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Abstract. In this report we will present the basic definitions and results in the study
of Schramm-Loewner evolution, specifically in its identity as the scaling limit of loop-
erased random walks. Through this, we define various forms of random processes such as
random walks, Brownian motion, loop-erased random walks, and self-avoiding walks and
the common technique of defining a measure to analyze their limits. A brief discussion
of open problems and the history of these topics is included.

1 Introduction

This paper aims to provide an introduction to Schramm Loewner evolution and the
scaling limit of loop-erased random walks. The goal is to present the topics at a level
accessible to students with a basic knowledge of complex analysis, measure theory, and
statistics. For that reason, this paper will not go into great technical detail and will instead
focus on the intuition and broad concepts.

The paper will begin with an overview of random walks and Brownian motion, with
which the idea of a scaling limit will be introduced. From there, loop-erased random
walks will be defined along with a measure on their space. From there, Schramm-Loewner
evolution will be defined along with the Loewner equation and an overview of the proof
that loop-erased random walks converge to Schramm-Loewner evolution will be provided.
The paper will conclude with a section on self-avoiding random walks, which is an open
problem.

The information in this paper is taken mostly from Oded Schramm’s original paper on
the topic[12], Schramm and Lawler’s subsequent proof of the scaling limit[7], and Lawler’s
notes on these topics[5][6].

2 Simple Random Walks

To gain intuition on Brownian motion and to better understand the formulation of loop
erased random walks, we first aim to define simple random walks. This section has the
added benefit of introducing the construction of measures for random processes, which is
central idea in this paper. For ease of understanding, we often drop the ”simple” adjective
of simple random walks, as it becomes confusing with the discussion of ”simple” paths.

If confused on the later discussion of Brownian motion, the reader is encouraged to
envision a corresponding situation with random walks. In the same vein, the reader is
encouraged to think of Brownian motion as a continuous random walk, or conversely of
random walks as discrete Brownian motion. Random walks have the advantage of being
simple in concept and easy to physically construct.

Heuristically, a random walk is a path on a lattice Zd, such that each step is chosen
randomly. We will restrict our attention to the lattice Z + iZ, but the definition holds
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with the obvious adjustments in any dimension. A random walk of length n is then a path
consisting of n steps in this lattice. Using random variables, we formalize this as follows.

Definition 2.1. Define X1, X2, . . . to be independent and identically distributed random
variables with image in {±1,±i} and let there exist some ω0 ∈ Z+ iZ. Then a random
walk starting at ω0, is an at most countable sequence of points ω = [ω0, ω1, . . . ] such that

ωk = ω0 +

k∑
i=1

Xi

If specified, a random walk of finite length n is taken to be a finite sequence ω =
[ω0, ω1, . . . , ωn]. For a random walk ω, we let |ω| ∈ N ∪ {∞} denote its length. The
notation of ω denoting a random walk is chosen to align with Lawler’s notes on SLE[5],
and Schramm’s original paper [12]. It should be noted here that no distribution has been
inherently specified for the random variables Xj . In practice any distribution can be
chosen, but in the absence of other information a uniform distribution is the default. In
particular, this implies that X1, X2, . . . have mean 0 and variance 1. For this paper, we
will work with this specification.

Given a random walk ω, we can use linear interpolation to extend ω to a continuous
path ω : [0,∞) → C where ω(j) = ωj and likewise for finite walks. For the remainder of
this paper we make this identification when needed without comment.

2.1 Measure on Random Walks

In the process of defining random walks, we defined a sequence of points ω0, ω1, . . .
where each point ωk was determined as the sum of random variables. Because of this,
we can take the points ωk as random variables. By considering the distribution of these
random variables, we can assign to each random walk a probability that it occurs and
define a measure that assigns said probability to each path. Because the random process
must always produce a path, this will be a probability measure.

Formally, we first define the space of random walks that we are considering. This can
be random walks without constraints, however it will be useful to allow conditions on the
random walks. A wide variety of conditions can be required, but we restrict our attention
to fixed starting points in specified regions.

Let D be a nonempty simply connected open strict subset of C. We approximate D by
an adjusted lattice G consisting of the interior vertices D ∩ (Z + iZ) and the boundary
vertices where the edges of Z + iZ intersect the boundary of D. we then define Λ∗

a,D for

a ∈ D to be the collection of random walks in D that start at a′, where a′ is a fixed vertex
in (Z+ iZ) closest to a, and end at the boundary vertices of G.

We can then define a measure on Λ∗
a,D by assigning to each walk in Λ∗

a,D the probability
that it occurs randomly. We denote this measure by µ∗a,D and extend this measure to the
space of paths in D by setting µ∗a,D to 0 outside of Λ∗

a,D. Because a random walk must be
created, it follows that µ∗a,D is a probability measure.

In practice, when the space D is large relative to Z + iZ and a is far from ∂D this
measure often takes the form µ∗a,D(ω) ≈ (2d)−|ω| where d is the dimension of space. For

our purposes, this implies that our measure is approximately defined by ω 7→ 4−|ω|. With
this measure constructed, we can discuss the limit of random walks by considering weak
convergence, or convergence in distribution.
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3 Brownian Motion

To discuss the limit of simple random walks and to formally describe Schramm-Loewner
Evolution, we must first define Brownian motion. For intuition’s sake, it should be noted
that Brownian motion can thought of as a random walk on a very fine grid.

Formally, Brownian motion is defined as follows.

Definition 3.1. A Brownian motion Bx0 : [0,∞) → R with starting point x0 ∈ R is
a random, almost surely continuous function such that Bx0(0) = x0 almost surely and
such that for any sequence t1 < t1 < · · · < tn, the increments Bx0(ti+1) − Bx0(ti) are
independent normally distributed random variables with mean 0 and variance ti+1 − ti.
Formally, this is called a Wiener process.[13]

The inclusion of almost surely in this statement is a byproduct of probability theory. In
practice, and especially when Brownian motions are considered as limits of random walks,
this can be understood as continuous.

3.1 Important Properties

There are two properties of Brownian motion that will be used to show the result on
the scaling limit of LERWs. These are the Markov proper and conformal invariance.

A common and important property of Brownian motion is the Markov property. Intu-
itively, the Markov property states that Brownian motion is memoryless in the fact that
only the present state will affect future states. For Brownian motion, this is formally
stated as follows

Theorem 3.2. Let B(t) be a Brownian motion. Then the process B(s+ t) for t ∈ [0,∞)
is a Brownian motion started at B(s) and is independent of the process B(t) for t ∈ [0, s).

The proof of this fact is immediate from the definition of Brownian motion.
A perhaps more important but far less trivial property of Brownian motion in two di-

mensions is conformal invariance. Informally, conformal invariance asserts that conformal
maps take Brownian motions in one space to Brownian motions in another. Formally, this
is stated as follows.

Theorem 3.3. [13] (Levy’s Theorem) : Let ϕ : U → V be a conforal map between open
subsets of the complex plane and let B : [0, T ) → U be a Brownian motion with initial
point z0. Define τ : [0, T ) → [0,∞) by

τ(t) =

∫ T

0
|ϕ′(B(s))|2ds

and define T ′ = limt→T τ(t). Then τ is a homeomorphism from [0, T ) to [0, T ′) and

B̃(τ(t)) = ϕ(B(t))

is a Brownian motion in V with initial point ϕ(z0).

We do not provide a proof here for the sake of brevity, but the reader is encouraged to
consult Berestycki and Norris’s notes on SLE [1] and Terrence Tao’s notes on the subject
on his blog [13].
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Figure 1. Convergence of simple random walk to Brownian motion, sam-
pled at n = 20, 100, 500. Taken from Wikimedia Commons, 2019 [9]

3.2 Measure on Brownian Motion

In the same way that we defined a measure on the space of random walks adhering to
some set of constraints, we can also define a measure on the space of Brownian motions.
To do so, we consider a Brownian motion B. The point B(t) is a random variable and so
can be given a distribution that depends on our constraints. We can then extend this and
assign a distribution to the motion as a whole. This distribution defines a measure on the
space of Brownian motions and can be extended to the space of all paths adhering to the
same constraints in the obvious way.

Unlike simple random walks, measures on Brownian motions are zero for any specific
path. Because of this, it is only interesting to consider the measure of an uncountable set
of paths.

3.3 Limit of Simple Random Walks

Let ω = [ω0, ω1, . . . ] denote a random walk on Zd from a fixed starting point ω0. From

ω, we can define a diffusively rescaled random walk W (n) : [0,∞) → Rd by

B(n)(t) =
ω⌊nt⌋√
n

As shown in Donsker’s theorem [3], which can be thought of as akin to the central limit

theorem, B(n)(t) converges in distribution to a normally distributed random variable B(t)
as n→ ∞. By definition, this is equivalently saying that rescaled random walks converge
in distribution to Brownian motion. Because the measure on random walks and Brownian
motion were defined in terms of these distributions, this implies that the measure on simple
random walks converges weakly to the measure on Brownian measure. The visual idea of
this convergence is shown in figure ??.

4 Loop-Erased Random Walk

The scaling limit of simple random walks has long been known to be Brownian motion,
and in fact, it is an intuitive, almost obvious result. However, by restricting the random
paths that we consider, the scaling limit becomes much more interesting. To that end,
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Figure 2. Example of Loop-Erased Random Walk, before and after loop
erasure. Credit to Lawler for the images.[5]

we consider LERWs, a process that creates random walks without self-intersections by
erasing loops from simple random walks.

We first detail how a LERW is constructed. Let ω = [ω0, . . . , ωn] be a random walk in
Z+ iZ. We construct its loop-erasure LE(ω) as follows. Define

j0 = max{i : ωi = ω0}
We then iteratively construct jk for k > 0 as

jk = max{i : ωi = ωjk−1+1

Repeating this process until jℓ = n for some ℓ ≥ 0. We then let LE(ω) = [ωj0 , . . . , ωjℓ ].
With this construction, LE(ω) is a subpath of ω without self-intersections. This process
is illustrated in figure ??. [5]

We can further restrict this process by specifying the domain in which we are working
or the LERWs that we care about. For instance, we may require that the LERWs be
contained in (Z+ iZ)∩U, as we will do later with our scaling argument, or we may require
that the LERWS have fixed start and end point. This is equivalent to constraining the
random walks that are fed into the loop-erasure process.

4.1 Construction of a Measure

Let D be a domain as in the random walk case and Λa,D denote the space of LERWs
starting at a ∈ D and ended at the boundary vertices of D. Much like in the random walk
case, this constraint can in practice be anything, but we are concerned with this constraint
specifically.

On Λ∗
a,D we defined a measure µ∗a,D : Λ∗

a,D → [0,∞) such that µ∗a,D assigns to each
ω ∈ Λ∗

a,D the probability that said random walk occurs. We then define a probability

measure µa,D : Λa,D → [0, 1] by

(4.1) µ(η) =
∑

ω∈Λ∗
a,D

LE(ω)=η

µ∗(ω)
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As was done for random walks, we extend µa,D to all paths in D. This is equivalent to the
formulation given in section 2 of Schramm’s original paper on SLE [12], which treats LE as
a random closed subset of D and then finds the measure µ as the probability distribution
of LE.

As any easier formulation, we may instead simply assign the measure 4−|ω| to each
ω ∈ Λ∗, and then form µ by equation 4.1. Though different initially, this will converge to
the same measure when the scaling limit is taken.[5]

5 Schramm-Loewner Evolution

Schramm Loewner evolution is a process of generating random curves in complex space
by driving the Loewner equation with Brownian motion. As we are concerned with the
scaling limit of LERW, we focus on radial SLE, which generates curves in the unit disk.

Intuitively, SLE creates curves by taking Brownian motion on the unit circle and then
pushing said motion inwards towards zero in a conformal way. In practice, this arises by
creating an evolving random family of conformal maps that satisfy Loewner’s equation
according to some Brownian motion on the unit disk.

Schramm-Loewner evolution was first proposed by Oded Schramm in his 1999 paper
as the scaling limit of LERWs and uniform spanning trees.[12] Since then, it has been
conjectured and shown to be the scaling limit of a handful of random processes, including
self-avoiding walks, and critical percolation.

5.1 Formulation

We first establish the notion of capacity. Let U denote the unit disk U = {z : |z| < 1}
and suppose that D ⊂ U is a simply connected open subset of U containing 0. The
Riemann mapping theorem then implies that there exists a conformal map ψ : D → U. By
requiring that ψ(0) = 0 and ψ′(0) ∈ R>0, we gain uniqueness. With these requirements,
let ψD : D → U denote the conformal map. Because D ⊂ U, arguing by the Schwarz
lemma it follows that ψ′

D(0) ≥ 1. We then call logψ′
D(0) the capacity of U \D from 0.

To define Schramm-Loewner evolution, we first motivate Loewner equation’s. Suppose
that there exists some continuous simple curve η : [0,∞] → U with η(0) ∈ ∂U. For
t ∈ [0,∞], we define Ut = U \ η[0, t] to be the complement of η up to t in the unit disk.
Because η[0, t] is compact and η is simple, Ut is a simply connected open subset of U.
Therefore, the earlier reasoning implies that there exists a conformal map ψUt : Ut → U.
Let gt = ψUt . By reparameterizing η, we can ensure that g′t(0) = exp(t). This is called
parameterizing by capacity.

With this evolving family of conformal maps, we define the driving function of the curve
η to be the limit

W (t) = lim
z→η(t)

gt(z)

Because gt is a conformal map from Ut to U, it follows that W (t) exists for all t and
W : [0,∞) → ∂U. It can also be shown that W (t) is continuous, though the derivation
distracts from the purpose of the paper. For a thorough derivation of these properties,
the reader is encouraged to consult Pommerenke’s ”Boundary Behaviour of Conformal
Maps”.[10]

Intuitively, the function W classifies how the path η changes as it traverses U. By
construction, the map gt maps the complement of the segment η[0, t] back to the unit
disk U. The endpoint of this segment, η(t) will be taken to a point on ∂U after a limit is
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taken. In this way, changes in η can be projected onto the boundary of U and collected
into the driving function W (t). This process is shown beautifully in Henry Jackson-Flux’s
animation of SLE4 at link[4]. This animation deals specifically with Chordal SLE, which
is SLE in the upper half plane rather than the unit disk. However, the evolving upper half
plane on the right half of the video gives strong intuition for the driving function when
the intersection of the path with the real line is followed.

With this driving function, Loewner’s theorem states that gt satisfies Loewner’s differ-
ential equation

(5.1) ∂tgt(z) = −gt(z)
gt(z) +W (t)

gt(z)−W (t)

By construction, it follows that gt also satisfies the initial condition g0 = idU. [7]
This process works in the opposite direction as well. Suppose that W : [0,∞) → ∂U

is a continuous function. Then for all z ∈ U, there exists some gt that satisfies Loewner’s
differential equation, equation 5.1, with the initial condition g0 = idU. Define Kt = U \Dt

where Dt is the domain of definition of gt. If W arises in the earlier process from a simple
path η, then we can recover η by η = g−1

t ◦W and so Kt = η[0, t]. However, for arbitrary
continuous W : [0,∞) → U, it is not guaranteed that Kt defines a path, let alone a simple
one. Regardless, by this association, any simple path in U starting on the boundary can
be identified with a driving function W (t). [7]

5.2 Radial SLE

By restricting the type of driving function, we can guarantee that Kt defines a path
almost surely. This process defined radial Schramm-Loewner evolution. To that end, let
B : [0,∞) → R be a Brownian motion. We then define radial SLEκ to be the process
(Kt, t ≥ 0) generated by the driving function W (t) = exp(iB(κt)). Conventionally, the
starting point B(0) is taken to be uniformly random in [0, 2π].

As shown in Schramm and Rohdes, the process Kt almost surely defines a continuous
curve γ such that U\Kt is is the component of U\η[0, t] containing 0. Further classification
depends on the parameter κ. For κ ∈ [0, 4] it has been shown that Kt is almost surely a
simple curve. For κ ∈ (4, 8) it has been shown that Kt is almost surely not a simple path.
Finally, for κ > 8, it has been shown that the path γ is almost surely space-filling. [11]

6 Scaling Limit of LERW

We seek to provide a rough overview of the proof that LERWs converge in distribution
to SLE2. This fact was first conjectured by Schramm in his 1999 paper ”Scaling limits of
loop-erased random walks and uniform spanning trees” [12] and later proven by the 2003
paper by Lawler, Schramm, and Werner ”Conformal invarriance of planar loop-erased
random walks and uniform spanning trees” [7].

Specifically, it has been shown that LERWs from 0 to ∂U converge in distribution to
SLE2. Intuitively, this makes some sense. Under a limit, LERWs should approach simple
paths that start at 0 and approach a random point on the boundary of U. Schramm-
Loewner evolution then works in the reverse direction and creates a random path from
the boundary of U to 0.

In essence, the argument that the limit of LERW exists follows from weak convergence
on compact spaces. Let Λa,D be defined as it is in the previous section and let Λδ

a,D

denote the loop-erased random walks on the lattice δ(Z + iZ) constructed in the same

https://www.youtube.com/watch?v=NkdlqW1hmlY
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manner with probability measure µδa,D : Λδ
a,D → [0, 1]. By endowing this space with the

Hausdorff metric, it can be shown that the space of paths in D is almost surely compact.
Then because the space of Borel probability measures on a compact space is compact in

the weak topology, there exists a subsequence δj → 0 such that µ
δj
a,D converges weakly

to some probability measure µa,D on the space of continuous paths in D. As LERWs
contain no self-intersections, this resulting probability measure should be supported on
the space of simple paths in D. It can then be shown that when restricted to the case of
LERW starting at some point and ending on the boundary of D, that this subsequential
convergence is upgraded to convergence. [12]

The proof of the identity of the scaling limit centers around the conformal invariance
of the limit of LERWs. Specifically, this is stated as follows

Theorem 6.1. Let D be a simply connected, open strict subset of C and let there exist
some a ∈ D. Then the scaling limit of LERW from a to ∂D exists. Additionally, if
f : D → D′ is a conformal map on D′ ⊂ C then f∗µa,D = µf(a),D′.

At the time of Schramm’s original paper on the topic, this theorem was only conjecture
supported by simulations and the work of Rick Kenyon. Schramm continued to prove
that LERWs converge to SLE2 assuming this conjecture. [12] Intuitively, this conformal
invariance of the limit of LERW can be used to prove that the limit of LERW must satisfy
the Loewner equation. It then remains to show that the driving function of said process
must be Brownian motion.

To show that the driving process must be Brownian motion, it is shown that the limit
of LERW has a Markov property. To that end, let ω be a LERW from 0 to δD and let
ω′ be a subpath that extends from some q ∈ ω to ∂D. Then the distribution of ω − ω′ is
the same as that of the LERW from 0 to δ(D − ω′), conditioned to hit q. When we then
take the limit of LERWs, this transforms into a Markov property for the driving function
of SLE when the conformal map from δ(D− ω′) to U is applied. The Markov property of
the driving force combined with the conformal invariance can then be used to show that
it must be Brownian motion. [12]

A separate argument that we avoid here then shows that it must in fact be SLE2.

7 Self-Avoiding Walk (SAW)

Though the scaling limit of LERW has been proven to be SLE2, Schramm conjectured
that a similar result could be shown for a similar type of random walk, a self-avoiding
walk. This conjecture was presented and explored in the 2002 paper by Lawler, Schramm,
and Werner ”On the scaling limit of planar self-avoiding walk”.[8]

Simply, a self-avoiding walk is a random walk ω with the additional constraint that
ω(j) ̸= ω(i) for i ̸= j. With the linear interpolation, this implies that ω is a simple curve.
Formally, we define this as follows.

Definition 7.1. A self-avoiding walk (SAW) of length n in Z + iZ is a finite sequence
ω = [ω0, . . . , ωn] ⊂ Z+ iZ such that ωi ̸= ωj for i ̸= j.

As with the previous walks and random processes, our analysis of SAWs is far more
concerned with their space and measure. To that end, we let Ωn denote the sets of all
SAWs of length n and we let Ω∗

n denote the restriction of Ωn to the walks starting at the
origin. It should be noted that Ωn has countably infinite elements, as there are countably
infinite choices of starting point, but Ω∗

n has finite elements by simple combinatorics.



Schramm Loewner Evolution 9

Consider the number of SAWs of length n, starting at the origin. It is clear that given
a SAW of length n +m, a splitting and translation yields two separate SAWs of length
n and m respectively. It then follows that #Ω∗

n+m ≤ (#Ω∗
n) (#Ω∗

m), where # is used to
indicate cardinality. Taking a logarithm and applying Fekete’s Subadditive Lemma, it
follows that #Ω∗

n ∼ βn for some β, known as the connective constant. The connective
constant β is dependent on the lattice and is only rigorously known to be between 2.6
and 2.7.[8] Recently, the connective constant for the hexagonal lattice was found to be√

2 +
√
2 by Dominil-Copin and Smirnov [2].

Combining the spaces of finite SAWs, we define Ω = ∪∞
n=1Ωn and Ω∗ = ∪∞

n=1Ω
∗
n. We

then define a measure µSAW on Ω by that µSAW : ω ∈ Ωn 7→ β−n. It should be noted
that µSAW can be viewed equivalently as a measure on Ωn,Ω

∗,Ω∗
n. While not initially a

probability measure, it can be shown that µSAW will converge to a probability measure
under a scaling limit.

To taking a scaling limit, we create a finer lattice and finer SAWs. To that end, let
Λ be a lattice in C. For δ > 0, we let ωδ be a SAW on the lattice δΛ which has been
reparameterized so that

ωδ(jδ1/ν) = δω(j)

Taking the limit as δ → 0, we should arrive at a probability measure on the space of simple
paths once again. [8]

It was conjectured in 2003 that under this measure, SAWs would converge in distribution
to SLE8/3. Currently, it has been shown that if the scaling limit exists and is conformally
covariant, then the scaling limit is SLE8/3. However, the existence of said limit and
conformal covariance has not been shown.
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