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Among all of the mathematical disciplines the theory of differential equations is
the most important... It furnishes the explanation of all those elementary mani-
festations of nature which involve time. —Sophus Lie

Notation
We’re going to use two different notations for derivatives,

df

dx
= f ′(x).

These notations mean the exact same thing, the left one just emphasizes that it is a derivative with
respect to x, whereas the right one says that it is a derivative with respect to whatever the input is.

Similarly, we could have
dg

dt
= g′(t),

where now the input variable is t and the derivative is taken with respect to t.

Part 1: Carbon Dating and Skydiving
How can scientists tell that a fossilized tree trunk is 38,000 years old? The answer lies in radioactive
decay, and the math behind it gives us our first glimpse of differential equations.

Every living thing contains a small amount of carbon-14, a radioactive form of carbon created when
cosmic rays strike the atmosphere. While a plant or animal is alive, it constantly exchanges carbon
with the environment, keeping the same ratio of carbon-14 as the air around it.

Once it dies, that exchange stops and the carbon-14 inside begins to decay. After 5,700 years, only
half of the carbon-14 remains. After another 5,700 years, only a quarter remains, and so on.
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Problem 1: Carbon Dating a Sample
Suppose that you find an old log and want to know its age. You know that a log of that size should
contain 128 lbs of carbon-14.

(a) You measure that the log now only contains 64lbs of carbon-14. How old is the log?

(b) Instead, suppose the log now only contains 16lbs of carbon-14. How old is the log?

(c) What if you measured 30 lbs of carbon-14? How old is the log?

(d) Let’s come up with a general formula. Suppose that there are C(t) lbs of carbon-14 in the log
at time t. We’ll let t = 0 denoting the time that the log died.
If you measure C(t) lbs of carbon-14, how can you calculate the time t since the log died?
That is, write an expression for t given C(t).

(e) Rearrange this to get a function for the amount of carbon-14 in the log as a function of t.
That is, solve for C(t).

In reality, the scientists won’t automatically know the half-life of the material they’re studying.
Instead, they need to observe the material in their lab and use that to figure out the function C(t).
Let’s try to do that.

2



Problem 2: Experimental Derivation
You find the same log as before, but you don’t know the half-life of carbon-14. Instead, you have
some basic chemistry knowledge.

Every moment, any carbon-14 atom has a set probability to decay. This means that the decay rate of
your sample should be proportional to how much carbon it currently has. Mathematically, this means

dC

dt
= kC(t).

(a) Suppose briefly that you measure k = 1. Find a function C(t) such that C ′(t) = C(t).

(b) Let k be an arbitrary constant again. Taking inspiration from the previous part, find a function
C(t) such that C ′(t) = kC(t).

(c) We already know that at t = 0, C(0) = 128. (This is called an initial condition.) Find a
function C(t) such that C ′(t) = kC(t) and C(0) = 128.
Hint: You can multiply your C from the previous part by any constant and it will still satisfy
C ′ = kC. Why?

(d) You experimentally measure that k = ln(2)/5700. Find the function C(t) given C(0) = 128 and
C ′(t) = kC(t). Does this match up with the previous problem?

Carbon dating (despite its importance) is a pretty straightforward differential equation. Indeed, as
we saw in Problem 1, we don’t really need to solve a differential equation at all!
Let’s try something a little more complicated.
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Problem 3: Skydiving
When you jump out of a plane, something strange happens. Initially, you accelerate faster and faster
as gravity pulls down on you. However, after a few seconds, you start to slow down and you reach
terminal velocity. Any ideas why?

Suppose we know that air resistance pushes back on the skydiver, exerting a force Fa = kv2 upwards
on the skydiver, where v is the skydiver’s speed and k is a constant. We also know that gravity pulls
downwards on the skydiver with a constant force Fg = mg, where m is the skydiver’s mass. Write an
equation for the skydiver’s acceleration v′, in terms of their speed v.

Hint: Newton’s 2nd law says that v′ = Ftotal/m, where Ftotal is the total force on the skydiver.
Remember that air resistance and gravity are in different directions! Gravity accelerates the skydiver,
while air resistance decelerates the skydiver.

From this equation, can you determine her top speed? What about an equation for the speed of the
skydiver v(t) over time?

Over the next few parts, we’ll slowly build up the tools we need to solve this skydiving puzzle. We’ll
begin by defining what differential equations actually are and what it means to “solve” one. Then
we’ll practice solving the simplest types by integrating, learn how to separate variables, and see how
to reason about solutions even when we can’t find formulas. By the end, you’ll be able to predict the
motion of our skydiver, along with many other systems that change over time.
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Part 2: Initial Value Problems
Science is a differential equation. Religion is a boundary condition.

—Alan Turing

Inspired by the previous section, we define an initial value problem as follows.

Definition 4: First Order Initial Value Problem (IVP)
An initial value problem is a mathematical expression of the form

df

dt
= F (t, f) with f(t0) = f0, (1)

where f is an unknown function, F is a given function of t and f , t0 is the initial time, and f0 is a
constant, called the initial value. This is called first order because it only involves the first derivative.

For example, from the previous part, an initial value problem might be

C ′(t) =
ln(2)

5700
C(t) with C(0) = 128.

Here C is the unknown function, the initial value is 128 at time t0 = 0, and F (t, f) = ln(2)
5700 f .

Definition 5: Solution to an IVP
We say that a function f(t) is a solution to (1) or satisfies (1) if f(0) = f0 and f ′(t) = F (t, f) is true.

Problem 6: Some practice
Determine whether the following functions are solutions to the given IVP:

(a) Is f(t) = et a solution to f ′ = f, with f(0) = 1?

(b) Is f(t) = t2 a solution to
df

dt
= 2

√
f, with f(0) = 0?

(c) Is f(t) =
1

t
a solution to f ′+f2 = 0, with f(1) = 4?

(d) Is f(t) = sin(t) a solution to f ′ = cos(t), with f(0) = 0?
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Part 3: Integrate Both Sides
The simplest initial value problem is set up as

y′(t) = f(t), with y(t0) = y0.

Notice that the right hand side does not depend on y, only on t. For these problems, we can just
integrate both sides and find the answer.

Problem 7: An example
Consider the initial value problem

y′(t) = t with y(1) = 2.

(a) Ignore the initial value for now and just focus on y′ = t. Integrate both sides with respect to t
to find an expression for y(t).
Don’t forget the +c!

(b) The +c is an arbitrary constant, it can be anything. Choose c appropriately so that y(t) solves
the initial value problem.

Problem 8: More examples
Solve the following initial value problems.

(a) y′(t) = cos(t), y(0) = 5
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(b) y′(t) = e2t, y(0) = 1
2

(c) y′(t) = et cos(et), y(0) = 0.

Problem 9: Every problem like this ever (Challenge)
Only do this problem if you know definite integrals.
Solve the initial value problem

y′(t) = f(t), with y(t0) = y0,

in general by integrating both sides from t0 to t. Leave your answer in terms of
∫ t

t0
f(s)ds.

Intuitively, this makes sense! Think about this like we’re driving, with position y(t). At any given
time t, our velocity is y′(t) = f(t).

Initially, at time t0, we start at y0 with velocity f(t0). If we want to find our position at the “next”
moment of time, i.e. t0 + ds for some extremely small ds, then we would expect to travel f(t0)ds in
that amount of time. This would imply y(t0 + ds) ≈ y(t0) + f(t0)ds.

To find our position at a later time t, we would need to keep adding these little bits of distance up.
So at time t0 + 2ds, we would expect to be at position y(t0) + f(t0)ds+ f(t0 + ds)ds. Doing this all
the way up to t and then taking the limit as ds gets infinitesimally small, we would find the integral!
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Part 4: Separable Equations
A separable equation is a first order differential equation that can be written as

y′ = f(t)g(y).

So-called because the right hand side can be separated into a t-dependent term and a y-dependent
term. Let’s try to solve one of these.

Problem 10: An example
Consider the initial value problem

dy

dt
=

y

t
with y(1) = −2.

(a) Ignore the initial condition for now. Group every term with a y on the left hand side and every
term with a t on the right hand side. This includes treating dy

dt like a fraction and moving the
dt to the right hand side.
Yes, we’re cheating. But today, if it’s good enough for the physicists then it’s good enough for us.

(b) Add an integral sign to both sides and integrate. Because of the dy and dt, the left hand side
will be integrated with respect to y and the right hand side will be integrated with respect to t.
Don’t forget the +c!

(c) Move all of the +c terms onto the right hand side and combine them into one constant. Then
solve for y(t) as a function of t. (You can make ec an arbitrary constant too.)

(d) Choose the constant appropriately so that y(t) satisfies y(1) = −2.
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Problem 11: More examples
Solve the following initial value problems

(a) dy
dt = e−y(2t− 4), y(5) = 0.

(b) y′(t) = 6y2t, y(1) = 1
25 .

(c) y′ = et+y, for y(0) = 0.
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Problem 12: Back to the skydiver (Challenge)
We now know enough to solve for the velocity of the skydiver! Recall that a skydiver’s velocity
satisfies the initial value problem

mv′ = mg − kv2, with v(0) = 0.

Solve this equation to find the skydiver’s velocity v(t). What is her terminal velocity?
NOTE: This is still a challenging problem. We’ll learn to solve this qualitatively in the next section.
Hint: The hyperbolic tangent function tanh(x) satisfies

tanh(x) =
e2x − 1

e2x + 1
and

d

dx
tanh−1(x) =

1

1− x2
.

Problem 13: Rigorous example (Challenge)
If the idea of separating dy and dt makes you uneasy, splitting the dy

dt into a fraction can be justified
with a careful u-substitution. Try that out on the following example:

y′ = y2 sin(t), for y(0) = 1.

This time, move everything with a y to the left hand side and everything with a t to the right. Don’t
move the dt, that’s not allowed. Instead, integrate both sides with respect to t and then make a
u-substitution for the left integral.
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Part 5: Sketching Autonomous Equations
Despite technically being able to solve for the velocity of a skydiver in problem 12, it is still very
challenging! The equation is difficult to solve and uses fancy functions that, once we have the solution,
make it challenging to determine the terminal velocity. Instead of going through that process, let’s
develop a theory of autonomous equations to determine what the skydiver experiences qualitatively.

Definition 14: Autonomous
A differential equation is called autonomous if it is of the form

dy

dt
= f(y).

Notably, the equation only depends on y, not on the independent variable t.

For these equations, it is easy to sketch what the solutions look like! (Though not always easy to
actually find the solutions.) You’ll notice that we didn’t give an initial condition for the ODE above.
That’s because we will sketch what happens to solutions as the initial value changes.

Problem 15: Stationary Solutions
Consider the autonomous differential equation

y′ = y3 − y2 − 6y.

We want to find stationary solutions of the form y(t) = y0, where y0 is a constant.

(a) If y(t) = y0, what is y
′(t)?

(b) Based on the given differential equation, for what values of y is y′ = 0?
What are the stationary solutions of this differential equation?
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Problem 16: Phase diagrams
We want to figure out (qualitatively) what happens to the solutions that aren’t stationary. To do so,
we’re going to draw a phase diagram on the following number line.

y

-5 -4 -3 -2 -1 0 1 2 3 4 5

(a) Draw open circles at each of the stationary solutions.

(b) For each region between the stationary solutions, determine whether solutions in that region
will be moving to the right or to the left. Then, draw an arrow in the relevant direction.
Hint: check whether y′ > 0 or y′ < 0 for y in that region.

(c) If the solutions flow towards the stationary solution, then the solution is called stable: if you
nudge the initial condition away from the stationary point, the solution will come back.

If the solutions flow away from the stationary solution, then the solution is called unstable: if
you nudge the initial condition away from the stationary point, the solution will run away.

For each stationary solution, label it as stable or unstable. For stable solutions, fill in the circle
on your phase diagram. For unstable solutions, leave the circle open.

Problem 17: Sketching Solutions
We’re now going to use our phase diagram to sketch various solutions to the given differential
equation on the graph below.

t

y(t)

-5

-4

-3

-2

-1

1

2

3

4

5

(a) For each stationary solution, draw the graph of the solution.
(b) For each intermediate region, draw one representative solution. Remember that y′ tells you the

slop of the solution. What do you think these solutions should look like? Why?
Hint: For each region, start close to the unstable stationary solution and then asymptotically
approach the stable stationary solution.
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Problem 18: Back to the skydiver (Challenge)
Recall again that the skydiver’s velocity satisfies the initial value problem

mv′ = mg − kv2, with v(0) = 0.

Follow the above process to analyze this differential equation. Assume that m, g, k > 0.
Ignoring the initial value for now, what are the stationary solutions for this differential equation?
Draw a phase diagram like you did above.

Since the skydiver starts at initial velocity 0, what speed does she asymptotically approach as
t → ∞? What does this tell you about the terminal velocity?

What would happen if the skydiver somehow got above her terminal velocity? Why?
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Problem 19: Another example
Repeat the above process to sketch solutions for the following differential equation:

y′ = y2 − 2y + 1.

What is the stability of the stationary solutions? Stable, unstable, or neither?
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Problem 20: Actually solving the ODE (Challenge)
If you want a challenge, we’re now going to solve the differential equation. To do so, we need to use
the method of partial fractions.

(a) Solve for constants A,B,C such that

1

y3 + y2 − 6y
=

A

y + 2
+

B

y
+

C

y − 3

(b) Using the previous problem and separating the equation, solve for an implicit relationship
between y and t.
This should not be an explicit function y(t) = .... Instead, you should have some messy
combination of y’s on the left hand side and some combination of t’s on the right.
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Part 6: Existence and Uniqueness of Solutions
So far, we’ve seen how to solve simple differential equations. But before solving, it’s worth asking an
even more basic question: Does a solution even exist? And if so, is it unique?

Not every differential equation behaves nicely! Let’s look at some examples.

Problem 21: Solutions don’t always exist
Consider the initial value problem:

y′(t) =
1

t
, with y(0) = 0.

Does a solution exist? Why or why not?
Hint: Assume you can solve it and then find an issue with the solution.

Problem 22: Be careful
Consider the initial value problem:

y′ = y2 sin(t), for y(0) = 0.

Try to find a solution. A solution exists, but you’ll need to be very careful to find it.

16



Problem 23: Solutions are not always unique
Take a look at the initial value problem:

y′ = y
1
3 , y(0) = 0.

Solve this IVP by treating it like a separable equation. This will give one solution.
It turns out that there are many more! Find another solution. If you want a challenge, try to find
infinitely many solutions.
Hint: we know that y(0) = 0. What is y′(0)? Intuitively, what do you think y(t) is for really small t?

Problem 24: Finite-Time Blowup
Consider the initial value problem:

y′ = y2, with y(0) = 1.

Solve this IVP by separating variables. What do you notice about the solution? Does y(t) exist for all
t or does it stop existing at a point?

17



Problem 25: Just weird
Consider the initial value problem

y′ =
1

y
, with y(0) = 0.

Treating this like a separable equation, try to find a solution, is it possible?
What is y′(0)?
Does y(t) exist for all t?

Questions like this prompt mathematicians to make themselves very clear by what a “solution”
actually is and to really check when it exists and when it’s unique.
Particularly for partial differential equations, this is an active area of research!

For the curious, the standard existence and uniqueness theorem for ODEs is the following:

Theorem 26: Existence and Uniqueness (Picard-Lindelöf)
If f(t, y) and its partial derivative ∂f

∂y are both continuous near the point (t0, y0), then the initial
value problem

y′ = f(t, y), y(t0) = y0

has a unique solution (at least for some short interval around t0).

This result guarantees that “nice” equations behave nicely.
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Part 7: Linear Equations

Definition 27: Linear differential equation
A differential equation is called linear if it is of the form

y′ + a(t)y = f(t).

Problem 28: Integrating factor
Given a linear differential equation:

y′ + a(t)y = f(t).

We want to multiply this equation by an integrating factor µ(t),

µ(t)y′(t) + µ(t)a(t)y(t) = µ(t)f(t),

so that the left hand side can be written as a product rule:

µy′ + µay = (yg)′,

for some function g(t).

(a) Using the product rule, match terms to determine the function g and a differential equation
that µ must solve.

(b) Solve the differential equation for µ to show that

µ(t) = e
∫
a(t)dt.

Once we have this µ, we can solve the differential equation! Let’s see it in action.
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Problem 29: An example
Consider the following linear differential equation

y′(t) + cos(t)y(t) = 0, with y(0) = 5

(a) Find a(t) and then calculate the integrating factor µ(t) = exp(
∫
a(t)dt).

You can ignore the +c here.

(b) Multiply both sides of the equation by µ and recognize the left hand side as the product rule
for (µy)′. This is now an equation that you can solve!

Problem 30: Another example
Solve the following first order linear differential equation

sin(t)y′ + y cos(t) = 1, with y(π/2) = 5.

Make sure to put it in the right form first!
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Problem 31: Another another example
We’re going to solve the following first order linear differential equation in two different ways.

(1− t2)y′(t) + 2ty(t) = 0, with y(2) = 1

(a) Solve the ODE as a linear equation. Make sure to get it in the correct form first!

(b) Solve the ODE as a separable equation.
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