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Derivation of the Model
Dispersion-managed optical fibers
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The propagation of pulses in an optical fiber is primarily modeled by the cubic nonlinear
Schrödinger equation:

i∂tu + γ∂xxu + |u|2u = 0, u(0, x) = u0(x), (NLS)

here γ is the group velocity dispersion (GVD) and the roles of t and x are flipped from expectation:
t represents the distance along the fiber and x is a retarded time, travelling with the carrier wave.

In a typical optical fiber, dispersion dominates the nonlinear effects and causes pulses to broaden.
This limits bandwidth as pulses overlap and interact. A common technique to mitigate these
effects is dispersion‐management, concatenating segments of optical fibers with opposite GVD:
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Mathematically, this gives the dispersion‐managed NLS:

i∂tu + γ(t)∂xxu + |u|2u = 0, u(0, x) = u0(x). (DM‐NLS)

Large-scale dynamics: The Gabitov–Turitsyn equation (GT)

Most often, strong dispersion‐management is employed, alternating quickly between extreme pos‐
itive and negative GVD. Mathematically, this corresponds to

γ(t) = 〈γ〉 + ε−1γ0(t/ε),
where γ0(t) is periodic with mean 0 and ε � 1.
Taking the limit as ε → 0, we find that the cubic one‐dimensional Gabitov–Turitsyn equation
emerges as the primary model of the large‐scale dynamics. Much like the cubic (NLS), the cubic
one‐dimensional (GT) introduces additional challenges. For our purposes, we then consider a
generalized form:

i∂tu + 〈γ〉∆u +
∫ 1

0
e−iσ∆

[
|eiσ∆u|p · eiσ∆u

]
dσ = 0, u(0, x) = u0(x), (GT)

where u : Rt × Rd
x → C.

Scaling pseudo-symmetries

Due to the averaging in the nonlinearity, (GT) lacks a true scaling symmetry. Instead, we can
identify two scaling pseudo‐symmetries, which map solutions of (GT) to solutions of a (GT)‐variant.

Monomial pseudo‐symmetry
Under the usual scaling for (NLS), we find that a solution u to (GT) satisfies:

uλ = λ
−2

p u
( t

λ2,
x

λ

)
will solve i∂tuλ + 〈γ〉∆uλ + λ−2

∫ λ2

0
e−iσ∆

[∣∣eiσ∆uλ

∣∣p · eiσ∆uλ

]
dσ = 0.

This preserves the averaging in the nonlinearity and identifies a critical regularity at

sm = d

2
− 2

p
.

Integrated pseudo‐symmetry
Under a modified scaling, we find that a solution u to (GT) satisfies:

uλ = λ
−4

p u
( t

λ2,
x

λ

)
will solve i∂tuλ + 〈γ〉∆uλ +

∫ λ2

0
e−iσ∆

[∣∣eiσ∆uλ

∣∣p · eiσ∆uλ

]
dσ = 0.

This preserves the integral in the nonlinearity and identifies a critical regularity at

si = d

2
− 4

p
.

If the interval of (GT) was changed to [0, ∞) or R, then this would be a true scaling symmetry.

max(sm, 0)

sm = d
2 − 2
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p
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Results
Analytically well-posed (s ≥ max(sm, 0))

Theorem 1. (Local well‐posedness) (This appeared earlier by Kawakami–Murphy)
For u0 ∈ Ḣmax(sm,0) and T ∼ ‖u0‖

−p

Ḣmax(sm,0), there exists a unique solution to (GT):

u ∈ CtḢ
max(sm,0)((−T, T ) × Rd) with u(0, x) = u0(x).

Moreover, the data‐to‐solution map is real analytic on a neighborhood of u0 = 0: for
‖u0‖Ḣmax(sm,0) ≤ R and T ∼ R−p the data‐to‐solution map

u0 ∈ BR

(
Ḣmax(sm,0)) 7−→ u ∈ CtḢ

max(sm,0)
x

(
(−T, T ) × Rd

)
satisfies a power series expansion; see (3).

In addition, there exists δ = δ(p, d) such that for all ‖u0‖Ḣmax(sm,0) < δ, the associated

solution u may be extended to a global solution in CtḢ
max(sm,0)
x (R × Rd) which scatters.

Open (sm ≤ s < 0)

When a Galilean symmetry exists for a dispersive model, it is expected that the data‐to‐
solution map fails to be uniformly continuous in Hs for s < 0. For focusing equations,
this failure is often proved with solitons. Combined with the scaling symmetry, one can
boost sufficiently narrow solitons to high speeds, causing them to be small in Hs for
s < 0 and to decohere quickly.

For (GT), this story is complicated. The existence of such dispersion‐managed solitons
has been rigorously justified for non‐negative average GVD by Choi, Hundertmark, and
Lee. However, the nonlocal structure of (GT) forces these results to formulate solitons as
constrained energy minimizers, leaving their profiles, dynamical properties, and widths
opaque. This breaks the usual proof and leaves the status of ill‐posedness open.

Analyticity fails (s < sm)

For s < sm, we find that the data‐to‐solution map fails to be analytic:

Theorem 2. For any T > 0 and s < sm, the (p + 1)st derivative of the data‐to‐solution map,

Ξ1(ϕ) = i

∫ t

0

∫ 1

0
ei〈γ〉t∆−i(s+σ)∆

[
|eiσ∆u(s)|p · eiσ∆u(s)

]
dσds,

fails to be bounded Hs → L∞
t Hs

x((−T, T )).

The operator Ξ1 can be understood as the (p + 1)st directional derivative of the data‐to‐
solution map at initial data u0 = 0 in the direction of ϕ.

Mass-subcritical norm inflation (s < min(si, 0))

Definition. (Norm inflation inHs) We say that norm inflation occurs in Hs if, for all ε > 0,
there exists smooth initial data u0 with corresponding solution u(t) to (GT) that satisfies

‖u0‖Ḣs < ε with ‖u(T )‖Ḣs > ε−1, for some |T | < ε.

This indicates that the data‐to‐solution map fails to be continuous at u0 = 0 and hence
the equation is ill‐posed in the strongest sense.

Theorem 3. (Mass‐subcritical norm inflation) For the one‐dimensional cubic (GT), norm
inflation occurs in Hs for s < si = −3

2. As a consequence, for any T > 0, the data‐to‐solution
map of (GT) fails to be continuous at u0 = 0 from Hs → CtH

s
x((−T, T )) for s < si.

Energy-supercritical norm inflation (1 ≤ s < si)

Theorem 4. (Energy‐supercritical norm inflation) Suppose that si > 1. Then norm infla‐
tion occurs in Hs for (GT) for all 1 ≤ s < si. Therefore, for any T > 0, the data‐to‐solution
map of (GT) fails to be continuous at u0 = 0 from Hs → CtH

s
x((−T, T )) for 1 ≤ s < si.

Our proof of norm inflation in this region relies heavily on the following phenomenon:

Proposition 5. (Energy equipartition) Suppose that u0 is real‐valued and sufficiently regular
to justify the virial identity (4). Then for T 2 ∼ E(u0)/

∫
|xu0|2dx with T < 0, the correspond‐

ing solution u to the defocusing (GT) (〈γ〉 = −1) satisfies

‖u(T )‖2
Ḣ1

x
≳ ‖eiσ∆u(T )‖p+2

L
p+2
σ,x ([0,1])

.

In other words, should ‖u0‖2
H1 � ‖eiσ∆u0‖

p+2
L

p+2
σ,x ([0,1])

, then the kinetic and potential energy

of u become comparable by time T .

Methods and Remarks
Power series expansion

To show local well‐posedness and lay the foundation for Theorems 2 and 3, we define

Lf = eit〈γ〉∆f,

Np(f0, · · · , fp) = i

∫ t

0

∫ 1

0
ei〈γ〉(t−s)∆−iσ∆

[
eiσ∆f0(s) · eiσ∆f1(s) · . . . · eiσ∆fp(s)

]
dσds.

With this notation, a solution u of (GT) with initial data u0 satisfies

u = Lu0 + Np(u, · · · , u).
Ouroborically substituting this formula into itself, we find the formal expansion

u = Lu0 + Np(Lu0, · · · , Lu0) + Np

[
Lu0, · · · , Lu0, Np(Lu0, · · · , Lu0)

]
+ · · · . (1)

Grouping terms of equal order, we recursively define
Ξ0(u0) = L(u0),

Ξj(u0) =
∑

j0,...,jp≥0
j0+···+jp=j−1

Np(Ξj0(u0), · · · , Ξjp(u0)). (2)

This implies that u has the following (formal) power series expansion

u =
∑
j≥0

Ξj(u0). (3)

Proposition 6. (Quantitative well‐posedness): Let D = Ḣmax(sm,0) denote the space of
initial data, and S = LtḢ

max(sm,0)((−T, T ) × Rd) the space of solutions. The operators
Np : Sp+1 → S and L : D → S are bounded in the following sense:

‖Lg‖S = ‖g‖D

‖Np(f0, . . . , fp)‖S ≤ CpT‖f0‖S . . . ‖fp‖S.

This leads to Theorem 1 with standard arguments, see the work of Bejenaru–Tao.

Mass-subcritical norm inflation (s < min(si, 0))

To prove norm inflation in this region, we expand the methods of Nobu Kishimoto and
Tadahiro Oh. For a large parameter N � 1, we construct initial data u0 of the form:

û0 = N1+(1[N,N+A] + 1[2N,2N+A]
)
,

withA = N1−. When u0 interacts with itself, a high‐low frequency cascade occurs, causing
growth in the Hs norm for s < 0. For s < si, this construction ensures that the growth
is driven by Ξ1 and not negated by higher‐order terms.

Energy-supercritical norm inflation (1 ≤ s < si)

The standard method of Christ–Colliander–Tao for (NLS) appears intractable for (GT)
due to its nonlocal structure. To surmount this, we instead build on structural identities
of (GT), namely the virial identity, first shown for (GT) by Choi–Hong–Lee:

Proposition 7. (Virial identity) Let u be the maximal solution of (GT) for p ≥ 8
d, with initial

data u0 ∈ S(Rd). Define the variance of u as

v(t) =
∫
Rd

|x|2|u(t, x)|2dx.

In the defocusing case, 〈γ〉 = −1, we find that for −1
2 ≤ t ≤ 0,

v(t) ≤ v(0) − t

∫
u0(x · ∇u0)dx + C(p, d)E(u)t2 + error terms (4)

where C(p, d) > 0 for p ≥ 8
d.

In the defocusing case, 〈γ〉 = −1, we use this identity to prove Proposition 5 and show
that suitable solutions undergo energy equipartition.

To show norm inflation in the energy‐supercritical case, we can then work directly with
Gaussians. We choose our initial data:

u0(x) = Ae−|x|2/4σ2
, then ‖eiσ∆u0‖

p+2
L

p+2
σ,x ([0,1])

/‖u0‖2
H1 ∼ Apσ4.

Provided s < si, we can then choose σ � 1 and A � 1 with
Apσ4 � 1 and ‖u0‖Hs ∼ A2σd−2s � 1.

This implies that potential energy greatly outweighs the kinetic energy. Provided s ≥ 1,
energy equipartition then implies a rapid increase in kinetic energy, and hence Hs norm.
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