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Constant Coeflicient Conundrums
or A Guide to Guessing
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Instructor’s Handout

In order to solve this differential equation you look at it ‘til a
solution occurs to you. —George Pdlya

Preliminaries

Even though we learned a lot of techniques last week, we’re not going to use the majority of them.
All that we really need to know is that an initial value problem is an equation of the form

y'(t) = f(t,y), with y(to) = yo. (1)
Here y is an unknown function, f(¢,y) is some given function of ¢ and y, and yo is the initial value at

the initial time ty. Generally speaking, an initial value problem will have just one solution y(¢).

We say that a function y(t) satisfies (1)—or is a solution to (1)—if y'(t) = f(t,y(¢)) is true for ¢ near
to and if y(to) = yo.

Often, we will consider a differential equation without an initial condition:

y'(t) = f(t,y).

Generally speaking, in this case, we will have infinitely many solutions y(t). Often, these different
solutions come from the +c¢ from some integral and appear like

yt)=---+c or ylt)=c-(...)

so make sure to keep track of those! We call solutions with arbitrary constants like this general
solutions.

Part 1: Motivation — Springs

Problem 1: A Simple Spring
Imagine attaching a small mass m to a spring and then hanging it from the ceiling. When the weight
is at rest, the spring stretches just enough so that the upward spring force balances gravity.
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Now suppose you pull the mass down a little and let go. Let x(¢) denote the displacement of the
spring. At any given moment, the spring pulls upward with a force proportional to how far the
weight is stretched beyond its rest length. The force delivered by the spring is then given by

Fy, = —kx.

Using Newton’s second law, which states that force is equal to mass times acceleration (acceleration
being x) write a differential equation that models the motion of the mass, z(t).

ma’ (t) = —kx(t).

Can you solve this differential equation? If you can, do so! If not, there’s no worries, we’ll develop the
tools later. Don’t spend long on this. Only solve it if you immediately see a solution.

x:acos( k/mt)+bsin( k:/mt).

Now let’s suppose that we add in two additional effects: air resistance and a driving force. Air
resistance will push back against the motion of the mass, proportional to its velocity. A driving force
can be anything! We’ll denote this by f(¢). This gives two additional forces acting on the mass,

F,=—c2'(t) and Fy= f(t).

Using Newton’s second law, write the new equation of motion for the mass.

max” (t) + cz'(t) + kz(t) = f(t).

This is definitely too difficult for us now. But by the end of this packet, we’ll be able to solve this in
full generality. And easily too! But first, we need to develop some machinery.

In Part 2, we’ll start with simplified first order equations:
cx' (t) + kx(t) = f(t).
This will give us a set of tools and solutions to inspire our work in Part 3 on second order equations:
ma” (t) + cz'(t) + kz(t) = 0.
Then finally in Part 4, we’ll be able to solve general springs with a driving force:
ma” (t) + e’ (t) + kx(t) = f(t).

Finally, we’ll talk about the linear algebra that makes all of these solutions possible and even extend
this to higher order equations!



Part 2: First order equations — Let’s just guess

Let’s start with a very simple example. First, we’ll just consider first order differential equations.

You probably know how to solve these problems.
Instead of solving them like last week, we’re just going to guess solutions.

Problem 2:
Consider the following initial value problem,

2'(t) = 5x(t), with x(0)=3.

Guess a solution z(t) = re* for some unknown constants A and 7. Then solve for 7 and \.

z(t) = 3e>.

Problem 3: A little more complicated
For constants a and b, consider the following initial value problem

2'(t) = 5x(t) + 15, with x(0) =0.

Earlier, we guessed a solution of the form x = re* and it worked! But now we have added a constant
to our differential equation. How might we adapt our guess now that we added a constant?

add a constant to our guess. So
z(t) = aeM +b

Using your guess, figure out the appropriate coefficients to find a solution to the ODE.

= x(t) = 3¢ - 3.



Compare this solution to your solution to problem 2. What terms are the same? What terms are
different?

We still have 3¢5 (this will eventually be the homogeneous solution), but now we also have —3
(this will eventually be the particular solution).

Problem 4: Separating Variables
Ignore the initial condition and solve the differential equation

2/ (t) = bx(t) + 15,

as a separable equation.
If you didn’t get to this part of last week’s packet, that’s okay! Just ask an instructor for help.

z(t) = cedt — 3.

Notice the term that comes with an arbitrary, unknown constant. That’s the same term that
appeared in the previous two problems! This is not a coincidence and we’ll make this precise in a
second. But first, a more complicated problem.

Problem 5: More complicated
Consider the differential equation
x'(t) = ba(t) + 3.

When we added a constant in problem 5, we added an arbitrary constant to our guess. Now we
added an exponential e3*. What should we add to our guess now?
Hint: the extra term you add needs a constant too.

We should add an exponential. z(t) = ae5® + be>t



Use your guess to find a general solution to the differential equation. Because there is no initial
condition, you should have an arbitrary constant left in your solution. Based on the previous
problem, where do you expect that arbitrary constant to be?

Based on the previous part, the arbitrary constant should be on e®. The general solution is
z(t) = ae®’ — Led.

Theorem 6: Decomposition of solutions
Like we’ve been doing, consider a differential equation of the form

2/ (t) = a(t)z(t) + b(t).

We can always break down the solution x(¢) as
a(t) = ap(t) + xp(t),
where xp,(¢) is the general solution to the homogeneous equation
v, (t) = a(t)wn(t),

called the homogeneous solution, and x,(t) is any one solution to the full equation

2, (t) = a(t)zp(t) + b(t),
called the particular solution.
Problem 7: Proof of Theorem 6

Consider the differential equation
2/ (t) = a(t)z(t) + b(t). (2)

(a) Suppose that z1(t) and x2(t) both solve (2). Find a differential equation that
F (&) = z1(t) — 22(t) solves.
Hint: calculate the derivative f'(t) and use (2).

f'(t) = a(®)£(t).

(b) Based on the Theorem 6, what do we call the differential equation that f(t) = x1(t) — z2(t)
solves?

the homogeneous equation



(c) Suppose that zj, is the homogeneous solution to (2) and z, is any particular solution to (2).
Show that zj, 4+ ), is a solution to (2).

y(t) =12 +c

Together, these parts finish Theorem 6’s proof! Part (a) shows that any solution z; of (2) can be
written as the sum of homogeneous solution f(¢) and another solution zq, i.e. 21(t) = f(t) + z2(t).
Part (c) shows that any function of this form is a solution to (2).

Remark: The homogeneous equation ' = ax is linear in the sense that if z1, x5 are solutions, then
S0 is any linear combination a;x; + asx2. This means that we can intuitively think of the space of
solutions as a one-dimensional linear space, i.e. a line.

Let’s use this theorem now.

Problem 8: Application
Consider the differential equation

2/ (t) = —3z(t) + 10sin(t)

(a) What is the homogeneous equation? Find the general solution to the homogeneous equation.
You can either guess the solution or separate variables.

zh = =3z, = x, = ae 3.

(b) To solve for the particular solution, we’re going to need to guess. Since we added a
trigonometric function of to our differential equation, we’re going to guess that the particular
solution is also a trigonometric function, of the form

xp(t) = asin(t) + bcos(t).

Find a, b such that x, is a particular solution. This method is called undetermined coefficients.

xp = 3sin(t) — cos(t).



(c¢) Using parts (a) and (b) and Theorem 6, write out the general solution to the differential
equation.

Solution

z(t) = ae=3 + 3sin(t) — cos(t).

(d) Consider the altered differential equation
z'(t) = —3x(t) + 6sin(3t).

Note that the homogeneous equation is the same, but that we changed the inhomogeneous
part. What should we guess as a particular solution? Then find the general solution.

Our guess should be x, = asin(3t) + bcos(3t) this gives x(t) = ae 3" + sin(3t) — cos(3t).

Problem 9: Undetermined coefficients
The general idea of undetermined coefficients is to guess that our particular solution looks like the
inhomogeneous portion of the differential equation (everything that isn’t the homogeneous part).

Let’s try it with a few examples. For each of the following, find the general solution. Each of these
equations has the same homogeneous part, so you only need to find the right particular solution.

(a) 2'(t) = 2x(t) + e3¢

Solution

z,(t) = bedt = x,(t) = €38 = z(t) = ae?® + €3

(b) 2'(t) = 2z(t) + 4¢2
Hint: the inhomogeneous part is a degree 2 polynomial

Solution

zp(t) =bt? +ct+d = z,(t) = -2t -2t — 1 = x(t) = ae® —2t> — 2t — 1.



(c) 2'(t) = 2x(t) + 3t + 4¢?
Hint: remember how we added solutions earlier

z(t) = ae? +e3t — 212 — 2t — 1.

Problem 10: More challenging
Consider the differential equation
o' (t) = 2x(t) + te'.

What is the general structure of the inhomogeneity? What should you guess for the particular
solution? Find the general solution to the ODE.

linear polynomial times an exponential.
guess z, = (at + b)e! = x, = —(t + 1)e’.



Problem 11: Resonant solutions
Consider the differential equation
2’ (t) = =5x(t) + e .

(a) Find the homogeneous solution.

Solution

zh(t) = ae~ 5.

(b) What should you guess as the particular solution? Does this work? Why or why not?

Solution

You would normally guess z;, = be~5¢. This doesn’t work because it is already a
homogeneous solution.

(c) In the case where our guess is already a homogeneous solution, we need to make our guess more
complicated by multiplying by ¢. That is,

5t

normal guess : z, = ae” = new guess: T, = ate™>t

Use this new guess to find a particular solution.

Solution

z,(t) = te™>

(d) Write the full general solution.

Solution

z(t) = ae™® + te ™.



Part 3: Second order equations become polynomials

Definition 12: n*"-order differential equation
We say that a differential equation is n** order if it can be written as

™) = ft,z,2,. .., z"7Y).

Here 2(®) is the k' derivative of x. So the order of a differential equation is the highest derivative
that appears.

Let’s test out the methods that we developed in the previous section on some second order
differential equations.
Problem 13: A simple example
Consider the second order differential equation,
2" (t) +2'(t) — 6z(t) = 0.

Just like before, let’s guess a solution. Once again, we're going to guess an exponential of the form

z = ae.

(a) In order for z to be a solution, what polynomial must A be a root of? This polynomial is called
the characteristic polynomial of the differential equation.

AN —XA—-6=0.

(b) What are the possible values of A? These two values give two different fundamental solutions to
the differential equation. What are these solutions?

A=-3,2 = z=ae 3 and z = ae?.



(¢) Does the constant a have any restrictions on it?
What if we take a linear combination of the fundamental solutions? Show that for any
constants aq,as,
z(t) = are " + age?

is a solution to the differential equation.

No, a can be anything. To show that any linear combination is a solution, we just
expand the equation linearly.

This is the general solution to the second order ODE. Note that there are two arbitrary constants.

Theorem 14: Number of solutions

Generally speaking, a general solution to a second order differential equation will have two arbitrary
constants in it. Intuitively, this is because we would have to integrate the equation twice to find a
solution and each integral produces an arbitrary constant.

If we had a n'" order ODE, then we would expect n arbitrary constants.

Problem 15: Initial value problem
Since there are two arbitrary constants, we need two initial conditions to fix a single solution. Solve
the following initial value problem.

2" (t) +2'(t) — 6z(t) =0, with =z(0)=5,2"(0) =0.

Use your general solution from the previous problem and then solve for the arbitrary constants.

z(t) = 2e3 + 3e2.
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Problem 16: Distinct real roots

Generally, we break these second order equations down into the types of roots that the characteristic
polynomial has. The example that we just saw has two distinct real roots. Here are some more
examples in this case.

Find the general solutions to the following differential equations. In each case, find the characteristic
polynomial, then the roots, and then write the general solution from the roots.

(a) 2”4+ 112’ + 242 =0

N4+1IA+24=0 = z(t) = ae 8 4 be 3.

(b) 2”4+ 32" =10z =0

AN 43A—10=0 = x(t) = ae™® + be?.
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Problem 17: One repeated real root
What happens if the characteristic polynomial only has one real root? Let’s find out.

Consider the differential equation
" — 42’ + 4z = 0.

(a) Write down the characteristic polynomial for this equation. What are the roots? What
solution(s) does that give for the differential equation?

(A —2)2 =0 only gives z = ae?".

(b) Like before, let’s make our guess just one step more complicated. Guess the solution x = te*t.
For which A is this a solution?

0=teM(A2 — 4X+4) + eM(2A —4) =050 A = 2.

(c) Show that any linear combination x(t) = ae?® + bte?® is a solution to the differential equation.

Linearity or plugging in will work here.

This again gives us our general solution!



Problem 18: Imaginary roots
What happens if the characteristic polynomial has no real roots? Let’s see what happens in that case.

Consider the differential equation
2 +x=0.

(a) Write down the characteristic polynomial for this equation. What are the roots?
Recall that the imaginary number i satisfies i> = —1.

A2 +1=0 gives A = +i.

(b) The previous part suggests that our homogeneous solution should be
z(t) = ae' + be ™.
However, we are only interested in real valued solutions. So, we're going to use Fuler’s formula,
e’ = cos(8) + isin(8),

to turn this into something real.
Using Euler’s formula, expand our general solution. Group all sin(¢) and cos(t) terms together
and rename the constants. This gives us our general solution!

x(t) = accos(t) + Bsin(t).
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Problem 19: Complex roots
The previous problem worked nicely because our roots were purely imaginary. Let’s make it more
complicated and work with complex roots instead.

Consider the initial value problem
2’ — 22" + 22 =0.

(a) Write down the characteristic polynomial for this equation. What are the roots? What
(complex-valued) solutions does this give for the differential equation?

A=14+7and A=1-—1

(b) Once again, we’ll use Euler’s formula. Breaking down the imaginary exponent, we can write
et = e%(cos(b) + i sin(b)).

Grouping sines and cosines like before, use this to write down the general solution for our
differential equation.

z(t) = ael cos(t) + el sin(t).



Problem 20: Damped Spring Classification
Consider the equation governing a mass on a damped spring, that we found earlier:

mz” 4+ cx’ +kx =0,

where m, ¢,k > 0.

(a) Write down the characteristic polynomial for this differential equation.

mA + e+ k=0.

(b) Solve for the roots A in terms of m, ¢, k.

)\ = —ctvVe2—dmk
- 2m '

(c) Depending on whether ¢? — 4mk is positive, zero, or negative, our roots will either be distinct

real roots, repeated real roots, or complex roots respectively. Each of these cases corresponds to
a different physical regime for the equation:

« Querdamped: motion returns to equilibrium without oscillating.

« Critically damped: fastest return to equilibrium without oscillating.

+ Underdamped: lots of oscillations, with exponential decay.
Based on what the solutions look like (and context clues) determine which physical case
corresponds to ¢? — 4mk being positive, zero, or negative.

. Overdamped: ¢ > 4mk, two distinct real negative roots; motion returns to
equilibrium without oscillating.

Critically damped: ¢ = 4mk, one repeated real root; fastest return to equilibrium
without oscillating.

Underdamped: ¢ < 4mk, complex conjugate roots; oscillatory motion with
exponentially decaying amplitude.

z(t)
Ap
overdamped
v \/ \/ \/ =t critically damped
underdamped
—Ap 4+




Part 4: Springs with a driving force.
Now suppose that we consider an inhomogeneous second order equation. Something like
ax’” + bz’ + cx = f(t).

Thankfully, we can solve this in the exact same way we did previously! Drawing on our earlier
example, we can view this as a damped spring with a driving force f(t).

Just like Theorem 6, we can decompose our solution down into a homogeneous solution x;,, which
solves the homogeneous equation
ax) + bxy, + cxp, = 0,

and a particular solution x, which solves the full equation. Then the general solution will be given by

x(t) = xp(t) + zp(2).

We already saw how to find the homogeneous solution and we find the particular solution by guessing
via undetermined coefficients, just like last time! Let’s work through some examples.

Problem 21: An example
Find the general solution to the following second order differential equation,
x —4x’ — 122 = 3€™.

(a) What is the homogeneous equation? Write down the characteristic polynomial, find the roots,
and write down the general homogeneous solution.

xp(t) = ae ™2 + beb

(b) Like before, use undetermined coefficients to guess a solution. Solve for the coefficients to find a
particular solution.

Tp(t) = —2e5.

(c) Write the full general solution z(t).

z(t) = ae™2 + bebt — %e“.



(d) Suppose you are given the initial conditions
x(0) =12, 2'(0) = —17.

Find the solution z(¢) to the initial value problem using your general solution from the previous
part.

z(t) = 2e72 4 8t — %e“.

Problem 22: More examples

For each of the following, find the general solution. You will need to use the tricks that you learned in
Part 2. The homogeneous equation is the same for each one, only the particular solution needs to
change.

(a) 2" — 42’ — 12z = sin(2t)

Tp(t) = 55 cos(2t) — 55 sin(2¢).

(b) 2 — 42’ — 122 = te*

zp(t) = e'(—15 — 35)-
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(c) 2" — 42’ — 12z = %

zp(t) = Lebt.

Part 5: Linearly Independent Solutions

We’ve been making some assumptions in the previous sections. When solving a second order
equation, we found two homogeneous solutions x; and x5 and then assumed that any homogeneous
solution could be written as

a1x1 + asxs.

But how do we know that this is true? Is this true for any homogeneous solutions x; and x5?

Problem 23: Same or Different?
We've found that for many second order equations, there are two distinct exponential solutions. For

instance, for
2" — 5z + 62 =0,

we found

(a) Check that both x; and x2 satisfy the differential equation.

Substitute and verify that both give 0.

(b) Can we write z2(t) as a constant multiple of z1(t)? If not, why not?

No. €% £ ce?* for any constant c.

(c) What if instead we took z1(t) = €2 and z(t) = 5e¢2¢? Are those truly different solutions?

They are just constant multiples, so they describe the same shape.



(d) Can we write €3! as a linear combination of €?! and 5¢2¢? Why or why not?

Same as previous problem.

Based on the previous problem, we need to make sure that the solutions that we find are different
enough. The precise way we define that is through linear independence, just like in linear algebra.

Definition 24: Linear Independence
We say that two solutions x1, x5 are linearly dependent if there exists a constant ¢ such that

X1 =Cxrg Or CIT1] — X3.

We say that two solutions are linearly independent if this is not possible.

Theorem 25:
Suppose that 1,z are linearly independent solutions of 2 (t) + b(t)a’(t) 4+ ¢(t)z(t) = 0. Then any
solution z(t) can be written as a linear combination

x(t) = ar1x1(t) + agza(t).

Problem 26: Proof of Theorem 25 (Challenge)
Suppose we have a homogeneous second order differential equation, =" 4 b(t)z’ + ¢(t)x = 0 and we
already know two linearly independent solutions

T (t), T2 (t) .
That means x5 is not just a constant multiple of x;.

Now imagine we find another solution x(t) to the same differential equation.
(a) Because 7 and x5 are both solutions, any linear combination
c121(t) + caxa(t)

is also a solution. Why is that?

The equation is linear, so derivatives and sums pass through linearly.
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(b) Suppose we know the values of z and z’ at t = 0. Show that there are constants ¢, co such that
z(0) = c121(0) + caz2(0), 2'(0) = 12 (0) + coh(0).

Hint: this is just a system of two equations for the two unknowns ci,co. What do we know about
x1(0) and x2(0)?

Because z; and x5 are independent, the system can be solved uniquely for ¢y, co.

(¢) Because we are looking at a second order differential equation, we know that any solution is
uniquely determined by two initial conditions. What does this show about all solutions to the
differential equation?

Every solution can be written as a linear combination of x; and x5.

Problem 27: The Wronskian Test
When we have two possible solutions z1(t) and x2(t) to a homogeneous second order equation, we
can check whether they are linearly independent using something called the Wronskian:

x1(8)wh(t) — o (t) 2 (2).

(a) Compute the Wronskian for x1(¢) = €?! and z5(t) = €3t

W (t) = e?!(3e3t) — e3(2e%!) = e5t.



(b) Since W (t) # 0 for any ¢, what can we conclude about z; and z3?

They are linearly independent.

(c) Try the same for z1(t) = €*' and x5(t) = 5e?*. What happens now?

W (t) = 0, so they are linearly dependent.

Part 6: Higher order differential equations (Challenge)

The techniques that we developed are equally valid for higher order systems! Try to find the general
solutions for the following. Now you will need 3 (or more) arbitrary constants.

Problem 28:
Find the general solution to
" + 12" — 62" =0.

z(t) = ae™3 + b+ ce?t.



Problem 29:

Find the general solution to

x/// _’_x// _ .’L" —r= 6275.

z(t) = ae™" + bte™" + ce’ + Fe*.

Problem 30:
Find the general solution to
2" + 32" + 32" +x =0.

x5, (t) = aet + bte! + ct?el.
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Problem 31: (Challenge)
Find the general solution to
2" + 2" = sin(t).

xp(t) = acos(t) + bsin(t) + ¢ + dt.
xp, = £ cos(t).
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