" a closed submanifold. Notice
fle : {0,1} - R™ has f(0)=p & Z, f(1) = q & Z. Hence f|¢ trivially intersects Z transversally. By
the extension theorem, we may find ¢ : [0,1] — R™ with g(0) = p,g(1) =qgand gh Z = M.

If g(x) € Z for some z € X, we must have dg,T,X @ Ty)Z = Tym)R™. By dimension con-
siderations, we see the LHS has dimension at most m + 1 < n, so this is impossible. Hence, we
must have g(x) ¢ Z for any . Hence, g : [0,1] — R™ \ M does not intersect M = Z. Thus it is
a path from p to ¢ in R™\ M. Since these points were arbitrary, we conclude R™\ M is path-connected.

Let v : [0,1] — R™\ M be a loop, with v(0) = (1) = p. Select H : [0,1] x [0,1] — R™ be
a path homotopy between v and the constant map (since 7 is nullhomotopic in R™). That is, we
have for all x € [0,1] and ¢ € [0, 1],

H(0,z) =~(x)

H(l,z)=p
H(t,0)=H(t,1)=p

Take X = [0,1] x [0,1], C = {0,1} x [0,1] U [0,1] x {0,1} closed, ¥ = R", Z = M C Y a
closed submanifold. Notice H|c does not intersect Z = M, since v is a path in R* \ M and p ¢ M.
Hence it trivially intersects transversally. By the extension theorem, we have

G :[0,1] x [0,1] — R™

with G = H on C and G rh M. By dimension considerations, we see dGt, )T{+,4[0, 1]x[0, 1|&T gt ,0)Z
has dimension at most m + 2 < n, so it cannot intersect Z = M at all. Hence G maps to R™ \ M.

Thus we have
G:[0,1] x [0,1] = R"\ M

G(0,2) = H(0,z) = ()
G(l,z)=H(l,z)=p
G(t,0) = H(t,0) =p
G(t,1)=H(t,1)=p

We conclude G is a path homotopy between v and the constant map in R\ M. Since v was arbitrary,
we see 1 (R™\ M) =0 and R™ \ M is simply connected. O
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Problem 4:

a) Show that for n > 1 and k € Z, there exists a continuous map f : S™ — S™ of degree k.

One could attempt to generalize Spring 2010 Problem 8. We instead use Hatcher’s argument
from page 138.

Let B;, i =1, ...,k be disjoint open disks on S™. Set B = U7 ;B;. Then S™/(S™\ B) = Vv;_,5™.
To see this, note B;/0B; = S™. Each B; C S™ then maps homeomorphically to S™ under this quo-
tient, so that B; maps to S™ with a point (the image of dB; C S™\ B) removed. Thus each B; maps
to a copy of S™\p, and the remaining S™\ B maps to the missing point p, giving a wedge of spheres.

Next, map V¥ ;5" — S™ via mapping each copy of S™ to S™ either via the identity or
via a reflection (i.e. a degree —1 map), insisting p maps to p in both cases (so p is on the
hyperplane of reflection). The choice of which map to use for each copy is specified shortly.

Thus we have a map S™ — S"/(S™ \ B) — S™. To compute its degree, select some
y € S™ in the codomain not equal to p (the point where S™/(S™\ B) = VE_,S" is wedged). Then
notice its preimage under the first map consists of one point in each summand of the wedge. The
second map is a local homeomorphism near each preimage point, so that each preimage point
contributes a degree of £1. The unique preimage of each point via the first map contributes 41
as well, since it is also a local homeomorphism. Thus in the composition, each of the k preimage
points contribute +1. In the above construction, we map either via identity or reflection to ensure
all of these local degrees are +1, so that the degree is k. Alternatively, we may choose them all
to be —1 to get a degree —k. [J

b) Let X be a compact, oriented n-manifold. Show that for any k € Z, there exists a map f : X — S™ of
degree k.

Let U C X be an open set diffeomorphic to R™. Then note X/(X \ U) = S™ (it is compact and
contains a homeomorphic copy of U = R™ with one extra point, so it must be the one-point
compactification).

This gives us a map X — X/(X \ U) = S™ which is a local homeomorphism for any
point in U, so that the degree of this map is £1. Then we may compose this with a map S™ — S™
of degree +k to get a degree k map, as desired. [J
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Problem 5: Assume that A = span{Xy,..., Xx} is a k-dimensional distribution spanned by vector
fields on open set 2 C M in an n-manifold M. For each open V C €, define

Zy={ueC®V)|Xju=0,i=1,..k}

Show A is integrable if and only if for each x € 2, there exists an open neighborhood x € VC Q and n — k
functions uq, ..., u,_r on Zy such that the differentials duyq, ..., du, _j are linearly independent at each point
inV.

Suppose A is integrable. For each p € €2, we can find a chart (z,V > p) with
z:V = (—¢€)"

z(p) =0

and the integral manifolds being of the form N = {2**1(q) = a**!,...,2"(q) = a™}, for each fixed
a’ € (—€,€). Note TN = span(z2:|q:i = 1,....,k) = Ay = span((X1)g, ..., (Xi)q)-

Then notice since 6% 29 = 0 for i # j, we have x**1 ... 2™ vanish on all functions in T,N = A,.

Thus, we must have (X;)(27) =0 for j =k +1,....,n. Hence 29 € Zy for j =k +1,...,n.

k+1

Moreover, since these are coordinate functions, we have dz*T!, ..., da" are linearly indepen-
dent at each point in V. Setting u; = x4, we get the desired functions.

Conversely, suppose we have ui,...,u,_r on Zy such that duq,...,du,_, are linearly indepen-
dent at each point in V.

By Lee Theorem 19.7, it suffices to check that for any n a smooth 1-form which annihilates
A, dn also annihilates A.

By the independence of the du;, ¢ = 1,...,n — k, we see they span Zy at each point, so that
if n annihilates A on V', we have
n—k
n= Z Jidu;
i=1

for smooth functions f;. Then
n—k

dn =" dfi Adu
i=1
For X,Y € A, we have (df; A du;)(X,Y) = df;(X)du;(Y) — dfi(Y)du;(X) = 0 — 0 = 0 since du;
annihilates A. Thus, we see dn(X,Y) = 0. We conclude if 7 is a 1-form annihilating A, so too is dn.
By Lee’s Theorem 19.7, we conclude A is integrable. [
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Problem 6: Define (n — 1)-forms on R™ \ {0} via

n
o= Z(—l)iflxidxl Ao ANdb AN de”
i=1
1
w=—0c
||

a) Leti:S""1 — R™\ {0} be inclusion and 7 : R™\ {0} — S~ the retraction r(x) = T+ Show w = r*i*o.

First, we have to make the nontrivial observation that

O'p(X17~--7Xn—1) :det([ﬁ (Xl)p (anl)p])

To see this, it suffices to plug in basis vectors %, e a?ci s ey 8%' Then the RHS becomes

det[ﬁ er ... € ... en]:(—l)i_ldet[el e €1 P €11 .. en]:(—l)i_lxi(p)

which agrees with the coefficients of 0. Next, to see r*i*c = w, it suffices to check pointwise, i.e.
(r*i*o), = w, for each p € R™\ {0}. For fixed p, it suffices again to check by plugging in basis
vectors. This time, we select a basis of T,R" = TpSg_1 &) N,,S;“l by selecting a basis of each
component, where S;}_l is the unique (n — 1)-sphere containing p. For NpSg_l, we may simply
pick the basis {p}.

First, we check that if any (X;), € Np(Sy~'), then both (r*i*c),(X1,...,Xn—1) and
wp(X1, ..., Xpn—1) are 0. erte (Xi)p = A\p. Then by the determinant form of o above, we
see immediately o, (X1, ..., Xp—1) = 0. Then w,(Xq, ..., Xp—1) =

Meanwhile,

op(X1, ..., Xpn—1) = 0 as well.

|$\"
(r*i*o)p(X1, ooy Xn—1) = oz (d(ior)pyXy,....d(ior),X,_1)

Taking y(t) = tp, we see 7/(1) = p. Meanwhile, r oy = p/|p] is constant, so that (dr),p = 0. Then
d(ior)p(Xi)p = (di)p/p|drp(Xi)p = 0 for (X;), = Ap. From this we see

oz (d(ior)pXi,...d(ior)yX,_1) =0
Hence wy(X1, ..., Xn_1) = (1*i*0)p(X1, ..., Xn_1) = 0 whenever any (X;), € N,Sp~".
By the above remarks, it only remains to check on the basis vectors in T, S;L_l. However,
if X, € T,S""!, we may write it as (djp),Y}, where j, : Sp~1 — R™ \ {0} is inclusion, for some

vector ﬁeld Y on S” L Thus it remains to check

(r*i*0)p((dip)p(Y1)ps s (dip)p(Yn—1)p) = wp((dfip)p(Y1)ps -+ (dip)p(Yn—1)p)

However, for this, it simply suffices to check j; (r*i*o) = j;(w).

Note i o r o j, = x/|p| is just multiplication by 1/[p|, so that (i o 7 o j,)*o is ﬁo sp=1s
where we gain a 1/|p| factor from each x; and dx; term.
Meanwhile, jjw = j;(ﬁo) = mj;(f = ﬁj;a = ‘p‘na|3n 1, since |z|™ o j, = |p|™ is

constant. [J
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b) Show o is not closed.

We have

do = Z(—l)i‘ldxi/\dxl/\.../\cfa?i/\.../\dx” = da' A Adat A Ada™ =n(da' A Adz™) # O

i=1 i=1

so o is not closed.

c¢) Show w is closed but not exact.

We have w = r*i*g, so dw = d(r*i*o) = r*i*(do) = 0, since do is an n-form, so that i*do = 0 as
it is an n-form on S™!. Hence w is closed.

Meanwhile, note we have i*w = i*r*i*c = (r 0 4)*i*oc = i*0, since r o i = id. It is clear from
the expression for ¢ that we have a form ¢ on R™ with o = j*¢ for j : R™\ {0} — R™ the inclusion.

It is also clear d6 = n(dz' A ... A dz™) from the same calculation as part b. Then by
Stokes we have

/ w= i*J:/ dc?:/ n(dz' A ... Adx™) =n - vol(B) >0
Sn—1 Sn—1 B B

where B = {x € R" : |z| < 1} is the closed ball. On the other hand, if w were exact, we would
have w = df so that i*w = i*df = d(i*0) is exact and hence integrates to 0. By contradiction, we
must have w is not exact.

Remark: Stokes does not apply directly to fsn_li*w, as w cannot be extended to the
entire ball B due to the norm squared term in its expression.

Problem 7: Let M be a compact orientable smooth manifold of dimension 4n+2. Show dim H?"*1(M;R)
is even.

- )

Note that via the cup product (which, in the case of de Rham cohomology is just the wedge product), we have
H> 1 (M;R) x H>"t1(M;R) 25 HY2(M;R) 2 R

Of course, A is bilinear and has w A a = (—1)?>""la Aw = —a Aw, so that A is alternating in this case. Hence we have
an alternating bilinear form on H2"+1(M;R) 2 R* (corresponding to some matrix k by k matrix A) via

RF x R* 4 R

(v, w) = vT Aw
Moreover, this matrix A must be invertible. To see this, suppose Aw = 0 for some w. Then vT Aw = 0 for each v.
In other words, we have some 2n + 1 form w with a A w = 0 for all 2n + 1-forms «. It suffices to see w = 0 locally.
To see this, write out w in some coordinate system, and let a vary between each dx;; A ... A 01177;2”+1 to see that

each corresponding coefficient of dx;; A ... A dxj2n+1 is zero (where {z;,, ~~-,mi2n+1,$j1,-~~,$j2n+1} are all 4n + 2

coordinates). Thus indeed if Aw = 0, then w = 0, so that A is invertible.

Since (w,v) — wlAv = (WTATw)T = —(vTAw), we must have AT = —A, so that A is skew symmetric.
Taking determinants, we see det(AT) = det(—A) = (—1)®det(A). On the other hand, det(AT) = det(A). Thus,
(—1)* det(A) = det(A). Since det(A) # 0, we must have k is even, as desired. [J
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Problem 8: Show that there is no compact 3-manifold M with OM =~ RP%.

Proposition: The Euler characteristic of an odd dimensional closed manifold is zero.
Proof: See here.

Proposition: Let M be a compact manifold with boundary. Construct the double of the man-
ifold, 2M, as the adjunction space M Ug M, where ¢ : OM — M is the inclusion. Equivalently,
2M = (M x {0,1})/ ~, where the equivalence relation has (x,0) ~ (z,1) for all z € M. Then 2M is a
closed manifold of the same dimension as M.

Proof: If x ¢ OM, then x € M is contained in some chart x € U C M with U = R"™ (and in par-
ticular we may insist U N dM = 0 by shrinking). Then (z,0) € (U,0) and (z,1) € (U, 1) both have charts.
Each (U, ) is open and homeomorphic to U, and thus to R™.

Meanwhile, if x € 9OM, then pick some V' C M open with V = H" the upper half of R". Then
(z,0) = (z,1) € 2M has neighborhood (V;0) U (V, 1) which is homeomorphic to two upper half planes glued
together at the boundary, i.e. R" itself.

Since every point has a neighborhood homeomorphic to R™, 2M is a manifold without boundary

with the same dimension as M. Its compactness is clear as it is the quotient of a compact space M x {0,1}.
O

Remark: The proof also makes it clear that if M is connected, so too is 2M, since each point has a
path to its own component ((M,0) or (M,1)), and points in opposite components may first travel to
(0M,0) = (OM, 1) to cross.

See also Lee 9.29 and 9.30. 2M is a smooth manifold without boundary, is compact if M is, and is
connected if M is. In fact, if 2M is orientable, then the regular domain M C 2M is also orientable.

Remark: Note OM C M is closed. So if M is compact, so too is OM.
Proposition: For M an odd dimensional compact manifold with boundary, x(0M) = 2x(M).

Proof: Let U C M be a collar neighborhood of OM C M. Then U deformation retracts onto M.
In 2M, take A = (U,0)U (M, 1) and B = (U,1) U (M, 0). Then since U deformation retracts to the boundary,
we have A deformation retracts to (M, 1) and B to (M,0). Moreover, AN B = (U,0) U (U, 1) deformation
retracts to (OM,1) = (OM,2) 2 OM, and AU B = 2M. We have a LES by Mayer-Vietoris:

which, by our deformation retracts is equivalent to the following LES:

Note that the alternating sum of ranks of abelian groups in an exact sequence add to 0. Thus we have (for
n = dim M)

> (=1)" (rank(H;(0M) — 2 - rank(H;(M)) + rank(H;(2M))) = 0
i=0
so that
x(OM) = 2x(M) + x(2M) = 0
Meanwhile, 2M is, by previous proposition, a closed n-manifold, so that when n is odd, we have x(2M) =0
by the above proposition. Thus in this case we have x(OM) = 2x (M) is even. O

Solution: Note x(R]P)Q) = 1—-—1+1 = 1 from its cell construction, which is odd, so that by the
previous proposition RP? is not the boundary of an odd-dimensional compact manifold. O
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Problem 9: Let L; C R™ be the coordinate axes L; = {x € R™ : z; = 0 for all j # i}. Calculate the
homology groups of R™ \ (L U...U Ly,).

The deformation retract of R” \ {0} to S"~! via

H:[0,1] x R"\ {0} - R™\ {0}
H(t,x):(1_t)x+”’;i”

restricts to
H:[0,1]] xR*"\{L1U...UL,} - R*"\{L;U..UL,}

since x € L; for any 7 if and only if there are two indices 7 # j with x;,z; both nonzero. If
x has z; # 0, then (1 — t)z; + ta;/||z|]| = z;((1 — t) + t/||z||) is also nonzero, noting for ¢ > 0
(1—t)+t/|lz|]] >1—t>0,and for t =0, (1 —¢t) +¢/||z|]| =1 > 0.

Then notice this restriction of H gives a deformation retract of R™ \ {L; U ... U L,} to
Snil \plv ooy Pns g1y -5 Gny where {pzan} = Snil N Lz

Geometrically, the deformation retraction of R™ \ {0} to the sphere S"~! sends the line L;,
and only the line L;, to p;,q; € S™ ! (depending on if x; > 0 or z; < 0). Each point in the
deformation retract simply follows a straight line to the sphere. Thus restricting this deformation
retraction simply avoids those points.

Next, notice S"~1\ {p;} for some p € S"~! is homeomorphic to R"~! via stereographic projection.
This homeomorphism then restricts to a homeomorphism sending S™~1 \ {p1, ..., Pn,q1, -, qn} to

R\ {7 (p2), ... 7(Pn), m(q1), ..., ©(qn) }, i.e. R"™1 with 2n — 1 points removed.

Now this is Spring 2010 Problem 6. By that problem, we have For n > 2,

Z k=0
0 O<k<n-—2
Hi(R*\ {Lq,...,L,}) = H,(R** yos Ton_1}) =
k( \{ ilg) oo }) k( \{.Tl T2 1}) Zanl k=mn—2
0 kE>n

For n = 2, we have

Z* k=0

Hy,(R*\ {L1, Lo}) = Hy(R' \ {21, 72, 73}) = {0 k>0

For n = 1, the reader may compute Hy(()) via any desired method. O
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Problem 10:

a) Let X be a finite CW complex. Explain how the homology groups of X are related to those of X x S?
(without using Kunneth, of course).

Let X have k-cells ef, . ekk for each k =0, ..., N. Give St a CW structure with one 0-cell v and

<9y Ep

one 1-cell e = [0, 1], gluing both endpoints to v.

The product X x S' then has cells which are products of cells of X and cells of S!. Thus we

have k-cells ef X v and e;?_l xefori=1,...,n; and j = 1,..,nt_1. We have a product rule for

boundaries (similar to exterior derivative of a wedge) which gives
d(eF x v) = 0ef x v+ (=1)Fef x v = ek x v
8(62’?_1 X e) = 862’?_1 X e+ (—1)k_142§_1 x de = 865_1 X e
since v = 0 and de = v — v = 0. Consider the chain complex for X:
0—>ON—>...—>01-iCi_1—>...—>CO—>O

Then the chain complex for X x S' is

9,0 —1)
LA

e = Ci®Ci ( Cii1®Ci_g9 — ...

Notice ker(9;,0;,—1) C C; ® C;—1 is simply ker(9;) @ ker(9;—1), and im(9;4+1,0;) C C; ® C;_1 is
im(0;41) ®im(9;). Taking quotients, we see

Hi(X x SY) = Hy(X) ® Hi_1(X)

where H_1(X) =0. O

b) For each n > 0, give an example of a compact smooth manifold of dimension 2n + 1 with H;(X) = Z for
1=0,....,2n+ 1.

Take X = CP"™ x S'. By the previous problem, H;(X) = H;(CP") ® H,;_1(CP") = Z for all
i=0,...,2n + 1, since the homology H,;(CP") of CP" is Z if and only if 0 < ¢ < 2n is even, and 0
otherwise. [J
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7 Spring 2013

Problem 1:

a) Show S C M,,xn(R) the subset of rank 1 matrices is a submanifold of dimension m +n — 1.

For the special case of rank 1 matrices, we have a very short proof: for the open set of rank 1 matrices A with
A;; # 0, we have a chart simply sending A to the ith row and jth column. There are n real entries in the ith row,
m in the jth column, and A;; appears as the duplicate, and so only needs to be included once. This thus gives us
a map into R™+"~1. More specifically, it is a map into the open set R™*T7=2 x (R \ {0}), since A;j # 0. Note
that the matrix is entirely determined by this row and column since it has rank 1 (and by A;; # 0 we know what
to multiply each row or column by to get the other rows and columns). Thus this map is injective. Moreover, this
same process can easily be reversed to get a rank 1 matrix upon fixing the given entries, so that this map is actually
a bijection. It is clear both directions are continuous (in fact, smooth), since it just involves projection onto entries
of the matrix. Thus we get a homeomorphism of this open set of rank 1 matrices to an open set in R”™+7~1 thus

giving a manifold structure as desired. [J

b) Show that the subset T C My, xn(R) of rank k£ matrices form a submanifold of dimension k(m + n — k).

Each rank k& matrix has an invertible k& by k minor. WLOG, we assume this is the top left £ by k& minor; otherwise,
we may permute the rows and columns to allow this to happen.

For A € My, xn(R) of any rank with the top k by k minor invertible, write

w3 ¢

where B is k by k with det(B) # 0 (hence the openness of this condition). Then notice
B O [Tkxk -B~lc 1 _[B 0
D E|| 0 Ip-wxm-r]| [P —-DB'C+E

} is an invertible n by n matrix (it is upper triangular with all 1’s in the diagonal), we see

rank ({g gD = ks (L:B) _ppic + ED

so that the rank k matrices of the above form are precisely those with —DB~1C + E = 0 (since B already has k
independent columns).

Define a map from the open subset of My, xn(R) whose top k by k minor is invertible to M(pm,_g)x (n—k)(R) via
B C
[D E
the preimage theorem (viewing this as a map from U, the open set of matrices of rank at least k with top k by k
minor invertible), those matrices of rank precisely k and whose top k by k minor is invertible will be a manifold
of codimension (m — k)(n — k), and hence of dimension mn — (m — k)(n — k) = nk — k? + mk = k(m +n — k).
Thus each such matrix will have a chart to R¥("+7=k)  Via permutation of rows and columns (which is a
diffeomorphism on My, xn(R)), we will thus get a chart for an arbitrary rank k& matrix, as desired.

— —DB~1C + E. Tt suffices to show that 0 € M —k)yx (n—k)(R) is a regular value of this map. Then by

B C
D E
we show F' is actually a submersion. Notice for X € M(p,_g)x (n—k)>

ara (3 9]) = Flave]y 3])-F@

0 t—0 t

To see F' : U = Mpym_pyx(n—k)(R) via A = ] + —DB~1C + E indeed has 0 as a regular value,

_yy “PBTICH+E+tX - (-DBTIC+E) _
= tl_I}%) ; =
Since X is arbitrary, we see dF4 is surjective for any A. Hence F' is a submersion, 0 is a regular value, and the

X

result follows from above remarks. [J
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Problem 2: Let w be a 1-form on a smooth manifold M.

a) Define [ w for piece-wise smooth curves ¢ : [0,1] — M.

For ¢ : [0,1] — M piecewise smooth, with each v; = c|j,_, .+ ¢ [ti—1,t] — M smooth for

0=ty <t; <..<t,=1. Define
n ity
Jo=3 [
€ i=17ti-1

b) Show that w = df for a smooth function f : M — R if and only if fcw = 0 for all closed curves
c:[0,1] = M.

Suppose w = df for some f : M — R. Let ¢ : [0,1] — M be piccewise smooth with smooth pieces v; = c[, ]:i=1,..,n, and closed, i.c.

i—1,t;
with ¢(0) = ¢(1) (so v1(0) = yn (1) = p). By the above definition, we have

[t s [t [t « [t [t /
= Fop = *df = d(vF ) = d ) = . d
/Cw Z:1/t e i§1/ti71 e 1;:1/%71 SR i§1/’5¢71 (o igl/tifl(fo’h) (e

= i—1

(fov)(t) = (Fov)(ti—1) = (forn)(A) — (fo71)(0) = f(p) — f(p) =0

ite

3
as desired.

Conversely, suppose [,w = 0 for each closed piecewise smooth curve. WLOG assume M is connected, as it suffices to show w is
exact on each component. Fix g € M and define f : M — R via f(z) = j“lz w, where vy is any smooth path from zg to . To see this

is is indeed well-defined, suppose pg is another smooth path from zg to x. Define ¢ : [0,1] — M via c(t) = vz(2t) for 0 < t < 1/2, and
c(t) = pgp(2 — 2t) for 1/2 < t < 1. Then notice c is well-defined at t = 1/2 since v4 (1) = pg(1). Moreover, c is piecewise smooth and closed,
with ¢(0) = vz (0) = #g = pz(0) = ¢(1). Thus by assumption, [, w = 0. On the other hand, by definition,

o:/Cw:/omwz(zt))*w+/11/2(pm<2—2t>)*w:/Ol(m*w—/ol(pw)*w

Thus, fol (vz)*w = f(} (pz)*w, and f is well-defined.

From this, we notice f(zg) = 0, since we may take the constant path from zg to xzg. Next, notice if ¢ is a piecewise smooth curve
from zg to x, the above computation shows

/ df = (f o yn)(1) = (f 0 11)(0) = f(=) — f(zg) = f(=)

c

Hence, fc df = fc w for any piecewise smooth curve c. Finally, we show if fc n = 0 for every piecewise smooth curve ¢, then n = 0. Since
w — df has this property, we will conclude w = df, as desired.

To see this fact, suppose fc n = 0 for every piecewise smooth curve c. Let p € M be arbitrary. It suffices to show np = 0.

Select a chart (xz,U) with p € U mapping to xz(p) = 0. Write n = 25:“:1 g;dx; for some smooth functions g; on U. It suffices to

show each g;(p) = 0. Fix i and define a map ~y; : [—¢, €] — M via ~v;(t) = =~ L(te;), where e; is the ith basis vector in R™ Notice then
. k. ke
*
=/ n = Z/ 74 (gjdxj) = Z/ (g5 ©v3)d(z; 0 74)
Vi 177€ j=1""¢

But z(v;(t)) = w(z_ltei) = te;, so that wj oy; =t if i = j and 0 otherwise. This leaves

€ € —1
0= / n= / (g; 0 v;)dt = / gi(x “te;)dt
Yi —€ =G

Notice by FTC that

h
Jotgi(vi(2)dt d h =il
Jlim I — o /O 9; (v ()dt = g;(v;(0)) = g;(a L0e;) = g; ()
125, 9i(vs (1)t
Similarly, limj,_, o =2 = g, (p). Then
€ —1
€ _gi(z™ “te;)dt
0= lim oo e 29, (p)

e—0 €

so that g;(p) = 0. By previous remarks, n = 0, so that w = df, as desired. [J
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Problem 3: Let S{,S5: C M be smooth embedded submanifolds.

a) Define what it means for Sp, S to be transversal.

We say Sy M Se in M if for all x € S; NSy, we have T,S1 & TSy = T, M. Equivalently, the
inclusion map i : S; — M has i h Sy, where for f:S; — M and So C M, we say f M Sy if for
each z € S; with f(x) € Sz, we have df, T, S1 © Ty(z)S2 = Ty() M.

b) Show that if S7, So C M are transversal then S1NSy C M is a smooth embedded submanifold of dimension
dim S7 + dim Sy — dim M.

Solution: This will follow from the preimage theorem, proved below, applied to ¢ : S; — M
which is transversal to Sy. Then i=1Sy = S; NSy will be a submanifold of S; and hence of
M with codimension in S; equal to the codimension of Sy in M, so that it has dimension
dim(S7) — (dim(M) — dim(S2)) = dim(S;) + dim(S3) — dim(M). O

Lemma: Let Z C Y be a submanifold. Then for all x+ € Z, we may find an open set
U > x with ¢ : U — R!, | = codimy (Z) a submersion, i.e. d¢, : T,U — R! surjective for all
y € U. Thus 0 is a regular value of ¢. Then ¢~'0=U N Z.

Remark: This can be thought of as the converse to regular value theorem. Locally, sub-
manifolds are just preimages of regular values.

Proof: The inclusion map Z < Y locally looks like the inclusion (aq, ..., ax) < (a1, ..., ax,0, ..., 0).
This gives us the desired ¢ via (ag41,....,an). O

Corollary: (Preimage Theorem) Let F': X — Y, F'i Z, with dFxT,(X) ®© Tp@)Z = Tp@)Y
for all z € F~'Z. Then F~'Z is a submanifold of X with codimyx F~'Z = codimy Z.

Proof: For p € Z, find (U,¢) with p € U C Y such that ¢ : U — R®dmv(Z) — Rl j5 a
submersion, as in the lemma. Then U N Z = ¢~ 10. We have

T.7 < T,Y - R!

but this composition (d¢, o di,) = d(¢ o), = 0, since ¢ o i is constant at 0. In particular, we
have T, Z C ker(d¢,) for all x € Z.

We claim ¢ o F : V = Rl for V. = F7'U C X has 0 as a regular value. To see this,
notice for ¥ € (po F)~10=F~1¢710=F 1 (UNZ)=VNF1Z, we have the composition

b
T.X 2 TpyV 2259, R

By transversality, we have Tr(;)Y = dF, T, X ®Tr(;)Z. Meanwhile, by the above remarks, T () Z
is in the kernel of d¢p (. Since ddp(,) is surjective, it must then be that dF, T, X surjects onto R
Thus, the composition dgp(,)dF, = d(¢oF), is surjective. We conclude 0 is a regular value of ¢oF'.

Hence by the regular value theorem, we conclude (¢ o F)7'0 = V N F~'Z is a submani-
fold of X with codimension ! = codimy (Z). Notice our construction had p € Z arbitrary, p € U,
and V = F~1U, so that this gives us charts for arbitrary F~'p € F~'Z. Hence all of F~'Z is a
manifold, of the same dimension as each VN F~1Z. O
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Problem 4: Let S C M be given as f~'c for f = (f1,..., fx) : M — R¥ and ¢ € R¥ a regular value.
If g : M — R is smooth, show that its restriction g|g has a critical point at p € S if and only if there are
constants Aq, ..., \p with

k
dg, = > _ Ni(df'),
=1

Let S € M have S = f~'0for f : M — R¥. Forg: M — R and i : S — M, we have
d(goi)p : TpS — Ris not of full rank if and only if d(g o 4), = 0, or equivalently, dg, o di, = 0.

If dg, = 3%, \i(df;)p, then

k k
dgy o dip = Y _ Ni(dfs)p o dip = Nid(f; o), =0

i=1 =1

since each f; o4 : S — M is constant at ¢;. Thus by the above, in this case, we see g has a critical
point at p € S.

Since c is a regular value of f, we have df, : T,M — R* has full rank for each p € S = f~lc. We
may view df, as a matrix of full rank. This is equivalent to having its rows (df1)p, ..., (dfx), linearly
independent (since the number of rows k is fewer than dim M).

On the other hand, each f; o ¢ is constant, so each (df;), : T,M — R factors through
(di)p,T,S = T,S C ker(df;)p, giving unique maps

T, : T,M/T,S — R
with T; = f; o, where 7 : T,M — T,,M/T,S is the projection.

The linear independence of the (df;), then implies the linear independence of the Tj, since
it SF NT, = 0, then writing T,M = T,8 @ T,M/T,S, notice S.¥  \(dfi)p(z + y) =
SF A0 + Ti(y)) = 0, so that Y%, A(dfi), = 0. Thus each \; = 0, and the 7; are lin-
early independent.

Thus by dimension counting, we see that the T; must span the dual space (T,M/T,5)*. Suppose g|g
has a critical point at p € S. Then by the above, d(g o), = 0, so that dg, also factors through to a

map t: T,M/T,S — R. Hence t = Zle AiT;, so that dg, = Z’;l Xi(dfi)p, as desired. O

K2
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Problem 5: Let M be a smooth compact orientable manifold with boundary. Show that there is no
smooth retract r: M — OM.

Let r : M — OM be a smooth retract. Let ¢ € M be a regular value of r. This is always possible
by Sard. Then by the regular value theorem, r~'c is a submanifold of M of dimension 1. It is
compact since it is closed and M is compact. Moreover, d(r~1c) = r=te N M = (9r)~lc, where
Or =roi=1idgp, where i : OM — M is the inclusion. Then

A(r~te) = (0r) e = {c}

On the other hand, the boundary of a compact 1-manifold must have an even number of points. By
contradiction, no such retract exists. [J

Alternative Solution: Since M is compact orientable with boundary, use Lefshetz dual-

ity to get H,(M) = H°(M,0M) = Hy(M/OM) = 0 (since M/OM is connected), and
H,(M,0M) = H°(M) = Ho(M)*. On the other hand, the LES for relative homology gives

0 — H,(M,0M) — H,_1(0M) 2 H,,_1(M)

Since r o4 = id gives r, oi, = id, so that i, is injective. On the other hand, its kernel from the above
exact sequence is isomorphic to H,(M,0M). Thus, H,(M,0M) = 0. By contradiction, we see no
such retract can exist.

Problem 6: Let A€ GL,11(C).
a) Show that A defines a smooth map A : CP" — CP".

Since A is invertible, we may restrict A : C"*! — C"*! to a map C"*!\ {0} — C"*!\ {0},
which we also call A. We have C"*1\ {0} BN \ {0} — CP", where the second map is the
canonical projection map ¢ : C**1\ {0} — CP" via (20, ..., 2n) = [20, ..., 2]. Note for A € C\ {0},

we have gA(A(Yo, .- Yn)) = ¢(AA(Yo, --s¥n)) = ¢(A(Yo, ---,Yn)), since ¢(2) = q(\?) for any A # 0.
Thus by universal property of quotients, gA factors through to a map A : CP" — CP”" via

Alzg, ..., zn] = qA(xo, ..., z5). In short, ’A[xo,...,xn] = [A(xg, ..., Tn)] ‘ Hereafter we refer to A

interchangeably as the matrix or this induced map A. O

b) Show that the fixed points of A : CP" — CP" correspond to eigenvectors of the original matrix.

Suppose A[zg : ... : Tp] = [To ¢ ... : Tp]. Then [A(zg, ..., 2,)] =[x :0: ... : 2], so that A(zg, ..., Zn)
is a nonzero complex multiple of (xq,...,x,), which is precisely when (zq,...,z,) is a nonzero
eigenvector of A.
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c¢) Show that A : CP" — CP" is a Lefshetz map if the eigenvalues of A all have multiplicity 1.

Definition: For f : X — X and fixed point x € X, we have = is a Lefshetz fixed point if
dfy —1I:T,X — T, X is invertible. A map is Lefshetz if each fixed point is Lefshetz. Equivalently,
I(f) M A =T(id) in X x X.

Solution: If every eigenvalue of A has algebraic multiplicity 1, then A is diagonalizable.
WLOG, we deal with the case A = diag(Xo, ..., \n), as otherwise we may change basis accordingly.
Since A is invertible, we can of course take \; # 0 for all . The fixed points of the corresponding
map from CP" — CP" are thus [e;] for i = 0,...,n, where ¢; € C™*! is the ith standard basis
vector (indexing from 0 to n).

Let U; = {[zo : D xioq 1 @iy o oxp]} &2 C" Note Aly, : U; — U; maps U; to
U, since A([zg: ...t 1ot @pn]) = [Noo : ooe 1 A et Apn] = [Aoxo/Ni oot 1ot A /N].

Thus dAp,) = diag(Ao/Ai, - Xi—1/Xiy Nix1/Aiy s An/Ai).  Since each \; # A; for j # i, we
see 1 is not an eigenvalue of dA,}, so that dA.,) — I is invertible. Since this works for arbitrary
1, we see each fixed point is a Lefshetz fixed point and A is a Lefshetz map, as desired. [

d) Show that the Lefshetz number A : CP" — CP" is n + 1. You may use the fact that GL,,4+1(C) is
connected.

Select 7 : [0,1] = GLp4+1(C) with v(0) = A and (1) = I. Then define H : [0,1] x CP" — CP"
via H(t,z) = v(t)(z), where by ~(t) € GL,+1(C) applied to x € CP", we mean the map induced
as in part a. This shows v(0) = A : CP" — CP" is homotopic to v(1) = I : CP" — CP", which
is just the identity map. Note Lefshetz number is homotopy invariant, and CP™ only has even
homology groups, so that

2n n n
L(A) = L(id) = x(CP") = ) _(—1)’ rank H;(CP") = ) (~1)*" rank Hy,(CP") = » "rankZ = n+1
1=0 k=0 k=0

as desired.

Problem 7: Let f:S™ — S™ be a continuous map.

a) Define deg(f) and show that when f is smooth, deg(f) fsn w= fsn f*w for all w € A™(S™).

See Spring 2011 Problem 3b.

b) Show that if f has no fixed points, then deg(f) = (—1)"*!.

See Fall 2010 Problem 6.

Problem 8: Let f:S" ! — S"~! be a continuous map, and let D™ be the disk with D" = S»~1.
a) Define the adjunction space D™ Uy D™.

For spaces X,Y and subspace A C X with function f : A — Y, the adjunction space X Uy Y is
the quotient space (X UY)/ ~, where ~ is the equivalence relation given by = ~ f(z) for each
x € A.
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b) Let deg(f) = k and compute the homology groups H;(D™ Uy D™, Z).

In D™ Uy D™, we are attaching two n-cells to S"~!: one via the identity map S™~! 4y gn=1 and

the other via §»~1 Ly gn-1, (The attaching maps are maps from the boundary of the n-cell D™
to the (n — 1)-skeleton, which in this case we take to be S™~1).

We may give S"~! a cell structure of a single O-cell and one (n — 1)-cell. Thus we have in
D™Uy D™ two n-cells e} (attached via id), e} (attached via f), an (n—1)-cell e"~1, and a 0-cell €°.

By the cellular boundary formula, we may compute the coefficient of Oe} in the unique

(n — 1) cell e"~! by computing the degree of the map dD" i, gn-1 _, S7=1/e0 = §n=1 where
the last map is just the identity map as it just quotients by all cells of dimension less than
or equal to n — 1, except for e” ! itself. Of course, this is just the identity map and so has
degree 1. Thus, d(e}) = e"~!. Similarly, d(e}) = ke"™!, since the coefficient is the degree of

ap" Ly gn-1 5 gn-1/¢0 = gn-1,

Meanwhile, d(e"~1') = 0 (which is clear if n — 1 > 1 as there are no n — 2 cells, and if
n—1=1, then 9(e" 1) = e® — e = 0). It is clear 9(e") = 0.

For n —1 > 1, we get the chain complex for X = D™ Uy D" given by

05 Cp(X) =72 2% Co 1 (X)=Z >0 ... 50— Co(X)=Z =0

Notice H,(X) = ker(d,) = {(z,y) € Z*> : x + ky = 0} = Z via (z,y) — y. Meanwhile, 9,
is clearly surjective, so that H,,_1(X) = 0. It is clear H;(X) =0for 0 <i <n—1, and Ho(X) = Z.

For n — 1 =1, we get a slightly different chain complex, with
0— Cy(X) = C1(X) = Co(X)—0

But we still have 0y surjective, 0; is zero, and ker(d2) & Z, so that Ho(X) = Z, H;(X) =0, and
Hy(X) =Z. In all cases we see

Z i=0

" n 0 0<i<n
H,(D" Uy D") = 7 iem
0 i>n

Remark: This is the same as the homology of S™, and is independent of the choice of f!
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c¢) Assume that f is a homeomorphism. Show D™ Uy D™ is homeomorphic to S™.

Write g : D™ — S™ with g(z) = (z, /1 — [z[2). (Note € R™ so (z, /1 — |z[2) € R"*!, with the

first entry contributing n components and the last contributing one.)

Similarly, write h : D™ — S™ via h(z) = (f(x/|z|) - |z|, —+/1 — |2|?), with h(0) := (0,...,0,—1).
Note that h is continuous (in particular at 0), since if =, € D™ \ {0} have z, — 0, then
|f(zn/|2n|)| is fixed at 1, and |z,| — 0, so that |f(zn/|2n|) * |2a|| = 0 and —y/1 — |2, |? — —1.

Hence we have two maps h,g : D" — S™, inducing a map D" U D" AN Next,
recalling our map f : dD"™ — S" ! C D", which we regard as a map from the first
copy of D" to the second, we see © ~ f(z) for each * € S"! in the first copy.
Then notice h(z) = (f(z/|z]),—/1—|z]2) = (f(x),0), since |z| = 1. Meanwhile,
9(f(z)) = (f(z), —/1 = |f(2)]?) = (f(2),0). Hence, for z ~ f(z), we have h(z) = g(f(z)). So
we get a well-defined map

D" u; D" ¢=(hUg)/~ gn

It suffices to check this is a bijection, since D™ Uy D™ is compact (a quotient of compact space
D™ D™), and S™ is Hausdorff.

To see this map is bijective, suppose ¢(z) = o¢(y). If z,y are both in the image of the
first copy of D™ in D™ U D™ — D™ Uy D", then ¢(x) = h(z) and ¢(y) = h(y). From
h(z) = ¢(x) = é(y) = h(y), we get /1 — [z]2 = /1 —|y|2, so that |z| = |y|. Thus either both
points are zero and x = y, or else f(x/|z|) = f(y/|y|).- But f is bijective, so z/|x| = y/|y|, so that
x =y (since |z| = [y]).

Similarly, if both x,y come from the image of the second copy of D™, then ¢(z) = ¢(y) = g(z) =
g(y), so that z = y by looking at the first component of g.

Finally, suppose z comes from one copy of D" and y from the other. Then
h(z) = ¢(x) = ¢(y) = g(y), so that from the last component, we get |z| = |y| = 1, as
otherwise, we would have a strictly negative —1/1 — |z|? equal the strictly positive /1 — |y|?.
Then from the first component, we get f(z/|z|) * |z| = y, so that f(z) =y (since |z| = |y| = 1).
But then  ~ y in D™ Uy D", so that x = y in this space.

Hence we see ¢ is injective. To see it is surjective, let p € S™. If the last coordinate of p
is nonnegative, write p = (q,v/1 — |q|?), and notice p = g(q). If the last coordinate of p is
negative, write p = (¢, —/1 — |q|?). If ¢ = 0, then notice h(0) = p. Otherwise, we may assume
q # 0. Take the unique z € S"~! with f(z) = ¢/|q|- Then set r = z * |q|. Notice, then, that

h(r) = (f(2) * lal, =1 = lal*) = (¢, —/1 = |q*) = p.

Thus we see ¢ is surjective. Since it is a continuous bijection from a compact to Hausdorff space,
we conclude it is a homeomorphism, as desired. [J
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Problem 9: Let f : M — N be a finite covering map between closed manifolds. Prove or find a
counterexample:

a) Do M, N have the same fundamental groups?

Take S? — RP?. Then 7,(S?) = 0, 71 (RP?) = Z/2Z.

b) Do M, N have the same de Rham cohomology groups?

With the same example, H35(S?) = R and HgR(RPQ) = 0, since the first is orientable and the
second is not.

¢) When M is simply connected, do M, N have the same singular homology groups?

With the same example, H;(S%) = 0 and H,(RP?) = Z/27Z

Problem 10: Let A C X be a subspace. Define the relative singular homology groups H;(X, A) and show
there is a long exact sequence

We have a short exact sequence of chain complexes
0 = Cr(A) 25 Co(X) L Co(X)/Cr(A) = 0

where ¢ is the quotient map C,(X) — C,(X)/C,(A). Note that the C,(X)/C,(A) give a chain
complex with boundary 9([o]) = [00] € C,—1(X)/Cp—1(A). This is well-defined, since we have the

composition C,,(A) N Cn(X) LN Cpno1(X) = Cp—1(X)/Cp-1(A4) is 0, as J 0 i, = iy 0 0, so that
this is the same as the composition Cj,(A) 9, Cn_1(A) 2 Cp_1(X) = Cp_1(X)/Cr_1(A) which is
indeed 0. From this it also follows 9 o ¢ = g o 9, so that ¢ is a chain map.

To this SES of chain complexes, we apply the Zig Zag Lemma from Spring 2010 Problem 5.
O
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8 Fall 2013

Problem 1: Let f: M — N be a non-singular smooth map between connected manifolds of the same
dimension.

a) Is f necessarily injective/surjective?

We have R — St via t +— e is not injective, and (a,b) — R is not surjective, even though both
are local diffeomorphisms between connected manifolds.

b) Is f necessarily a covering map when N is compact?

Consider (a,b) < [a, b].

c¢) Is f necessarily an open map?

Since f must be a local diffeomorphism, it is a local homeomorphism and hence open. Take
V' C M nonempty open, and y € f(V) arbitrary. Write y = f(x) for x € V. Since f is a local
homeomorphism, select open set U > z such that f|y : U — f(U) is a homeomorphism with
f(U) open in N. In particular, f|y is open, so y € flg(UNV) = f(UNV) C f(V) is an open
neighborhood of y € f(V), and f(V) is open as desired.

d) Is f necessarily a closed map?

Take (a,b) — R, which has image (a,b) C R which is not closed.

Problem 2: Let M be a connected, compact manifold with non-empty boundary. Show that there is no
retract M — OM.

See Spring 2013 Problem 5. We don’t have orientability for the homology solution, but we can drop
that assumption by working in Z/27Z coefficients.
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Problem 3: Let M, N C RP*! be two compact, smooth, oriented submanifolds of dimension m and
n respectively, with m +n = p. Suppose that M N N = (). Consider the linking map A : M x N — S? by
AMz,y) = ﬁ Write [(M, N) = deg()).

a) Show that I[(M, N) = (—1)(m+D+D(N, M).

Note by definition that I(N, M) is the degree of the map pu: N x M — SP via u(y,z) = 7=

[ly—a[]*
We write this as a composition of A with other maps as follows:
NxMIL MxN2sesgr

where T'(y,z) = (z,y) is the "swapping” map, and ¢(z) = —z is the antipodal map. Since

u(y, z) = =Mz, y) = d(A(T(y,z))), we have = ¢po Ao T, and deg(u) = deg(¢) deg(A) deg(T).

Since ¢ is the antipodal map from SP to SP, it has degree (—1)P*!. Meanwhile, note that
T:NxM — M x N is clearly a diffeomorphism. Each point (x,y) € M x N has precisely one
preimage, (y,z) € N x M, and locally this map looks the same as

R™" x R™ — R™ x R"

(y17 ey Yny L1,y 7$m) = (:L.h ey Ty Y1, uyn)

This map can be thought of as the composition of mn transpositions, and each transposition
has degree —1 (as is clear from the determinant of the corresponding Jacobian), so that

deg(T) = (~1)™.

Hence we conclude deg(u) = (=1)PTi(=1)""deg(\) = (=1)"tntmntldeg()\), giving
(N, M) = (=1)(m+D+D] (M, N), as desired.

b) Show that if M is the boundary of an oriented submanifold W C RP*! disjoint from N, then [(M, N) = 0.

We add the assumption that N is boundariless. Note that A may be extended to W x N, since
WNN =0. Write A : W x N — S? via \z,y) = ooy Clearly, A extends A\. Moreover,
OW xN) = (W x N)U(W xIN) =M x NU(W x () = M x N. Hence, M x N is the boundary
of a manifold W x N, with A : M x N — SP able to be extended to all of W x N. By the extension
theorem, [(M, N) = deg(\) = 0.
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Problem 4: Show that a 1-form w on a connected manifold M is exact if and only if fcw = 0 for all
piecewise smooth curves w.

See Spring 2013 Problem 2.

Problem 5: Let w be a smooth nonvanishing 1-form on a 3-dimensional manifold M.

a) Show that ker(w) is integrable if and only if w A dw = 0.

We have ker(w) is integrable if and only if for any two vector fields X,Y € ker(w), we have
[X,Y] € ker(w). Notice for 1-forms w, we have

w([X,Y]) = X(w(Y)) = Y(w(X)) — dw(X,Y)

Hence if X,Y € ker(w), then [X,Y] € ker(w) if and only if dw(X,Y) = 0 (the above formula
would give w([X,Y]) = —dw(X,Y), since w(X) =w(Y) =0).

So we have ker(w) is integrable if for every X,Y € ker(w), we have dw(X,Y) = 0. Next,
for any p € M, ker(w), = ker(w, : R* — R) is 2-dimensional since w, is nonzero. Pick a basis of
ker(w), and extend it to a basis of T, M. Let this basis be X,Y,Z with Y, Z € ker(w), a basis.
Then notice

(WA dw)p(X,Y, Z) = wp(X)(dw)p(Y, Z) = wp(X)(dw)p(Z,Y) = 2wp(X) (dw)p (Y, Z)

since the w,(Y) and wy,(Z) terms always vanish. Moreover, w,(X) is nonzero, as X is not in
ker(wp).

If ker(w) is integrable, then (dw),(Y,Z) = 0 by the above remarks for each p. Then
w A dw is locally zero on the basis X, Y, Z, so that it is identically zero locally, and hence globally.
So w A dw = 0. Conversely, if w A dw = 0, we see by the above that (dw),(Y,Z) = 0 for the
local basis vectors Y, Z of ker(w), so that this is true for any two vectors in ker(w), and ker(w) is
integrable by the above equivalence.

We conclude for w a nonvanishing 1-form on a 3-manifold, ker(w) is integrable if and only
if wAdw=0.

b) Give an example of a codimension 1 distribution on R? that is not integrable.

Take w = —ydx + xdy + dz. Then w A dw = (—ydz + xzdy + dz) A (2dz A dy) = 2dx ANdy A dz # 0,
so that ker(w) is not integrable.
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Problem 6: Let f:R"™ — R a smooth function.
a) Define the gradient V f as a vector field dual to the differential df.

The dual (dz;)* = % gives rise to

al:L*2

; 01;

v-25
Yo

b) Define the Hessian H;(X,Y) as a symmetric (0, 2)-tensor.

To say the Hessian is a (0, 2)-tensor is to say it is the tensor of 0 tangent vectors and 2 cotangent
vectors. Define

H E 7 dr; ®d
1<i,j<n 00z
We can think of Hy as a bilinear form. That is, writing down a matrix with (Hy);; = 78228];3_ , We

have Hy(X,Y) = XTH;Y.

This matrix Hy and hence the corresponding (0,2) tensor is symmetric since the mixed
partials commute.

c) If the usual Euclidean inner product is denoted g,(X,Y) = X -Y, show that H;(X,Y) = 3(Lvs9)(X,Y).

Note that we may write g, = > ., dz; ® dx;, with associated matrix of the identity, so that
96X, Y)=XTIY = XTY = X - Y. Now

Lys(gp) = Ly (Z dz; ® d:ri>

=il

n

Zn: F(dz; @ dz;) =Y (Lyypda;) ® da; + Z dz; @ (L pda;)

p=il =1

Recall Lxa = ixda + dixa. Thus, we get

Loy =90+ divede: =d(V)e:) =d (em) Z axlam

Continuing our computation from above, we see

as desired. OJ
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Problem 7: Let M = T2\ D? be the complement of a disk in the torus. Determine all connected
surfaces that can be 3-fold covers of M.

Note that 72 \ D? deformation retracts to S' v S. One may see this by viewing T2 a the usual quotient of the unit
square. Deleting a disk from the center of the square, we see the rest deformation retracts to the boundary of the
square, which, upon gluing, gives S v S!. Now we may use the usual construction of covering spaces of S' v S'. The
algebraic method counts index 3 subgroups of G = 71 (S V S') = ZZ in order to get 3-fold connected covering spaces,
keeping track of base point. If H C G is index 3, then G acts on the cosets G/H transitively, giving a homomorphism
G — S(G/H) = S3 whose image is a transitive subgroup. In our isomorphism S(G/H) = S3, we insist on sending
the coset H to 1 € {1,2,3}, but we may send the other two cosets to either 2,3 in any order. Meanwhile, any such
homomorphism into S3 lets us recover H by taking the stabilizer of 1 € {1, 2, 3}.

There are 6 * 6 = 36 homomorphisms G — S3, sending each of the generators to any element of S3. If the
image has order 2, note that there are four homomorphisms G — Z/2Z, and of these, one is not surjective, so that
three are. Since S3 has three order 2 subgroups, we have 9 homomorphisms G — S3 with image of order 2. We have
one G — S3 with trivial image, leaving behind 26 homomorphisms G — S3 with image A3 or S3 (both of which are
transitive). Note then that H appears as the stabilizer in precisely two such homomorphisms, as we may swap 2,3 in
{1, 2,3} without affecting the stabilizer of 1. This gives that there are thirteen subgroups H C G of order 3, so that
there are thirteen 3-fold connected covers of ST v S1, keeping track of base point.

If we did not keep track of base point, we would need to consider subgroups up to conjugacy. This can also
be accomplished. Refine our count a bit further to notice that we have 26 homomorphisms G — S3 with image A3 or
S3. Since Az = Z/3 and we have 9 homomorphisms G — As, of which only one is not surjective, we must have 8 of
the 26 homomorphisms G — S3 whose image is Az, so that the remaining 18 have image S3. Note that H contains the
kernel since the kernel is the intersection of the stabilizers. So if G — S3 has image As (of order 3), it must have kernel
precisely H, so that H is normal. Thus, it is equal to all of its conjugates. By the above argument, H still occurs as
the stabilizer of 1 in two such homomorphisms, so these homomorphisms contribute 8/2 = 4 subgroups up to conjugacy.

Finally, the 18 surjective homomorphisms G — S3 have the stabilizer of 1 is H, but the stabilizers of 2,3 are
conjugates of H. Permuting {1, 2,3} in any of the 6 possible ways, we still get H and conjugates of H. Conversely, any
conjugate gHg~! necessarily is the stabilizer of some gH. Thus these homomorphisms contribute 18/6 = 3 subgroups
up to conjugacy. In total, we get 4 + 3 = 7 subgroups up to conjugacy, so that we have seven 3-fold connected covers
of ST v S, ignoring basepoint.

Now, we do this graphically. Recall that graphically, the 3-fold connected covers will correspond to connected
directed graphs on 3-vertices with each vertex having 4 edges: one incoming and one outgoing edge of each of type a
and b.

From this we get the following graphs. We can be sure we have exhaustively listed them all by casing on how
many loops we have, noting the possible number are 3,2,1,0 (to maintain connectedness).

1. (3 loops) Vertices 1,2,3 with edges b = (1,2), b = (2,3), b = (3,1), and edges a = (1,1), a = (2,2), a = (3,3).
We get another such graph by swapping all a’s and b’s. If we want to keep track of base point, note the base
points are all indistinguishable here. So this contributes 2 to both counts (keeping track of basepoint vs not
keeping track of basepoint).

2. (2 loops) Vertices 1,2,3 with edges a = (1,2),a = (2,1),a = (3,3), b = (1,1),b = (2,3),b = (3,2). This time,
swapping a and b changes nothing. However, all 3 vertices are distinguishable. Thus we contribute 1 to the
count ignoring base point, and 3 to the count not ignoring base point.

3. (1 loop) Vertices 1,2, 3 with edges b = (1,1), b = (2,3) and b = (3,2), along with a = (1,2),a = (2,3),a = (3,1).
Again we may swap all a’s and b’s. This contributes 2 to not keeping track of basepoint, but 6 if we are keeping
track, as all 3 vertices are distinguishable.

4. (0 loops) Vertices 1,2,3 with edges a = (1,2),a = (2,3),a = (3,1), b = (1,2),b = (2,3),b = (3,1). Here
swapping a and b does nothing, and all vertices are indistinguishable, so we add 1 to both counts. Similarly, we
get vertices 1,2,3 with edges a = (1,2),a = (2,3),a = (3,1),b = (2,1),b = (3,2),b = (1, 3), which is the same
as the previous example but with one set of edges going in the opposite orientation as the other. Again, a and
b being swapped changes nothing, and vertices are indistinguishable, so we add 1 to both counts.

In total, we see there are 7 connected 3-fold covers if we ignore base point, and 13 if we keep track of base point, as

desired.

Finally, to get coverings of M, attach 2-cells minus a disk to the boundary words aba='b~', one for each

vertex. This does not affect any counts.
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Problem 8: Let n > 0 and let A be a finitely presented abelian group. Show there is a topological
space X with H,(X) = A.

Over Noetherian rings, a module is finitely presented if and only if it is finitely generated. So we have A is a finitely gen-
erated abelian group. Then by FTFGAG, we have A 2 Z" ®Z/mi1Z®...DZ/myZ. Since Hp(XUY) = Hp(X)D Hn(Y),
it suffices to find spaces with homology groups Z and Z/mZ for m € Zxg.

Of course, H,(S™) = Z. To get X with H,(X) = Z/mZ, construct X by attaching an n + 1 cell et! = Dnt!
to S™ via D"t = gn L) S™ any function of degree m. Give S™ the usual cell structure of one 0-cell and one
n-cell. By the cellular boundary formula, we get de”t! is the degree of S — fS™ — S™/e® = S™, where in the
last step we quotient out by all other cells, which does nothing. By construction the degree of this is m, so that
de™tl = me™. Then H, (X) is the kernel of 9,—1 mod the image of 9,,. Note 0,—1 = 0 and there is only one n-cell,

so that Hy, (X) = Z/im(0n) = Z/mZ, as desired. O

Problem 9: Compute the homology groups and fundamental group of S3\ H, where H is the Hopf-link,
i.e. two linked circles.

Note S3 \ H is the same as first deleting p € H then deleting H \ {p}. That is, S3\ H = (S%\ {p}) \ (H \ {p}).
WLOG, p = oo is the point at infinity, so that S\ {p} = R3. Meanwhile, H \ {p} leaves behind a circle and a line
going through it. WLOG, we may take this to be the unit circle on the zy-plane and the z-axis.

On the other hand, R3® minus the unit circle and z-axis deformation retracts to a torus. To see this, notice
that each half plane {(r,0,2) € R3 : r € (0,00),0 = 0y, 2z € R} = (0,00) x R = R2, when deleting the z-axis and unit
circle, leaves behind (0, 00) x R\ {(cos(6p), sin(6p), 0)}, which is homeomorphic to R? minus a point, which deformation
retracts to a circle. In this way, each half plane deformation retracts to a circle, and R3 minus the z-axis and unit
circle deformation retracts to a torus (as we get a circle for each § = 6 in a continuous fashion). Thus, the problem

reduces to computing the fundamental group and homology groups of the torus. [J

Problem 10: Let H be the quaternion algebra over R, with i2 = j2 = —1, ij = —ji = k. The quotient
space HP" = (H"*! \ {0})/H* is called quaternionic projective space. Compute Hy(HP").

We mimic the construction of RP™ and CP™ (from Spring 2011 Problem 7 and Spring 2011 Problem 8) to give HP" a
cell structure with a cell in every dimension which is a multiple of 4, up to 4n. Of course, HP? is a point, which is a
single O-cell. Next, given the cell structure on HP™ !, we can get the cell structure on HP™ by attaching a (4n)-cell
with
gin—1 ¢, ppn—1
(a0, ooy @n—1) = [0 oot ap—1]
where we view §4*~1 C R*"* 2 H".Then D*" Us HP" 1 >~ HP" via

HP"~! — HP"
[ag :ciap—1] = [ag : ...t ap—1: 0]

p* Ly mpr

(ao,.‘.,anfl) = o ... i Op—1

The same argument as in the previous exercises shows that these maps factor through and give a bijective map
[DF® Us HP™~! — HP™ from a compact space to a Hausdorff space, so that it is a homeomorphism, as desired.

The cell complex has all maps are 0, since there are no cells of adjacent dimension. Thus, we must have
Hy (HP™) = C),(HP™) the free abelian group on the k-cells. So we see

Z 4lk and 0 < k < 4n

0 otherwise

Hy, (HP™) = {
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9 Spring 2014

Problem 1: Let I' C R? be the graph of the function y = |z|.

a) Construct a smooth function f : R — R? whose image is T

Pick ¢ : R — R a bump function with 0 < ¢ < 1, with ¢ =1 on K = [-1,1] and ¢ = 0 on
U=1(-2,2). Set y =1—¢. Then ¢ > 0is 0 on [—1,1] and 1 outside of (—2,2).

Set g : R — R? via g(z) = (Y (@), [P (2)z]) = (Y(2)z, 9 (2)|z]).

It is clear g is smooth at  # 0. Meanwhile, note t(xz)z = 0 in a neighborhood of = = 0.
Hence g is smooth at z = 0.

Finally, notice ¢g(0) = (0,0), g(z) = (z,|z|) for |z| > 2, and the image of g is connected.
Thus it must contain all points in between by IVT, so that g has image precisely the graph of
y = |z|, as desired. O

b) Can f be an immersion?

Any such map must have f : R — R? given by f(z) = (g(x), |g(x)|). Suppose f is an immersion
and f(zo) = (0,0). Then dfy, is injective. Then we need ¢'(zo) # 0 and L|,_, |g(z)| to exist
and be nonzero.

But on the other hand,

/ . g(xo + h) — g(xo) . glxo+h)
9 (@0) = Jim n =
e e+ Bl _ | lateo+ W)l ~lofa)| _ d
+ . g(xo + —19(zo
/ -1 LARY) -1 S

lg'(wo)| = lim =—— Jim, N 7y lo=0l9(2)]

Similarly,
. +h)| . —lg(zo +h)| — |g(z0)| d
d = |g((E0 = 1 = — 7 _ |lz=zx
lg'(zo)| = lim_ 7l i h 7y le=e0l9(@)]

Thus, L |,—0019(x)| = |9'(20)| = — 2 |2s=20|9(2)|, so that these are all 0. By contradiction, such

an f may not exist. [
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Problem 2: Let W be a smooth manifold with boundary, and f : 9W — R"™ a smooth map for some
n > 1. Show that there is a smooth map F : W — R™ such that Flow = f.

Pick a collar neighborhood of 9M C M. That is, select some neighborhood U C M with OM C U and
U 210,1) x OM (with OM corresponding to {0} x M in the correspondence). Write 7 : U — OM
as the projection of U onto dM. Pick a bump function p(z) on M that is 1 on OM (which is closed)
and 0 outside of U.

Write g : M — R™ via g(z) = p(z)f(w(x)). Note m(x) is only defined for z € U, but p(z) is
zero outside of U, so g is well-defined.

Finally, notice for «+ € IM C U, we have p(z) = 1, and 7n(z) = =z, so g(x) = f(z), as
desired.

Problem 3: Let S® C R**! be the unit sphere. Determine the values of n > 0 for which the antipodal
map S™ — S" is isotopic to the identity.

Note that when n is even,  — —x and x +— x have different degrees, so we only concern
ourselves with the case when n is odd. Now S™ C R"*! = CF where k = (n + 1)/2. Write
H :[0,7] x §2=1 — §2k=1 via H(t,z) = e'*z. Then H(0,z) = z and H(m,r) = —z, so that H is a
homotopy between = — = and x — —z. Thus, for n even, these are not homotopic, and for n odd,
these are homotopic.

Remark: In general, two maps between S™ — S™ are homotopic if and only if they have the
same degree.

Problem 4: Let wy,...,w; be 1-forms on a smooth n-dimensional manifold M. Show that {w;} are
linearly independent if and only if wy A ... Awy # 0.

s ~

First suppose the w; are dependent. WLOG, we may write w,, = Z;l;ll cjw;. Then
n n—1 n—1 n—1 n—1
/\wkz (/\ wk> /\chwjzz (cj </\ wk> /\wj> =0
k=1 k=1 j=1 j=1 k=1

since each w; A w; = 0 for 1-forms w;, so that each term in the final sum above is 0.

Conversely, suppose the wi,...,w, are independent. Locally, then, they correspond to some
dual basis v1,...,v, (take one more dual of TyM to get T,M), with w;(v;) = d;;. Then
(w1 A ... Awy)(v1,...,v,) = 1 is nonzero, as desired.
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Problem 5: Let M = R?/Z? be the two-dimensional torus, L the line 3z = 7y in R?, and S = 7(L) C
M, where 7 : R?> = M is the projection map. Find a differential form on M which represents the Poincare
dual of S.

Let 0 be a 1-form on S* with [, 6 = 1. Then dx := 7}0, dy := 736 are 1-forms on S* x S*. In fact
they are independent, and we have [dz], [dy] form a basis of H},(M) = R?. (Alternatively, define
dzx,dy as the pushforwards of the G = Z*-invariant forms dz,dy on R?.) Note [, dz Ady = 1.

Note S = 7(L) defines a cycle and hence an element of H;i(M;R). By the Poincare dual of
S, with associated inclusion map i : S — M, we seek w € H'(M;R) with

/i*n:/ nAw
S M

for all 1-forms n € H*(M;R). That is, we have two isomorphisms: H;(M;R) — (H(M;R)*) via
L~ [nw [, i;n] and H(M;R) = (H*'(M;R)*) via w — [ — [,, 7 Aw]. Then the Poincare dual
of S corresponds to the 1-form w which maps to the same element of H!(M;R)*.

Next, since [] € H'(M;R) and [dz], [dy] give an R-basis of this, we have [n] = a[dz] + b[dy]
for some a,b € R. So up to exact form, we may simply take 7 = a - dx + b - dy for constants a,b € R.

Finally, it suffices to check [qi*n = [,,n A w for the basis, n = dz and 1 = dy, by linearity.
For n = dz, we have

/i*da::/i*ﬁﬁzz/(m 0i)*0 = deg(m 0i: S — SY) 0 =deg(mio0i:S —=S) =7
s s s st

where we notice that m oi : S — S is a 7-fold cover of S, since S is a loop from (0,0) to (7,3).
Similarly,

/ i*dy = deg(mp 04) = 3
s

Meanwhile, we need

/i*d:c:/ dz/\(a-da:er'dy):/ bdr Ndy = b
s M M

/i*dy:/ dy/\(a-dx+b~dy):/ —adx Ndy = —a
s M M

Thus, we need b = 7,a = —3, so that w = —3dx + 7dy gives the cohomology class of the Poincare
dual of S.
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Problem 6: Let S C R™"! be the unit sphere, with the round metric ggs (the restriction of the usual
metric on R"*1). Consider H = R™ x {0} C R"™! equipped with the Euclidean metric gr. Any line passing
through the north pole p and another point A € S™ will intersect this hyperplane in a point A’. The Map
U S"\ {p} — H, defined by ¥(A) = A’ is called the stereographic projection. Show that ¥ is conformal,
i.e. for any 2 € S™ \ {p}, there bilinear form (gs). is a multiple of ¥*((9x)w(x))-

We have ¢~1 : R® — S™\ {p} via

_ 2u  |ul2-1
1 _
¢ (u)_(|u|2+l’|u|2+1

and i : 8™\ {p} — R"*! the inclusion.

The metric gg is ¢*w, where w = dxy ® dzry; + ... + dzp41 ® dxy4q is the standard metric on
R+,

The metric gy is n = dr; @ dxy + ... + dx, ® dx,.

To show ¢ is conformal, we would like to show i*w and ¢*n differ by a positive function, i.e.
that there is some function A with i*w = A\2¢*n.

It is enough to show (¢~1)*i*w = pu?n for some function y, as then i*w = (¢*u?)d*n = (¢*u)?¢*n.

Now
n+1

(" )**w=(iog )V w=(iop )" Z(d% ® dx;)

=1

~ 2u; 2u; lul? — 1 lu|?> — 1
= d d d d
@ (|u|2+1>® (Iul2+1>>+ <|u|2+1)® <|u|2+1

It suffices to check that this is p?7 for some smooth function p. For illustration purposes, the n = 1

case gives
2x 2x 2 —1 z? —1
— 1\ % %
=d| ——— d| ——— d| —— d| ——
rew (z2+1>® <x2+1>+ <x2+1)® (x2+1>

d 2z 2 d (22 -1\\"
:<dx <$2+1>> dac®dx—|—<dx <x2+1>) dxr ® dz
4

The calculation for n > 1 similarly gives a positive function times n. [J
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Problem 7: Let X be the wedge sum S!V S'. Give an example of an irregular covering space X — X.

Regular covering spaces of X (covering spaces whose group of deck transformations act transitively
on all fibers) correspond to normal subgroups of m(X). Taking (a) C (a,b) = m(S* Vv S1), we see
it is not normal, since in particular b='ab ¢ (a). The corresponding covering space can be found
by quotienting the universal cover by the action of this subgroup. This gives an infinite graph with
vertices b’ for i € Z, and edges b* — b't! labeled b, and b* — b’ self loops labeled a.

Problem 8: For n > 2, let X,, denote the 2n-gon (including the interior face), with opposite sides
glued with parallel orientation.

a) Write down the associated cellular chain complex.

In all cases, we have one face and n-edges. Note for n even, we get 1 vertex, and for n odd,
we get 2 vertices. To see this, label the vertices in the polygon with elements of Z/2nZ. Then
notice the identifications allow for vertex ¢ to be identified to vertex ¢ + (n — 1). So the vertex
0 gets identified with the subgroup generated by n — 1. If n — 1,2n are relatively prime, this
is the whole group. Otherwise, since n — 1,n are relatively prime, we have ged(n — 1,2n) = 2,
so n — 1 generates a subgroup of index 2, leaving behind 2 cosets and hence two vertices in
X,,. Since n — 1,n are relatively prime, we see n — 1,2n are relatively prime if and only if
n—11is odd, so that n is even. Hence we see for n even, we have 1 vertex and for n odd we have two.

So we have for n even the chain complex
02 rpn O1
0=+Z—=72"—7Z—0

where 0y(F) is the abelianization of the boundary word, a1 + ... + a, —a; — ... — a,, = 0, and
01(a;) = v —v =0, so that both maps are 0 in this chain complex.

For the n odd case, we have
0522727 272 50

where again, 9(F) = 0, and 81 (a;) = v — w for v, w the two generators of Z? = Cj.
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b) Show that X, is a surface, and find its genus.

Computing the homology, we see in the n even case, since all maps are 0, we have Hy(X,,) = Z,
Hy(X,)=7", Hy(X,) =Z.

In the n odd case, we have still have Hy(X,,) = Z, but this time, we have H;(X,,) is the kernel
of the map Z" — Z? which sends each generator a; to the same element v — w = (1,—1) € Z2.
Then notice (21, ...,x,) — Oy ;) - (1,—1), so that (z1,...,x,) +— 0 if and only if Y  ; = 0.
This is the kernel of the augmentation map, which is isomorphic to Z" !, as it has basis a1 — a;
for i = 2,...,n. Thus Hy(X,,) = Z"!. Finally, Ho(X,,) is the quotient of Z? and the image of 01,
which is the span of (1,—1). Note (z,y) = (z +v,0) + (—y,y), so that we have an isomorphism
Hy(X,) — Z via [(z,y)] = x +y. Hence Ho(X,,) = Z as well. So we see

Z k=0

7" k=1,n even
Hy(X,)=<Z"!' k=1,no0dd

Y/ k=2

0 k> 2

Note that X, is a surface: at each point in the interior of the face, it is clear X,, has a neighborhood
homeomorphic to R™. For points on the edges, we get two half planes and hence a full R” upon
gluing. Since H;(M,) = Z*9, we see g = n/2 if n is even, or g = (n — 1)/2 if n is odd.

Problem 9:

a) Consider the space Y obtained from S? x [0, 1] by identifying (x,0) ~ (—,0) and (x,1) ~ (—z,1) for
x € S2. Show that Y is homeomorphic to the connected sum RP?*#RP?.

To get RPP#RP?, delete a 3-ball from each RP?, and connect with a tube S? x [0,1], gluing
52 x {0} to the boundary of the 3-ball in one copy of RP?, and S? x {1} to the boundary of the
other deleted 3-ball.

From the cell structure, note that deleting a 3-cell from RP? leaves behind RP?. Hence,
we may just glue a tube of cylinders by gluing 52 x {0} to one copy of RP? and S? x {1} to the
other copy. This is the same as the construction of Y, which is a tube of cylinders with the ends
replaced with copies of RP?.

b) Show S? x S* is a double cover of RP* @ RP?.

We can think of S? x St as §% x [0, 7] union with S? x [—m,0], quotiented by (z,—7) ~ (z, 7).
Then note S? x [0,7] has a map to Y (the quotient of S? x [0,1]) by (z,t) — (z,t/7), with
(,0) — [(z,0)] € RP? and (z,7) — [(x,1)] both giving double covers. Similarly we get a map
from the S? x [~m,0] to Y via (z,t) — [(x, —t/7)]. Then notice each point in Y is double covered,
since [(x,0)], [(z,1)] is double covered by S% x {0}, S? x {7} = S% x {—n} respectively, and each
(z,t) is covered by S? x {7t} and S? x {—mnt}.

I apologize to the mathematical community for this proof.
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Problem 10: Let X be a topological space. Describe the relation between the homology groups of X
and S(X), where S(X) is the suspension of X, obtained by taking X X [0,1] and identifying X x {0} to a
point and X x {1} to a point.

We can solve this with the generalized Mayer Vietoris (Fall 2011 Problem 10) via the maps f,g :
X — Y = {0,1} (with trivial topology) via f(z) =0 for all z € X, g(z) = 1 for all z € X. Then Z
as constructed in Fall 2011 Problem 10 gives the desired space Z = S(X), and we have a long exact
sequence

e > Hy(X) > H,(Y) = Ho(Z2) — ...

But since H,(Y) =0 for n > 0, we have for n > 1,
H,(Y)=0— H,(Z) > H,—1(X) > H,—1(Y)=0
so that H,(Z) & H,—1(X) for n > 1.

Now note that Z is connected. To see this, note that each (z,i) € X x I has a path to
(z,0) € X x I. Thus, in Z, this gives us a path from the image of (x,4) to the unique point p which
is the image of X x {0}. Since each (x,¢) has a path to p, we conclude Z is connected. Thus for
n =0, note Hy(Z) = Z, and we have

0— Hi(Z) = Ho(X) > Z* - Z—0

shows H;(Z) is isomorphic to a subgroup of a free group Hy(X), and hence is itself free. Counting
rank, we see the alternating sum of the ranks is zero, so that rank H;(Z) = rank Hy(X) — 1, so that

anl(X) n>1
H,(Z) =} 7(# cc. of x)-1 ,, 1
7 n=>0
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10 Fall 2014

Problem 1: Let f: M — N be a proper immersion between connected manifolds of the same dimension.
Show that f is a covering map.

Let y € N. Pick y € K C N a compact neighborhood. Then M; = f~'K is compact since
[ is proper. It is a manifold since df, is surjective for each p € f~'K, so that f M K. Then
g = flar, : My — N is an immersion between manifolds of the same dimension (hence a local
diffeomorphism) with M; compact and N connected. By Spring 2010 Problem 3, g is a covering
map. In particular, p has an evenly covered neighborhood via f, since f = g on a neighborhood of
p. Since p € N was arbitrary, the result follows.

Alternative solution: (Much more high-powered) Proper maps are closed, and local diffeomor-
phisms (more generally, local homeomorphisms) are open, so that f(M) is clopen and f is surjective.
Surjective proper submersions are fiber bundles by Ehresmann’s Theorem. Then notice for any
y € N, y is a regular value of f so that f~!y is a (compact, by properness) 0-manifold, and hence
just a discrete set of points. So M is a fiber bundle with discrete fibers, and hence a covering space.

Problem 2: Let M™ C R"™ be a closed, connected submanifold of dimension m.

a) Show that R™\ M™ is connected for m < n — 2.

Repeat of Fall 2012 Problem 3.

b) When m = n — 1, show that R™ \ M™ is disconnected by showing that the mod 2 intersection number
Iy(f, M) = 0 for all smooth maps f : S! — R".

Let p € M. Find a neighborhood p € U C R™ with U 2R a diffeomorphism such that U N M
maps to ¢(U N M) C {(x1,....,xn) : ©, = 0}, with ¢(p) = 0. This is possible since M has
codimension 1. Select the straight line path v in R™ from (0,...,0,1) to (0,...,0,—1). Clearly,
is orthogonal to the x,, = 0 plane. Moreover, it crosses precisely once. Thus, v m U N M and
Iy (v,U N M) = 1, where we view v as a path in the original space U C R™. (Transversality
is preserved by diffeomorphisms). Finally, since intersection number can be calculated locally,
L(v,wUNM CU) =1I(y,M CR"). So I(y,M) =1.

If A:[0,1] — R™\ M is a path between the same two points, then I>(A\, M) = 0 simply
since A does not intersect M at all, and hence is transverse for free. However, A = v as maps
from [0, 1] to R™, so that 0 = Iy(A\, M) = I1(v, M) = 1. By contradiction, no such A can exist.

87



Problem 3: Let w be an n-form on a closed, connected non-orientable n-manifold M and «: O — M
the orientation cover.

a) Show that 7*w is exact.

Let a : O — O be the nontrivial deck transformation, so that wa = w. This exists because O
must be a normal cover, as it corresponds to an index 2 subgroup.

Since a is a homeomorphism, it has degree 1. But if o had degree 1, then M would be
orientable. Thus o must be reversing orientation. We have

/W*w:/(ﬂ'oa)*w:/ a*ﬁ*w:deg(a)/ 7'('*0.):—/ ™ w
o o o o o

So [, 7*w = 0. Since O is a closed connected orientable manifold, we have H}(O) = R via the
map [,. Hence, we have [r*w] = 0 in H"(0), so m*w is exact.

b) Show that w is exact.

Note @ 55 M is a finite sheeted covering space, so that we get an injection on de Rham cohomology

by Fall 2012 Problem 9. Since H™ (M) LA H"(O) has [w] — [r*w] = 0, and this map is injective,
we conclude [w] = 0, so that w is exact, as desired.

Problem 4: Show that for n > 1, any smooth map f : S"~! — S”~! has a smooth extension F' : D™ — D".

See Spring 2014 Problem 2. We can extend i o f : S" ! — R™ to a map g : D™ — R”, but in fact,
our construction ensures that |g(z)| € [0,1], so that g is really a map g : D™ — D™, as desired.

Problem 5: Let M be a smooth manifold and w a nowhere vanishing 1-form on M. Show that w is
locally proportional to the differential of a function (i.e. locally w = Adf) if and only if w A dw = 0.

See Spring 2012 Problem 4.

Problem 6: Show that the space of all 2 x 3 matrices of rank 1 forms a smooth manifold.

See Spring 2013 Problem 1.
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Problem 7: A compact surface of genus g, smoothly embedded in R?, bounds a compact region called
a handlebody H.

a) Prove that two copies of H glued together along their boundaries by the identity map produces a closed
topological 3-manifold 2H.

b) Compute the homology of 2H.

¢) Compute the relative homology of (2H, H) where H is one of the two copies.

Solution: Note 2H is a closed manifold by the second proposition here.

We denote the double of the handlebody 2H, the triple 3H, and so on. We give a solution that will give the
homology for any k- H, k > 1.

From 0H = M, we have
0 i=0o0ri>2
H;(8H) ={ 7% i=1
Z =
Note H homotopy equivalent to a wedge of circles, as is clear geometrically (the picture flattens out). More formally,
St x D? is homotopy equivalent to S! since D? is homotopy equivalent to a point. Meanwhile, H is the connect
sum of g copies of S1 x D2. If we insist the connecting tubes all connect to previous connecting tubes, crushing the

connecting tubes (which, when solid, are homotopic to a point anyway) gives a wedge of g copies of S x D2, which
all flatten (are homotopy equivalent to) a wedge of g copies of St.

Since the reduced homology of a wedge is the sum of the reduced homologies, we immediately get

~ 0 t1=0o0r¢>1
Hi(H)={Zg i1

We compute the relative homology groups H;(H,9H) below. Alternatively, use Lefshetz Duality (since H is compact
orientable 3-manifold) to get

0 i=0,1
) 79 i=2
H;(H,0H) = H*~*(H) = { Z_ N
0 i>3

Notice since (H,9H) is a good pair by collar neighborhood, so too is (kH, H). Moreover, kH/H = \/f;ll (H/OH) is
the (k — 1)-fold wedge of copies of H/OH. Since reduced homology of a wedge is sum of reduced homologies, we get

0 i=0,1
7(k—=l)g ; — 9
Z=1 i=3
0 >3

H;(kH,H) = H;(kH/0H) = ®}_ H;(H/0H) = &;Z| H;(H,0H) =

Next, we get by Hatcher 2.13 a long exact sequence of reduced homology groups
... = H;(H) — Hy(kH) — H;(kH,H) — H;_1(H) — ...
From H;(H) = 0 for i # 1, we instantly get H;(kH) = H;(kH, H) for i # 1,2. This leaves
0 — Hy(kH) — Ho(kH, H) — Hy(H) =5 Hy(kH) — 0

where the indicated map is an isomorphism by the 71 calculation below. Thus we get the previous map is zero, so that
Hy(kH) = Ho(kH, H), and Hi(kH) = H;(H). In short,

0 1=0
. 79 =1
Hi(kH) = Hy(kH,H) <#1 _ ) k1) i=2
) i=1 e
7=
0 1 >3
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Handlebody - Fundamental Group

We may compute 71 (kH) by Van Kampen, as well as induced maps 71 (0H) — w1 (H) and 71 (H) — w1 (kH).
We may select, by collar neighborhood, an open subset 9H C U C H that deformation retracts to 9H. (So
(H,0H) is a good pair). In kH, which we may think of as a quotient of H x {1,...,k}, so that if W is the
image of UF_, (U, 1), we see W deformation retracts to &H C kH. Moreover, setting A; = (H,i) U W, we see
A; deformation retracts to a copy of H. The union of the Ay, ..., Ay is all of kH, and the intersection of any
two or more of them is W, which deformation retracts to OH as previously stated.

From Van Kampen, we then have mi(kH) surjects onto the free product mi(A1) * ... x m1(Ax), with
kernel generated precisely by the relations a = 8 for any « in the image of m1(A4; N A;) — 71 (4;) and any 3
in the image of 71 (4; N A;) — 71(4;) (and for any 1, 7).

The map from A; N A; — A;, upon deformation retracting, is really just the map OH — H. Note from
the polygon construction that 71 (0H = My) = (ai,...,aq,b1,...,bglarbia; by "azbzas 'by " ...agbgay 'by ).
Meanwhile, 71 (H = S* Vv ... v 8*) = {c1, ..., ¢g), since by previous remarks H is homotopy equivalent to a
wedge of g circles. Moreover, the map 71 (0H) — 71 (H) sends a; to ¢; and b; to 0.

To illustrate this, notice for ¢ = 1 we have 0H = S' x S' — H = S' x D?. 1In this case,
7 (0H) = (ai1,bi]arbia;*b7"), and to get H, we add a 2-cell via the relation b; (to make the second
copy of S! into a D2), as well as a 3-cell, which does not affect 1. Then we get by Hatcher 1.26 that
w1 (H) = (a1, bi|arbiay byt b1) =2 {c1) via a1 — ¢1 and by — 0. In general, to get from 8H to H, we add 2-
cells via b; fori = 1, ..., g, giving 71 (H) = (a1, ..., ag, b1, ..., bglarbray by 'azbaay 'b; ' ...agbgay by by, ..., by) =
(c1, ..., cq) Via a; > ¢; and b; — 0. From this it is also clear that the kernel of this map is (b1, ..., bg) C w1 (OH).

In particular, we get mi(0H) — mi(H) is a surjection. Completing the Van Kampen argument,
writing m1(4;) = m(H) = (ci,...,c}), note m(A; N 4;) — m(A;) and m1(4; N 4;) — m1(A;) map
ar, € m(A;i N Aj) = w1 (9H) to cf, € m1(A;), ¢l € mi(A;), and maps by, to zero in both. Thus we have by
Van Kampen 71 (kH) = (c},...,c;, ey CT s ...,c’g“\cz = ¢ for all 4,4, k) = (ci,...,cg). In particular, we see the

map 71 (H) = 71 (kH) is an isomorphism. Abelianizing, we see we have a surjection ‘ ¢: Hi(OH) - H1(H) ‘

with ker(¢) = (b1,...,by) C Hi(OH), so that |ker(¢) = Z%| Moreover, we still have isomorphisms
Hi(H) = Hi(kH) | for any k > 1.

Handlebody - Relative Homology

Using Hatcher 2.13 for the LES of reduced relative homology, we have an LES
... = H;(8H) — H;(H) — H;(H,0H) — H;_1(0H) — ...

Since H;(H) = H;_1(dH) = 0 for i = 0,i > 3, we have H;(H,0H) = 0 in these cases. We have exact
sequences _
0 — H3(H,0H) — H2(0H) =7 — 0
0 — Hy(H,0H) — H\(0H) = Z*° — Hy(H) = Z° — H,(H,0H) — 0
where we have a surjection ¢ : Hy(OH) — Hy(H) by the argument above. Thus, the next map is zero, and
we get H1(H,0H) =0 and Ho(H,0H) = ker(¢) = Z?. Thus

0 i=0,1

79 =2
Hi(H,0H) = { ;:3

0 i>3
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Problem 8: Consider the space X = M7 U My where M7, My are Mobius bands and M1 "My = OM; =
OM, = S'. (Here the Mobius band is the quotient space [—1,1]2/((1,y) ~ (=1, —y))).

a) Determine the fundamental group of X.

A good relevant problem to look at for this is Fall 2011 Problem 8.

Note X = 2M is just the standard construction turning a manifold with boundary into
one without. Taking collar neighborhoods of the boundary and applying Van Kampen, we get
71(X) is the pushout of the diagram

7T1(8M) — 7T1(M)

{
’/Tl(M)

Note that OM = S' and M deformation retracts to its central circle. Writing M = [0,1]?/ ~,
with (2,0) ~ (1 — x,1), the retract is r : M — p is r(x,y) = (1/2,y), where p is the image of
1/2 x [0,1], i.e. 1/2 % [0,1]/ ~ with (1/2,0) ~ (1/2,1). The boundary &M, which is the path
from (0,0) to (0,1) = (1,0) followed by the path from (1,0) to (1,1) = (0,0), maps to 24 under
the retract. Thus, our diagram becomes (writing 7(0M) = Z and m; (M) multiplicatively)

m(0M) 2% 1 (M) = (a)
$ (1= 0%
w1 (M) = (b)
so that 71 (X) = (a, bla?b=2) = (a, bla® = b?).

b) Is X homotopy equivalent to a compact orientable surface of genus g for some g?

Note H1(X) = {(a,bla® = b?,ab = ba) = Z x Z/27 via a ~ (1,0), b — (1,1), with inverse map
(1,0) = a and (0,1) — ab™!. But Hy(M,) = Z%. By contradiction, X is not M, for any g.

In fact, X is the Klein bottle by classification of surfaces. See Fall 2011 Problem 8 to
understand why.
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Problem 9: Determine all connected covering spaces of the wedge sum RP'* v RP'®.

Connected covering spaces (ignoring base point) will correspond to conjugacy classes of subgroups of
71 (RP* v RP'®) = 7 (RP') % 71 (RP*®) 22 71 (RP?) % 71 (RP?) = Z/27 x /27, since m; only depends
on the 2-skeleton. Next,

RETURN TO THIS

Problem 10: Let D be the unit disk in the complex plane and let S! be the unit circle. Consider
T? = S x S' and two copies of Dj D; and D,. Let X be the quotient 72 LI Dy LI Dy by € ~ (e9,1) € T?
and €' ~ (1,€'%) € T? for ' € Dy, €'® € Dy, and p,q > 1 € Z. Compute the homology groups of X.

Give the torus its standard cell structure with one 0-cell v, two 1-cells a, b, and a 2-cell F} attached
via word aba~'b~!. We attach two more 2-cells, Fy, F3 via words a? and b? respectively. Now we
have one 0-cell, two 1-cells, and three 2-cells, with cell complex

00 Co(X) =72 0 (X)=2> 2 Co(X) =Z = 0
We have 81(&) =v—0v=0, 81(b) =0, (92(F1) =a+b—a—b=0, 62(F2 - a, 82(F3) =q-b

) =
Thus we have im(d2) = span((p,0), (0,¢)) C Z2, and ker(d2) = span((l 0,0)) C From this we see
Hy(X) = ker(02) 2 Z, Hy(X) = Z%/im(0,) = Z/pZ X Z/qZ, and Hy(X) = Z.

11 Spring 2015

Problem 1: Let M(n,m,k) C M(n,m) be the space of n x m rank k matrices. Show that M(n,m, k) is
a smooth manifold of dimension nm — (n — k)(m — k).

See Spring 2013 Problem 1.

Problem 2: Assume that N C M is a codimension 1 properly embedded submanifold. Show that N can

be written as f~1(0) where 0 is a regular value of a smooth function f : M — R if and only if there is a
vector field X on M that is transverse to N.

Definition: We say X N if span(X,) + T,N = T,M for all p € N.

Solution: Suppose N = f~%0) where 0 is a regular value of f : M — R. Write
X=Vf=3", 8% 8301 By Lee page 343, gradients are normal to level sets, so that X, & T, N for
any p € N, and we have span(X,,) + T,N = T, M by dimension considerations. We conclude X h N.

The backwards direction is false in general according to Lee.

92


https://math.stackexchange.com/questions/1695151/when-does-a-codimension-1-submanifold-admit-a-transverse-vector-field?fbclid=IwAR0-ojuKse48T5S9XDV2R99k4QBjYHCVphzbxvOrLilkUosSBPSdsZ8AEuw

Problem 3: Consider two collections of 1-forms wy, . ..,w; and @1, .. ., ¢ on an n-dimensional manifold
M. Assume that wy A ... Awg = ¢1 A ... A ¢ never vanishes on M. Show there are smooth functions
fij : M — R such that w; = Z?:l fijwj.

Solution: A wedge of 1-forms is 0 if and only if they are linearly dependent, by Spring
2013 Problem 4. Notice ¢1 A ... A ¢ is nonzero so that these are all independent, while
QLN . NP ANw; = w1 A ... Awg Aw; = 0, since w; A w; = 0 for 1-forms w;. From this we see w; must
be a linear combination of the ¢1, ..., @i, as desired.

Alternative Solution: It suffices to consider everything locally, so take a dual basis Xi,,..., Xg
of wy,..,wg, and Y7, ..., Y of ¢1, ..., ¢r. Then notice

(wl VANAN wk)(Z, XQ, ,Xk) = wl(Z)wg(Xg)...wk(Xk) = wl(Z)

for any vector field Z, since all other permutations of the terms will give 0. Meanwhile,
(P1 Ao AP)(Z, Xay .., Xi) = Z f1590i(2)
j=1

where f1; is some complicated term involving permutations of the ¢;(X,,), but these are all smooth
functions. From this we see wy = Z?:1 fij¢;. A similar argument gives w; = Z?Zl fij¢; for each 1.

Problem 4: Consider a smooth map F' : RP" — RP".

a) When n is even, show that F' has a fixed point.

See Spring 2011 Problem 9 for a similar problem.

Q k=0
0 £>0
ext term vanishing). Note Homz(Z, Q) = Q and Homz(Z/2Z,Q) = 0, so the result follows from
the homology of RP". Since Hy(RP") = 0 or Z/27Z for k > 0, we see H*(RP™;Q) = 0 for k > 0.
For k = 0, we get H°(RP"; Q) = Homgz(Z, Q) = Q, as desired.

Over Q, HF(RP™;Q) , since HF(RP™;Q) = Homgz(Hi(RP"),Q) (with the

Now L(f) = Y5 (=Dir(f* : H/RP";Q) — HY(RP:;Q)) = 1+0 = 1 # 0, since only
the i = 0 term survives, and f* : H(RP™; Q) — H°(RP";Q) is just the identity map (we have
f*(1) =1 since f* is a cohomology ring homomorphism). Since L(f) # 0, f has a fixed point, as
desired.

b) When n is odd, give an example where F' does not have a fixed point.

Since n is odd, write n = 2k — 1. Then S™ C R?* = Ck, and we have f : S — S" via p > ip.
Then S* %5 §* ™ RP™ has w(f(—x)) = n(—ix) = w(iz) = 7(f(x)), so that this factors through
to a map g : RP" — RP", with g([z]) = [f(x)]. Suppose g([z]) = [z]. Then [f(x)] = [z], so that
f(z) =z or f(x) = —x. Then ix = = or iz = —z. Since x is nonzero, we get i = 1 or ¢ = —1, in
both cases a contradiction. Hence g has no fixed points.
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Problem 5: Assume we have a codimension 1 distribution A C T'M.

a) Show that if the quotient bundle TM/A is trivial (equivalently, there is a vector field on M that never
lies in A), then there is a 1-form w on M such that A = ker(w) everywhere on M.

Since TM /A is trivial, set ¢ : TM/A = M xR. We have a fiber-wise surjection ¢ : TM — TM/A,
and a projection 7: M x R — R.

Define w,(X) m(¢dp(gp(X))). That is, w, = 7 o ¢, o q,. Then note wy(X) =
0 <= ¢pap € M x {0}. Since ¢, : T,M/A, — p x R maps into p x R, we see
wp(X) =0 <= ¢p0(X) = (p,0) <= ¢(X)=0¢€ T,M/A, < X, € A,. Thus,
A = ker(w).

Qn

b) Give an example where TM/A is not trivial.

Skip!

¢) With wy and ws as in (a), show that wy A dw; = F2wa A dws for a smooth function f that never vanishes.

It suffices to show w1 = fw, for a nonvanishing f. Suppose ker(wi), = ker(ws), = A, for
each p € M. Select a vector field X with X, ¢ A, for any p in some neighborhood U. Define

flp) = E:;g”gg By construction, f is well defined and nonzero. Pick a local basis Xo, ..., X,
of A, so that X, X, ..., X,, are a local basis for the tangent space. It is easy to see w; = fws
by checking this on each basis vector. Finally, we may patch together the local choices of f via

partition of unity to get the desired result.

d) If w A dw # 0, show that A is not integrable.

Note that the argument in Fall 2013 Problem 5 for ker(w) integrable implies w A dw generalizes.
Instead of just picking two vectors Y, Z for a basis of ker(w),, we may pick Xo, ..., X,, a basis. The
same computation shows that the 3-form w A dw is always zero on any 3 basis vectors, so that
w A dw = 0 as desired.
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Problem 6: Let w = IdyA?;jfoiif;;ngdy be a 2-form defined on R3 \ {0}. Compute fSQ *w and

Js2 j*w where j : S = R3 is (z,y,2) — (3z,2y,82).

First, let n = xdyAdz+ydzAdz+zdzAdy. Since for each p = (z,y, 2) € S2, we have (22 +y%+22)3/2 =
1, we see 1, = w, for each p € S2. Thus, i*w = i*n. Moreover, notice 7 is a form on all of R?, not
just R3\ {0}. From this, we may apply Stokes Theorem to get

/ i*w:/ i*n:/dn:/?)dV:éhr
52 52 B B

where B C R3 is the closed unit ball (so that 9B = S?). Note we could not have applied Stokes
Theorem directly to w, since w is not defined on all of B (in particular, it is undefined at 0 and may
not be extended in a continuous way).

Remark: Notice n = inydV, where dV = dx A dy A dz, and N is the unit vector field normal
to the sphere, so that N = x% + ya% -+ z%. Hence i*n is just the surface area form on S?, so that

fSQ i*n is the surface area of S?, which is 4.

Next, notice j(S?) = FE is an ellipsoid, diffeomorphic to S? with obvious inverse map
i Yx,y,2) = (2/3,y/2,2/8). So j may be factored as the composition 52 % B & R \ {0},

where k : E — R3\ {0} is the inclusion map, and S? 2, B is the diffeomorphism given by j (its
codomain has been restricted). Note that S? is entirely in the inside of E. Let D denote the region
outside S? but inside E. In particular, 0 € D, so w is defined on all of D.

Notice 9D = S? U E, but S? is given an inward pointing normal and E is given an outward

pointing normal (as inside S? is outside D). The inclusion map 9D 2 g3 \ {0} is just ¢ Uk. By

Stokes, we have
/k‘*w—/ i*w:/f*w— ffw= f*w:/dwzo
E S2 E S2 oD D

since direct computation shows dw = (7173 — 32275 + 72 — 3y?r=5 + =2 — 3229 =5)dV = 0. Thus,

/k*w:/ 'w=A4r
E 52

Finally, since j = ko ¢ and ¢ : S? — F is a diffeomorphism, we have

/ Jfw= o (k*w) = / k*w=4m
52 52 E

since pulling back via diffeomorphism preserves the value of the integral. This gives the desired result.
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Problem 7: Define the de Rham cohomology groups of a manifold M and compute Hj(S?) directly
from the definition.

Note that HJp(S) is just the kernel of A°(S*) 9, AY(S') which sends 0-forms, i.e. smooth functions
f:S* = R, to 1-forms df. Note df = f'(x)dz locally, so that if df = 0, we have f is locally constant.
Since S! is connected, we conclude f is constant. Conversely, if f is constant, then df = 0. Thus, we

see H),(S') is in bijection with constant functions f : S* — R, which are just a choice of z € R, so
that H)p(S') 2 R.

Next, we consider the map T : Hjh(S') — R via [w] = [i w. Note that this is well-defined

Since by SlOkeS Theorem,
St oSt 0

Moreover, it is clearly R-linear. By Spring 2013 Problem 2, we have w is exact if and only if for each
c:[0,1] — S! a closed curve, we have fol c*w = 0. Since 7m1(S!) = Z, every closed curve on S?! is
homotopic to a multiple of ¢ : [0,1] — ST via c(t) = 2™, But this is just restricts to the constant
map S' — S'. Thus, we see w is exact if and only if fsl w = 0. Hence, T is injective.

Meanwhile, T is surjective as follows: let w = i*(—ydx + zdy), where i : S — R? is the inclusion.
Then [ w = [gd(—ydz + zdy) = 2 [5(dz A dy) = 2 - area(B) = 2w # 0. Hence, T is nonzero, so

that its image is at least one dimensional, and hence exactly one dimensional. So H é (S H=RviaT.

The higher homotopy groups are all 0 since there are no higher dimensional forms.

Problem 8: Let X be a CW complex consisting of a vertex p, two edges a and b, and two 2-cells f;
and fo, where the boundaries of a,b map to p, the boundary of fi; maps to the loop ab? and the boundary
of f, is mapped to the loop ba?.

a) Compute 71 (X). Is this group finite?

Note a,b are both generating loops of the 1-skeleton X; = S' v S*. By Hatcher Proposition 1.26,
we have 71 (X) = (a, blab?, ba?). Note if ab?> = 1, then a = b2, so that 1 = ba? = b-b=* = b3,
and we have b3 = 1. Thus b = b2, and so a = b. So we get a map (a, blab?, ba?) +)b|b®) by
sending both a, b to b. The inverse map sends b to a = b. These are both well-defined maps that
give inverses to one another, so we see 71 (X) = (b|b%) = Z/37Z, which is finite.
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b) Compute H;(X) for each i.

We have the chain complex
O—)C’2:Z26—2>01:Z26400:Z—>0
Notice 0f1 = a + 2b and Jfy = 2a + b, as these are the abelianizations of the boundary words.

Meanwhile, da = 9b = p — p = 0. So we have Hyo(X) = Z, H1(X) = Z?/im(d;) and Hy(X) =
ker(d;), with H;(X) = 0 for 4 > 2. In coordinates, we have 0, is the map Z*? — Z? with

(1,0) — (1,2) and (0,1) — (2,1). We may put the matrix B ﬂ into smith normal form to get

1 2 . 1 2 N 1 0
2 1 0 3 0 3
so that Hy(X) = Z2/(Z x 3Z) = 7Z,/3Z. Alternatively, just abelianize the answer from part a to

Finally, note that the matrix for 9 is invertible over R. Thus there are no vectors (z,y) € R?

B Ak=

Thus in partiular there are no such vectors (x,y) € Z?, and we have Ho(X) = ker(d2) = 0. So

Z i=0
H(X)={2Z/32 i=1
0 i>1

Problem 9: Let X,Y be topological spaces and let f,g : X — Y be two maps. Consider Z = (X X
[0,1]) WY/ ~ where (x,0) ~ f(z) and (x,1) ~ g(z). Show that there is a long exact sequence of the form

o= Hy(X) S Hy(Y) LN Hi(Z) % H;_1(X) — ... and describe the maps a, b, c.

Repeat of Fall 2011 Problem 10.

Problem 10: Let n > 0 be an integer. Let M be a compact, orientable, smooth manifold of dimension
4n + 2. Show that dim H?"+1(M,R) is even.

Repeat of Fall 2012 Problem 7.
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12 Fall 2015

Problem 1: Let M, (R) be the space of n x n matrices with real coefficients.
(a) Show that SL,(R) is a smooth submanifold of M, (R).

(b) Show that SL,(R) has trivial Euler characteristic.

See Fall 2010 Problem 3.

Problem 2: Let f,g: M — N be smooth maps between smooth manifolds that are smoothly homotopic.
Prove that if w is a closed form on N, then f*w and g*w are cohomologous.

We follow Lee’s Lemma 17.9. Consider i : M — M x [0, 1] via z — (x,t). We show i§ = i} as maps
on cohomology.

With this, we will then apply it to our case as follows: since f, g are homotopic, we have
H:Mx[0,1] - N

with Ho4 = f and Hoi; = g. Then f* = ifH* and ¢g* = ¢JH*. Since ¢§ = ¢] as maps on
cohomology, we will get f* = ¢g* as maps on cohomology, as desired.

Take 6 : R x (M x [0,1]) - M x R via 6(¢t, (x,s)) = (x,t + s). Note iy = 6; o ip, so it suf-
fices to show 65 = 07 as maps on cohomology.

Then from Fall 2010 Problem 4, we get 05 = 07, as desired.
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Problem 3: Prove that [Lx,iy]w = ix y|w, for w a k-form with & > 1.

Recall Lx =ixd+ dix, and form 1-forms w, we have w([X,Y]) = X (w(Y)) — Y (w(X)) — dw(X,Y).
Trivially, for 0-forms f, we have

[Lx,iy]f = Lxiy f +iy(Lxf) =0+0=0=ix v f

since contraction of a O-form gives 0.

For a more interesting base case, let w be a 1-form. Then
[,Cx, iy]w = ,Cxiyw - iyﬁx(w)
= (Zxd I dix)iyw — iy(ixd T dix)w
= (ixdiy F dixiy - iyixd - iydix)w
But note ixiyw = 0 since w is a 1-form. So we get
[Lx,iy]w = (ixdiy —iyixd —iydix)w = (dw(Y)))(X) — (dw)(X,Y) — (d(w(X)))(Y)

= X(@(Y)) - (dw)(X,Y) - Y(w(X)) = (X, Y]) = ipx,vpw

By our usual trick, each k-form may locally be written as sums of exact 1-forms wedged with (k— 1)-
forms, so it suffices to show that if this formula holds for (k — 1)-forms, then it holds for the wedge
of an exact 1-form and a (k — 1)-form. Let & = dn be an exact 1-form and 6 a (k — 1)-form. Notice
that since Lx follows product rule and iy follows signed product rule, we get

[Ex,iy](a A\ 9) = Exiy(a A\ 9) = iyﬂx(a A\ 9)
= EX(iy(Oz) ANO —a A Zy(o)) = iy(ﬁx(a) ANO+a AN ﬁx(e))
= ﬁx(iy(a)) ANO+ivaANLx0—Lxa /\iy(e) —aN (Exlya)
e — iyﬁx(a) A 9+£X(Oé) /\’iye - iyOé/\ﬁx(e) +Oé/\’iy£x(9)

= (Z[X7y]a) A\ 9 —a (’L[ij]e) = i[X,Y] (Oé A\ 0)

where we apply the fact that [Lx,iy] = i[xy] on 1-forms, and on (k — 1)-forms by inductive
hypothesis.

We conclude this is true for all forms, so that [Lx,iy]| = i[x,y], as desired.
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Problem 4: Let M = R3/Z? be the 3-dimensional torus, and C' = 7(L) the image of the line L from
(0,1,1) to (1,3,5). Find a differential form on M representing the Poincare dual of C.

See the similar calculation for Spring 2014 Problem 5. Set dx = 770,dy = 730,dz = 7360 with
fsl 0 = 1, so that fM dx ANdy N\ dz = 1. Since the cohomology classes of dx A dy,dy A dz,dx A dz
form a basis of H35(M) (by, for instance, Kunneth), it suffices to seek a Poincare dual of the form
w=a-(dyNdz)+b-(de Adz) + c- (dz Ady).

Note C may be viewed as a line from (0,0,0) to (1,2,4). Then for i : C — M, note my0i : C — M
is a 1-fold cover, w5 07 is a 2-fold cover, and 73 o4 is a 4-fold cover. Then

/ i*dx = / i*m76 = deg(m o z)/ 0 = deg(m0i) =1
C C St
/ i*dy = deg(mp0i) =2
C

/ i*dz = deg(ng 0i) = 4
c

Meanwhile, for w = a - (dy A dz) +b- (dx Adz) + ¢ (dx A dy) the Poincare dual, we must have

1:/i*d$:/ dﬂc/\w:/ a(de Ndy Ndz) =a
c M M

2:/i*dy:/ dy/\w:/ —b(dx Ndy Ndz) = —b
c M M

4:/i*dz:/ dz/\w:/ cldr Ndy Ndz) =c¢
@ M M
So we see w = (dy A dz) — 2(dx A dz) + 4(dx A dy).

Problem 5: Recall that the Hopf fibration 7 : S2 — S? is defined as follows: if we identify S? =
{(21,22) € C? : |21 + |22)> = 1}, and S? = CP' with homogenous coordinates, then 7(z1,22) = [21, 22].
Show that 7 does not admit as smooth section, i.e. a map s: 5% — 52 with 7o s = idge.

Such a map would ensure 7, 0s, = id,, so that s, would be injective on homology. Thus we would get
an injection s, : Ha(S?) — H3(S?), which is an injective map from Z to 0. This is a contradiction.
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Problem 6: Let M™ C R"” be a smooth submanifold of dimension m < n—2. Show that its complement
R™\ M is connected and simply connected.

See Fall 2012 Problem 3.

Problem 7: Show that there exists no smooth degree 1 map 52 x 2 — CP%.

Note C — CP' via z — [z : 1] has diffeomorphic image and misses precisely one point, namely
[1:0] € CP'. Hence, CP' is the one-point compactification of C 2 R2, so that CP* 2 §2.

Recall H*(CP") = Z[y]/(y™*!), with y having degree 2. Then the generator y € H?(CP") = Z
generates the entire cohomology ring.

Note that if X,Y are finite CW complexes and H*(X;R) and H*(Y;R) are free R-modules
for each k, we have H*(X x Y; R) = H*(X; R) ®g H*(Y; R). In particular, we have

H*(S® x §%) = H*(CP' x CP') = Z[z1]/(x?) ®2 Zlz2]/(23) = Zlz1, z2]/ (7, 23)

H*(CP?) = Z[y}/(4°)

where |z;] = 2 and |y| = 2. Letting f : S% x $2 — CP? be smooth, we see f induces a ring
homomorphism

F 2/ (%) = Zla, 23]/ (21, 23)
Since f*(y) must have degree 2, we have f*(y) = ax; + bry for a,b € Z. (Just observe
H?(S' x S1) = HY(S') @ H?(SY) @ H?(S') ® H°(S') by Kunneth, so that there are no other degree
2 elements).

Then f*(y?) = (ax; + bx2)? = a?x? + 2abrize + b?23 = 2abrizs. Note xyx2 is the genera-
tor of H(S! x S') = H?(S') @ H?(S'), so that deg(f) = 2ab must be even. [J

Problem 8: Show that CP?" is not a covering space of any manifold except itself.

Suppose CP?" was a cover of some manifold X. Note CP?" is simply connected, since CP* 2 52 is
simply connected and 71 only depends on the 2-skeleton. Thus, CP2n must be the universal cover of
X. In particular, the group of deck transformations would be isomorphic to 71 (X) and it would act
transitively on the fibers in the usual way, with .y = 5(1), where 7 is a lift of 7 to a path in CP*"
starting at y.

Note then that if v.y = y, we would have # itself is a loop. Then we may view this as a
map 7 : S — X which lifts to a map 4 : S* — CP?". This implies v,m1(S') C p,m1(CP?") = 0, so
that v,m1(S') = 0. Then v must be null homotopic in X, so that [y] = 0. In short, we have shown
more generally that the action of 7 (X) on the universal cover of X is free.

Let f : CP*™ — CP?" be the map y — ~.y for some fixed [y] € 7 (X). By Spring 2011
Problem 9, f must have a fixed point. So f(y) = y for some y € CP?", so that v.y = y. By the
above, we have [y] = 0. Since v was arbitrary, we conclude 71(X) = 0 and X is simply connected.
Then X is its own universal cover, and CP?" = X
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Problem 9: Given f: X — Y, define Cy = (X x[0,1])UY")/ ~ where (z,1) ~ f(z) and (z,0) ~ (2',0)
for all z,z’ € X. Show there is a long exact sequence

o H (X)) 5 Hi (V) = Hir (Cf) = Hy(X) — ...

Recall the mapping cylinder My = (X xI)UY")/ ~ (given by (z,1) ~ f(z) for all z € X') deformation
retracts to Y C My. Moreover, Cy = My /A, where A is the image of X x {0} C (X xI)UY — My
(so that in fact, A = X x {0} C M} is homeomorphic to X). Note (My, A) is a good pair since
X % [0,€) deformation retracts to X x {0}. We get by the LES for relative homology of a good pair

—_~—

= Hy(A) 2 Hy (My) — Hy(My/A) — ...

Note A = X x {0} = X, M;/A = Cy. Meanwhile, the composition X = A C M; = Y just sends
x — f(x) €Y, where r : M; — Y is the retract. Since M actually deformation retracts onto Y, r
is an isomorphism, and when we replace H, (M) with H,(Y") (which is isomorphic), we replace the
map i, with the map r.i, = (roi), = fi. Hence we get

—_~—

o Ho(X) L5 H,(V) = Ho(C) — .

which is the desired long exact sequence.

Problem 10: Let RP" be the real projective space given by S™/ ~ where & ~ —z.
(a) Give a CW decomposition of RP".
(b) Use the cell decomposition to compute Hy(RP").

(¢) For which values of n > 1 is RP" orientable?

[ See Spring 2011 Problem 8. ]
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13 Spring 2016

Problem 1: Consider the space of all straight lines in R? (not necessarily just those passing through the
origin). Explain how to give it the structure of a smooth manifold. Is it orientable?

We have a map from the space of all straight lines in R? to RP? via az+by+c = 0 — [a:b:c| € RP?.
This map is clearly well-defined and injective. Its image is precisely RP?\ {[0: 0 : 1]}, and this is an
open submanifold of RP?.

Note that S? — RP? gives the orientation cover of RP?. Then S2\ {(0,0,1),(0,0,—1)} (which
is still orientable as it is an open subset of S?) gives the orientation cover of RP*\ {[0 : 0 : 1]},
and it is connected (homeomorphic to R? \ {(0,0,0)} which in turn is homotopic to S'), so that
RP?\ {[0: 0: 1]} must be non-orientable.

Remark: More generally, deleting a point from an n-manifold for n > 1 does not affect ori-
entability.

Problem 2: Let X and Y be submanifolds of R™. Prove that for almost every a € R™, that X +a M Y.

Repeat of Fall 2010 Problem 2.

\. .

Problem 3: Consider the vector field X (z) = 22019 4+ 2019229 4+ 2019 on C = R?. Compute the sum
of the indices of X over all the zeroes of X.

Take D C C a compact disk containing all roots of 22019 + 201922018 42019 = 0. Then of course the
sum of the indices of the zeros of X in C is equal to the sum of the indices of the zeros of X in D.
The latter is x(D) by Poincare-Hopf, and x(D) = x({*}) = 1.

Problem 4: Let M be a compact, odd-dimensional manifold with non-empty boundary. Show that
X(M) = 5x(0M).

See the third proposition here.

Problem 5: Let M be a compact oriented n-manifold with H'(M,R) = 0. For which integers k is
there a smooth map f: M — T™ of degree k?

Follow the same argument as Spring 2010 Problem 10c.
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Problem 6: Let T2 be the torus and p € T?.

a) Compute the de Rham cohomology of X = T2\ {p}, where T? = R?/Z? with coordinates (x,y).

Note that X deformation retracts to S v S! as is clear from the picture of 72 as [0, 1]?/ ~, where
(x,0) ~ (x,1) and (0,y) ~ (1,y) for each z,y € [0,1]. (T?\ (1/2,1/2) deformation retracts to the
square identified in the specificed way, which gives S* Vv S1).

Thus we can easily figure out singular homology groups to be Hy(X) = Z? and Hy(X) = Z (from
reduced homology of wedge is sum of reduced homologies, or from abelianizing m; and using that
X is connected). Hence, by universal coefficient theorem, Ho(X;R) = R, Ho(X;R) = R2. Since X
is a manifold, we have by de Rham’s theorem that HJp(X) = R* =R and H}5(X) = (R?)* = R?
(where we use Hin(X) = (H;(X;R))* by de Rham’s Theorem). Thus

R i=0
Hip(X)=<R? i=1
0 i>1

b) Is the volume form w = dx A dy exact on X = T2\ {p}?

Notice dw is a 3-form on a 2-manifold, so dw = 0 and w is closed. Since H?(X) = 0, closed 2-forms
on X are exact, so w is exact, as desired.

Problem 7: Exhibit a space whose fundamental group is isomorphic to Z/mZxZ/nZ. Find another space
with fundamental group Z/mZ x Z/nZ.

See Fall 2010 Problem 7.

Problem 8: Let L; denote the axes of R®. Compute 71 (R \ (L, UL, UL,)).

From the discussion of Fall 2012 Problem 9, we have R? \ (L, U L, U L) deformation retracts to
S? minus 6 points, which is homeomorphic to R? minus 5 points, call them p; = (z1,¥1),...,p5 =
(z5,95). WLOG, z; € (2i — 1,2i). Set U; = ((—00,3) x R)\ {p1}, Us = ((8,00) x R) \ {p5}, and
U = ((2i —2,2i + 1) x R) \ {p;} for i = 2,3,4. Then U; U...UUs = R?\ {p1,...,ps}. Moreover,
each U; = R? \ {p;}, which is homotopic to a circle, so that m(U;) = Z. Moreover, each U; N U,
is homeomorphic to R?, hence simply connected with 71 (U; N U;) = 0. Van-Kampen then gives us
71 (R2\ {p1, .-, p5}) = m (U1 U...UUs) = 71 (Uy) * ...  w5(Us) = Z x Z * Z x Z * Z, since the kernel
elements are all trivial (from 71 (U; N U;) = 0). More generally, R? minus k points gives us Z ... * Z
(k times) by the same argument. Of course, we don’t need to worry about other R\ {z1, ...,z } (for
n > 2) as far as fundamental groups are concerned, as those will be simply connected by Fall 2012
Problem 3.
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Problem 9: Let X be a topological space and p € X. The reduced suspension, X is defined by
X x[0,1]/ ~ where (X x {0,1}) U ({p} x [0,1]) is contracted to a point. Describe the relation between the
homology groups of X and ¥X.

Write I = [0,1]. We add the assumption that there is some neighborhood U C X of p that
deformation retracts to p, i.e. that (X,p) is a good pair. See Spring 2014 Problem 10. Notice
X = S(X)/A, where A C S(X) is the image of px I C X x I — (X x I)/(X x 8I) = S(X). By
assumption, (X, p) is a good pair, so that (X x I,p x I) is a good pair. In fact, (X x I, X x 0I) is
also a good pair, so that (X x I, (X x 0I)U (p x I)) is a good pair. Thus (S(X), A) is a good pair.

We get by Hatcher 2.13 a long exact sequence of reduced relative homology, which is actually

—_—~—

quite useful: |... » H(A) — H;:(:S\'(?()) — HkTX\](/X)) — Hm) — ...| Note A is the homeomor-

phic image of p x I, so that A has the homotopy of a point. So each reduced Hy(A) = 0, and we
have

Then Hy(S(X)) = Hp(E(X)) for all k.

. J

Problem 10: Consider the 3-form o = z1dxs A dxg A dry — xodxy A des A dzy + xadzy A dxg A dxg —
z4dz1 A dzo A drs on RE.

a) Compute [g;i*a.

Note do = 4dx1 A dxoy A das Adxy = 4dV . if B C R* is the closed unit ball, we have

/ i*a:/da:/4dV:4V(B)
S3 B B

From analysis, one might recall the volume of the closed unit ball in R™ is 7/2/T'(n/2 + 1), so
that V(B) = 7%/I'(3) = 7%/2. Thus, [4 i*a = 272

b) Let v be the 3 form v =
is exact.

W& for k£ € R. Find the values of k where ~ is closed, and where it

N

Since vp = ap for each p € 2, so that i*y = i*« and

/i*fy:/ fa#0
S8 S8

If v = d6, then i*vy = d(:*0), and fs3 d(i*0) = 0 by Stokes theorem, since 353 = ). Hence 7 is not exact.
Meanwhile, let R(z1,...,z4) = 22 + ... + 22 = r2. Note v = ﬁa, so that
1
— —k
dfy_d<R )/\oc-i-ﬁda

Now

d (R—k) Y i:zfmda:i

=1

Thus
4 4
dy=—kR7*1 Z 2x;dx; A o+ ﬁdv
. "
=—kR™F1Y "2a%7dV + e dV = (—2kR™* + 4R™F)dV
=il

Sody=0 < 2kR*=4R™* < 2k=4 <= k=2.

105



14 Fall 2016

Problem 1: Let M be a smooth manifold. Prove that for any two disjoint closed subsets A, B there is a
smooth function f: M — R such that f=0on A and f =1 on B.

Pick a partition of unity subordinate to the cover {A¢, B¢} of M. Write f,g : M — [0,1] with
f+g=1, f << A% g << B¢ Then for z € A, we have x € A, so that f(x) = 0. Hence g(z) = 1.
So we see g(x) = 1 on A. Since g is supported in B¢, we see g(z) = 0 on B. This gives the desired
function.

Problem 2: Let M C RY be a smooth k-dimensional submanifold. Prove that M can be immersed
into R2*,

Skip!

Problem 3: Let Uy,...,U, be n bounded, connected, open subsets of R™. Prove that there exists an
(n — 1) dimensional hyperplane H C R¥ that bisects every U;; i.e. if A and B are the two half spaces that
form R™ \ H, then vol(U; N A) = vol(U; N B).

Skip!

Problem 4: Show that D = ker(dzs — x1dxs) Nker(dz; — x4drs) C TR* is a smooth distribution of
rank 2, and determine whether D is integrable.

Note dxs — z1dz2 can be thought of as the matrix [0 -1 1 O] and dx; — zadx2 can be thought of as
[1 —xz4 0 O}. Here we are picking the standard basis %, ey % of TR*, so that these forms are, at any

point, maps from TP]R4 to R, and hence correspond to a 1 X 4 matrix at that point.

Now X = Zle fiz> € D if and only if

fi
0 —x1 1 O] |f2| _|O
1 —T4 0 0 f3 - 0
fa
(at each point, i.e. that these functions are 0). However, notice that regardless of choice of z1, ..., x4, we have
[(1) 7? (1) 0 has rank 2 from its first and third column. Hence, the kernel is pointwise a 2-dimensional
—x4
vector space, so that D is indeed a smooth distribution of rank 2.
0 T4
o . 1 .
In fact, we see X; = 0 (ie. Xi = 8%4) and X, = o (ie. Xo = x48%1 + % + xlﬁ) are
1 0

always in the kernel of the matrix, and, regardless of point, are always linearly independent. So X1, X5 form
a global basis of D.

On the other hand,

1o} a 1o} o] ad 0 1o} 1o}
[Xl,XQ} = 371’4 <w487561 +187x2 +«’E187x3> - <x487x1 T (971132 +l‘187m3) <187x4>

B B
-1 —0-0-0=-2¢p
gy H0+0-0-0-0=7"¢

So X1,X2 € D but [X1,Xz] € D. So D is not integrable.
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Problem 5:

a) Let M be a smooth, compact manifold and N C M a smooth compact submanifold. Explain (in terms
of integrals) what it means for a closed differential form w to be the Poincare dual to N.

If dim(N) = k, dim(M) = n, then the Poincare dual to N is the unique (n — k)-form w such that

for all k-forms 7, we have
/ i*n :/ nAw
N M

See the discussion in Spring 2014 Problem 5 for more details.

b) You are now free to use knowledge of homology/cohomology: let M = T? with coordinates (z,y) €
(R/Z)%. 1dentify a submanifold N C M dual to the form dy, and show that they are indeed dual.

Let mp,m : M = St x 81 — S! denote the two projections. Define dx = 776, dy = 736, where 0
is a 1-form on S* with [, 6 = 1. Note then [,, dz Ady = 1.

Take N = S' x {p} C S' x S! oriented CCW. Since [dz], [dy] form a basis of Hip(M) = R?, for
any closed 1-form 7, we may write [n] = a[dx] + bldy] for a,b € R. So, we may check the above
formula for Poincare dual, which is well-defined regardless of representative of [n], by simply
taking 7 of the form a-dx +b-dy. Then n Ady = a - dx A dy, so that

/ nAdyza/ de Ndy =a
M M

Meanwhile, for ¢ : N — M inclusion, note i*de = *7f0 = (m o i)*0 = 6, since
moi: Sl =8"x {p} - M — S!is just the identity map. Meanwhile, i*dy = (72 04)*0 = 0,
since my o i is just the constant map S' — p € S1.

/ i*n = / a(i*dz) + b(i*dy) = / ald = a
N 51 51

since | 10 =1. Thus we see indeed N is the Poincare dual to dy.

Thus,

c¢) Give an example of a closed 1-form on 72 that is not Poincare dual to any submanifold.

For N a closed connected oriented 1-dimensional submanifold of M, notice f : N — S! gives
Sy frw = deg(f) fsl w. We claim the form o = wdx has no Poincare dual. To see this, note that
if N is the Poincare dual, then for n = dy, we must have

/ i*(dy) = / dy A (wdz) = —m
N M
On the other hand,

—w:/Ni*(dy):/N(moi)*H:deg(oni) /Slezdeg(@oi)

However, degree is always an integer. By contradiction, we see there can be no closed connected
oriented manifold that is the Poincare dual of wdx.
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Problem 6: Let M be a smooth, compact, oriented n-manifold of Euler characteristic 0.

a) Show that M admits a nowhere vanishing vector field.

See the exercises in G&P from pages 144 to 146. We may find a vector field on M with finitely
many zeros. By Spring 2017 Problem 1, we may move, via a diffeomorphism of M, all of the zeros
into some chart U C M with U = B(0, 1) the open unit ball in R™. Call this vector field X. Note
that the sum of the indices of the zeros of X is x(M) = 0 by Poincare-Hopf. From Spring 2011
Problem 5, this is also the degree of the map OU = S™ — S™ via p — éﬁ, so that this degree is

zero. By the extension theorem, we get a map ¢ : U — S™ which extends lﬁ—ﬂ on the boundary.
P
Take the vector field Y given by

Xp
X PEU

. :{g(p) peU

This is well-defined since the two cases agree on the boundary. (We can make this smooth if nec-
essary by taking a bump function, picking a smaller ball V' C U still containing all the zeros of X).

Then note Y is nonvanishing, since g(p) € S™ is a unit vector for each p, and X, does
not vanish outside of U. Thus, Y is the desired vector field.

b) A Lorentzian metric on M is a smoothly varying, symmetric bilinear form g, : T,M x T,M — R of

signature (n — 1,1); that is, for all p € M there is a basis es, ..., e, of T,M such that with respect to
this basis, g, is a diagonal matrix with n — 1 entries of 1 and one entry of —1. Prove that M admits a

Lorentzian metric.

Skip!

Problem 7: Let X be a connected CW-complex with 71 (X, ) finite. Show that any map f : X — (S')"?

is null-homotopic.

Note 71 ((S1)") = (71(S1))™ = Z", since 71 preserves products. In particular, 7((S1)") is torsion-free.
Note f.m1(X) C m((S1)") is a subgroup of a free group and hence free. It is also the image of
a finite group and hence finite. So it is a finite free group, and hence must be zero. Thus, f.m1(X) = 0.

Note R™ is the universal cover of (S1)", so that for p : R® — (S1)", since fim(X) = 0 C
p«m1(R™) = 0, we see f lifts to a map on the universal cover. So we have a map g : X — R" with

pog=f.

Note ¢ is null-homotopic in R™ via a straight line homotopy, or just by noting R" deforma-
tion retracts to a point. If H : X x [0,1] — R™ is a homotopy between g(z) = H(z,0) and
c(z) = H(z,1), where c(x) = c for all z € X, then po H : X x [0,1] — (S)" is a homotopy between
f=pogand d=poc, the constant map d(z) = p(c) for each z € X. Hence f is null-homotopic, as
desired.

Problem 8: Let X = RP?V RP?. Let a generate m; of the first summand, and b of the second. For
n > 1, describe the covering space p : Y — X such that p,(m1(Y)) is the subgroup {((ab)™) of m (X).

See Fall 2014 Problem 9 for detailed discussion.
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Problem 9: Let S2 <& $2v §2 £, 62 he the maps that crush out one of the two summands. Let
f:5% = 82V S? be a map such that g;o f : S — S? is a map of degree d;. Compute the homology groups
of X = (S?V S?) Uy D3.

We have one 3-cell, two 2-cells and one 0-cell. This gives the chain complex
_ 7 BB __ 2 92 _n 01 _
0—-C3=2—"C=2°"—C1=0—Cog=7Z—0

Note for our face F' € C3, we have 93(F) = die1 + dze2 by the cellular boundary formula. The other maps are
necessarily 0. Hence, Ho(X) = Z, H1(X) =0, H2(X) = Z2/im(03), H3(X) = ker(d3), and H;(X) = 0 for i > 3.

If di,dy are not both zero, ds is injective and we have H3(X) = 0. Meanwhile, putting the matrix [d1 d2]
in Smith normal form amounts to continually subtracting the smaller of the two numbers from the larger one and
replacing the larger with this difference. Hence, we get the SNF to be [k = ged(di,d2) 0]. (We define ged(n,0) = n).
Thus,

Hy(X) = Z%/im(83) = 2% /({(k,0))) = Z/kZ S Z
Of course, if d1,ds are both zero, we instead get H3(X) = Z and Ha(X) = Z2. In short, we have for d1,ds not both
zero,

Z i=0
0 i=1
Hi(X) = (Z/ ged(dy, d2)Z) BT i =2
0 i>2
and if di = d2 = 0, we get
Z i=0
0 i=1
Hi(X)=17? i=2
Z i=3
0 i>3

Problem 10: If f : X — X is a self map, then the mapping torus of f is the quotient Ty = (X x[0, 1])/ ~
where (z,0) ~ (f(z),1). Let f, be map of degree n on S®. Compute the homology groups of T, .

We again use Fall 2011 Problem 10 with X =Y =83 f=f,: 8% = % g=1id: S* — S3 so that Z = T},
giving us a long exact sequence

o = H(S?) 2222 1 (S?) — Hy(Ty,) — He-1(S?) — ..

For k > 4, Hy(S®) = Hy_1(S®) = 0, so that Hy(T},) = 0. For k = 3, we have the short exact sequence

OAZ%Z%H;;(TJ«)%O

Since f has degree n and id has degree 1, we see the first map is multiplication by n — 1 (the degree gives
the map on top homology). Thus we see H3(T¢) = Z/(n — 1)Z.

Next, for k = 2, since Hyp(S®) = Hyp_1(S®) = 0, we have Hy(Ty) = 0. In this case, T} is the
quotient of connected space S* x [0, 1], so that Ho(Ty) = Z. Finally, for k = 1 we have

0> H\(Ty) 2 Z—-Z—7Z—0

Hence H(Ty) is a subgroup of a free group and therefore free. Counting rank, we see rank(H;(Ty))—1+1—1 =
0, so that H(Ty) = Z. Thus

Z k=
Z =1
Hy(Tf) =<0 Ig =
Z/(n—1Z k=
0 k>3
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15 Spring 2017

Problem 1: Let M be a connected smooth manifold of dimension at least 2. Prove that for any 2n distinct
points x1,...,Tn, Y1,---,Yn € M that there is a diffeomorphism f: M — M such that f(x;) = y; for all 4.

First, see Fall 2010 Problem 1 for the n = 1 case. In fact, we can see that in this case, for any two
points z,y € M, we may find a compactly supported diffeomorphism ¢ : M — M with ¢(z) = y.

Suppose for any selection of points z1,...,Zg,y1,...,Yx, & < m — 1, in any manifold N, we
may find a compactly supported diffeomorphism ¢ : N — N with ¢(z;) = y;.

We are given points &y, ...,Tn,Y1,....Yyn € M. Set N = M \ {z,,y,}. We may find a diffeo-
morphism ¢ : N — N with ¢(z;) = y; for i = 1,...,n — 1 by inductive hypothesis. Note that then in
some neighborhood of z,, and y,, ¢ is just the identity. To see this, put some metric on N (e.g. by
embedding it into R¥) and look at open sets M \ B(z,,7) C N for r > 0. This gives an open cover
of N, and hence finitely many of them cover the compact support of ¢. Thus we see we may pick
r small enough so that B(z,,r) is disjoint from the compact support, so that ¢ is the identity on
this open neighborhood. A similar argument works for y,. So we see ¢ may be extended to a map
Y M — M with ¥(z,) = €, ¥(Yn) = Yn, and ¥(x) = ¢(x) for x € N.

We still have 1) is a diffeomorphism, and ¢ (z;) = y; for 1 <i < n. Moreover, ¥(z,) = Tn, Y(Yn) = Yn.

Similarly, set N = M \ {z1,....%n_1,Y1, -, Yn_1} and find X : N’ — N’ with XNz,) = y,. A
similar argument shows A can be extended to 7 : M — M with 7(z) = A(z) for all x € N’, and
T(x;) = x4, 7(y;) = y; fori=1,..,n — 1.

Thus, ¢ o 7(x;) = y; for each i = 1,...,n, and this is the desired diffeomorphism.

Remark: In fact, these are all (compactly supported) isotopies, i.e. diffeomorphisms homo-
topic to the identity, with ¢; a (compactly supported) diffeomorphism for each time ¢ € [0,1]. This
is clear from the proof of the n = 1 case, and our generalization above would allow us to extend each
¢; as well, so that we would still get isotopies.
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0o I,
I, 0
subspace S = {4 : ATQA = Q is a smooth submanifold, and compute its dimension.

Problem 2: Let My,x2,(R) = R4"*. Consider the following matrix Q = ( ) Show that the

Let Ska,(R) = {A € My, (R) : AT = —A} be the set of skew symmetric matrices. It is clear from

considering matrix entries that Ska,(R) C M2, (R) is a submanifold diffeomorphic to R() (it is
entirely determined by the (i, j) entries for ¢ < j; the diagonal entries must be zero).

Define F : M, (R) — Sko,(R) via A — ATQA. Note (ATQA)T = ATQTA = —ATQA, so
that this is indeed skew symmetric.

Note v : R — M, (R) given by v(t) = A + tB is a curve through 7(0) = A in the direction
of 7/(0) = B, so that

dF4(B) = (Fo~)(0) = lim F(A+tBt) — F(4)

e (A+tB)TQ(A+tB) — ATQA . ATQA+tBTQA+tATQB +t?BTOB — ATQA
T 50 t T 50 t

= %n% BTQA+ ATQOB +tBTQOB = BTQA+ ATQB
—

If A € F71Q, then ATQA = Q, so taking determinants, we see det(A)?det(Q2) = det(Q). Since
det(2) # 0 as Q is invertible, we have det(A4)? = 1 and A is invertible.

Fix A € F7'Q. Let C € Sky,(R) be arbitrary. Take B = 1Q7'(A471)TC. Then notice

ATQB = 1C, and BTQA = —(ATQB)T = —(3C)T = +1C, so that dFa(B) = C. Hence

dF 4 : TaA(Mzn(R)) = Man(R) = To(Skan(R)) = Skan(R)

is surjective. This holds for any A € F~'Q. Thus,  is a regular value of F, and
F71Q={A: ATQA = Q} is a smooth submanifold of My, (R).

Its codimension in My, (R) is the dimension of Sks,(R), which is (22”) as computed above.
Thus F~1Q has dimension 4n? — (22") =4n? —n(2n —1) =4n? — 2n% + n = 2n? + n.
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Problem 3: Use the Poincare Hopf index theorem to calculate the Euler characteristic of the n-sphere.

(Drawings are not enough!)

For odd n, write n = 2k — 1, so S™ C R?* = C*. Then X, = ip gives a nonvanishing vector field on
S™ (since ip L p for each p, so that X, € T,,S™ for each p € S™). Hence x(S™) = 0 in this case.

For even n, write n = 2k. Write S* C R?*1 = C* x R. Define Xy = (ip,0). Again,
(p,r) L (ip,0), so that X, ) € Ty S™ for each point (p,r) € S". Hence X can indeed be viewed
as a vector field on S™. Note X, ,) = (0,0) if (ip,0) = (0,0), so that we must have p = 0. Hence,
r = %1 (in order for (p,r) € S™).

Poincare-Hopf tells us the Euler characteristic of S™ will be the sum of the indices of the ze-
ros of X. To compute the index of the zero (p,r) = (0, 1), pick the ball B = {(p,r) € S™ : r > 0},
which contains (0,1) in the interior, but does not contain (0,—1) at all. Then the index is the
degree of the map from B — S"~! via ¢ \ffZI’ Note OB = {(p,7) € S™ : r = 0} = S"~! itself.
Meanwhile, the map sends

Xp,O _ (ip,O)
| Xp.ol  [(ip,0)]

To easily see what the degree of this map is, just notice in real coordinates this is the map from
S7=1to S~ sending (21, ..., Tn) = (—T2, T1, —T4, T3, .., —Tn, Tn_1). (Note n is even so this pairing
makes sense). Thus the degree of this map is (—1)#fiPs . (_p)#negations _ (_jyn/2(_q1yn/2 = 1,
Hence, ind )X = 1.

(p,0) € "1 = (ip,0) € S" !

To compute the index of (0,—1), we may use the ball B = {(p,r) € S™ : r < 0}. In this
case, 0B’ = 0B, and we get the same degree calculation, so that ind )X = 1.

Hence x(S™) =141 = 2 in this case, as desired.

Problem 4:

State Cartan’s magic formula.

Use this to show that a vector field X on R? has a flow (locally) that preserves volume if and only if

div(X) =0.

See Spring 2011 Problem 2.
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Problem 5: Let w = % be a 1-form on R?\ {0} and o € R. Consider f,y w, where v : S1 —
R2\ {0} is a smooth map.

a) For which a € R do we have f% w= f% w whenever g and v; are smoothly homotopic?

First, if w is closed, then by Lee 16.26, we have f’m w= f,ﬂ w for any two 7y, y1 smoothly homotopic.

Next, suppose we have f%w = fvlw for any 79,71 smoothly homotopic. Note the circle

of radius R, S'(R) C R?\ {0} is homotopic to the unit circle S* € R? \ {0} (and in fact maps to
it diffeomorphically under the deformation retract of R? \ {0} — S'). Hence, we have

[
S1(R) st

so that fSl(R) w is independent of R > 0. Thus, using polar coordinates x = rcos#, y = rsiné,

note w = r272%d0, and

27
/ w= R?72%df = 2x R?> 22
S1(R) 0

Since this must be independent of R > 0, we see the exponent must be zero, so that a = 1.

Finally, suppose @« = 1. Then w = %‘”‘yﬁd?’, and direct computation shows dw = 0. So
w is closed.
We conclude f%w = fw w for each ~y,71 smoothly homotopic if and only if w is closed if

and only if a = 1.

b) What are the possible values of fv w where « is closed as in part (a)?

Since R?\ {0} deformation retracts to S*, each loop v is homotopic to k- S1, the loop which goes
around S' k-times, for some k € Z. Thus, the possible values are

27
/w:/ w==k w=k df = 27k
v k-S1 St 0

for k € Z.
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Problem 6: Let X and Y be connected CW complexes, and let p : X = X be a path connected
covering space. Let f:Y — X be continuous. Let f*(X) = {(y,%) : f(y) = p(Z)} CY x X, and consider
the projection map f*(p) : f*(X) = Y.

a) Show that f*(p) is a covering map.

For notational convenience, write 7 = f*(p). Write ¢ : f*(X) — X with ¢((y,%)) = Z € X. Note
fr((y, 2)) = f(y) = p(&) = pa((y, %)), so that fm = pg.

Let y € Y be arbitrary. Write z = f(y). Pick an evenly covered neighborhood U 3> =z
with p~1U = U4V, and U, 2 U via p, = plu, : Us — U.

Since fm = pg, we have 7 'f~'U = ¢ 'p7'U = U,q 'U,. Define open subsets

W, = q U, C f*(X).

Set W = f~1U. Note U > x = f(y), so y € W. The above computation shows 7 ='W = L, W,,.
Moreover, we even have W = W, via z — (z,p,'f(2)). Note that since z € W, f(z) € U,
so that p lf(z) € U,. Moreover, f(z) = p(p,1f(2)), so that (z,p;'f(z)) € f*(X), and
(2,5 f(2))) = p5 ' f(2) € U, so that (2,p5" f(2)) € ¢ Vo = Wa.

Thus we have W — W, via z — (2z,p;'f(2)), and W,, = W via (z,%) ~ 2. So we see
these are inverses to one another, and W, = W for each a.

Thus for y € Y arbitrary, we have found W > y with #='W = U,W, and for each a,
Wy =2 W via w. So W is an evenly covered neighborhood of Y, and 7 is a covering map, as
desired.

b) Let (y,%) € f*(X) and let x = f(y) = p(x). If fim(Y,y) C p.m1 (X, %), and the cover p : X — X is
non-trivial, show that f*(X) is disconnected.

Skip!
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Problem 7: Let X = S! x D? with boundary X = S x S'. Compute Hy(X,0X;Z) for all k.

Note D? deformation retracts to a point, so that X = S' x D? is homotopy equivalent to S'. Note
Sl C D? is a good pair, so (X,0X) is also a good pair. From Hatcher 2.13, we get a long exact
sequence of reduced homology groups

P

. — Hi(0X) —» Hy(X) —» Hi(X,0X) — ...

Note
o o 0 1=0,1>2
7 i=2

— — 0 2=0o0rz>1
Hy(X) = H;(S") = .
Z i1=1

Moreover, notice the map X — X, i.e. the map S' x S' — S x D2, is the map a — a,b — 0 on
71 of these spaces, where a, b are the two generators of 71 (0X = S! x S1), and a is the generator in
71(X = S1). Since H; of both of these spaces is the same as their 71, we see the map induced on
H is surjective.

For i > 3 since H;(X) = H;—1(0X) = 0, we see H;(X,0X) = 0. Our long exact sequence
becomes

0— H3(X,0X) > Z—0— Ho(X,0X) - Z> » Z — H1(X,0X) = 0— 0 — Hy(X,0X) =0

So H3(X,0X) = Z, Hy(X,0X) = 0. The surjectivity of Z* — Z on H; gives H1(X,0X) =0 and a
short exact sequence
0— Ho(X,0X) > 7> —-Z—0

from which it becomes clear H(X,0X) is a subgroup of a free abelian group and hence free. Rank
counting then gives Hy(X,0X) = Z. Thus

0 i=0,1
H(X,0X)={7Z i=23
0 i>3

Remark: From Lefshetz duality, since X is a compact connected orientable 3-manifold with boundary,
H;(X,0X) = H3%(X) = H3%(S1). Since the cohomology groups of S! are H*(S') = Z for k = 0,1
and 0 otherwise, we see this agrees with the above result.
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Problem 8: Let X be a CW complex and let X > X bea covering space. Let G be the group of deck
transformations.

a) Show that for any k and any abelian group M, the group G naturally acts on H, k()N( s M).

Note G acts on X via deck transformations, giving a homeomorphism g : X — X for each g € G.
These of course induce maps g, : Hi(X; M) — Hy(X; M).

b) Show that the map p. : Hk(ZX),M) — H(X; M) factors through the quotient of Hj(X;M) by the
subgroup S generated by m — g -m for all m € Hi(X; M) and g € G.

Trivially, since pg = p for any g € G, we have p.g. = p.. Thus, p.(g«sm —m) = 0 for all
me M,g eGqG.

¢) Give an example for which the induced map Hy,(X; M)/S — Hj(X; M) in (b) is not surjective.

Take p : R — S! the standard covering map p(t) = e®. For any abelian group M, by universal
coefficient theorem H;(S; M) = Hy(S') @ M & Tor(Ho(S*),M) = (Z ® M) ® Tor(Z,M) =
Z® M = M, since Tor vanishes when one of the entries is free. Meanwhile, H; (R; M) = 0. Thus,
Hi(R; M)/S — Hy(S'; M) = M is necessarily the zero map, so it is not surjective.

Problem 9:
a) Find the homology groups Hy(RP?) for all k.

b) Describe a cell decomposition for RP? x RP2. Use this to show that Hs(RP? x RP?) is non-trivial (without
using Kunneth).

See Spring 2011 Problem 8.

Problem 10: Let G be a finite group and X a smooth manifold on which G acts smoothly. If the action
of G on X is free, then show that X — X/G is a covering map.

See Spring 2012 Problem 9.
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16 Fall 2017

Problem 1: Let M be a smooth manifold. For a 1-form w, prove that dw(X,Y) = X(w(Y)) =Y (w(X)) —
w([X,Y]).

It suffices to show this locally. Then, by linearity, it suffices to consider forms w = fdg, as all other
1-forms can be written locally as sums of such forms.

Then dw = df A dg. Hence
dw(X,Y) = (df Adg)(X,Y) = X(f)Y (9) — X(9)Y(f)
Meanwhile, w(Y) = fY(g), w(X) = fX(g), so that by product rule
X(w(Y)) = X(fY(9)) = X(/)Y (9) + fXY (g)

Y(w(X)) =Y(f)X(9) + fY X(9)

Subtracting these, we see
X(w(Y)) - Y(w(X)) = X(F)Y(9) - X(9)Y(f) + F[X,Y](9) = dw(X,Y) + [X, Y](w)

as desired.

Problem 2: Let M, (R) be the space of n x n matrices with real coefficients.

a) Show that O(n) is a smooth submanifold of M,,(R).

See Spring 2010 Problem 1.

b) Show that O(n) has a trivial tangent bundle.

In fact, any Lie group G is parallelizable. Pick a basis vy, ...,v; of T.G (with e € G the identity).
Define vector fields X;(g) = dg.v;, where g : G — G is the multiplication by g € G map. Since
g is a diffeomorphism, each dg. : T.G — T,G is an isomorphism, so that dg.vi,...,dg.v; is a
basis of T;G. Hence, the X1, ..., X}, are k linearly independent vector fields on G, so that G is
parallelizable, as desired.

Problem 3: Recall the Hopf fibration 7 : S — S? where S? = CP! and S® C C? is defined by
7(z1, 22) = [21 : z2]. There is another fibration p : UT'S? — S? called the unit tangent bundle, whose fiber
over x € 52 consists of the unit tangent vectors in 7,,5? (where we view it as a submanifold of R? to measure
length). Show that there is a covering map f : S% — UTS? of degree 2 satisfying po f = .

(o |

Problem 4: Consider w = zdy — ydx + dz. Prove that fw is not closed for any nowhere zero function
f:R® =R,

See Spring 2012 Problem 4.
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Problem 5: Let x,v, 2 denote the standard Euclidean coordinates on R?, and let dA denote the standard
area form on S2. Determine the values of n for which 2"dA is an exact 2-form on S2.

Recall the standard area form on S <3 R™"+! is dA = 1*indV, where N, = p, ie. N = Z"H x; 637
is the unit normal vector to the sphere, and dV = dx1 A ... Adzy,4 is the standard volume form on
R"*1. A simple computation shows

n+1
w:=1indV = Z(—l)jflxjdacl Ao Ndxy Ao N dTpgr

so that dA = i*w.
For n = 2, we see w = zdy A dz — ydx A dz + zdx A dy, so dA = i*w.

Taking n = 2"w, we see z"dA = i*n is exact on S? if and only if fs? i*n = 0. By Stokes,

we see
/ i*n:/ dn
52 B

where B is the unit ball. Hence we see i*n is exact if and only if [,dn = 0. Meanwhile,
dn =nz""ldz Aw + 2"dw = nz""(zdx A dy) + 2" - 3dV = (n + 3)z"dV.

Now [pdn = [(n + 3)z"dV. Note that if n is odd, (n + 3)z™ is an odd function, so that it
integrates to zero over the unit ball (split into integrals over z > 0 and z < 0). Meanwhile, if n is
even, (n + 3)z™ is a nonnegative function that is not identically zero on the ball, so that it must
integrate to a positive value. Hence, we see fB dn = 0 if and only if n is odd. So z"dA = i*n is exact
if and only if n is odd.

Problem 6:

a) Define what it means for a manifold M to be orientable.

An n-manifold M is orientable if it admits an atlas with each transition function xy~! being an
orientation preserving map between open subsets of R™. For maps f : U — V between open
subsets of R”, we say f is orientation preserving if det(df,) > 0 at each point p € U.

b) Show that every non-orientable connected manifold M admits a connected, oriented double cover.

Define M = {(p,0,) : p € M and O, is an orientation of T,,M}.

We have a base for the topology on M: for each ordered pair (U,0), where O is an ori-
entation of U C M open, define Vo) = {(p,0) : O = Op} C M. These sets form a base for the

topology on M.

It is easy to check M — M then gives a 2-sheeted covering space, which then naturally
endows M with a smooth structure (as the projection is a local homeomorphism). To make M
oriented, simply orient 7}, o )M Ty M via Oy, and T(,, _o )M T,M via —O,,.

Next, notice each connected component of M is also a cover of M. Thus, M is either
connected or two disjoint copies of M. Since each component of an oriented manifold is also
oriented, if M is not orientable, we must have M is connected, as desired.
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Problem 7: Let M be a smooth, compact, connected, orientable n-manifold (without boundary).

a) Show that if the Euler characteristic of M is 0, then M admits a nowhere vanishing vector field.

See Fall 2016 Problem 6a.

b) If M, is a surface of genus g, what is min, (# zeroes of v), where v ranges over vector fields on M whose
zeroes are isolated and have index £17 Give a proof.

First, see Spring 2012 Problem 2. This gives us a construction of a vector field with 2 4+ 2¢g zeros.
Of these, we have one sink, one source, and 2g saddles. Diffeomorph the sink, source and two
saddles into an open set U C M, diffeomorphic to a unit ball in R? so that the remaining zeroes
are outside of U. (See Spring 2017 Problem 1 for why we can do this).

We would like to observe, as in , that the sum of the indices of the zeros of X inside U is

zero, so that OU — S? via p — % has degree zero. Then it extends to a unit vector field on all

of U. The issue is that we cannot take a unit vector field on U as we did in that problem as
there are zeros outside of U.

To fix this, we refine our choice of U slightly. First, let m > 0 be the minimum value of
| X,| on OU. We may WLOG assume one of the zeros, z, is at the center of the ball. Now for each
point on the boundary, draw the radial line from that point to the center. Since |X,| > m and
|X.| = 0, by the intermediate value theorem, there is some point in between with | X,| = m. Pick
the ¢ closest to p, call it ¢(p). We do this for each p € OU. At the end, we are left with a curve ¢(p)
around the origin. Call the region bounded inside V. Then V still contains the original four zeros,
since we insisted on picking ¢(p) closest to p, and having a zero outside of V' would mean the zero
was between p and ¢(p) for some p, for which IVT would guarantee we can find an even closer point.

Moreover, V is still simply connected and thus diffeomorphic to a unit ball again, by the
Riemann mapping theorem. We now have the added benefit that on 0V, X has constant norm
| X, = m for each ¢ € 9V. (Each ¢ € 9V is ¢(p) for some p € OU). We now run through the
above argument to get that X,/m can be extended to a map V — S*. Multiplying this map by
the constant m, we see we may in fact extend X, to V, this time containing no zeros (and in fact
having constant norm m on V).

In this way, we have a new vector field with four fewer zeros than the previous 2 + 2g, so
that we have 2g — 2 zeros. Meanwhile, since the sum of the indices of the zeros is x(M,) = 2 — 2g,
and each index is +1, we see we need at least |2 — 2g| = 2g — 2 zeros. Thus, this is the minimum
number of zeros possible.
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Problem 8: Let M = [0,1]?/ ~ where (z,1) ~ (1 —,0) for all z € [0,1]. Let X = (M x {0,1})/ ~ where
(y,1) ~ (y,0) for y € 9M. Determine the fundamental group of X.

First, see Fall 2011 Problem 8b to see that M is the Mobius band and X = K is the Klein-bottle.
Using any polygon representation of K, e.g. [0,1]2/ ~ via (x,0) ~ (z,1) and (0,y) ~ (1,1 —y), or
[0,1)2/ ~ via (x,0) ~ (1,z) and (x,1) ~ (0, ), we see from Hatcher Proposition 1.26

71(K) = (a,blabab™") = (a, c|a®c?)

where a is the loop corresponding to the path from (1,0) to (1,1) in both cases, b is the loop from
(0,0) to (1,0) in the first case, and c is the loop from (1,1) to (0,1) in the second case.

Problem 9: A compact surface (without boundary) of genus g, embedded in R? in the standard way bounds
a compact 3-dimensional region called a handlebody H. Let X = H x {0,1,2})/ ~ where (z,i) ~ (x,j) for
all x € OH and i, j € {0, 1,2}. Compute the homology of X.

[ See Fall 2014 Problem 7.

Problem 10:
a) Let A be a single circle in R®. Compute 71 (R? \ A).

Let X be a bounded subset of R®. We can view R® C S® = R® U {co} as a subset of its one point
compactification, so that R*\ X c §%\ X. We claim the induced map 71 (R*\ X) — m(S® \ X) is an
isomorphism. To see this, take U = R*\ X C S® and V a neighborhood of co € S*, homeomorphic to
an open ball, which is disjoint from X (this is possible since X is bounded). Then U UV = S*\ X, and
UNV =V )\ {co} 2R3>\ {0} (since V = R® is homeomorphic to R?*). By Fall 2012 Problem 3, U NV is
simply connected and 71 (U NV) = 0.

By Van Kampen, m(S® \ X) = m(U U V) = m(U) * m(V), since m((U N V) = 0 says
m(U) * m (V) — m(U U V) has no kernel. Meanwhile, V' = R3* so m1(V) = 0. Thus,
m(S*\ X) = m (U) = m1(R*\ X), as desired.

For the next part of the argument, set X = A to be the circle. Notice for S* \ A, we can assume
WLOG that oo € A. Then S® \ A is exactly equal to R® minus a line. WLOG, this line is the z-axis
L,. By a similar argument as Fall 2012 Problem 9, we see R3 \ L, deformation retracts to 52 \ {p1,p2}
WLOG, taking p; = oo, we see this is homeomorphic to R?\ {p}. This deformation retracts to S*. Hence,
7F1(R3 \A) = 71'1(53 \A) = Wl(Sl) = Z.

b) Let A, B be disjoint circles in R3, supported in the upper and lower half space respectively. Compute 71 (R3 \ (AU
B)).

WLOG, A is entirely contained in R? x (1, 00), and B is entirely contained in R?* x (—oo, —1). Taking
U = (R? x (—o0,1)) \ B and V = (R? x (1 )\ 4, wesee UUV = R3\ (AUB), U = R*\ A,
V 2R3\ B = ]R3 \A,and UNV = R? x (—1,1) =2 R®. Thus, 71 (U NV) = 0 and by Van Kampen,
MU UV) = m(U) s m(V) = Z * Z.

¢) If the circles become linked, how does the fundamental group change?

Notice by the remarks in part a that since X = AU B is bounded, 7 (R®*\ (AU B)) = 71(S*\ (AU B)).
Since the circles are linked, H = AU B C S is the Hopf-link. Now by Fall 2013 Problem 9 this will
deformation retract to the torus, so that w1 (R*\ H) = 711(S*\ H) = m(S* x ") =Z x Z.
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17 Spring 2018

Problem 1: Suppose that M, N are connected smooth mainfolds of the same dimension and f : M — N
is a smooth submersion.

a) Prove that if M is compact, then f is onto and f is a covering map.

b) Give an example of a smooth submersion 7 : M — N such that M and N have the same dimension, N
is compact, and 7 is onto, but 7 is not a covering map.

See Spring 2010 Problem 3. We need to modify the example in part b so that 7 : R — S via
n(t) = etf (*) is surjective while still satisfying the other properties. We may adjust the example ¢ —
etarctan(t) ot the example t — e**32retan(t) Tn this case, the map is surjective, but (1,0) € St is only
hit once while (—1,0) is hit twice. Alternatively, simply consider the restriction (—3m/2,3mw/2) — S*
via t + e,

Problem 2: Let &5, ®s: R x 52 — 52 be two global flows on the sphere S2. Show that there is an € > 0
and a neighborhood U of the North pole, V of the South pole, and a global flow ¢ : R x §% — S2 such that
O(t,q) = Pn(t,q) for all t € (—e,€), ¢ € U and D(t,q) = Pg(t,q) for all t € (—e,€) and g € V.

Definition: (Lee) A flow domain on a manifold M is an open subset D C R x M such that for fixed
pe M, {t eR: (t,p) € D} is an open interval containing 0.

Let X,Y be the corresponding vector fields for @y, ®g respectively. (That is, X, = %\t:od)]v(t,p)
and Y, = 4|,_,®g(t,p).)

Pick neighborhoods U’ 3 N and V' 3 S with disjoint closures. Pick a bump function ¢ : S — R
with ¢y =1 on U’ and ¢ =0 on V'. Write Z = %X + (1 —+)Y. This is still a vector field as it is a
linear combination of vector fields. Moreover, Z|y: = X|y+ and Z|y: = Y|yr.

Since S? is compact, Z induces a global flow ® : R x $2 — §2.

Apply Lee’s Theorem 9.12; the Fundamental Theorem on Flows, to get that since Z|y» = X[y is a
vector field on U’, there is a unique flow 6 : D — U’ of this vector field, where D C Rx U’ is a maximal
flow domain on which such a flow can be defined. Meanwhile, notice &, ®n : R x M — M satisfy
the same properties as the unique flow 6 when restricted to D. By uniqueness, ®|p = 6§ = (Pn)|p.
Since (0, N) € D and D is open, we may find some ¢ > 0 and some U > N open neighborhood of
N with (0,N) € (—=€,€¢) x U C D. Restricting further, we see ® = Oy on (—¢,€) x U. That is,
D(t,q) = Pn(t,q) for each t € (—€/,€') and ¢ € U. A similar argument shows we can get some €’
and some open neighborhood V' 5 S with ®(¢,q) = Pg(t,q) for t € (—€”’,€”) and ¢ € V. Taking
e = min(¢’, €”") gives the desired result.
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Problem 3: For n > 1, consider the subset X C CP?" given by X = {[20 : ... : 20|} € CP?" : 2,11 =

a) Show that X is a smooth manifold.

Clearly CP" = X. By Lee Proposition 5.2, it suffices to construct an embedding (an in-
jective proper immersion) ¢ : CP" — CP*" whose image is precisely X. The desired map is
d([z0 oot 2n)) = [20 ¢ oo 2 25 1 01 .2 0] Tt is clearly well-defined and injective, with image exactly
X. The properness of the map follows for free from compactness of CP". Thus it remains to check
the map is an immersion. For this, pick p € CP*" arbitrary. WLOG, we may assume p has some
homogenous coordinates p = [zg : ... : z,,| with zg # 0 (this is true for some z;, but the argument
does not change regardless of 7). Let U,, C CP?" be the points ¢ € CP*" with ¢ = [wp : ... : wy]

for some w; € C with wg # 0. Then U,, = C™ via the usual chart [wg : ... : wy,] — Z—;, e Z—g

with inverse (21,....,o,) = [1 : 21 : ... : 2,]). Note ¢(U,) C Uz, = C?", i.e. U, maps to points
in CP?" which also have a homogeneous representation [zg : ... : 2a,] with zg # 0. We see
that the map ¢ : U, — U, is, in coordinates, a map C* — C2" given by the composition
(@1, eeTp) =[xy vtz = L@yt 2y 02 0] = (21, ..., 20, 0,...,0). That is, it is
just the linear injective map C* — C?" via (21, ...,7,) — (21, ..., 0, 0,...,0). The derivative of
this map is itself and hence also injective. So ¢ is an immersion.

We conclude X =2 CP" is an embedded submanifold of CP?".

b) Calculate the mod 2 intersection number of X with itself.

Skip!

Problem 4: Suppose that N is a smoothly embedded submanifold of a smooth manifold M. A vector
field on M is called tangent to N is X, € T,N C T,M for all p € M.

a) Show that if X and Y are vector fields on M both tangent to N, then [X,Y] is also tangent to N.

Let ¢ : N — M be the inclusion map. Here we view a vector field X on a manifold M as an
R-linear map X : C*°(M) — C>(M) (via X(f)(p) = X,(f)) satistying X (fg) = X (f)g+ fX(g).
Then note i gives a natural map C=(M) 2 C®(N) via f — f oi. We may view i, X as the
composition i, 0 X : C*°(M) — C*°(N). Under this framework, we say X is tangent to N if we
may find some X’ : C®°(N) — C*°(N) a vector field on N such that X’ o, =i, 0 X.

Note that this framework also lets us view [X,Y] as a map [X,Y] : C®(M) — C>®°(M)
given by [X,Y] = X oY —Y o X. It is an easy exercise that [X, Y] is a vector field (i.e. is R-linear
and satisfies product rule).

Since X,Y are vector fields on M tangent to N, we may find vector fields X', Y’ on N
with X’ 04, =i, 0X and Y’ 0i, =i, 0Y. Notice

(X', Y Noi,=(X"0Y' =Y 0 XYoi,=X'0Y 0i, —Y' 0o X oi,
=X'o0i,0Y Y oi,0X=i,0X0Y —i,0YoX=i,0(XoY -YoX)=i,0[X,Y]

Thus, the vector field Z = [X,Y] on M is tangent to N, as we have the vector field Z' = [X', Y]
on M with Z' o4, =i,0Z.
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b) Tllustrate this principle by choosing two vector fields X,Y tangent to S? C R3, computing [X, Y], and
checking that it’s tangent to S2.

Take X = —yaw +x8y and Y = —zaz —|—xa Note X,Y are both tangent to S2. To see this, note
we may view 7,5 C T,R? = R? as the orthogonal complement of span(p) C R3. Note (—y,z,0)
and (—2z,0,z) are both orthogonal to (z,y, z) for any x,y, z, so that both X and Y are tangent
to S2. Now

[X,Y](z) = XY (2) - Y X(2) = X(—2) - Y(-y)=0-0=0

[X,Y](y) = XY (y) - YX(y) = X(0) - Y(2) =0—(—2) =

[X,Y](2) = XY (2) - YX(2) = X(2) — Y(0) = —y— 0 = —y
Hence, [X,Y] = za—y — Y% a . Notice (0, z, —y) is everywhere orthogonal to (z,y, z), so that [X,Y]
is also tangent to 52, as desmed.

Problem 5: A symplectic form on an eight diemsional manifold M is defined to be a closed 2 form w such
that w A w Aw Aw is a volume form. Determine which of the following manifolds admits symplectic forms:
5882 x 5582 x 52 x §2.

Note H2,(S®%) = 0, so that if w is a closed 2-form, [w] = 0. Then certainly [WwAwAwAwW] = 0 € H55(S®)
is not a volume form.

Similarly, by Kunneth, Hj,(S? x S%) = 0, so that [w A w] = 0 for any 2-form w, and so
[wAwAwAw] =0 is not a volume form.

Finally, let  be a volume form on S2. Writing m; : S? x 82 x §? x S? as projection onto
the ith coordinate, we have 7in A m3n A m5n A w4in is a volume form on S? x S? x S§% x S? via
Kunneth, since H§, (52 x 52 x §% x §%) = H2.(5?) @ H3,(5%) ® H35(5?) @ H3,(5%) 2R

Take w = wfn + wyn + 7win + w4n. We make the simple observation that 7n A wfn = nf(n An) =0,
since 17 A 7 is a 4-form on S2. Then a simple computation shows

WAWAWAw=24-min ATon AT ATy

which is a volume form, as desired.

Problem 6: Let U be a bounded open set in R? with smooth boundary, and let V be a smooth vector
field on R?. The classical divergence theorem expresses the triple integral [[[;, div(V)d(vol) as a surface
integral over the boundary of U. State this theorem, and show how it can be obtained as a particular case
of Stokes’ Theorem for differential forms.

[ See Fall 2018 Problem 5. ]
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Problem 7: Let M and N be smooth, connected, orientable n-manifolds for n > 3.

a) Compute the fundamental group of M#N in terms of M and N (assume the basepoint is on the boundary
of the sphere where M and N are glued).

We assume in addition that M, N are closed manifolds.

To construct the connect sum, we take open sets U C M and V C N diffeomorphic to
the unit ball in R”, and glue their boundaries OU = S"~! and 9V = S"~! via some diffeomor-
phism of S?~ 1.

Take A = M \ U and B = U’ some larger ball. Then AN B = S"~! and AUB = M.
Since n > 2, m(AN B) = m(S" ') = 0. Since B is contractible, m1(B) = 0. Thus,
71 (A) = 71 (AU B) by Van Kampen, so that (M \ U) = 71(M). Similarly, 71 (N \ V) = m1(N).
A manifold is homotopy equivalent to its interior, so that this also gives us w1 (M \ U) = m (M)
and m (N \ V) = w1 (V). Alternatively, just notice deleting an open ball from R™ and deleting a
closed ball from R™ are homotopy equivalent since they both deformation retract to a sphere. In
fact, if we only deformation retract things inside the sphere and keep things outside the sphere
fixed, we see one of these spaces deformation retracts to the other. Since this is locally what
our picture looks like, we get M \ U deformation retracts to M \ U’ for some slightly bigger
open set U’, and similar for N \ V. In any case, we have 7y (M \ U) = 7 (M \ U’) = 71(M) and
m(N\V)=m(N).

Next, in M#N, take A = M UUy and B = N U Uy, where Uy C N,Upy C M are col-
lar neighborhoods of the boundary of N\V and M \ U respectively. Then A =~ M\U, B~ N\V,
AUB = M#N, and ANB = Uy NUyx = S 1. Again we have m1(A N B) = 0, so that Van
Kampen gives (AU B) = m1(A) *x m1(B). So mi(M#N) = (M) * 71 (N), as desired.

b) Compute the homology groups of M#N.

Note for the open unit ball B, (R™\ B)/S™~! 2 R™, since we just glue the boundary 9B = S™~! to a point.
Thus, (M \ U)/(0U) = M and (N \ V)/(0V) = N. Hence, if we take X = U = 0V = "' C M#N,
then M#N/X =2 M V N is a wedge sum. Moreover, note (M#N, X) is a good pair via Uy U Uy from
the previous part. Thus we get from the LES for relative homology:

o = Hy(8™7Y) = Hy(M#N) = Hy(M V N) = H,_1(S"") — ...

For k # n — 1, we have Hy(S""') = 0. Thus for k # n — 1,n — 2, we immediately get Hy(M#N) =
Hyp(MV N) = Hp(M) ® Hi(N). Then we have an LES

0 — H,(M#N) — Hy,(MV N) = Z — H, _(M#N) — H, (M V N) =0

If M, N are closed connected orientable, then H,(M) = H,(N) = Z, and M#N is also closed con-
nected orientable, so that H,(M#N) = Z. By Hatcher Corollary 3.28, for closed connected ori-
entable n-manifolds, H,_1 is free. Thus, H,—1(M), Hn—1(N), Hno—1(M#N) are all free. Moreover,
H, «(MVN)=H,_1(M)® H,_1(N) is also free. We have an LES

072>~ Z— Hy 1(M#N) = H,_1(MVN)—0

so that rank counting gives Hy,_1(M#N) = H,_1(M V N). So we see

Hy,(M#N) k=n =X17 k=n

H.(MVN) 0<k<n Hy(M)® Hiy(N) 0<k<n
={Z
0 k>n 0 k>n
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c¢) For part (a), what changes if n = 27 Use this to describe the fundamental groups of orientable surfaces.

Let M = M, and N = My be genus g and ¢’ orientable surfaces. Then from the polygon
construction, we see M \ U deformation retracts to the boundary of the polygon, which is a
wedge of 2g-circles generated by a1, ...,a4,b1,...,by. Similarly, N\ V' deformation retracts to a
wedge of 2¢’ circles generated by ci, ....,cq,d1,...,dg. Taking the same sets as in part a, we
see T (AN B) — m(A), i.e. the map m(S') — m (M \U) = 7 (ST V... v S) just maps the
loop to the boundary of the polygon, which is the loop corresponding to the boundary word.
Thus, this map sends 1 € m(S') = Z to [a1,b1] - [a2,b2] - ... - [ag,by]. Meanwhile, if we orient
the boundary of N in the opposite way, then 1 € 71(S') maps to ([c1,d1] - ... - [eg/, dg/])_l. Then
Van Kampen tells us m1(M#N) is the free product of m (M \ U) = {(a1,...,a4,b1,...,by) and
m(N\V) = {c1,...,cq,d1,...,dy) modulo setting the above two images of 1 equal. That is,

Fl(M#N) = <a1, -y Ag, C1, ...,Cg/,bl, ...,bg,dl, ...,dg/\[al,bl] T [ag,bg} : [Cl,d1] Ceeet [Cg/,dglb

which is exactly the fundamental group of the genus g + ¢’ surface.

Problem 8: Determine all of the possible degrees of maps S — S* x S™.

See Spring 2010 Problem 10c. There is also a more direct way to do this: see that any such map lifts
to a map to the universal cover, giving S? — R? — S' x S'. The first of these is nullhomotopic since
R? is contractible; composing that homotopy with the projection R? — S! x S! gives a nullhomotopy
for the original map.

Problem 9: Point S? via the south pole, and consider $? x S2.

a) Describe a cell structure on S? x S? that is compatible with the inclusion S? V §% — 52 x S? as those
pairs where one coordinates is the south pole.

Give S? the cell structure with a 0-cell at the south pole, eg, along with a 2-cell ey, with des = 0.
Similarly, the second copy of S? can be given a 0-cell fy and the 2-cell f5, with df, = 0. In this
way, S2 x S? has cells eg x fo,eq X fa,e2 X fo and ea X fo. Each of these cells has boundary 0
since there are no cells of adjacent dimension.

Meanwhile, S2 v S2%, if we are to glue the south poles together, gives us cells eg = fo,
€2, fa-

The inclusion map S? V S2 into S? x S? can be seen as follows: we have a map S? < S? x S? via
x> (z, fo), and similarly a map S? < S? x S? via 2 +— (eg, z). Here e, fo denote the south poles
in the respective spheres. Then notice that these maps sends ey — (eg, fo) and fo — (eq, fo) (and
this is the only shared point in the images), so that it factors through to a map S?Vv.§? — §2 x §2.

It respects the cells, since ey = fy maps to eg X fp, ea maps to es X fy, and fo maps to
eo X fa. Thus we can see S? vV S? C S? x S? can be recognized as the subcomplex of cells
eo X fo,€0 X fo and ex X fy. Thus this is the desired cell structure.
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b) Let X be (8% x S%)Ug: D?, where we attach the 3-disk via the map S2 2, §2 v S? which crushes a great
circle connecting the north and south poles. Compute the homology groups of X.

This space has the cell structure of S? x S? with an extra 3-cell F' attached. Notice the boundary
of the 3-cell is a Z-linear combination of the 2-cells es X fg and eg X fo. By the cellular boundary

formula, to compute the coefficient of OF in ey X fy, we need the degree of S? 2 82V 8% - 52
where the second map quotients by the remaining cells. In other words, it quotients by ey X fa,
which is the face of the second sphere. This leaves behind just one sphere. Note that this map
has degree +1, since it is a local homeomorphism: the preimage of any point except for the wedge
point is size 1, and it has a neighborhood which whose preimage is homeomorphic. Thus, we see
that OF has a degree of +1 for ey X fy. A similar argument shows JF has a degree of £1 for
e X f2. We can choose an isomorphism Cy = Z?2 which ensures this is OF = (1, —1) by just picking
the two generators of Cs as d+es X fp and +eg X fy so that the signs work out. Then we have a
cell complex

0%04:Z£)C3ZZ&)02:Z2~>01:0%6’0:2%0

where all maps except J3 are zero since prior to adding the 3-cell F', everything had boundary
zero. From this we see Hy(X) = Z, H3(X) = ker(03) = 0, Ho(X) = Z?/{(1,1)) = Z via the
augmentation map (z,y) — = +y, H1(X) =0, Hy(X) = Z. Hence

Hy(X) = 7Z 1=0,2,4
! )0 otherwise

Problem 10: Let X be a semi-locally simply connected space, and let p : X — X be the universal cover.

a) Show that any map o : A™ — X lifts to a map 6 : A” — X where A" is the standard n-simplex.

Since A™ is convex, it is contractible, so that m1(A™) = 0. Hence this map satisfies the lifting

criteria o, (A") =0 C pum (X) = 0.

b) Show that if fi1, fo : A™ — X are two lifts of o, then there is an element g of the fundamental group of
X such that g o 61 = &9, where g is viewed as an automorphism of X via the deck transformations.

By Hatcher Proposition 1.34, since A™ is connected, any two lifts which agree at a point are
equal. Let 0 € A™ be a point. Define z = ¢(0). Note p(f1(0)) = p(f2(0)) = 0(0) = x. Thus
£1(0), f2(0) are both in p~'z. Note X is the universal cover, so that in particular, the group of
deck transformations 71 (X) acts transitively on the fibers. Hence we may find g € m1(X) with

g-f1(0) = f2(0).

Since po g = p, notice g.f; : A" — X is another lift of o, this time with 9.f1(0) = f2(0).
Since these lifts agree at a point, they are equal, so that g.f; = fs, as desired.

Remark: The proof of the proposition just follows from showing the set of points where
two lifts agree is clopen. It is clearly closed, and openness follows from the fact that p~'U is a
disjoint union of open sets, so that the image from a connected domain can only land in one of
them.
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18 Fall 2018

Problem 1: Let M be a compact smooth n-manifold, and f : M — R™ a smooth map. Let S ={pe M :
rank(df,) < n}.

a) Prove that S # 0.

Suppose S were empty. Then f has full rank everywhere, so that f is a local diffeomorphism.
In particular, it is an open map, so that f(M) is open and compact in R™. Thus we get a
contradiction.

Remark: More generally, submersions are open, so we can run this argument for f : M — R
with k& < dim M.

Alternative Solution: We need to add the assumption that M is without boundary.

It suffices to show every map g : M — R has a critical point, since if p € M is a critical
point of 7 o f : M — R, then d(m o f), = 0, so that (dm)¢(,)df, = 0. Since m; is linear, this
gives midf, = 0. Transposing, we get dpr 7¥ =0, so that AT = dfg has a nontrivial kernel, and
so A = df, is not invertible. (Note A is square). Thus rank(df,) < n and p is a critical point of f.

To see why every map g : M — R has a critical point, note g(M) is compact, so that g
has a global max. At the global max ¢(p), we have dg, = 0 by a standard analysis argument, so
that p is a critical point, as desired.

b) Prove that f(S) C R™ has empty interior.

The set of critical values has measure 0, so cannot contain any open sets (which have positive
measure).

Problem 2: Let M, be the space of n X n real matrices, viewed as the smooth manifold R™. Let MPF be
the subset of rank k matrices. Show that MF is a smooth submanifold of M,,.

See Spring 2013 Problem 1b.
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Problem 3: Let 0 be the restriction of (xedz) —x1dxs) +. ..+ (T2pdxon—1 — Tap—1dTa,) to the unit sphere
S27=1. Prove that ker 6 is a distribution on $?*~!. Is it integrable?

For ker # to be a distribution, we either need § = 0 or 6 is nonvanishing, as otherwise, the pointwise
dimension of ker(f) will not be constant. View S?"~! C R*" = C", and let X,, = ip be a vector field

on R?". Since p L ip, X restricts to a nonvanishing vector field on the sphere. From the coordinate
expression X = 21221 l'giﬁi_l — xgi,la%i, it is clear

2n
0(X)=> 27=1
i=1
at all points on the sphere. Thus, 6 is nonvanishing.

Meanwhile, dw = Z?ZI —2dx9;—1 N dxa;, so that

n
wAdw = Z Z 723’]216&1721‘_1 A dl’gj_l A dl’gj + 2:7}22'_1d$2i AN dej—l AN dl’gj
i=1 j#i
Note that this gives us an expansion of the 3-form w A dw in coefficients of the basis, so that we see

w A dw = 0 if and only if all coefficients are zero. This amounts to saying 1 = z9 = ... = x9, = 0.
So we see on the sphere that w A dw # 0. Thus, ker(f) is not integrable by Spring 2015 Problem 5d.

. J

Problem 4: Let M be a compact smooth 3-manifold and let w € Q'(M) be a nowhere zero 1-form, so
that ker(w) is an integrable distribution. Prove the following:

a) wAdw=0.

See Fall 2013 Problem 5. ]

b) There is a 1-form a with dw = a A w.

First we show we can find such an « locally (i.e. on some open set of a given point). Then we
may glue together such « via a partition of unity to get a globally defined form.

By linearity, since every form locally may be written as sums of terms of the form fdz
(for local coordinates z,y, z), it suffices to check the case w = fdz on this open set. Since w is
nonvanishing, f is never zero. Note on this set dw = fydx Adz + f,dy Adz. Take o = fT””dz + fT”dy
defined on this open set. Then o A w = dw on this open set, as desired. By the above remarks,
we may extend a to a globally defined form with this property.

¢) da Aw=0.

Note 0 = d(dw) = d(aAw) =daAw—aNdv=daAw—aAaAw=daAw, where a Ao =0
since these are 1-forms. Thus da A w = 0 as desired.
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Problem 5: Let M C R™ be a compact n — 1 submanifold, and let D C R"™ with 0D = M. Let

dV =dx1 A ... Adx, be the standard volume form on R".

a) Define dA € Q"~1(M), the standard volume form on M induced by the embedding i.

Let N be the outward pointing unit normal along M. Then dA = i*(iydV).

b) Prove that i*(ixdV) = (X, N)dA for any smooth vector field X on R™ (here N is the unit normal vector

field along M, point outward from D).

Write T = X — (X, N)N, so that T is tangent to M. Then notice i*(irdV),(Y1,...,Yn_1) =
(irdV)p(dipYr, ..., dipYn—1) = dVp(T,dipY1,....,diyY,—1) = 0, where we notice T and
dipY1, ..., diyY,_1 are n vectors in T,,M which is (n — 1)-dimensional, so that they are linearly
dependent. Hence

i*(ixdV) —i*(ixx,myndV) = i* (ix—(x,nyndV) = i*(irdV) = 0

Meanwhile, i* (i(x,nyndV) = (X, N)i*(indV) = (X, N)dA. Thus, we see i*(ixdV) = (X, N)dA,
as desired.

¢) Prove that [, Lx(dV) = [,,(X, N)dA.

We have
/ X, NYdA = [ i*(ixdV) = / d(ixdV) = / (Lx —ixd)dV = / LxdV
M oD D D D

where we use Lx = ixd + dix, and the fact that (ixd)(dV) = ixd*V = 0.

d) Derive Gauss’ Divergence Theorem from the n = 3 case.

Write X = P& + Q& + R£. Then
LxdV =Lx(deNdyNdz) = Lx(dzx) Ndy Adz+dx A Lx(dy) Adz+ dx Ady A Lx(dz)
=d(Lx(z)) NdyANdz —d(Lx(y)) ANdz Adz + d(Lx(2)) Adz A dy
Note Lx(f) = X(f) for a function f, so that Lx(z) = P, Lx(y) = Q, Lx(z) = R. Then
Lx(dV)=dP ANdyANdz—dQ Ndx ANdz+ dR A dx Ady
=Pydx Ndy Ndz — Qudy Ndx ANdz + R.dz ANdx Ndy = (Pp + Qy + R.)dV = div(X)dV

Hence by the previous part, we have

/D div(X)dV = / (X,N)dA

oD

as desired.
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Problem 6: Can a finite rank free group have a finite index subgroup of smaller rank?

Solution: Let X be a wedge of n circles, whose corresponding oriented loops are labeled aq, ..., a,.
Then m (X) = {(aq, ..., a,) is a free group on n generators. An index k-subgroup of 71 (X) corresponds
to a connected k-fold covering space Y of X, with 71 (Y") isomorphic to the corresponding subgroup.
Note that k-fold covering spaces of X correspond to connected graphs on k vertices, such that at
each vertex, we have one outgoing edge a; and one incoming edge a; for each i. Thus these are
connected graphs with kn edges.

Hence we have Y is a connected graph on k vertices with kn edges. For a simple connected
graph with v vertices and e edges, we may find a spanning tree with e — 1 edges, so that when this
contracts to a point, we are left with a wedge of e — (v — 1) = e — v + 1 circles. When the graph is
not simple, we may make it simple: for each loop, add a vertex in the middle of the loop. Now the
number of edges and the number of vertices has gone up by one, e — v + 1 is invariant, there are no
more loops and this is still homeomorphic to the original graph. Next, for every edge, add a vertex
in between, so that there are no multiedges, e — v + 1 is invariant and this is still homeomorphic to
the original graph. From this we see Y deformation retracts to a wedge of kn — k + 1 circles, so that
m1(Y) is free on kn — k + 1 generators.

Thus we conclude an index k subgroup of a rank n free group kn — k 4+ 1. However, we have
n>1l=k-1n>k—1=kn—-n>k—1= kn—k+1>mn. Thus a finite index subgroup
will always have smaller rank. Alternative Solution: An alternative way to compute the rank
of m(Y) is to notice x(Y) = k- x(X) = k- (1 — n) since Y is a k-fold cover of X. Meanwhile
x(Y) = rank(Hy(Y)) — rank(H;(Y)) = 1 — rank(H;(Y)). Since m1(Y)) is free of finite rank, H;(Y) is
free abelian of the same rank, so that we have x(Y) = 1 — rank(7;(Y")). From this we see 71 (Y) has
rank 1 — k(1 —n) =1—k+ kn = kn — k+ 1. The above argument then follows.

Problem 7: Prove that the covering map 7 : S™ — RP”™ induces an isomorphism on de Rham cohomology
if and only if n is odd. What is the orientation double cover of RP"?

Recall from Spring 2011 Problem 8 the homology of RP". Applying universal coefficient and de
Rham’s Theorem, we can obtain the de Rham cohomology of RP™ as

R k=0
HYp(RP") =R k=nandn is odd

0 otherwise

Of course,
R k=0,n

0 otherwise

HcIiCR(Sn) = {

Meanwhile, by the proposition in Spring 2012 Problem 9¢, 7* is injective. By dimensionality, we see
7+ HE(RP") — H%R(S™) is an isomorphism for all k& with the possible exception of k = n. In this
case, we see it is an isomorphism if and only if n is odd. Hence, 7* is an isomorphism if and only if
n is odd.

An oriented connected double cover of a nonorientable manifold which has an orientation re-
versing deck transformation must be the orientation double cover. For n even, Since 7 : S™ — RP"
has the deck transformation o — —z which has degree (—1)"*! = —1 which is orientation reversing,
we see S™ is the orientation double cover of RP" in this case. Otherwise, if n is odd, RP" is
orientable, so that its orientation double cover is RP™ LI RP™.
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Problem 8: Assume that the integral homology of a space is Z in grading 0, Z in grading 2, Z/2Z in

grading 3, and 0 otherwise.

a) What are the integral cohomology groups?

By Universal Coeflicients, we have
HY(X) = Homz(H;(X),Z) ® Ext(H;_1(X), Z)

where we set H_; = 0. Recall Fxt(A, B) = 0if A is free or projective. Otherwise, Ext(Z/nZ, B) =
coker(B = B). From this we see that the Ext term is only crucial for i = 4. Otherwise we see

H°(X) = Homg(Hy(X),Z) = 7
H'(X) = Homgz(H,(X),Z) =0
H?(X) = Homz(Hy(X),Z) = Z
H3(X) = Homz(Z/2Z,7) = 0
H*(X) = Homgz(H4(X),Z) ® Ext(Hs(X),Z) = Ext(Z/2Z,7) = coker(Z 2 7) = 7./27.

and the higher cohomology groups are zero.

b) Construct a simply connected CW complex X with the given homology.

Attach a 4-cell to S® via a degree 2 map S® — S2. This gives us a CW complex Y with a 4-cell
F, a 3-cell o and a 0-cell v, with OF = 2. Thus we have a cell complex

0—>C4:23>03:Z—>0—>0—>CO:Z—>0

from which it is clear Hy(Y) = 0,Hs5(Y) = Z/2Z,H>(Y) = 0, H,(Y) = 0, Ho(Y) = Z, and all
other homology groups are zero.

Note Y is simply connected, as its 2-skeleton is a point. Finally, Y V S? has the desired
homology (we have H;(Y V S?) = H;(Y) for i # 2, and Ho(Y V S%) = Ho(Y) ® Hy(S?) = Z). Tt
remains simply connected as Y, S? both are. Thus Y V S? is the desired space.
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c¢) Construct another simply connected CW complex Z with the same homology, which is not homotopy
equivalent to X.

Attach two 4-cells Fy, F, to SV S% = AV B via maps S® — A = S3 < AV B of degree 1 and
S3 — B = 83 < AV B of degree 2. Note then by cellular boundary formula that 0F; = A and
0F> = B. We have a chain complex

050 =722 0=723050=2Cy=Z—0

where 04((1,0)) = (1,0) and p4((0,1)) = (0,2). Then Hy4(Z) = ker(ds) = 0,
H3(Z2) = 7%/((1,0),(0,2)) = Z/2Z, Hy(Z) = H1(Z) = 0,Ho(Z) = Z, and all other ho-
mology groups are zero.

With a similar argument as before, Z is simply connected, as is Z V S?, and the latter is
the desired space.

There is one more construction that works here: it suffices to add a 2-cell to RP?* via the
attaching word a, where a is the 1-cell, and call this space W. Then we get chain complex

00C=2250=2%0=22%0=2%Cy =20

with 95((1,0)) = 2a the usual boundary, and 95((0,1)) = 1la for the new 2-cell. Now
H4(W) = O,Hg(W) = Z, HQ(W) = ker(ag) = span((l,—2)) = Z, Hl(W) = 0, HO(W) = Z.
Moreover, by Hatcher Proposition 1.26, m1 (W) = (a|2a,a) = 0. So W is yet another space with
the desired properties.

It is hard to formally determine why Y Vv S%,Z Vv S2, W are not homotopy equivalent.
SKIP!

Problem 9: Let X be a connected CW-complex. Show that there is a natural isomorphism Hy(2X; M) =
Hi—1(X; M) for all k and all abelian groups M.

See Spring 2016 Problem 9.

Problem 10: Let Y be a connected and simply connected CW-complex.

a) Compute the fundamental group of Y v S*.

We have m (Y VS = m(Y) *m(SY) = 0% Z = Z.

b) Describe the universal covering Y V S, together with the action of the deck transformations.

In general, the universal cover of a wedge A V B is an infinite bipartite tree whose vertices are
copies of A or B the universal covers of A, B, and these are glued along lifts of the base point.
In this case, Y is its own universal cover (with the base point only lifting to one point p) and S!
has universal cover R with the base point lifting to Z C R. Thus, the universal cover of Y v S! is
R with a copy of Y glued via p at € Z for every « € Z. The deck transformations are entirely
coming from the deck transformations R — S* by the calculation in part a, so that they must all
be the translations by k for k € Z.
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c¢) Describe all finite covers of Y V S', again with the action of the deck transformations.

Finite covers may be obtained from the answer in part ¢ via quotienting by the action of a finite
index subgroups of 71 (Y V S!) = Z. These are kZ C Z for k > 0. Quotienting out by this action,
we see 0 and k are identified in R, as are the corresponding copies of Y. We are left with a circle
with £ base points, with a copy of Y glued via p at each base point. Note that this corresponds
to the k-fold cover of ST, ST — S! via z — 2.

d) Describe what changes in the first two parts for Y = RP2.

For Y = RP? we have m(Y) = (ala®) = Z/2Z. Writing m(S*) = (b), we see
m (Y x SY) =1 (V) xmi(SY) = Z/2Z + Z = {(a, bla?).

Thus we see the universal cover of RP? A S' is an infinite bipartite tree of copies of R
and S? glued at lifts of the base point. Here is an alternative description following a similar
argument as the end of Fall 2010 Problem 7c. Note that RP? is the Cayley complex for Z /27, and
S is the Cayley complex for Z. In fact, X = RP? v S is the Cayley complex for G = 7)27 x 7.
Thus, its universal cover can be constructed as follows: the vertices of X are the elements of
G; we have directed edges from g to ga and g to gb for each g € G. At each vertex, follow the
relation a® (along the edges) to give the attaching word for a 2-cell. In fact, since we attach a
2-cell via a? at ¢ as well as at ga, we see we actually get a copy of S? between g and ga for each
g € G. This gives us a bunch of copies of S? connected by edges at the base points, as desired.
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19 Spring 2019

Problem 1: Let M be a smooth manifold. Show that there exists a smooth proper map f: M — R.

We follow the argument of Lee Proposition 2.28. Take a countable open cover of M, M = U2, V;
with each Vj compact. Take {1); 521 a partition of unity suboordinate to this cover. Write

f(p) = 27217 - ¢;(p). Notice that for p € M, since >372, ¥;(p) = 1, we have 1;(p) = 0 for all
j > N, for our partition of unity. Thus, 0 < f(p) < N, is also finite at p.

Notice if p & Ué\':lvj, then ¢;(p) = 0 for j < N. Hence Zj>Nz/Jj(p) = 1, and hence
flp) = Zj>Nj1/Jj(p) > N+ 1 > N. We conclude if f(p) < N, then p € U;VZIW, which is
compact by construction. Hence each f~![0, N] is compact. Hence we see if b < N € Z, then

f~([a,b]) € f71([0,N]) is a closed subset of a compact set and hence also compact. Thus, f is
proper.

Problem 2: A smooth manifold Y of dimension n is called parallelizable if there exist n linearly

independent vector fields v; on Y. Let f : R"*! — R be a smooth function with 0 a regular value, and let

M

= f~1({0}). Show that M x S! is parallelizable.

~

Recall a similar problem Spring 2010 Problem 2. Here, we have NM is trivial if and only if we
have a nonvanishing normal vector field, since M has codimension 1. Taking X = V f, we have f
is nonvanishing on M since 0 is a regular value of f, and since M is a level set fo f, we have X is
everywhere normal to M. Thus, N M is trivial, and we have as before

T(S* x M) = 75 (TS") @ m} (TM) = (S* x M x R) & 7}, (T M)

=7t (NM) @ w4 (TM) = w5, (NM & TM) = 74 (M x R"1) = 8 x M x R*H!
so that S x M is parallelizable, as desired.

Problem 3: Show that the antipodal map A : S — S™ is homotopic to the identity if and only if n is

odd.

See Spring 2014 Problem 3.

Problem 4: Prove that [Lx,Ly] = Lixy]-

First, see from Fall 2015 Problem 3 that
[Lx,iy] = ix,y]

Also recall Cartan’s magic formula Ly = iyd + diy. Finally, note that £x commutes with d. From
these observations, we get

[Lx,Ly] = [Lx,iyd+diy] = [Lx,iyd] + [Lx, diy]
= Lxiyd —iydLx + Lxdiy — diyLx
= Lxiyd —iyLxd+dLxiy —diyLx

= [Lx,iy]d+d[Lx,iy] = ix,y)d + dijx,y] = L[x,v]

as desired.
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Problem 5: Show that a closed 1-form w on a manifold M is exact if and only if |, g1 frw =0 for every
smooth map f: S — M.

See Spring 2013 Problem 2b.

Problem 6: Let f: X — Y be a smooth, finite covering map between smooth manifolds. Show that
the induced map on de Rham cohomology f* : H*(Y) — H*(X) is injective.

[ See the proposition stated in Spring 2012 Problem 9c. ]

Problem 7: Let X =[0,1] and A= {0} U{+ : n € Z,n > 1}. Show that H;(X, A) is not isomorphic
to Hq(X/A).

See Hatcher Example 1.25. Note X/A is actually the Hawaiian earring. Hatcher shows mq(X/A)
surjects onto the uncountable group II$°,Z. Since the latter is abelian, this homomorphism factors
through to give a surjective map H;(X/A) onto the uncountable group II2;Z. In particular,
Hy(X/A) is uncountable.

Meanwhile, by the LES for relative homology, we have
Hi(X) — Hi(X,A) = Hy(A) — Ho(X)

Notice Ho(X) = 0 since X is connected. Meanwhile, H;(X) = 0 since X is contractible. Hence
H, (X, A) injects into ﬁO(A). Note Hy(A) is the direct sum of one copy of Z for each path component
of A. Since there are countably many components, and the direct sum only consists of finite sums, we
have Hy(A), and hence Hy(A), is countable. Thus H;(X, A) is countable and not equal to Hy (X/A),
as desired.

We construct the aforementioned surjection below. Write I, = [=5,1/n] € X = [0,1].
Write C,, = I,,/A as the image of X + X/A. Then note C,, = S! since only the endpoints are
identified. Note X = {0} UJSZ,[-2+, 1], so that X/A = U ,C,..

n=1lnt1>n

Write B,, = [0, %H] U[2,1]. Note A C B, so that the projection X — X/B,, = C,, factors through
to r, : X/A — C,,, which is a retract onto C,. Hence (r,,)s : m1(X/A) — m(Cy) = m1(SY) 2 Z is

surjective (since 7, 04, =idp, ).

Thus we have a map 7, : m1(X/A) = [[:2, m1(Cp) = [1;2, Z given by r.y = ((r1)+7, (12)+7, -..). In
fact, 7, is surjective. To see this, let (a1, as, ...) € [[;=, Z be arbitrary. Pick aloop v, : [0,1] = C,, cor-
responding to a, € Z = w1 (Cy,). If iy, : Cp, = X/A is the inclusion, note (i,)«[Vn] = [inoVn] € m1(Chr),
and (7,)«[in © Vo] = [1n] € m(Cy).

1
Wiite 7 : I = [-2,1] = O C X/A as mu(t) = in o%(jjﬁl ) Write 7 ¢ [0,1] — X/A

ntl’n I
via 7(0) = 0 € X/A, and 7(z) = 7,(x) for € I,,. Since X = {0} US2, I, and the 7, agree on
{0} U2, OI,, = A, we see 7 is a continuous loop in X/A. Meanwhile, (r,) *x 7 = 7, € m1(C,,), which
corresponds to a,, € Z. Thus, r.7 = (a1, as, ....). Hence r, is surjective, as desired.
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Problem 8:

a) Show that any continuous map RP? — S x S? is nullhomotopic.

See Fall 2016 Problem 7.

b) Find, with proof, a continuous map f : S* x S' — RP? that is not nullhomotopic.

See Spring 2010 Problem 10b. Write T = S! x S'. We have a map ¢ : T — S? which is not
nullhomotopic. Consider the projection map 7 : S — RP2. Suppose f = 7 o g is nullhomotopic.
Write

H:T x[0,1] — RP?

with H(—,0) = f(—) and H(—,1) = ¢ the constant map for fixed ¢ € RP?.

Clearly f lifts to a map g to the universal cover of S2?, by construction. Thus
f+mi(T) C mem1(S?) = 0, so that f.mi(T) = 0.

Meanwhile, let ¢ : T — T x [0,1] for the inclusion i(x) = (x,0). Then H oi = f. No-
tice since T x [0, 1] deformation retracts to 7' = T x {0}, ¢ induces an isomorphism on .
Hence, we have H,i, = f, = 0, and 4, is an isomorphism, so that H, = 0. Picking base
point p € T, 0 € [0,1], = = g(p) € S? and [z] = f(p) € RP?, we have the covering space
7 (§%,2) = (RP? [z]) and a map H : (T x [0,1],(p,0)) — (RP? [z]), which by the lifting
criterion (Hatcher Proposition 1.33) lifts to a map K : (T'x [0,1], (p,0)) — (S?,z) with ro K = H.

Note K o is a lift of H od = f, and (K oi)(p) = K(p,0) = & = g¢g(p). Thus the lefts
K oi and g of f agree at a point, so by Proposition 1.34, K o = g. Meanwhile, K(—, 1) is a lift
of the constant map and hence is also a constant map (its image must be connected so cannot be
two antipodal points). Thus, K gives a homotopy between g and a constant map. Since g is not
null-homotopic, we get a contradiction. Thus f is not null-homotopic, so that it is the desired map.

Alternative solution: See Hatcher Proposition 1.30 - any homotopy of f with a constant
map would lift to a homotopy of g with a lift of the constant map, which must also be constant
by connectedness.
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Problem 9: Let W be the space obtained by attaching two 2-cells to S', one by the map z — z* and
the other by z — 2.

a) Compute the homology groups of W with Z coefficients.

By the standard argument, we have a cell complex
05C=2220=2%C=2-0
where by the cellular boundary formula, we have 0F; = 4e and JF; = Te as the boundaries of

the two faces. Hence, 0o is surjective, and we get Hy(W) = 0. Meanwhile, Hy(W) = Z, and
Hy (W) = ker(02). It is clear the kernel is generated by 7F; — 4F,. Thus, Ho(W) = ((7,—4)) = Z.

b) Is W homotopy equivalent to S2?

One might be tempted to compute fundamental groups, but note that by Hatcher Proposition
1.26, m (W) = (e|de, Te) = (e|e) = 0.

Skip!

Problem 10: Suppose that M is a compact, connected, orientable topological n-manifold with boundary
a rational homology sphere, i.e. H,(OM;Q) = H,(S"1;Q).

a) Assuming that n is odd, use Poincare duality (with Q coefficients) to show that M has Euler characteristic
x(M) =1.

Recall from the third proposition here that x(90M) = 2x(M). Since OM has the same Q homology
as the sphere, we have x(OM) = x(S"!) = (=1)(»=Y 41 = 2 for n odd. Thus, x(M) = 1 as
desired.

b) Assuming that n = 2 mod 4, show that the Euler characteristic of M is odd.

Write n = 4k+2. Lefshetz duality gives H;(M,0M;Q) = H"~ l(M Q)=H,— z(M Q) by universal
coefficient. Meanwhile, the LES for relative homology gives, by H J(OM;Q) = H;— 1(8M Q) =0
for i # 4k + 2,4k + 1, that H;(M,dM;Q) = H;(M;Q) for i # 4k + 2,4k + 1. Thus H;(M;Q) =
H,_;(M;Q). It suffices to notice this holds for 0 < ¢ < 2k + 1. From this we see (since top
homology of M must be zero) that

=1+ Z )i2 dimg (H; (M; Q)) — dimg Hog41(M; Q)

So it suffices to show Haopy1(M;Q) = H?***Y(M,0M;Q) is even dimensional. However,
we have a nondegenerate alternating bilinear form H2*+1(M,0M;Q) x H?**Y(M,0M;Q) —
H*+2(M,0M;Q) = Ho(M;Q) = Q given by the cup product. By a similar argument as Fall 2012
Problem 7, we conclude H?**1(M,OM; Q) is even dimensional. Thus x(M) is odd, as desired.
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