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Overview

The Gabitov—Turitsyn equation reads:
1 . . .
iOsu+ (v)Au + / e oA {|e"’Au|p : e"’Au} do =0, (GT)
0

where () # 0 is a constant, p > 0 is even, and e/?2 is the linear
Schrédinger propagator. We will discuss the sharp well-posedness theory
for this model.

In this talk, | have four goals:

1. Motivate (GT) as a physically relevant model
2. Motivate the mathematical significance of (GT)

3. Provide a framework for well-posedness and the state of the
ill-posedness theory

4. Highlight open problems and future directions



Nonlinear Schrodinger Equation
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Optical fiber with GVD ~

The propagation of pulses in an optical fiber is primarily modeled by the
cubic nonlinear Schrodinger equation:

i0pu 4 YOt + |ulPu =0, u(0,x) = up(x), (NLS)

here ~ is the group velocity dispersion (GVD) of the fiber, u is the
complex modulation of a quasi-monochromatic carrier wave, and the
roles of t and x are flipped from expectation: t represents the distance
along the fiber and x is a retarded time, traveling with the carrier wave.



Dispersion-management

ug u(t)
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In a typical optical fiber, dispersion dominates the nonlinear effects and
causes pulses to broaden. This limits bandwidth as pulses overlap and
interact. A common technique to mitigate these effects is dispersion
management, concatenating fiber segments with opposing GVD.

Mathematically, this gives the dispersion-managed NLS:

i0pu 4 Y(t)Oxctt + |ulPu =10, u(0,x) = up(x). (DM-NLS)



Large-scale dynamics — The Gabitov—Turitsyn Equation

up u(t)
L o
(t)

Optical fiber with rapidly alternating GVD ~(t

Most often, strong dispersion-management is employed, alternating
quickly between extreme positive and negative GVD:

v(t) = (7) + e M(t/e),

where 7o(t) is 2-periodic with mean 0, ¢ < 1, and () is the net/average
GVD.

Taking the limit as ¢ — 0, the Gabitov—Turitsyn equation emerges:

e oA [|ei"Au\2 : e""Au} do =0, u(0,x)= up(x).

i0;u + (7)0%u + /

0



Averaging Process — DM-NLS to GT

We take our dispersion profile to be

(t) = (1) + e o(t/e),
where 7o(t) is periodic with mean 0 and ¢ < 1.
Here we choose 7o = X[0,1) — X[1,2) a5 @ model case.
Let D(t fo s)ds. Suppose that u. solves (DM-NLS) with

u:(0) = wp.
Making the change of variables

—iD(t/e)A

Ve =€ Ug,

we find that v, solves
Bl i (e e—/D(t/a)A“eiD(t/a)AVE}P LePE/RAy L =0, (1)

Taking the limit as ¢ — 0, we find that v. approaches a solution v of
(GT) in L3°H} over the maximal lifetime of v; see [CL22].



Breathing pulses under strong dispersion-management

power,dBm

Fig. 2 Propagation over one cycle for pulse with £ = 0.03p/

Fig. 1 Propagation over 100000km for pulse with E = 0.03,
100km sections of B”= -5.1pskm and B” = 4.9ps?km 9 pag forp P

100km sections of B” = -5.1 ?szlkm and B” = 4.9pskm
Pulseis shown at the point of anomalous section

Source: numerical study from [NDFK97]



Mathematical Challenges

For the sake of discovering guiding trends, we consider the generalized

equation:
i0¢u+ (7)Au +/ e oA {|e"’Au|p . e’UAu} do =0, u(0,x)=u(x),
0

where u: R; x RY — C and p > 0 is even.

A number of observations:

1. Highly nonlocal nonlinearity: It is unclear whether the nonlinearity
should be stronger or weaker than (NLS).

2. Lack of approximate solutions: Unlike the monomial (NLS), there
does not exist explicit solitons nor approximate solutions in the zero
dispersion limit (y) = 0.

3. Fixed scale: The integral over [0,1] fixes a characteristic length of
time, destroying any genuine scaling symmetries.



Monomial scaling pseudo-symmetry — Small frequencies

If we restrict attention to the evolution of small frequencies, we expect
1 . . .
/ Ep [\e"’AuV’ . e’”Au} do ~ |ul|Pu,
0

and hence (GT) is approximately monomial NLS; this is formalized in
[Mur25]. This motivates a critical regularity at

Sm= 45— —,

2 p
aligning with the critical regularity of monomial NLS.

Indeed, under the usual scaling for (NLS), we find that a solution u to
(GT) satisfies:
t
uy = A u(p, %) will solve

2

)
iOruy + (y)Auy + )\72/ e~ioA [|ei"AuA|P . e""AuA} do = 0.
0

This preserves the averaging in the nonlinearity, but changes the interval.



Integrated scaling pseudo-symmetry — High frequencies

If we restrict attention to the evolution of high frequencies, we expect
1 oo
/ e—ioh UeiaAu|p ) eiaAu} do ~ / e—ioh |:‘ei0'Au|p ] eiaAu} do.
0 0

This is not yet formalized and will be the subject of future work.
This recovers a genuine scaling symmetry and another critical regularity:

4

4 t
U uy=A"» u(— i) identifies s; = S

A2
Under this modified scaling, we find that a solution u to (GT) satisfies:
)\2
iOrux + {(v)Auy +/ e~ioA “e""Au)\!p : e""AuA} do = 0.
0

This preserves the integral in the nonlinearity, but breaks the averaging.



Main Theorem [K.]

max(sm, 0) -
d 2

Sm 2 757
d 4

Si 5 E —

Hs /

\

Analytically Well-posed in H* (s > max(sp,0))

For all up € HmaX(SW’O), there exists a unique corresponding solution
u€ GHTEmO(=T, T) x RY) of (GT) for T ~ ||tol| ;muier.0)-
Moreover, the data-to-solution map up — u is analytic.

Open Problem

Failure of uniform continuity is expected; see [KPV01].

Analyticity Fails in H* (s < sp,)

The data-to-solution map fails to be CP'.

Norm Inflation Expected in H° (s < s;)

We expect that for all € > 0, there exists initial data ug with
||uo||ws < € and a time |t| < € such that the corresponding

solution u(t) satisfies [|u(t)||ns > e~ .

This is resolved in the mass-subcritical (s < min(s;,0)) and
energy-supercritical (1 < s < s;) cases.



Norm Inflation



Norm Inflation

Definition (Norm inflation in H°)
We say that norm inflation occurs in H? if, for all € > 0, there exists a
solution u(t) to (GT) with smooth initial data ug that satisfies

g <€ with  |lu(T)]

|| uo| ge >e b, forsome |T|<e.

This indicates that the data-to-solution map fails to be continuous at
up = 0 and hence the equation is ill-posed.

Theorem (Mass-subcritical norm inflation [K.])

For the one-dimensional cubic (GT), norm inflation occurs in H* for
s<s=-3.
Theorem (Energy-supercritical norm inflation [K.])

Suppose that s; > 1. Then norm inflation occurs in H* for (GT) for all
1<s<s.

11



Standard Method for Positive Regularity

The usual proof of norm inflation due to Christ—Colliander—Tao
[CCTO03, CCT] relies on approximate solutions found in the zero
dispersion limit. If you consider NLS with variable dispersion,

iOru+yAu =+ |ulPu=0, wu(0,x)= up(x),
then in the limit as v — 0, we find an ODE with explicit solution
u(t) = eEitluol” 0

This solution moves to high frequencies in a predictable manner and
gives an approximate solution to NLS. Under re-scaling, this frequency
cascade can be made to occur arbitrarily quickly for small initial data.

12



Energy-supercritical case

We fix our attention to the 'defocusing’ () = —1 case.

(GT) has a conserved energy, akin to the monomial NLS,

1
E(u) = %/\VU|Z+$// le’ "2 ulP2dodx .
—_——— g

kinetic potential

Rough idea: Construct initial data with high potential energy and low
kinetic energy. Potential energy should convert to kinetic, causing a
growth in H*® provided s > 1. To make this formal, we look for a energy
equipartition phenomenon.

13



Virial identity

Proposition (Virial identity [CHL25, K.])

Let u be the maximal solution of (GT) for p > %, with initial data
up € S(RY). Define the variance of u as

v(t) = /]Rd Ix[2|u(t, x)|?dx.

<t<0

In the defocusing case, (y) = —1, we find that for —%

v(t) < v(0) — tv1(0) + C(p, d)E(u)t? + error terms (2)

where C(p,d) > 0 for p > 2 and v, is given by

w(t) = /U(X - Vi)dx > i1(0) — 16E(u)t.

14



Norm Inflation Proof

Proof. To show energy equipartition and norm inflation in the
energy-supercritical case, we work directly with skinny Gaussians. We
choose our initial data:

up(x) = Ae=IXI*/40*
Then
e 2 wollf22 o gy ~ APT20?TE and - luollfn ~ APo 92,

Provided s < s;, we can then choose o < 1 and A > 1 with

APc* > 1 and |ug|lps ~ A%09% <« 1.

This implies that potential energy greatly outweighs the kinetic energy.

This seems to imply that s < s; is necessary, at least for s > 1.

15



Norm Inflation Proof (continued)

Proof cont. As ug is real-valued, we find that v4(0) = 0. Applying the
virial identity for vi, we then find that

—16E(u)t < 4Im/ a(x - Vu(t))dx S v(t)|u(t)]l -
With the virial identity, we then find that for —3 < ¢ < 0.

E(u)?t?
ENE 2 Sy 4 Erare: G

From this identity, we see that at time T2 = v(0)/E(u) for T <0,

2 icA, 1p+2
(T 2 ECw) ~ €2 w52,

Finally, we calculate that T2 ~ A=P < 1 and hence norm inflation
occurs. ]

16



Local Well-posedness




Power Series Expansion

In the standard way, a solution to (GT) satisfies the Duhamel formula
ot ol

u(t) = e MByy + i/ / !N (t=s)A—iocA [’ei"Au(s)’P . e""Au(s)} dods.
0o Jo

We decompose this into a linear component and nonlinear correction as

Lf = e™Af,

No(fo, -+, fp) = i/ / e/ (t=s)A—icA [e“’Afo(s) Ce e’”Afp(s)} dods.

o Jo
With this notation, a solution u of (GT) with initial data ug satisfies

u=Lug+ Np(u,---,u).

Ouroborically substituting this formula into itself, we find the formal
expansion

u=Lug+ Ny(Lug,- -, Lug)+ N,,[Luo7 -+, Lug, Np(Lug, -+ -, Luo)} + -

17



Power Series Expansion (continued)

Grouping terms of equal order, we recursively define
Zo(uo) = L(wo),
Si(wo) = > Np(Zi(u), - 5, (o).

) J‘O-,--'vJ_'pZ_O
JotFip=i—1

This implies that u has the following (formal) power series expansion
u= =(u). (4)
Jj=0
Proposition (Quantitative Well-posedness [K.])
Let D = H™>(sn:0) denote the space of initial data, and
S = G H™>(sm0)((— T, T) x R?) the space of solutions. The operators
N, :SPT1 — Sand L: D — S are bounded in the following sense:
ILglls = llgllo
||Np(f0a ) fp)HS < CpTHfOHS S0 pr”S-

18



Local Well-posedness Statement

Theorem (Local well posedness, [K., KM26])
For ug € H™(sn9) and T ~ ||uol|.”
to (GT):

fgmax(sm0)+ ENET€ €Xists a unique solution

ue GH™EmO(—T T)x R with u(0,x) = up(x).

Moreover, the data-to-solution map is real analytic on a neighborhood
of ug = 0: for ||ug|| fmex(smiy < R and T ~ R™P the data-to-solution map

ug € Be(H™r®)  +—  ue GHI>ErO((-T, T) x RY)

satisfies the power series expansion (4).

In addition, there exists § = d(p, d) such that for all ||ug|| fmax(sm.0) < 6,
the associated solution u may be extended to a global solution in
CHI>EmO(R « RY) which scatters.

19



Failure of Analyticity




Failure of Analyticity

We consider the (p + 1)t directional derivative of the data-to-solution
map [Bou97, §6]: For ¢ € S(RY), consider the initial value problem (GT)
with initial data

ug =98¢ for 0 >0.

Let u = u(J, @) be the corresponding local solution. Then,

oPtly Y e e—siani il i(s =
=il :,/O /0 e O=)—ioA | )2 [P it ] s = =4 ().
=0

To show that the data-to-solution map ug — u fails to be CP*1, it then
suffices to show that =; fails to be bounded H® — L°HE((—T, T)) for
all T > 0. We fix (y) =1 for simplicity.

20



Failure of Analyticity (statement)

Theorem (Failure of Analyticity [K.])
For any T >0 and s < s, the (p + 1) derivative of the

data-to-solution map, =, fails to be bounded H®> — L°H((—T, T))
for Schwartz data.

Proof. Using the dual formulation of H* and testing =;(¢) against e’*2 ¢,
we may estimate =;(¢) from below as

_ 1 ST ,' . )
||:1(¢)HL§>°H;([0,T)) = ||¢||H/o /0 /Rd }e(” )A¢|P+ dxdods.

21



Failure of Analyticity (proof)

Proof cont. We make the change of variables 7 =0 +sand p=s—o.
Assuming that T < 1, we then find

3T T
— 1 2 [z .
2oy 2 a1 [o [, L, |70l dlpor
H¢||H s JI J_I JRd
TX 2% 2
iT 2
= T /T L ’e Ang(X)‘p+ dxdT.
H ® V5

Shifting our initial data e’™®¢ — ¢, we then find

= r z iTA p+2
HZI((b)HL?oH;([o?T)) Z W/—/;S/g - |e ¢(X)| dxdT.

Suppose that =; : H® — L°H:((—T, T)) is bounded. Then

.
r 2 iT +2

W/ Rd{e Ao(x) | dxdr < ol
Ho /=%

22



Failure of Analyticity (conclusion)

Proof cont. Given

;
z iT +2
/ , / |2 6(x)|"* dxdr S 6115 1Bl
-2
we now choose ¢ Schwartz such that
3e) = {1 €] € [N/2,2N]
0 [&] & [N/4,4N]
Standard scaling arguments then imply that
Ne(p+2)—d=2 <_ NPT (s+9)+§—s

NPGE=579) <p 1.

Sending N — oo implies that s > s, = % — %, as desired. Hence, if
Z1: H® — LPHS((—=T, T) x RY) is bounded as a (p + 1)-linear map,
then s > s,,. O

23
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Norm Inflation

Definition (Norm inflation in H°)
We say that norm inflation occurs in H? if, for all € > 0, there exists a
solution u(t) to (GT) with smooth initial data ug that satisfies

g <€ with  |lu(T)]

|| uo| ge >e b, forsome |T|<e.

This indicates that the data-to-solution map fails to be continuous at
up = 0 and hence the equation is ill-posed.

Theorem (Mass-subcritical norm inflation [K.])

For the one-dimensional cubic (GT), norm inflation occurs in H* for
s<s=-3.
Theorem (Energy-supercritical norm inflation [K.])

Suppose that s; > 1. Then norm inflation occurs in H* for (GT) for all
1<s<s.

24



Mass-subcritical Case

When s < min(s;,0), norm inflation is driven by high-to-low frequency
cascades. We consider (y) = —1, d = 1, and p = 2 for the sake of
exposition, though we expect these results to generalize naturally.

Consider initial data of the form:

6= R(X[v,nta) + X2v,2n4)) (5)

with A = N1~ and R = N'*. Recall

t 1
=1(¢) = i/ / S M(t=s)A—icA [|ei(s+a)A¢|2 . ei(s+a)A¢} dods.
o Jo

The high frequencies of ¢ interact in =; to create mass near { = 0,
causing a growth in H® for s < 0. Choosing A, N, T carefully allows for
this to occur arbitrarily quickly.

This method is due to [I015] and [Kis19, Oh17].

25



Mass-subcritical Case (continued)

<D

600

~ A2R3
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Mass-subcritical Case (continued)

When ug interacts with itself, a high-low frequency cascade occurs,
causing growth in the H® norm for s < O:

Lemma

Fixs < -3 R>0,1<A<N, and ¢ as in (5). Then

[[E1()](2)]

uniformly in A, N,R and 0 < t < N~2.

—2 A2 p3
e 2 ENT2ARS,

To ensure that higher-order terms do not negate this growth, we bound:

Lemma

Fixs < -3, R>0,1< A< N, and ¢ as in (5). Then for all j,

IEi(2(D)]

for some universal constant C, uniform in R, N,A and 0 < t < N~2. 7

pe < CIURY 1 (log A)Y,




Constraints on A/ RN, T

A number of relationships are necessary between A, N, R, T:
(i) Local well-posedness:
T|¢l7. <1 <<= TR’AK1

(it) Small initial data:
8][4 ~ N°RA? < 1.

iii) Norm growth / high-to-low frequency cascade in =1:
(iif) g g quency
TN2A’R® > 1.
(iv) Convergence of higher order terms:
TR*(log A)> <1 and TR2N?A~?(log A)* < 1.
(v) Separation:
1< AKN.

(vi) Instantaneity:



Mass-subcritical Conclusion

To achieve these requirements, we fix some N > 1 and then choose

R — /\/14r357 A= N176 and T = N73766,

)

where § > 0 is chosen sufficiently small so that s + 2 + 2§ < 0.

We note that this differs from the parameters one would choose for NLS.
The time T is significant smaller and R is significantly larger; see [Oh17].

29



Thank youl!
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