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Abstract. We study the application of complex analysis, particularly conformal map-
pings, to the problem of solving for an electric potential subject to Dirichlet boundary
conditions. By conformally mapping a region of interest to a simpler region with ex-
ploitable symmetries, we are able to solve increasingly difficult electrostatic problems
with minimal effort. Though a relatively standard technique in physics, this paper aims
to provide a rigorously defined mathematical foundation for the method, which is often
lacking in a physics-focused source.

1 Introduction

The purpose of this paper is to establish a method of using conformal maps to solve
electrostatics problems in two dimensions. Questions of the existence of electric fields
satisfying certain boundary conditions are not addressed, with a focus instead on taking
existing solutions and transforming them to other domains.

The paper will begin with a brief overview of electrostatics, emphasizing the importance
of Laplace’s equation and its consequences. From there, the complex electric potential
will be introduced and results following from complex analysis will be shown. Finally, the
method of applying conformal maps to solve electrostatics will be shown and generalized
to three dimensions. The paper will conclude with a simple example demonstrating the
ability of conformal maps to reveal symmetries.

1.1 Note on Notation

The problem of solving for electric fields or potentials can be made more general by
working in the one point compactification of Rn or C. To this end, we denote the one
point compactifications of Rn and C, respectively, by R2

∞ and C∞.

2 Electric Potential

Given a fixed charge distribution, ρ, over a subset of Euclidean space, electrostatics is
concerned with computing the electric field generated by said charge distribution. Given
that the magnetic field and time-dependent charge distributions are considerations of
electrostatics, Maxwell’s equations [2] imply that electrostatics is governed by

∇ ·E =
ρ

ε0
∇×E = 0

Where ε0 is the permitivity of free space.
The second condition, that E is curl-less, is equivalent to the condition that E can be

expressed as the gradient of a scalar potential, V : R2 → R. This equivalence follows from
Poincaré’s lemma that states that all closed forms on R2 are exact, a result which extends
to vector fields such as E. Therefore, the problem of computing E given a charge distri-
bution is reduced to computing the electric potential V , from which E can be easily found
as E = −∇V . The negative sign here is convention arising from physical considerations,
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as the electric potential additionally represents electric potential energy per charge and
the electric field should follow the direction of maximal energy decrease.

By restricting our domain, we may further work with the assumption that there are no
charges in our area of interest. Therefore, we will work entirely in the case where ρ = 0
on our domain. This restriction does not greatly limit practical applications, as electric
fields are largely non-useful at points of charge. In this case, Maxwell’s equations restrict
to the forms ∇ ·E = 0 and ∇×E = 0. When the electric field is expressed as E = −∇V ,
these equations restrict further to only Laplace’s equation, which is as follows.

Definition 2.1 (Laplace’s Equation).

∇2V = 0

It should be noted that Laplace’s equation is relevant to the study of heat conduction,
gravitation, fluid dynamics, and many other areas of interest. Therefore, while this paper
is intended for electrostatics, it can be expanded easily to many areas. The study of
solutions to Laplace’s equation in general is referred to as potential theory.

By definition, satisfying Laplace’s equation is equivalent to being harmonic. With this
in mind, we establish the following definition of an electric potential in Rn

∞ and C∞,

Definition 2.2 (Electric Potential). Let D be an open subset of Rn or C and let D be
the closure of D in Rn

∞ or C∞ respectively. A function V : D → R is said to be an electric
potential on D if V is harmonic on D and continuous when approaching the boundary of
D from the interior. That is to say that for all sequences (xn) ⊂ D such that xn → x ∈ D,
limn→∞ f(xn) = f(x).

This definition is not concerned with whether an electric potential is physically realiz-
able, as that question is far broader than the scope of this paper. Rather, it establishes
electric potentials as a solely theoretical concept.

2.1 Boundary Conditions

Suppose there exists an open, simply connected region D ⊂ Rn that we wish to solve
for an electric potential on. In order to have an interesting solution, there must be some
boundary condition on ∂D ⊂ Rn

∞. Moreover, in order for this system to have physical
significance, the boundary condition must be sufficiently strong so that it gives a unique
solution on the interior.

Physical reasoning would imply that the specification of the electric potential or electric
field on the boundary should give a unique solution on the interior. Therefore, in order
to ensure that Laplace’s equation has a unique and well-behaved solution, two types of
boundary conditions are usually specified : Dirichlet or Neumann boundary conditions.
Dirichlet boundary conditions correspond to specifying the value of the potential on the
boundary and Neumann boundary conditions specify the normal derivative of the poten-
tial, which is equivalent to specifying the electric field. For our purposes, we will restrict
our focus to Dirichlet boundary conditions as they are the most natural. However, the
theory developed can easily be extended to Neumann boundary conditions.

3 Complex Electric Potential

Electrostatics can be done entirely working with real spaces and real functions. However,
expanding to complex functions and converting to complex spaces can reveal elegant and
simple proofs that are more enlightening than their real counterparts. To that end, we
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will work on subsets of C rather than the classic subsets of Rn. Note that the definition
of a harmonic function and the electric potential remain the same. In order to access
the elegance of complex analysis, we further wish to expand the real, harmonic electric
potential to a holomorphic function. To do so, we establish the following theorem.

Theorem 3.1 (Extension from Harmonic to Holomorphic). Let there exist an open, simply
connected O ⊂ C. Let V : O → R be a harmonic function. Then there exists a holomorphic
function φ : O → R such that Reφ = V where φ is unique up to an imaginary constant.

We call φ the holomorphic extension of V and we call the imaginary part of φ a har-
monic conjugate of V .

Proof. This proof is shown in Donald Sarason’s ”Notes on Complex Function Theory” [3].
For completion, we present a version here.

Define f : O → C as f = ∂V
∂x − i∂V∂y . We first aim to show that f is holomorphic. By

the harmonicity of V , ∂V
∂x ,

∂V
∂y are continuously differentiable. Therefore, to show that f is

holomorphic, it suffices to show that the Cauchy Riemann equations are satisfied. By the
harmonicity of V and the symmetry of mixed partials,

∂2V

∂x2
+

∂2V

∂y2
= 0 =⇒ ∂

∂x

(
∂V

∂x

)
=

∂

∂y

(
−∂V

∂y

)
∂2V

∂y∂x
=

∂2V

∂x∂y
=⇒ ∂

∂y

(
∂V

∂x

)
= − ∂

∂x

(
−∂V

∂y

)
Therefore f satisfies the Cauchy-Riemann equations and thus is holormorphic.

Using f , we will now construct a holomorphic extension of V . Because f is holomorphic
on a simply connected domain, there exists a holomorphic function φ on O such that
φ′ = f . By adding a constant, we may assume that φ(z0) = V (z0) for some z0 ∈ O.
We claim that Reφ = V . To show this, we split φ into real and imaginary parts, α
and β respectively. Because φ is holomorphic, dφ

dz = 2∂α
∂z where ∂

∂z is the Wirtinger
derivative. Manipulating this with the Cauchy-Riemann equations, we find the following
two equalities.

dφ

dz
=

∂α

∂x
+ i

∂β

∂x
=

∂α

∂y
− i

∂α

∂y

Comparing this with the fact that φ′ = f , we find that ∂α
∂x = ∂V

∂x and ∂α
∂y = ∂V

∂y . Therefore,

Reφ and V differ by a constant. As we defined φ such that φ(z0) = V (z0), this implies
that Reφ = V . Therefore, φ is a holomorphic function with real part V , and so is a
holomorphic extension of V .

We now aim to show that φ is unique up to a constant. Suppose there exists a holomor-
phic φ∗ such that Reφ∗ = V . As the complex derivative can be completely expressed by
the partial derivatives of the real part, this implies that φ and φ∗ have the same derivative
and therefore differ by a constant. As their real parts are equal, this constant must be
purely imaginary. □

From this extension, we define the complex electric potential as follows

Definition 3.2 (Complex Electric Potential). [1] Let there exist an open D ⊂ C and let
D be the closure of D in C∞. Suppose that there exists an electric potential V : D → R.
We define the complex electric potential on D associated with V to be the holomorphic
extension Φ : D → C of V .
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By theorem 3.1, we know that the complex electric potential is well-defined and unique
up to an imaginary constant for any electric potential. Moreover, as the real and imagi-
nary part of any holomorphic function are harmonic, any holormophic function uniquely
generates two electric potentials. Therefore, the problem of finding an electric potential
on some region with given boundary conditions is equivalent to finding a holomorphic
function whose real or complex part satisfies the same boundary conditions.

3.1 Consequences of Holomorphic Extension

By working with the complex electric potential, we now have access to the tools of
complex analysis when solving electrostatics. From this, basic properties of holomorphic
functions can imply powerful properties of electric fields. For our purposes, the most
important of these is the uniqueness of the electric potential, which will follow from the
uniqueness of the complex electric potential. In order to prove the uniqueness of the
complex potential, we first must remind the reader of the open mapping property and
then show the maximum modulus principle of holomorphic functions.

Lemma 3.3 (Open Mapping Property). Let f be holomorphic and non-constant on some
open, connected U ⊂ C. Then f is an open map.

Proof. As this result is only used to show the maximum modulus principle, which is then
used to show the uniqueness of the complex electric potential, we omit this proof for the
sake of compactness. We direct the reader instead to Stein-Shakarchi’s proof of the same
result in Theorem 4.4 [4]. □

With the open mapping property, we may prove the maximum modulus principle of
holomorphic functions as follows.

Lemma 3.4 (Maximum Modulus Principle). Let f be a holomorphic function on an open
connected U ⊂ C. Then either f is constant or |f | does not attain a local maximum on U .

Proof. Suppose that f is non-constant and suppose for the sake of contradiction that |f |
attains a local maximum at z ∈ U . Then there exists some open B ⊂ U such that z ∈ B
and |f(w)| ≤ |f(z)| for all w ∈ B.

Consider f(B). Because |f(w)| ≤ |f(z)| for all w ∈ B, f(B) ⊂ D(0, |f(z)|). As
f(z) ∈ f(B), this implies that there does not exist an open neighborhood of f(z) contained

in f(B), as any neighborhood of f(z) will extend outside D(0, |f(z)|). However, this
contradicts the fact that f(B) is open by the open mapping property. Therefore our
supposition was incorrect and |f | does not attain a local maximum on U . [4] □

With the maximum modulus principle, we may now establish the uniqueness of complex
electric potentials as follows.

Theorem 3.5 (Uniqueness of Complex Electric Potential Given Boundary Conditions).
Let D be an open, simply connected subset of C and let ∂D be the boundary of D in C∞.
Let Φ be a complex electric potential on D satisfying the boundary conditions Φ0 on ∂D.
Then Φ is the unique complex potential satisfying the boundary conditions Φ0.

Proof. Suppose there exists complex electric potential Φ,Φ∗ on D satisfying the boundary
conditions Φ0. Then Φ−Φ∗ : D → C is holomorphic on D and 0 on ∂D. As |Φ−Φ∗| = 0
on ∂D, either |Φ − Φ∗| is constant on D or |Φ − Φ∗| attains a local maximum on D. By
the maximum modulus principle of holomorphic functions, |Φ−Φ∗| does not attain a local
maximum on D. Therefore, |Φ − Φ∗| is constant on D. By continuity, this implies that
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|Φ−Φ∗| = 0 and so Φ = Φ∗. This implies that Φ is the unique complex potential satisfying
Φ0. □

By relaxing the boundary condition to solely a condition on the real part of Φ, we find
that Φ is unique up to an imaginary constant. Therefore, by chasing uniqueness, this has
the immediate corollary of

Corollary 3.6 (Uniqueness of the Electric Potential). Let D ⊂ C be open and simply
connected and let ∂D be the boundary of D in C∞. Let there exist V0 : ∂D → R and
suppose that there exists an electric potential V : D → R satisfying V0 on ∂D. Then V is
unique.

Continuation of Electric Potential

Though not strictly required for the purposes of this paper, we can use the holormorphic
extension to show the interesting result that any electric potentials agreeing on an open
subset of a connected set must agree everywhere. To do so, we can use the similar property
of analytic (holomorphic) functions.

Lemma 3.7 (Analytic Continuation). Let O be an open, connected subset of C. Let
f, g : O → C be holomorphic functions. If f and g agree on some non-empty, open subset
of O, then f = g on O.

Proof. The reader is directed to Stein-Shakarchi’s proof of this in Corollary 4.9 [4]. □

By utilizing the complex electric potential, we can extend this result to electric poten-
tials.

Theorem 3.8 (Harmonic Continuation (Uniqueness of Electric Potentials)). Let O be an
open, connected subset of C. Let V1, V2 be electric potentials (harmonic) on O. If V1 and
V2 agree on some non-empty, open subset of O, then V1 = V2 on O.

Proof. Suppose that there exists some nonempty, open subset D ⊂ O such that V1 = V2

on D. Let Φ1,Φ2 be complex electric potentials associated with V1, V2 respectively on O.
Let there exist some z0 ∈ D. Because ReΦ1 = ReΦ2 on O and a complex potential can
be adjusted by an imaginary constant while remaining associated to an electric potential,
we may assert that Φ1(z0) = Φ2(z0). Because ReΦ1 = ReΦ2 on O and the complex
derivative can be written entirely as a function of the real part, Φ′

1 = Φ′
2 on O. Therefore

Φ1 and Φ2 differ by a constant on O. As Φ1(z0) = Φ2(z0) for some z0 ∈ D, this implies
that Φ1 = Φ2 on D. Therefore, by analytic continuation, Φ1 = Φ2 on O. This implies
that V1 = ReΦ1 = ReΦ2 = V2 on O. □

This has the interesting implication that any electric potential is globally defined by its
local behavior.

4 Conformal Mappings

For our purposes, we establish the following definition of a conformal map

Definition 4.1 (Conformal Map). A map f : U → V where U, V ⊂ C∞ is conformal if
it is a holomorphic map with holomorphic inverse. This is equivalent to being a complex
diffeomorphism and is sometimes called a biholomorphism.
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Some sources generalize conformal maps to those which are locally complex diffeomor-
phisms. However, for our purposes, it is better to have the most restrictive definition as
it makes our mappings clearer.

From this definition, we acquire the following theorem.

Theorem 4.2 (Conformal Maps Preserve Complex Potential). Suppose there exist sim-
ply connected, open subsets D1, D2 with closures D1, D2 ⊂ C∞ such that there exists a
continuous f : D1 → D2 that is conformal on D1 and takes ∂D1 → ∂D2. Then given any
boundary conditions Φ1 on ∂D1 that are satisfied by a complex potential Φ on D1, Φ ◦ f−1

is a complex potential on D2 satisfying Φ1 ◦f−1. Similarly, given any boundary conditions
Φ2 on ∂D2 that are satisfied by a complex potential Φ on D2, Φ ◦ f is a complex potential
on D1 satisfying Φ2 ◦ f .

This is to say that conformal maps between spaces generate equivalences of complex
potentials.

Proof. To show the first claim, suppose that there exists boundary conditions Φ1 on ∂D1

that are satisfied by a complex potential Φ onD1. Because f is conformal, Φ◦f−1 : D2 → C
is the composition of holomorphic maps and is therefore holomorphic on D2. Additionally,
because f maps ∂D1 → ∂D2, Φ ◦ f−1 satisfies Φ1 ◦ f−1. This completes the proof of the
first claim. The second claim follows from a symmetric argument. □

By removing one of the directions, we may relax the requirements on f such that it
need only be holomorphic on the interior and continuously preserve the boundary. Doing
so, we arrive at the following alteration of the previous theorem.

Theorem 4.3 (Holomorphic Maps Pullback Complex Potentials). Let there exist simply

connected, open subsets D̃,D with closures D̃,D ⊂ C∞. Suppose that there exists a

continuous map f : D̃ → D that is holomorphic on D̃, surjective, and takes ∂D̃ to ∂D.
Then given boundary conditions Φ0 on ∂D that are satisfied by a complex potential Φ on
D, Φ ◦ f is a complex potential on D̃ satisfying Φ0 ◦ f .

This states that the pullback of holomorphic maps preserve complex potentials.

Proof. The proof of this follows the same logic as the proof of the previous theorem. □

4.1 Restriction to Electric Potential

While perhaps more elegant when in complex form, the benefits besides beauty are
limited for the complex electric potential. Therefore, we restrict our conformal mapping
theorem to the electric potential. Because the complex electric potential admits two
unique electric potentials and an electric potential admits a unique complex potential, our
conformal maps should also preserve electric potential. In fact, by noting that ReΦ ◦ f =
V ◦ f and ReΦ ◦ f−1 = V ◦ f−1, we gain the preservation immediately. We then arrive at
the following theorem.

Corollary 4.4 (Conformal Maps Preserve Electric Potential). Suppose there exist simply
connected, open subsets D1, D2 with closures D1, D2 ⊂ C∞ such that there exists a con-
tinuous f : D1 → D2 that is conformal on D1 and takes ∂D1 → ∂D2. Then given any
boundary conditions V1 on ∂D1 that are satisfied by an electric potential V on D1, V ◦f−1

is an electric potential on D2 satisfying V1 ◦f−1. Similarly, given any boundary conditions
V2 on ∂D2 that are satisfied by an electric potential V on D2, V ◦f is an electric potential
on D1 satisfying V2 ◦ f .
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5 Generalization to Open Sets

As stated, our conformal mapping theorem relies on our region being simply connected.
We now aim to extend this to open sets in general.

Theorem 5.1 (Conformal Maps Preserve Electric Potential). Suppose there exist open
subsets D1, D2 with closures D1, D2 ⊂ C∞ such that there exists a continuous f : D1 → D2

that is conformal on D1 and takes ∂D1 → ∂D2. Then given any boundary conditions V1

on ∂D1 that are satisfied by an electric potential V on D1, V ◦ f−1 is an electric potential
on D2 satisfying V1 ◦ f−1. Similarly, given any boundary conditions V2 on ∂D2 that are
satisfied by an electric potential V on D2, V ◦ f is an electric potential on D1 satisfying
V2 ◦ f .

Proof. We will only show the first claim, as the second claim will follow the same logic.
To this end, suppose that V1 are boundary conditions on ∂D1 that are satisfied by an
electric potential V on D1. Consider the function V ◦ f−1 : D2 → R. Because the fact
that V ◦ f−1 satisfies the boundary conditions V1 ◦ f−1 follows immediately from the fact
that f preserves boundaries, it suffices to show that V ◦ f−1 is harmonic on D2.

Let there exist some z ∈ D2. Because D2 is open, there exists an open ball B′ ⊂ D2

containing z. Because f is continuous, f−1(B′) is open. Then there exists some open
B ⊂ f−1(B′) such that f−1(z) ∈ B. Because f is conformal, it is a homeomorphism and
so preserves simply connectedness. Because the ball B is simply connected, this implies
that f(B) is simply connected. Then, as defined, f : B → f(B) is a conformal map
between simply connected, open subset of C. Corollary 4.4 then implies that V ◦ f−1 is
harmonic on f(B). In particular, this implies that V is harmonic at z. As this holds for
all z ∈ D2, V ◦ f−1 is harmonic on D2. Therefore, V ◦ f−1 is an electric potential on D1

satisfying the boundary conditions V2 ◦ f−1. □

6 Expansion to Higher Dimensions

Though interesting in its own right, two dimensional electrostatics has limited applica-
tions as it generally has different potentials for seemingly equivalent situations. Therefore,
we wish to extend our conformal mapping method to some class of three dimensional prob-
lems. To do so, we exploit the translational symmetry of many electrostatic systems.

Let F be an open region of R3 such that F is invariant under translation along a
fixed direction. Without loss of generality, we may choose our basis of R3 such that this
translational symmetry is along the z axis. We may then associate F ∼= D × R where D
is an open subset of C.

Suppose that there exists V0 : ∂D × R → R satisfying the same symmetry as F such
that there exists an electric potential V on D × R satisfying V0. Further, suppose that
there exists an open D̃ ⊂ C such that there exists a conformal map f : D → D̃ taking
boundary to boundary. Then V ◦ (f × id) is an electric potential on D̃ × R satisfying
the boundary conditions V0 ◦ (f × id). The proof of this claim follows the same logic as
the two-dimensional case, with the added annoyance of mapping the additional dimension
identically in each step.

7 Non-Concentric Circles

We conclude this paper with a brief example of the method of conformal mappings,
namely non-concentric circles. To this end, let there exist 0 < r0 < r1 and z0 ∈ D(0, r1)
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such that r1 − |z0| < r0. Define D ⊂ C as D = {z : |z| < r1, |z − z0| < r1}. As defined, D
is the area between two non-concentric circles. For a0, a1 ∈ R, we establish the boundary
conditions V0 : ∂D → R as

V0 =

{
a0, |z − z0| = r0

a1, |z| = r1

We wish to find an electric potential V on D satisfying V0.
Though seemingly solvable in its current state, the lack of symmetry is concerning.

Therefore, we will use a conformal map to reduce our problem to one with rotational
symmetry. To this end, define D̃ = {z : r0 < |z| < r1}. We aim to find a conformal map

f : D → D̃, which we will construct in steps. Define f1, f2, f3, f4, f5 to be maps on the
Riemann sphere such that

f1 :z 7→ z

r1
f2 : z 7→ z − i

z + i

f3 :z 7→ z − Re f2 ◦ f1(z0) f4 : z 7→ z − f3 ◦ f2 ◦ f1(z0)
z + f3 ◦ f2 ◦ f1(z0)

f5 :z 7→ r1z

Direct computation shows that f1 maps D(0, r1) to D(0, 1) and then f2 maps D(0, 1) to H,
which takes the inner circle to a circle in the upper half plane and the outer circle to the
real line. Then f3 maps the center of the inner circle to the imaginary axis, f4 maps the real
line to the unit circle and the inner circle to a circle centered at 0, and finally f5 scales the
system back to the original scaling. As each of these functions are Mobius transformations,
they are conformal. Therefore we define the conformal map f = f5 ◦ f4 ◦ f3 ◦ f2 ◦ f1 that
takes D to D̃ and preserves boundaries. We will now find an electric field Ṽ satisfying
V ◦ f−1

It follows from direct computation, or transformation arguments, that

V0 ◦ f−1 =

{
a0, |z| = r0

a1, |z| = r1

Which are rotationally symmetric boundary conditions. Therefore, from the polar form
of Laplace’s equations, we find that the electric potential on D̃ has the general form
Ṽ (z) = α log(|z|) + β. Plugging in the boundary conditions then implies that

Ṽ (z) =

(
a1 − a0

log(r1/r0)

)
log |z|+ a0 −

(a1 − a0) log(r0)

log(r1/r0)

By our conformal map, this yields the electric potential V = Ṽ ◦ f on D that satisfies the
boundary conditions V0 ◦ f−1 ◦ f = V0. The exact form of V is easily calculable, but is
unwieldy and does not provide further insight.

This example illustrates the fact that electrostatics, and rather physics as a whole,
is largely a study of symmetry. Students of physics are taught to find symmetries in
any problem, both for the physical significance via Noether’s theorem, but also for the
computational shortcuts that they provide. As is shown in the example, the method of
using conformal mappings allows one to take a problem and transform it into a similar
problem with exploitable symmetries.
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