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Linear Schrodinger Equation

We recall the linear Schrodinger equation,

iut —+ AU = O
u(0,x) = up € L2(RY).

Taking a spatial Fourier transform, we quickly find

u(t, x) = e™ug(x).



Dispersive Decay

We recall
e f |2 = |||l (conservation of mass)
o 1 1
HeltAf”Lp S ‘tlfd(§75> HfHLP' for 2<p< oo
||e"tAf|]Loo < ‘tr%HfHLl (from fundamental solution)



Energy—Critical Nonlinear Schrédinger Equation

We consider the asymptotic behavior of solutions to the
energy—critical nonlinear Schrédinger equation:

iuy + Au + ]u|ﬁu:0

L) (1)
u(0, x) = up(x) € H*(RY),

where u(t, x) is a complex—valued function on spacetime R; x RZ.
With this convention, + represents the focusing equation and —

the defocusing.

We say that u € CtFl)} is a solution if

4

t
u(t) = By i / (=9I [|y]7%2 4] (5)ds. 2)
0



Well-Posedness

Theorem (CKSTT ’04, RV '05, KM ’06 [1, 6, 8])

Fix d = 3,4 and let uy € H'. In the focusing case, assume that
lluoll g < |W|| g where

1 2 52

In the d = 3 focusing case, further assume that ug is radial.

Then there exists a unique global solution u & Ctl-'l)% to (1) which
satisfies

2(d+2)
/ lu(t, x)| =2 dxdt < C(||uo|| pn)-
R JRI



Scattering

Corollary (Scattering)

Suppose that ug € H' and satisfies Theorem 1. Then there exists
scattering states uy € H! such that

Ju(t) — e™url;n =0 as t— oo.

Intuitively, this says that the nonlinear equation parallels the linear
Schrodinger equation.



The Main Theorem

Theorem (K. in preparation)
Fix d = 3,4 and

2<p<oo, ifd=3
2< p<oo, Iifd=4.

Given ug € LP' N HY(RY) satisfying Theorem 1, let u(t) denote
the unique global solution to (1). Then

_ 1 1
la(Oller < Cluoll )1t~ G5 ugll

for all t € R for a constant depending only on ||ugl| 1, d, and p.



The Main Theorem (Edge Case)

Theorem (K. in preparation)

Given ug € L1 N 311’2(R4) satisfying Theorem 1, let u(t) denote
the unique global solution to (1). Then

Ju(t)| < C(Hu0||31172)|t‘_2”u0”L1
for all t € R.

Here 311’2 is a homogeneous Besov space defined by
2
luollgz = > N|[Pyuollz,
Ne2Z
where Py is a Littlewood—Paley projection onto frequencies ~ I,

Note that 8112 < HL.



The Main Theorem (Edge Case)

Corollary (K. in preparation)

Fix some € > 0. Given ug € L* N H*¢ N H1=¢(R*) satisfying

Theorem 1, let u(t) denote the unique global solution to (1).
Then

lu(®)llege < C(lluoll v luoll pa—e )£~ ol -



Historical Works

Theorem (Lin—Strauss '78, [7])

For smooth initial data ug € H>(R3), satisfying additional decay
properties, let u(t) denote the maximal solution to cubic NLS.
Then for all times of existence,

1

< __ -
‘U(t,x)’ ~ 1 + ‘t‘3/2

uniformly in x.

Similar estimates used to prove global well-posedness for such
smooth initial data and to show scattering.



(Lin—Strauss '78, [7]) : L™ dispersive decay for cubic NLS in R3,
used to prove scattering and well-posedness. Ideas from their proof

used here.

(Hogan—K. '24, [5]) : Similar result for CM-DNLS in the upper
half plane. Requires high-regularity and additional spatial decay.

(Fan=Zhao 20 [3], Guo—Huang—Song '22 [4]) : Same result for
energy-critical NLS, requires ug € H3 N L' and does not recover
the linear dependence on initial data.

(Fan—Killip—Visan—Zhao '24, [2]) : Scaling-critical result for
mass-critical NLS. Their proof forms a template for our base case.
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Lorentz Spaces

Definition (Lorentz space)

Fixd>1;0< p <oo; and 0 < g < oco. The Lorentz space LP9
is the space of measurable functions f : R — C which have
finite quasinorm

)

Flleauey = 9| Al {x € RY : ()] > AP

L9((0,00), %)

where | * | denotes the Lebesgue measure on RY.
Remarks.

e [PP — [P

e For any p > 0,
x|7Y/P e LP(R).
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Lorentz Spaces

Holder’s inequality. Given 0 < p, p1, p2, g, g1, g2 < 0o such that
1

_ 1, 1 1_ 1, 1
p_p1+pz andq_q1+q2
g llra S [[flleran ||g][Lrzea

Young’s inequality. Given 1 < p, p1, p> < 0o and
0<4q,q1,q2 < o0 such that%%—l:%—l—é and%

1, 1
q1+q2’

I gllra S I fllervan llg ]l Loaee-
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Lorentz-lmproved Dispersive Decay

Applying Hunt's interpolation inequality, for all 0 < 6 < oo,

le®2Fllz = [If]le2
. 11
HeltAfHLP’e g ’t‘fd(§75> HfHLP/ﬁ for 2<p< oo

i _d
le™ Fllee S 18172 Fl1a
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Lorentz—Strichartz Estimates

Proposition (Nakanishi '01)
Suppose that 2 < p,q < oo satisfy

Then,

HeitAfHL’t”2Lg’2(RXRd) Sp,q ||fHL2(]Rd).

Moreover for all 0 < 0, ¢ < oo,

t
H / e (t=)AF(s x)ds
0

Se.a 00 1Fllp0,d0 (g pay:

LPO L3P (RxRY)

14



Lorentz—Strichartz Estimates

Proof. We proceed via a TT* argument. Define T : 12 — [P?19?
by
[TF](t,x) = [e"21](x).

Therefore TT* : LP219% 5 [P213? is given by
[TT*FI(t, x) = / B F(s ) ds.

To prove the first claim, it then suffices to show that TT* is
bounded from L2132 — [P2[ 32

ii5)



Lorentz—Strichartz Estimates

Proof continued. To show that TT* is bounded, we estimate

directly. By definition,

H[TT*F](t,x)
LP2 LI (RxRY)

(dispersive decay) <

(Young's) <

/ e t=)AF(s x)ds

1
/ ¢ — 5| G D||F(s, ) .05
X Lp2

t

Ltd(jiz) R H F(S’ X) HU;’,ng/,Q

LP2LI?(RxRY)

oG

< NF (2l iz g

Which completes the first claim.
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Lorentz—Strichartz Estimates

Proof continued. To show that TT* is bounded, we estimate
directly. By definition,

H[TT*F](t,x)

= / e/ (t=9)AF (s, x)ds

LP?LI?(RxRY) LP2LI?(RxRY)

1 1
(dispersive decay) < / |t — S’id(iia)HF(S,X)HLq/,zdS
X Lp2

t

(Young's) < \t]id(%fé)

Ltd(jiz) 0 H F(S’ X) HU;’,ng/,Q

S IF (2l g

Which completes the first claim.
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Lorentz—Strichartz Estimates

Proof continued. For the second claim, we argue similarly:

t
’ / e t=AF(s x)ds
0

2?1 3¢(RxRY)
_d(i_1
S| [1e- s 1,00
X Lfg

)

Ltd(jiz),oo HF(S, X)HLF;,"GLQ'@

S IF(s 2 1o

Which completes the proof of the proposition. O
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Spacetime Bounds

Theorem
Fix d = 3,4. Suppose that 2 < p,q < oo satisfy

2,d_d
p q 2

and that ug € H'(R?) satisfies Theorem 1.

Then for all 6, ¢ > 2, the corresponding global solution u(t)
satisfies

IVull p.o,9.0 < C([luoll)-

2(d—2)

Moreover, for all 0,¢ > =77,

t .
Hv/ e/ (t=IA[| |72 u] () ds
0

< C(lluoll2)-
LP?12?(RxRY)
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The Main Theorem

Theorem (K. in preparation)
Fix d = 3,4 and

2<p<oo, ifd=3
2< p<oo, Iifd=4.

Given ug € LP' N HY(RY) satisfying Theorem 1, let u(t) denote
the unique global solution to (1). Then

_ 1 1
la(Oller < Cluoll )1t~ G5 ugll

for all t € R for a constant depending only on ||ugl| 1, d, and p.
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Slow Decay Case : (2 < p < 2%)

Proof. We fix p = 3, d = 3 for concreteness.

For simplicity, we work with the additional assumption that
lullgagze S IVl sz < Cluoll) <

for n sufficiently small.

We define
1
|ullx = sup|[t|2[|u(t)][.3-
teR

We seek a bootstrap of the form*

lullx S CQloll ) [eoll e +¥llullx]. 3)

20



Slow Decay Case : d =3,p =3

Proof continued. Recall the Duhamel formula:
t
u(t) = e'fAuo:Fi/ e t=)A[[u|*u] (s)ds. (4)
0

By linear dispersive decay,
le™ uollx < [luolla

and so the first term is acceptable.

21



Slow Decay Case : d =3,p =3

Proof continued. For the nonlinear correction, we estimate

H/ i(t=s)A u\4 /]t—s Hu HL3/2dS

< /O !t—5\’5HU(S)HLgHU(S)IﬁgdS
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Slow Decay Case : d =3,p =3

Proof continued. For the nonlinear correction, we estimate

H/ i(t=s)A [Ju]*u]( /]t—s Hu HL3/2dS

SHMyAU—ﬂ2M2W$N@$

t/2 t " . .
=ww{/ +/]rvavmmnmﬁ
0 t/2 x

22



Slow Decay Case : d =3,p =3

Proof continued. For the nonlinear correction, we estimate

H/ E=)A Tyl u]( ds / It — %Hus(s)HLg/zds

< Ilullx /0 |t—5|_5|5|_5||U(5)||i;2d5
t/2

/ " t
~||uux\rrl/2[/ ERES IS ]u u(5) s
0 t/2

S Nullxle =2 151742 s llulfaa g

Overall, this implies

lullx < Nluolls/2 +n*llullx-
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Slow Decay Case : d =3,p =3

Extension to large data. We decompose R into J = J(||uo|| g1, 7)
many intervals /; = [T;_1, T;) such that
el igsigmsy < -

We introduce a new bootstrap norm

lullxcry = sup_[¢[*/2[u(t)ll,z
te(

i

Then for t € /;, the previous argument shows

lullxry < Cllluoll ) [lleoll 52 + Nlullxr;_yy + 7 lullxry] -

Choosing 7 sufficiently small and the iterating over j concludes the
proof the theorem.
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Dimension 3 - Fast Decay Case : 6 < p <

Proof. We fix p = 0o, d = 3 for concreteness.

For simplicity, we work with the additional assumption that
lull sagss < 1V ell g5 < C(luoll i) <

for n sufficiently small.

We define
3
ullx = sup|[t|2[|u(t)]| e
teR

We seek a bootstrap of the form

lullx S CClluoll 2 [luoll s + n*llullx |- (5)
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Fast Decay Case : d =3,p=3

Proof continued. Recall the Duhamel formula:
t
u(t) = e'fAuo:Fi/ e t=)A[[u|*u] (s)ds. (6)
0

By linear dispersive decay,

™ uollx < luoll

and so the first term is acceptable.

For the nonlinear correction, we decompose
[0,8) =[0,£/2) U[t/2,¢1).
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Dimension 3 - Fast Decay Case : p =

Proof continued. Consider the early-time interval [0, t/2).
t/2 t/2
H/ e’(t’s)A[|u|4u} (s)ds g/ |t — 5\73/2Hu5(5)HL1d5
0 L 0 x
t
- 15 10/3
S |32 / 21 (o)) %2
0
t/2
B 5/3 10/3
S A P A PO

t/2
2/3 — 10/3
S 12 ol [ 1517570 )] et

10/3
S C(HUOHHJM 3/2HUOHL1H H 120:10/315/2

-3/2
S Clluoll o)1=/l uoll -
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Dimension 3 - Fast Decay Case : p =

Proof continued. Consider the late-time interval [t/2, t).

t
H/ e"(t*S)A[|u|4u] (s)ds <
t/2

_ /O-t/Z HVGI(FS)A Uu\4u} (S)HLEdS

Lz

~

t
</ t = s Y2[|Vu(5)]| 512l
t/2 *
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Dimension 3 - Fast Decay Case : p =

Proof continued. Consider the late-time interval [t/2, t).

t
H/ et~ u|*u] (s)ds
t/2

t
S lollxlel 72 [ e o219l oot
t

t
< / |t‘—S’_l/QHVUS(S)HLszdS
Lge t/2 x

S lullxe173/2| 19l 2wl

L2'0,t/2)

< Cllluoll go)llullx e~ ]ul3es 10
Along with the linear evolution, this yields

lullx S CQllwollze) [ lluolles + nPllullx)-

27



Dimension 4 - Fast Decay Case : 4 < p < ¢

Ideas. Fix p = oo for example only. Consider the early-time
interval [0, t/2).

t/2
H/ =9 |uPu] (s)ds
0

2 t/2 3
SI? [ ) o

o 0 *

t/2

— 15/7 6/7
S|t /0 lu(s) 12572 lu(s)1 34 ds
2 o2 6/7 6/7
< C(lluoll )l eI~ HUoHLl/O 5=/ |u(s)I74 ds
— 6/7
< Cllluoll el 2 luolluxlll %% -
t X

. g 3
Fix - u3(s) _ |:e’5AU0 = i/ ei(s—7)A UU’ZU] (r)dr
0

itA £)13 2
Lemma. |e" Flizs, S NNl 1 28



Dimension 4 - Fast Decay Case : 4 < p < ¢

Ideas continued. Consider the late-time interval [t/2, t).

i3
S /
Lgo Jt/2

't
S / \t—s|_1HVU3(s)HL4/3ds.
t/2 *

H /t/t2 el(t=)A [|u|2u] (s)ds ’Ve"(tfs)A [|u|2u} (S)HLidS

For p < oo, this argument works and completes the proof for
d=4.

29



The Main Theorem (Edge Case)

Theorem (K. in preparation)

Given ug € L1 N 311’2(R4) satisfying Theorem 1, let u(t) denote
the unique global solution to (1). Then

Ju(t)| < C(Hu0||31172)|t‘_2”u0”L1
for all t € R.

Here 311’2 is a homogeneous Besov space defined by
2
luollgz = > N|[Pyuollz,
Ne2Z
where Py is a Littlewood—Paley projection onto frequencies ~ I,
Note that 8112 — H
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Ideas. It remains to consider the [t/2,t) piece. We localize in
frequency and introduce a cutoff B > 0 :

t
’/ 't~ py [|uf?u](s)ds
t

/2 Loo
t—B t .
< (/ —|—/ >He’(tS)APNUu]2u](s)HLoods
t/2 t—B X
t—B

5/ \t—s|72HPNUu]2u](s)HL1ds
t/2 X

+/tB N2 Pu[[uf2u] (5) ], .

Optimizing in B and summing over N, we find that

t 2
H//2 e (t=IAJuPu] (s)ds| < yu|yx< 3 /\/HPNUHL?OL%)
t oo

Lg Ne2Z
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Besov Spacetime Bounds

Proposition

Suppose p, q satisfy

and that ug € 31’2(R4) C HY(R*) satisfies Theorem 1. Then the
) to

corresponding global solution u(t (1) satisfies

> Nupllpegs < C(lluoll g2.2)-

Ne2Z
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Ideas continued. As shown,

t .
H / el(t=)A [|u|2u] (s)ds
t/2

2
S llullx C(lluoll gr2) < n”llullx
Lg
Which yields the bootstrap statement

lullx S Clluollg22) [luollx + P ullx].

and concludes the proof for small initial data ug € 311’2.

33



Extension to Large Data

Problem : We have

t
H/ e't=)8 py [uf?u] (s)ds
t/2

2
< ru|rx< 3 N|PNu||L;OLg) |
Lge

Ne2Z

L?° does not imply any decay in t. Therefore, we cannot
decompose R into intervals / on which

Z N[[Prullrger2(1xmrey < 1.
Ne2Z
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Extension to Large Data

Solution : Induct on the size of wug.

Suppose that the decay holds for |ug| 412 < R. For some small
1
e > 0, we consider initial data of the form

up = %) + wo
~— ~—
||V0||311,2§R ||Wo||311,2§€

With corresponding solution
u(t) = v(t) + w(t)
where
ivi + Av + |v[Pv = 0
iwe + Aw £ (v + wl*(v + w) — |v]?v) = 0.

~~cubic
35



Besov Stability

Proposition

Fix 2 < p,q < oo which satisfy
2 4

+==2.
P q

Suppose that ug, vo satisfy Theorem 1 and ||ug| g12, |[vol g12 < R.
1 1
Then the corresponding solutions u(t), v(t) to (1) satisfy

> IV (un = vi)llzrs < C(R)uo — vol[ gr2-
Ne2Z
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This method relies largely on scattering, Strichartz estimates, and
the resulting spacetime control.

It is our hope that this can be generalized to many dispersive
PDEs which exhibit global spacetime bounds strong enough to
imply scattering.
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Thank youl!
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