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1. Introduction

The Calogero-Moser derivative NLS equation is stated

(CM-DNLS) iut + uxx + 2Π+D(|u|2)u = 0

where D = −i∂x and Π+ is the Szegö projector onto non-negative frequencies. We
will often abbreviate Π+D = D+ and Π+f = f+.

For ease of notation, we will extensively use f ≲ g to imply that there exists
a universal constant C > 0 such that f ≤ Cg. When the constant has additional
dependencies, we will indicate those by subscripts. At times, we will use the corre-
sponding notation ≳ and ∼.

In light of Gerárd and Lenzmann’s proof of global well-posedness for small
data,[1] we wish to present a self-contained version for personal reference and un-
derstanding. Specifically, we aim to prove

Theorem 1.1 (H2 Global Well-Posedness). CM-DNLS is globally well-posed for
initial data u0 ∈ H2

+(R) with L2-mass

M(u0) < 2π.

Moreover, we have the a-priori bound

sup
t∈R

∥u(t)∥H2 < ∞.

2. Local Theory

We study the Cauchy problem for CM-DNLS in H2
+(R). To do so, we wish to

run Kato’s classical iterative scheme for quasilinear evolution equations, the details
of which will be explained.

Proposition 2.1 (H2 Local Well-Posedness). For any R > 0 there is some T (R) >
0 such that, for every u0 ∈ H2

+(R) with ∥u0∥H2 ≤ R, there exists a unique solution
u ∈ C([−T, T ];H2

+(R)) of CM-DNLS with u(0) = u0.
Moreover, the flow map u0 7→ u(t) is continuous on H2.

By distributing the derivative and rearranging, we rewrite CM-DNLS as

(1) ut = iuxx + 2uΠ+ūux + 2uΠ+uux.

We aim to construct a sequence uk such that u0(t) = u0 and

uk+1 = iuk+1
xx + 2ukΠ+ukuk+1

x + 2ukΠ+ukuk
x

To that end, we first find bounds on the inhomogeneous term 2ukΠ+ukuk
x with the

following Lemma.
1
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Lemma 2.2. For all p ∈ {0, 1, 2}, if u ∈ H2
+(R) and v ∈ Hp, then Π+uvx ∈ Hp

+

with
∥Π+uvx∥Hp ≲ ∥u∥H2∥v∥Hp .

Proof. We first prove a bound on ∥Π+ufx∥2 for f ∈ H1
+. By direct computation,

ûfx(ξ) =

∫
R
û(ξ − η)f̂x(η)

dη√
2π

= i

∫
R
û(ξ + η)ηf̂(η)

dη√
2π

Then

∥Π+ufx∥22 ≲
∫ ∞

0

∣∣∣∣∫ ∞

0

|η||û(ξ + η)||f̂(η)|dη
∣∣∣∣2 dξ

≤ ∥f∥22
∫ ∞

0

∫ ∞

0

|η + ξ|2|û(ξ + η)|2dηdξ (Hölder’s)

= ∥f∥22
∫ ∞

0

∫ ζ

−ζ

|ζ|2|û(ζ)|2dωdζ (ζ = η + ξ, ω = η − ξ)

∼ ∥f∥22
∫ ∞

0

ζ3|û(ζ)|2dζ

= ∥u∥2
Ḣ3/2∥f∥22

as desired. By density of H1
+ in L2

+, this bound extends to f ∈ L2
+. In particular,

this implies that ∥Π+uvx∥2 ≲ ∥u∥H2∥v∥2 for v ∈ L2.
To prove the original statement, we first note that by Sobolev, for f ∈ H2,

∥f∥∞ ≤ ∥f∥Ḣ1/2 . Using this, we compute for v ∈ H1,

∥Π+uvx∥Ḣ1 ≲ ∥Π+uxvx∥2 + ∥Π+uvxx∥2
≲ ∥ux∥∞∥vx∥2 + ∥u∥Ḣ3/2∥vx∥2
≲ ∥u∥H2∥v∥H1

Similarly, for v ∈ H2,

∥Π+uvx∥Ḣ2 ≲ ∥uxxvx∥2 + ∥uxvxx∥2 + ∥Π+uvxxx∥2
≤ ∥uxx∥2∥vx∥∞ + ∥ux∥∞∥vxx∥2 + ∥Π+uvxxx∥2
≲ ∥u∥H2∥v∥H2 .

Combining these concludes the desired result for all p ∈ {0, 1, 2}. □

We now aim to prove that our iteration scheme is valid, for which we establish
the following Lemma.

Lemma 2.3. Let u ∈ C([−T, T ];Hp
+) with some T > 0, p ∈ {0, 1, 2} and w0 ∈

Hp
+(R), f ∈ L1([−T, T ];Hp

+). Then there exists a unique w ∈ C([−T, T ];Hp
+) such

that

(2) wt = iwxx + 2uΠ+uwx + f, w(0) = w0

Furthermore,

(3) ∥w∥L∞
t Hp

x
≲ eC

∫ T
−T

∥u(t)∥2
H2dt

(
∥w0∥Hp + ∥f∥L1

tH
p

)
for some constant C > 0.
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To prove this Lemma, we must employ ”standard energy methods” to perturb
the problem slightly, solve it in the perturbed case, and then extend this solution
to our desired case. To that end, for ε > 0, we introduce the perturbed equation

(4) wε
t = iwε

xx + 2u(1− ε∂2
x)

−1Π+uwε
x + f, wε(0) = w0.

Note that here, (1− ε∂2
x)

−1 is the Fourier multiplier (1 + εξ2)−1. We first prove a
well-posedness result for equation 4 on the time interval [−T, T ].

Lemma 2.4. Fix ε > 0. Let u ∈ C([−T, T ];Hp
+) with some T > 0, p ∈ {0, 1, 2} and

w0 ∈ Hp
+(R), f ∈ L1([−T, T ];Hp

+). Then there exists a unique wε ∈ C([−T, T ];Hp
+)

such that 4 holds. Furthermore,

(5) ∥wε∥L∞
t Hp

x
≲ eC

∫ T
−T

∥u(t)∥2
H2dt

(
∥w0∥Hp + ∥f∥L1

tH
p
x

)
for some constant C > 0 independent of ε.

Proof. We argue via contraction mapping. We will construct a local solution for
small time depending on the size of the initial data and then extend to [−T, T ] via
uniform bounds.

Let F ε denote the non-linearity,

F ε(v) = 2u(1− ε∂2
x)

−1Π+uvx

As usual, we seek a strong solution of the form

wε(t) = eit∆w0 − i

∫ t

0

ei(t−s)∆ (F ε(wε(s)) + f) ds.

We claim that F ε : Hp
+ → Hp

+. To see this, we first calculate that for f, g ∈ H1
+,

|̂̄f ∗ ĝx(ξ)| ≤
∫ ∞

0

η|f̂(η − ξ)||ĝ(η)|dη

≤ ∥ηf̂(η − ξ)∥2∥g∥2 (Hölder’s)

≤
(
∥(η − ξ)f̂(η − ξ)∥2 + ξ∥f∥2

)
∥g∥2

≤ (1 + ξ) ∥f∥H1∥g∥2.

Density then extends this bound to f ∈ L2
+. Applying this to F ε for v ∈ L2

+, we
find that

∥F ε(v)∥22 ≤ ∥u∥2∞
∫ ∞

0

∣∣(1 + εξ2)−1̂̄u ∗ v̂x(ξ)
∣∣2 dξ

≤ ∥u∥2∞∥u∥2H1∥v∥22
∫ ∞

0

(
1 + ξ

1 + εξ2

)2

dξ

≲ ε−1/2∥u∥2∞∥u∥2H1∥v∥22 ≤ ε−1/2∥u∥4H2∥v∥22
for sufficiently small ε as desired.

Similarly, for v ∈ H1
+,

∥∂xF ε(v)∥2 ≲ ε−1/4∥ux∥∞∥u∥H1∥v∥2 + ε−1/4∥u∥∞∥ux∥H1∥v∥2 + ε−1/4∥u∥∞∥u∥H1∥vx∥2
≲ ε−1/4∥u∥2H2∥v∥H1 .

Combining this with the L2 bound, we find that ∥F ε(v)∥H1 ≲ ε−1/4∥u∥2H2∥v∥H1 .
Similarly, for v ∈ H2

+,

∥∂2
xF

ε(v)∥2 ≲ ∥uxx∥2∥(1− ε∂2
x)

−1Π+uvx∥∞ + ∥ux∥∞∥∂x(1− ε∂2
x)

−1Π+uvx∥2
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+ ∥u∥∞∥∂2
x(1− ε∂2

x)
−1Π+uvx∥2

≲ ε−1/4∥u∥2H2∥v∥2 + ∥u∥2H2∥v∥H1 + ∥u∥2H2∥v∥H2

≲ ε−1/4∥u∥2H2∥v∥H2

Therefore ∥F ε∥Hp→Hp ≲ ε−1/4∥u∥2Hp as desired.
With this, we construct our contraction. Define

B =
{
v ∈ CtH

p
+x([−T̃ , T̃ ]× R) : ∥v∥L∞

t L2
x
≤ 2∥w0∥Hp + ∥f∥L1

tH
p
x

}
for T̃ to be chosen later and Φ : B → B such that

Φ(v) = eit∆w0 +

∫ t

0

ei(t−s)∆ (F ε(v(s)) + f) ds.

To see that Φ : B → B is well-defined, we first show that Φ(v) ∈ CtH
p
+x. We

note that Φ(v) ∈ L2
+ by construction and recall that t 7→ eit∆w0 is Ct(R, Hp

x).
Furthermore, for t > τ , Strichartz yields∥∥∥∥(∫ t

0

−
∫ τ

0

)
ei(t−s)∆ (F ε(v(s)) + f)

∥∥∥∥
Hp

≲ ∥f∥L1
tH

p
x([τ,t]×R) + ε−1/4(t− τ)∥u∥2L∞

t H2
x
∥v∥L∞

t Hp
x
.

Combining these facts, we find that Φ(v) ∈ CtH
p
x . To conclude that Φ : B → B,

we compute via Strichartz estimates that for v ∈ B,

∥Φ(v)∥L∞
t Hp

x
≲ ∥w0∥2 + ∥f∥L1

tH
p
x
+ ∥F ε(v(s))∥L1

tH
p
x

≲ ∥w0∥2 + ∥f∥L1
tH

p
x
+ ε−1/4T̃∥u∥2L∞

t Hp
x
∥v∥L∞

t Hp
x
.

Choosing T̃ sufficiently small then implies Φ : B → B is well-defined. To now show
that Φ is a contraction, we note that Φ is affine and so Strichartz implies

∥Φ(v)− Φ(ṽ)∥2 ≲ ε−1/4T̃∥u∥∞∥u∥L∞
t H1

x
∥v − ṽ∥L∞

t Hp
x
.

Again choosing T̃ sufficiently small concludes that Φ is a contraction on B. This
implies that there exists a unique solution wε to 4 on [−T̃ , T̃ ].

We now extend wε to [−T, T ]. We note that the choice of T̃ depended only on ε,
universal constants, ∥f∥L1

tH
p
x
and ∥w0∥Hp . Therefore, to extend wε to [−T, T ], it

suffices to show that the Hp norm is bounded under the flow of 4 and so it suffices
to show 5.To do so, we calculate

d

dt
∥wε(t)∥2Hp = Re⟨wε, iwε

xx + F ε(wε) + f(t)⟩Hp

≤ ∥f(t)∥Hp
x
∥wε∥Hp + |Re⟨wε, F ε(wε)⟩Hp |.

Consider only the final term. Noting that u(1 − ε∂2
x)

−1Π+u is self-adjoint and
(1− ε∂2

x)
−1 is bounded, we find that

Re⟨wε, F ε(wε)⟩2 = −2Re⟨ux(1− ε∂2
x)

−1Π+uwε, wε⟩2 − 2Re⟨u(1− ε∂2
x)

−1Π+uxw
ε, wε⟩2

− Re⟨F ε(wε), wε⟩2
2Re⟨wε, F ε(wε)⟩2 = −2Re⟨ux(1− ε∂2

x)
−1Π+uwε, wε⟩2 − 2Re⟨u(1− ε∂2

x)
−1Π+uxw

ε, wε⟩2
|Re⟨wε, F ε(wε)⟩2| ≲ ∥u∥2H2∥wε∥22
Using this result, we compute

|Re⟨wε, F ε(wε)⟩Ḣ1 | = |Re⟨∂xwε, ∂xF
ε(wε)⟩2| = |Re⟨F εwε

x, w
ε
x⟩2| ≲ ∥u∥2H2∥wε∥Ḣ1 .
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Similarly,

|Re⟨wε, F ε(wε)⟩Ḣ2 | ∼ |Re⟨wε
x, F

εwε
x⟩Ḣ1 |+ |Re⟨wε

xx, uxx(1− ε∂2
x)

−1Π+uwε
x⟩2|

+ |Re⟨wε
xx, u(1− ε∂2

x)
−1Π+uxxw

ε
x⟩2|

+ |Re⟨wε
xx, ux(1− ε∂2

x)
−1Π+uxw

ε
x⟩2|

≲ ∥u∥2H2∥wε∥Ḣ2 .

Combining these results, we find that |Re⟨wε, F ε(wε)⟩Hp | ≲ ∥u∥2H2∥wε∥Hp . There-
fore

d

dt
∥wε(t)∥2Hp ≲ ∥f(t)∥Hp

x
∥wε∥Hp + ∥u∥2H2∥wε∥2Hp

which concludes the Lemma via Gronwall’s inequality. □

We now take the limit as ε → 0 in L2 for fixed u,w0. To do so, we show that
wε is uniformly Cauchy in ε via a Gronwall argument. Note that ∥wε∥L∞

t H2
x
≲ 1

uniformly in ε. Then by definition,

d

dt
∥wε − wη∥22 = 2Re

〈
wε − wη, i(wε − wη)xx + 2u

(
(1− ε∂2

x)
−1Π+uwε

x − (1− η∂2
x)

−1Π+uwη
x

)〉
2

= 4Re
〈
wε − wη, u

(
(1− ε∂2

x)
−1Π+uwε

x − (1− η∂2
x)

−1Π+uwη
x

)〉
2

= 4Re

〈
wε − wη, u

(ε− η)∂2
x

(1− ε∂2
x)(1− η∂2

x)
Π+uwε

x − u(1− η∂2
x)

−1Π+u(wε − wη)x

〉
2

= 4Re

〈
wε − wη, u

(ε− η)∂2
x

(1− ε∂2
x)(1− η∂2

x)
Π+uwε

x − F η (wε − wη)

〉
2

≲ |ε− η|∥wε − wη∥H2∥wε∥H2∥u∥2H2 + ∥u∥2H2∥wε − wη∥22
≲ |ε− η|+ ∥wε − wη∥22.

Since T > 0 is finite, Gronwall’s inequality then concludes that wε is uniformly
Cauchy in ε.

Therefore, for fixed w0, u there exists some w ∈ C([−T, T ];L2) such that wε →
w ∈ L∞

t L2
x. Moreover, since wε is uniformly bounded in Hp

x , Fatou’s lemma implies
that w ∈ L∞

t Hp
x . To show that w is a strong solution of 2, we then show that w

satisfies the Duhamel formula. Let w̃(t) denote the Duhamel formula for 2. By
definition of wε and Strichartz estimates,

∥w(t)− w̃(t)∥2 ≤ ∥w − wε∥L∞
t L2

x
+

∥∥∥∥∫ t

0

ei(t−s)∆F ε(wε − w)ds

∥∥∥∥
2

+

∥∥∥∥∫ t

0

ei(t−s)∆2u
ε∂2

x

1− ε∂2
x

Π+uwxds

∥∥∥∥
2

≲ ∥w − wε∥L∞
t L2

x
+ T ∥F ε(wε − w)∥L∞

t L2
x
+ Tε∥uΠ+uwx∥L∞

t L2
x

≲ ∥w − wε∥L∞
t L2

x
+ Tε−1/4∥u∥2H2∥w − wε∥L∞

t L2
x
+ Tε∥u∥2H2∥w∥L∞

t H2
x

Therefore the Duhamel formula holds for w. Since w ∈ L∞
t Hp

x for p ∈ {0, 1, 2},
the Duhamel formula implies that w ∈ C([−T, T ];Hp

x) and so w is a solution to
2. Uniqueness then follows from a standard contraction argument, thus proving
Lemma 2.3.

With these lemmas, we now prove Proposition 2.1.

Proof of Proposition 2.1. Suppose that ∥u0∥H2 ≤ R. By Lemma 2 with f =

2ukΠ+ukuk
x, we construct by iteration uk ∈ C([−T, T ];H2

+(R)) with u0(t, x) =
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u0(x) for T to be chosen later. We aim to show that (uk) is bounded in H2
+ and

uniformly convergent in L2
+. By 3,

∥uk+1∥L∞
t H2

x
≲ e

2CT∥uk∥2
L∞
t H2

x

(
∥u0∥H2 + 2T∥uk∥3L∞

t H2
x

)
.

A discrete bootstrap argument yields ∥uk∥L∞
t H2

x
≲ 1 uniformly in k for T sufficiently

small.
We now show that (uk) is uniformly Cauchy in L∞

x L2
x. To do so, it suffices to

show that ∥uk+1 − uk∥L∞
t L2

x
converges geometrically. We observe that

(uk+1 − uk)t = i(uk+1 − uk)xx + 2ukΠ+uk(uk+1 − uk)x

+ 2
(
ukΠ+uk − 2uk−1Π+uk−1

)
uk
x + 2ukΠ+ukuk

x − 2uk−1Π+uk−1uk−1
x .

Since ∥uk∥L∞
t L2

x
≲ 1 uniformly in k, it follows that the final two terms are in

L1
tL

2
x([−T, T ]× R). Equation 3 with p = 2 then implies that

∥uk+1−uk∥L∞
t L2

x
≲ Te2C

′T
∥∥∥2(ukΠ+uk − 2uk−1Π+uk−1

)
uk
x + 2ukΠ+ukuk

x − 2uk−1
∥∥∥
L∞

t L2
x

Applying the triangle inequality repeatedly pulling out many factors of ∥uj∥L∞
t,x

≲

∥uj∥L∞
t H2

x
≲ 1, we find that

∥uk+1 − uk∥L∞
t L2

x
≲ Te2C

′T ∥uk − uk−1∥L∞
t L2

x

. Choosing T sufficienty small then implies that ∥uk+1 − uk∥L∞
t L2

x
converges geo-

metrically to 0. Then uk converges uniformly in L∞
t L2

x to some u ∈ C([−T, T ];L2
+)

which solves 1 and hence CM-DNLS. Fatou’s lemma then implies that u(t) ∈ H2
+

for all t ∈ [−T, T ].
To establish uniqueness, we consider two different sequences uk, ũk each with

initial data u0. Minor adjustments to the Cauchy argument above implies that
∥uk − ũk∥L∞

t L2
x
→ 0 and so u is unique.

By the Duhamel formula, we can then conclude via a standard argument that
u ∈ C([−T, T ];H2

+) as desired. □

3. Global Well-Posedness

We do not recreate the proof either of the Lax pair or the hierarchy of conser-
vation laws. Instead, we recall that CM-DNLS has the Lax pair

(6) Lu = D − uΠ+u Bu = −i∂2
x + 2u∂xΠ

+u.

We note that this is not the operator Bu that [1] uses, but is an equivalent one that
is more natural for CM-DNLS since it satisfies ut = Buu. With these operators,
we have the following result from [1],

Proposition 3.1 (Lax Equation). If u ∈ C([0, T ];H2
+) solves CM-DNLS, then it

holds
d

dt
Lu = [Bu, Lu].

Moreover, we have the usual hierarchy of conservation laws
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Proposition 3.2 (Hierarchy of Conservation Laws). Let u ∈ C([0, T ];H
n/2
+ ) be a

solution of CM −DNLS for some n ∈ N. Then the quantities

Ik := ⟨Lk
uu, u⟩ with k = 0, . . . , n

are conserved, where ⟨·, ·⟩ denotes the usual pairing of H
−n/2
+ and H

n/2
+ .

We also recall the following lemma from [1],

Lemma 3.3. For u ∈ L2
+ and f ∈ H

1/2
+ , we have Π+uf ∈ L2

+ with

∥Π+uf∥22 ≤ 1

2π
∥u∥2L2⟨Df, f⟩.

With these, we can establish Theorem 1.1 for sub-critical mass.

Proof of Theorem 1.1. We recall that in the proof of local well-posedness, T de-
pended solely on ∥u0∥H2 and universal constants. Therefore, to extend our local
solutions globally, it suffices to show a-priori bounds on the H2 norms. To do so,
we utilize the hierarchy of conservation laws.

Suppose that u0 ∈ H2
+ with ∥u0∥22 < 2π. Then by lemma 3.3,

|I1(u)| = |⟨Du, u⟩ − ∥Π+uu∥22| ≥ ∥u∥H1/2 −
∥u0∥22
2π

∥u∥H1/2 .

Therefore ∥u∥
L∞

t H
1/2
x

≲ 1 uniformly in t.

To show a similar bound for H2, we first show bounds for H1, H3/2 by expanding
I2, I3 and bounding lower order terms. Doing the same for H2 yields an a-priori
bound and hence Theorem 1.1. □
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