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Derivation of the Model

Dispersion-managed optical fibers
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The propagation of pulses in an optical fiber is primarily modeled by the cubic nonlinear
Schrodinger equation:
(NLS)

10w + Y0ppu + [ul’u =0, w(0,z) = ug(z),

here ~v is the group velocity dispersion (GVD) and the roles of ¢ and x are flipped from expectation:
t represents the distance along the fiber and z is a retarded time, travelling with the carrier wave.

In a typical optical fiber, dispersion dominates the nonlinear effects and causes pulses to broaden.
This limits bandwidth as pulses overlap and interact. A common technique to mitigate these
effects is dispersion-management, concatenating segments of optical fibers with opposite GVD:
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Mathematically, this gives the dispersion-managed NLS:
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10w + Y(t)0rzu + |ulu =0, w(0,z) = ug(x). (DM-NLS)

Large-scale dynamics: The Gabitov-Turitsyn equation (GT)

Most often, strong dispersion-management is employed, alternating quickly between extreme pos-
itive and negative GVD. Mathematically, this corresponds to

Y(t) = (7) + e (t/e),
where ~o(t) is periodic with mean 0 and e < 1.

Taking the limit as ¢ — 0, we find that the cubic one-dimensional Gabitov-Turitsyn equation
emerges as the primary model of the large-scale dynamics. Much like the cubic (NLS), the cubic
one-dimensional (GT) introduces additional challenges. For our purposes, we then consider a
generalized form:

[ . .
10w+ () Au + / g~lon {|620Au\p : ewAu] do =0, u(0,x)=up(x), (GT)
0

where v : Ry x R — C.

Scaling pseudo-symmetries

Due to the averaging in the nonlinearity, (GT) lacks a true scaling symmetry. Instead, we can
identify two scaling pseudo-symmetries, which map solutions of (GT) to solutions of a (GT)-variant.

Monomial pseudo-symmetry

Under the usual scaling for (NLS), we find that a solution w to (GT) satisfies:
)\2

2 ¢ . - - -
Uy =\ P u(p, %) will solve 10wy + (v)Auy + )\2/ g loA erAu)\}p : ewAuA} do = 0.
0
This preserves the averaging in the nonlinearity and identifies a critical regularity at
d 2
S == — —

Integrated pseudo-symmetry
Under a modified scaling, we find that a solution « to (GT) satisfies:

2
4 st , AT . .
Uy = A pu()\— ;) will solve 0y + (v)Au) +/ eloA [‘ewAu)\P : ewAuA} do = 0.
0
This preserves the integral in the nonlinearity and identifies a critical regularity at
d 4

S = 7 — —.

2. p
f the interval of (GT) was changed to [0, co) or R, then this would be a true scaling symmetry.
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Methods and Remarks

Theorem 1. (Local well-posedness) (This appeared earlier by Kawakami-Murphy)
For uy € H™x(sm:0) and T' ~ HuOH p there exists a unique solution to (GT):

X(sm,0)’
u € CpH™max(5m)0 ><(—T, T) x RY  with u(0,z) = up(x).
Moreover, the data-to-solution map is real analytic on a neighborhood of ug = 0: for

[uoll rmax(sm,0) < B and T ~ R™P the data-to-solution map

uy € Bp(H™>m0) s we Gy (-7, T) x RY)
satisfies a power series expansion; see (3).
In addition, there exists 6 = d(p,d) such that for all ||ug|| ymax(sm,0) < 9, the associated

solution u may be extended to a global solution in CthaX(Sm’ )(IR{ x R%) which scatters.

Open (s, < s < 0)

Power series expansion

When a Galilean symmetry exists for a dispersive model, it is expected that the data-to-
solution map fails to be uniformly continuous in H® for s < 0. For focusing equations,
this failure is often proved with solitons. Combined with the scaling symmetry, one can
boost sufficiently narrow solitons to high speeds, causing them to be small in H® for
s < 0 and to decohere quickly.

For (GT), this story is complicated. The existence of such dispersion-managed solitons
has been rigorously justified for non-negative average GVD by Choi, Hundertmark, and
Lee. However, the nonlocal structure of (GT) forces these results to formulate solitons as
constrained energy minimizers, leaving their profiles, dynamical properties, and widths
opaqgue. This breaks the usual proof and leaves the status of ill-posedness open.

Analyticity fails (s < s,,)

For s < s,,, we find that the data-to-solution map fails to be analytic:

Theorem 2. ForanyT > 0and s < sy, the (p+ l)St derivative of the data-to-solution map,

/ / WA—i(s+0)A [|€MA ()|P e’taﬁ ()} dods,

fails to be bounded H® — LOOHS

The operator =y can be understood as the (p + 1)% directional derivative of the data-to-
solution map at initial data ug = 0 in the direction of ¢.

Mass-subcritical norm inflation (s < min(s;,0))

To show local vvell—posedness and lay the foundation for Theorems 2 and 3, we define

Nolfor-++ . / / (1A 7 fs) . TR ()

With this notation, a solution w of (GT) with initial data ug satisfies
uw = Luy+ Np(u, -+, u).

Ouroborically substituting this formula into itself, we find the formal expansion

. eloB fp(s)} dods.

u = Lug + Np(Lug, -+, Lug) + Np| Lug, -+, Lug, Np(Lug, -+, Lug)| + -+ . (1)
Grouping terms of equal order, we recursively define
=o(uo) = L(up),
Siwo) = Y Np(Ejw), -, E, (uo) 2)
. j07"°7jp20
Jot-+ip=j—1

This implies that w has the following (formal) power series expansion
w="y Zj(ug). (3)
720

Proposition 6. (Quantitative well-posedness): let D = H max(sm,0) denote the space of
initial data, and S = L;H™m0)(—T, T) x R%) the space of solutions. The operators
Ny Sp+l s Sand L : D — S are bounded in the following sense:

ILglls = llgllp
”Np<f07 SR fp>HS S CPT”fO”S - prHS

This leads to Theorem 1 with standard arguments, see the work of Bejenaru-Tao.

Mass-subcritical norm inflation (s < min(s;,0))

To prove norm inflation in this region, we expand the methods of Nobu Kishimoto and
Tadahiro Oh. For a large parameter N > 1, we construct initial data ug of the form:

~ 1
uy = N +(]1[N,N+A] ™ ]1[2N,2N+A])»

with A = N1=. When wg interacts with itself, a high-low frequency cascade occurs, causing
growth in the H® norm for s < 0. For s < s;, this construction ensures that the growth
Is driven by =1 and not negated by higher-order terms.

Energy-supercritical norm inflation (1 < s < s;)

Definition. (Norm inflation in H°) We say that norm inflation occurs in H?® if, for all e > 0,
there exists smooth initial data ug with corresponding solution u(t) to (GT) that satisfies

! T| < €.

Juol| 75 <& with |[u(T)|| 76 > €™, forsome

This indicates that the data-to-solution map fails to be continuous at ug = 0 and hence
the equation is ill-posed in the strongest sense.

Theorem 3. (Mass-subcritical norm inflation) For the one-dimensional cubic (GT), horm
inflation occurs in H® for s < s; = —%. As a consequence, for any T > 0, the data-to-solution
map of (GT) fails to be continuous at ug = 0 from H% — C:H3((—=T,T)) for s < s;.

Energy-supercritical norm inflation (1 < s < s,)

Theorem 4. (Energy-supercritical norm inflation) Suppose that s; > 1. Then norm infla-
tion occurs in H? for (GT) for all 1 < s < s;. Therefore, for any T > 0, the data-to-solution
map of (GT) fails to be continuous at ug = 0 from H® — CyHZ((=T,T)) for1 < s < s;.

Our proof of norm inflation in this region relies heavily on the following phenomenon:

Proposition 5. (Energy equipartition) Suppose that v is real-valued and sufficiently regular
to justify the virial identity (4). Then for T ~ E(ug)/ | |wug|*dz with T < 0, the correspond-
ing solution u to the defocusing (GT) ({(~) = —1) satisfies

2 > I .i0A p+2
Ty 2l S,
In other words, should ||ug||? m < HGWAUOHPHQ([O 1y then the kinetic and potential energy

of u become comparable by time T'.
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The standard method of Christ-Colliander-Tao for (NLS) appears intractable for (GT)
due to its nonlocal structure. To surmount this, we instead build on structural identities
of (GT), namely the virial identity, first shown for (GT) by Choi-Hong-Lee:

Proposition 7. (Virial identity) Let u be the maximal solution of (GT) for p > &, with initial
data ug € S(RY). Define the variance of u as

v(t) =

2 |*|u(t, z)|"da.
Rd

In the defocusing case, (v) = —1, we find that for —% <t <0,

v(t) < v(0) — t/u_o(x . Vug)dz + C(p,d)E(u)t* + error terms (4)
where C'(p,d) > 0 forp > %.
In the defocusing case, (v) = —1, we use this identity to prove Proposition 5 and show

that suitable solutions undergo energy equipartition.

To show norm inflation in the energy-supercritical case, we can then work directly with
Gaussians. We choose our initial data:

2 2 '
UO(ZL‘) _ A€—|:E| /4o | 10 A

then ||e" 7 ug||P"

2 4
Lp—I—Q([O 1) /||UO||H1 ~ AP,
Provided s < s;, we can then choose 0 < 1 and A > 1 with
APt > 1 and gl gs ~ A% <« 1.

This implies that potential energy greatly outweighs the kinetic energy. Provided s > 1,
energy equipartition then implies a rapid increase in kinetic energy, and hence H® norm.
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