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Abstract. Modern communication—whether through optical fibers or even a message in a bottle—must
contend with dispersion: the phenomenon in which waves of different frequencies propagate at different
velocities. While dispersion alone is well-understood, the interactions of waves with the medium introduce
nonlinear effects, resulting in complex dynamics. In nonlinear dispersive models, dispersion and the
nonlinearity compete, leading to three asymptotic behaviors, classified by which effect, if either, dominates.

In my dissertation, I investigate the precise regularity and size of initial conditions that give rise to
these distinct scenarios. To ensure broad applicability, I analyze a variety of nonlinear dispersive models,
culminating in the study of the dispersion-managed nonlinear Schrédinger equation. This equation is the
primary model of pulse propagation in long-haul optical fibers. To maintain signal integrity and counteract
pulse broadening, these fibers alternate between positive and negative dispersion materials.

When the nonlinearity dominates the dispersion, waves can exhibit turbulence, an unbounded growth in
size and roughness over time. This behavior has sparked recent interest in the continuum Calogero—Moser
model, the hydrodynamic limit of the respective particle system; see [1]. In my joint work [4], published in
Pure and Applied Analysis, | demonstrated the existence of solutions that cascade energy to ever finer scales
when exceeding a minimal mass. This result proved the sharp mass threshold for turbulence in this model.

In contrast, when dispersion is stronger than the nonlinearity, waves will spread out, decaying in height
over time. In a series of works [3, 16, [7], I proved that solutions to three fundamental nonlinear dispersive
models exhibit the strong quantitative decay of their linear counterparts. These studies assumed minimal
hypotheses and developed broadly applicable tools that have since been applied to other equations; see,
e.g., [8]. The paper [6] is forthcoming in the Journal of Differential Equations.

When dispersion balances the nonlinearity, solitons—localized waves that maintain their shape over
time—emerge as a boundary between global existence and finite-time blowup. In the latter case, waves
reach infinite height in finite time. A striking example is the dispersion-managed nonlinear Schrodinger
equation (DM-NLS), which not only serves as a fundamental model of pulses in optical fibers but also
introduces new mathematical challenges due to its rapidly varying dispersion. Unlike the classical (NLS)),
where the threshold for the existence of solutions is long-established, the theory for (DM-NLS) remains
uncertain. Despite this, my research suggests that its well-posedness theory parallels that of (NLS). This
is supported by preliminary investigations that confirm the local existence of solutions at the conjectured
regularity and instability below it. Ongoing efforts seek to strengthen these results, showing global existence
at the threshold and instantaneous norm inflation below. In doing so, I aim to clarify the limits of this widely-

used model, determining the regularity and size for which it accurately describes pulse propagation.
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Introduction. To quantify the regularity and size of waves, we use the Sobolev norms H®, which measure
the total mass of a function and its first s derivatives. For example, the H' norm is given by ||u(x) ||i(1 =
/Rd |u(x)|?+|Vu(x)|>dx. For non-integer values of s, we define fractional derivatives on the frequency side.

The majority of my work focuses on variants of the (nonlinear) Schrodinger equation:
(NLS) O+ Au+ glulPu=0, u(0,x)=up(x) € H(RY), g=-1,0,1, 0<p < .

Like most dispersive partial differential equations (PDEs), (NLS) admits a scaling symmetry, u(t,x) +—
APy (A2, Ax), that preserves the class of solutions. This symmetry defines a critical regularity: s = %l - %.
Specifically, H* becomes a dimensionless measure of size for (NLS). It is widely conjectured that this
scaling-critical regularity forms the threshold for well-posedness. Precisely, when s > s., we expect well-
posedness. That is, there exists a unique, continuous map from initial data in H® to solutions evolving
continuously in H®. If s < s, then we expect ill-posedness, indicating that one of these conditions fails.
My goal is to analyze three asymptotic behaviors—turbulence, dispersive decay, and well-posedness—

for initial data in the critical space H*<. Moreover, I seek to determine the precise size threshold at which

they occur. In doing so, I ensure that my work is optimal within the practical limitations of these models.

Project 1: Turbulence (complete). In my joint publication [4]], I investigated the continuum Calogero—
Moser model (CCM): a mass-critical variant of where |u|Pu is replaced with iuIT*0,|u|*>. Here IT*
is a projection onto positive frequencies. This model has gained recent attention due to the unexpected
interplay between complete integrability, which normally suggests control over the H® norms of solutions,
and turbulent behavior, which gives solutions that exhibit unbounded H* norm growth for all s > 0.

In [3], it was shown that solutions to (CCM) with mass less than 277 must remain bounded in H* for all
time, while solutions of mass 4 can grow turbulent. This gap raised the question of the true mass threshold
for turbulence. In [4], I answered this question by constructing solutions u(t, x) with mass 27 + &, for any
& > 0, for which ||u(t, x)||gs = |t|® forall s > 0. My proof rests on two main ingredients: an orbital stability
for the ground state (stating that solutions which begin close in H'! to the ground state must remain close)
and dispersive decay (showing that the complex extension of u(z, x) decays like |u(z, z)| < Im(z)~!|¢]7/3).
Combining these effects, I demonstrated that small perturbations of the ground state must concentrate to

increasingly fine scales on the real line, leading to H®* norm growth.

Project 2: Dispersive decay (complete). In the recent series of papers [3, (6} [7], I investigated dispersive
decay for the nonlinear wave equation (NLW), the nonlinear Schrodinger equation (NLS)), and the generalized
Korteweg-de Vries equation (gKdV) respectively. Together, these works cover the three most-studied
dispersive models and offer a broad range of tools for proving dispersive decay, synthesizing methods from

harmonic analysis and dispersive PDEs.
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Before Strichartz inequalities, quantitative dispersive estimates were the primary tool for understanding
long-time behavior. For linear models, this decay is a simple exercise in harmonic analysis which shows, for
instance, that solutions u(#, x) to the linear Schrodinger equation ((NLS)) with g = 0) disperse and decay like
lu(t,x)| < |t|~4/? [Rd | (0, y)|dy. For nonlinear models such as (NLS), (NLW), and (gKdV), the question
then becomes whether the nonlinearity interferes with the time decay of the underlying linear equation.

In [5L 6], I successfully demonstrated that solutions to and (NLW) decay at the same rate as the
respective linear models, while assuming only that the initial data belonged to the scaling-critical regularity.
This necessitated the development of detailed estimates on the fine structure of solutions, analyzing the
distribution and evolution of the amplitudes and frequencies of a wave over time.

My contribution to [7] is ongoing. Though previously released, my suggestions allowed the author
to strengthen their results to small initial data in H'/*. In an appendix to be added this month, I extend
their results to large initial data with an added negative regularity requirement. Following my work on

(DM-NLS), I would like to return to (gKdV) and sharpen this result to the critical space H 0

Project 3: Well-posedness (in progress). In long-haul optical fibers, pulse broadening poses a significant
challenge, causing bits to smear together and limiting the rate of data transmission. This is mitigated by
introducing alternating sections of positive and negative dispersion glass along the fiber. The resulting pulse
propagation is then described by the dispersion-managed nonlinear Schrodinger equation (DM-NLS).

I'am studying (DM-NLS) in the strong regime, where sections of extreme positive and negative dispersion

glass are alternated rapidly. The canonical model of this regime is the Gabitov—Turitsyn equation [2]]:

1
(GT) iOu+ Au + / e_"TA[|e”’Au|pe”’Au]d0' =0,
0
where ¢!“%u is the linear Schrodinger evolution of u up to time o. Paradoxically, the averaging over

o in both suppresses the effects of the nonlinearity and introduces novel mathematical challenges,
invalidating many methods commonly used for (NLS)). Together with the lack of scaling symmetry, this has
led to major uncertainty over the precise threshold for the well-posedness of (GT).

My working hypothesis has been that the well-posedness theory of aligns with the scaling-critical
threshold H*< of the classical (NLS). As evidence, I have established local well-posedness in H*<, proving
that solutions exist for short times and depend smoothly on the initial data. Moreover, I have shown that for
s < Sc, is mildly ill-posed, in the sense that solutions fail to depend smoothly on initial data.

In my ongoing project, I am working to strengthen the well-posedness at H*¢ by demonstrating the global
existence of solutions. To do so, I am separating the evolution of low and high frequencies, using energy
conservation to control low frequencies and forcing high frequencies to evolve linearly. The remaining task

is to control the interactions between these regimes. I am also working to demonstrate a stronger form of
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ill-posedness in the case s < s., namely instantaneous norm inflation. This demonstrates a failure of even
continuous dependence on initial conditions by constructing solutions with arbitrarily small initial H* norm
that grow arbitrarily large, arbitrarily quickly. To accomplish this, I am considering the small-frequency
limit of the model (where e/““u ~ u) in which has explicit solutions that grow like ||¢(?)|| s ~ [f]°.

The remaining challenge is to commute this growth through the small-frequency limit.

Future work. Having worked in all three main themes in dispersive PDEs, I am well-prepared to continue
investigating the rich dynamics of these models. Looking forward, I am interested in studying how dispersion
and the nonlinearity can be balanced to benefit communications, namely in the production of solitons in
(DM-NLS) and (GT)). My foray into this topic begins with the question of scattering for (GT), which
compares the asymptotic behavior of solutions to to those of the linear Schrodinger model. In much
later projects, I aim to incorporate additional methods used in optical fiber communication, such as optical

amplification, where pulses are periodically amplified to combat signal attenuation.

Dissertation Timeline.

March 2025 — April 2025 | Strengthen well-posedness threshold for (GT))
May 2025 Write and submit paper on sharp well-posedness of (GT))
Begin work on scattering for (GT))
June 2025 — August 2025 | Draft application materials for postdoctoral grants and positions

September 2025 Write and submit paper on scattering for (GT).
October 2025 Activate dissertation year award
Write introductory material for CCM section of dissertation
November 2025 Interview for postdoctoral positions. Revisit dispersive decay for (gKdV).

Dec. 2025 — Jan. 2026 | Write introductory material for dispersive decay and sections
Feb. 2026 — March 2026 | Edit and finalize dissertation. Begin work on amplified (DM-NLS).

April 2026 Write and submit midpoint report for DYA
June 2026 Defend and submit my dissertation.
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