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History of the Problem

Consider the linear Schrodinger equation:

{iut+AuO

equivalently — u(t) = ey, (1)
u(0, ) = ug
where u(t, x) is a complex-valued function on spacetime Ry x Rg.

This equation is dispersive in the sense that different frequencies travel at different velocities.
Consequently, it exhibits dispersive decay of the form

- dlli_1
leug]l < 10749 g, 2)

for2 <p < oo.

Energy-Critical Nonlinear Schrodinger Equation

We study the asymptotic behavior of solutions to the energy-critical nonlinear Schrodinger equation:

(3)

4
iur + Au + |uld—2u =0
u(0, ) = uo(x) € H'(RY),

where u(t, ) is a complex-valued function on spacetime Ry x R<.

Global Well-Posedness

Estimates of this form have historically been used to prove well-posedness and scattering for
a wide variety of dispersive models. Here, we approach this problem in hindsight with well-
posedness and scattering determined first.

These are (a few of) the relevant prior results:

= Lin-Strauss '78 [5] : L°° dispersive decay for cubic NLS in three-dimensions, used to prove
scattering and well-posedness. |deas from their proof used here.

= Guo-Huang-Song '22 [3] : Previous best result for the energy-critical NLS (3). Required
initial data in H3 and did not recover the linear dependence on the initial data.

= Fan-Killip-Visan-Zhao '24 [2] : Optimal (scaling-critical) regularity result for mass-critical
NLS. Their argument is a template for the slow-decay case presented below.

Proof Idea : Slow-Decay Case (2 < p < 1)

Theorem 1 (CKSTT, RV, KM [1, 4, 6]). Fixd € {3,4} and suppose uq € H!L Inthe focusing case,
further assume that uy is radial and satisfies |lug|| ;1 < [[W{| ;1 where

W) = (1+ gasglel’) *-

Then there exists a unique global solution u € CyH. to (3) which satisfies

//Rd (t, ) 2dd+22dxdt<0( E(up)).

Moreover, there exists scattering states u+ € H?! such that

D=0
2

Hu(t)—eitAuiHH%% as t — Foo. (4)

This theorem implies that solutions to (3) scatter and hence parallel the linear evolution (1)
asymptotically. We then ask whether the decay property (2) of the linear evolution extends to
these solutions to (3). We answer this in the affirmative for optimal-regularity solutions below.

The Main Results

Theorem (K. in preparation). Fix d € {3,4} and

2<p<oo, Ifd=3
2<p<oo, Ifd=4.

Given ug € LV N H LR®) satisfying Theorem 1, let u(t) denote the unique global solution to (3).
Then

(11
Ju(®) o < Cluoll )t E ) o),

for all t € R and for some constant depending only on |lug|| 71, d, and p.

Theorem (K. in preparation). Given ug € L' N 311’2 (RY) satisfying Theorem 1 let u(t) denote the
unique global solution to (3). Then

> IPvu®)llzee < C(lluoll 12)|t|_ [uol| 11
Ne2Z
for all t € R and for some constant depending only on ||u0||31,2, d, and p.
1
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Here Py is a Littlewood-Paley projection onto frequencies ~ N and B%’Q is a scaling-critical homo-
geneous Besov space.

Lorentz Spacetime Bounds

Theorem. Fix d € {3,4}; ¢,0 > 2; and 2 < p,q < oo such that ]% +g = %. Suppose that
uy € H1(R?) satisfies Theorem 1. Then the corresponding global solution u(t) to (3) satisfies

IVull o0 < Cllunl 1)

In the case of 8 > p and ¢ > q, this further holds for the endpoints (p, q) = (2, dQ—_dZ), (00, 2).

2(d—2)
d+2

HV/ ei(t_S)A“u\ﬁu} (s)ds
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Moreover, for ¢, 0 >

< C([luoll g1)-
P L0 RxRY) "
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In this case, the decay (2) is integrable near t = 0. Due to this, we may use a relatively simple
argument adapted from [2]. We fix d = 3,p = 3 and |Jug|| ;1 < 1 for simplicity.

Proof. We define our bootstrap norm

d(3—3 1/2
lullx = sup ™27 |Juft Mip = supt™/“[lu(t)]| 3.
teR teR

Fix m > 0 and suppose |lugl| ;1 < 1 such that [jul| ;s4,12 < 1. We seek a bootstrap of the form

4
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To show (5), we recall the Duhamel formula :
t
u(t) = ePug F z/ ellt=9)2 [\u\4u} (s)ds. (6)
0
By linear dispersive decay, the linear term is acceptable :
tA
e upl| o < lluoll 2.

For the nonlinear correction, we estimate
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For the first term, we decompose |0, t) into [0,¢/2) and [t/2,t). We note that [t —s| ~ [t] on [0,t/2)
and |s| ~ [t| on [t/2,t). Because |||s|™Y2|| ;200 ~ 1 and |||t — s|7V/?|| ;2.5 ~ 1, this implies

t
/ A=A [juftu] (s)ds|| S 6171/ ullx,
0 L3

which vields the bootstrap statement (5). Taking n sufficiently small then completes the proof.

Proof Idea : Fast-Decay Case (d =3, 6 < p < o)

In this case, the linear dispersive decay (2) give a decay which is no longer integrable near 0.
We fix p = oo for simplicity and decompose [0,¢) into [0,¢/2) and [t/2,t) as done before.

For [0,1/2), we carefully apply the slow-decay case. We then estimate

tj2 t/2 /3
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For [t/2,t), we Sobolev embed before applying (2) which makes the decay integrable. Due to the
failure of endpoint Sobolev embedding, we work informally here. We then (informally) estimate

t t/2
/ A ] eyas|| < [ v [ o
t/2 Lo° 0 L
sods STVl oo pa 2 6.
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