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Overview

The Gabitov–Turitsyn equation reads:

i∂tu + ⟨γ⟩∆u +

∫ 1

0

e−iσ∆
[∣∣e iσ∆u∣∣p · e iσ∆u]dσ = 0, (GT)

where ⟨γ⟩ ̸= 0 is a constant, p > 0 is even, and e iσ∆ is the linear

Schrödinger propagator. We will discuss the sharp well-posedness theory

for this model.

In this talk, I have four goals:

1. Motivate (GT) as a physically relevant model

2. Motivate the mathematical significance of (GT)

3. Provide a framework for well-posedness and the state of the

ill-posedness theory

4. Highlight open problems and future directions
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Nonlinear Schrödinger Equation

u0

x (time)

u(t)

Optical fiber with GVD γ

distance t

The propagation of pulses in an optical fiber is primarily modeled by the

cubic nonlinear Schrödinger equation:

i∂tu + γ∂xxu + |u|2u = 0, u(0, x) = u0(x), (NLS)

here γ is the group velocity dispersion (GVD) of the fiber, u is the

complex modulation of a quasi-monochromatic carrier wave, and the

roles of t and x are flipped from expectation: t represents the distance

along the fiber and x is a retarded time, traveling with the carrier wave.
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Dispersion-management

γ < 0 γ > 0 γ < 0 γ > 0 γ < 0 γ > 0

u0

x (time)

u(t)

Optical fiber with alternating GVD γ(t)

distance t

In a typical optical fiber, dispersion dominates the nonlinear effects and

causes pulses to broaden. This limits bandwidth as pulses overlap and

interact. A common technique to mitigate these effects is dispersion

management, concatenating fiber segments with opposing GVD.

Mathematically, this gives the dispersion-managed NLS:

i∂tu + γ(t)∂xxu + |u|2u = 0, u(0, x) = u0(x). (DM-NLS)
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Large-scale dynamics — The Gabitov–Turitsyn Equation

u0

x (time)

u(t)

Optical fiber with rapidly alternating GVD γ(t)

distance t

Most often, strong dispersion-management is employed, alternating

quickly between extreme positive and negative GVD:

γ(t) = ⟨γ⟩+ ε−1γ0(t/ε),

where γ0(t) is 2-periodic with mean 0, ε ≪ 1, and ⟨γ⟩ is the net/average

GVD.

Taking the limit as ε → 0, the Gabitov–Turitsyn equation emerges:

i∂tu + ⟨γ⟩∂2
xu +

∫ 1

0

e−iσ∆
[
|e iσ∆u|2 · e iσ∆u

]
dσ = 0, u(0, x) = u0(x).
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Averaging Process — DM-NLS to GT

We take our dispersion profile to be

γ(t) = ⟨γ⟩+ ε−1γ0(t/ε),

where γ0(t) is periodic with mean 0 and ε ≪ 1.

Here we choose γ0 = χ[0,1) − χ[1,2) as a model case.

Let D(t) =
∫ t

0
γ(s)ds. Suppose that uε solves (DM-NLS) with

uε(0) = u0.

Making the change of variables

vε = e−iD(t/ε)∆uε,

we find that vε solves

i∂tvε + ⟨γ⟩∂2
xvε + e−iD(t/ε)∆

[∣∣e iD(t/ε)∆vε
∣∣p · e iD(t/ε)∆vε

]
= 0. (1)

Taking the limit as ε → 0, we find that vε approaches a solution v of

(GT) in L∞t H1
x over the maximal lifetime of v ; see [CL22].
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Breathing pulses under strong dispersion-management

Source: numerical study from [NDFK97]
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Mathematical Challenges

For the sake of discovering guiding trends, we consider the generalized

equation:

i∂tu + ⟨γ⟩∆u +

∫ 1

0

e−iσ∆
[
|e iσ∆u|p · e iσ∆u

]
dσ = 0, u(0, x) = u0(x),

where u : Rt × Rd
x → C and p > 0 is even.

A number of observations:

1. Highly nonlocal nonlinearity: It is unclear whether the nonlinearity

should be stronger or weaker than (NLS).

2. Lack of approximate solutions: Unlike the monomial (NLS), there

does not exist explicit solitons nor approximate solutions in the zero

dispersion limit ⟨γ⟩ = 0.

3. Fixed scale: The integral over [0, 1] fixes a characteristic length of

time, destroying any genuine scaling symmetries.
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Monomial scaling pseudo-symmetry — Small frequencies

If we restrict attention to the evolution of small frequencies, we expect∫ 1

0

e−iσ∆
[
|e iσ∆u|p · e iσ∆u

]
dσ ≈ |u|pu,

and hence (GT) is approximately monomial NLS; this is formalized in

[Mur25]. This motivates a critical regularity at

sm =
d

2
− 2

p
,

aligning with the critical regularity of monomial NLS.

Indeed, under the usual scaling for (NLS), we find that a solution u to

(GT) satisfies:

uλ = λ− 2
p u

( t

λ2
,
x

λ

)
will solve

i∂tuλ + ⟨γ⟩∆uλ + λ−2

∫ λ2

0

e−iσ∆
[∣∣e iσ∆uλ∣∣p · e iσ∆uλ]dσ = 0.

This preserves the averaging in the nonlinearity, but changes the interval.
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Integrated scaling pseudo-symmetry — High frequencies

If we restrict attention to the evolution of high frequencies, we expect∫ 1

0

e−iσ∆
[
|e iσ∆u|p · e iσ∆u

]
dσ ≈

∫ ∞

0

e−iσ∆
[
|e iσ∆u|p · e iσ∆u

]
dσ.

This is not yet formalized and will be the subject of future work.

This recovers a genuine scaling symmetry and another critical regularity:

u 7→ uλ = λ− 4
p u

( t

λ2
,
x

λ

)
identifies si =

d

2
− 4

p
.

Under this modified scaling, we find that a solution u to (GT) satisfies:

i∂tuλ + ⟨γ⟩∆uλ +

∫ λ2

0

e−iσ∆
[∣∣e iσ∆uλ∣∣p · e iσ∆uλ]dσ = 0.

This preserves the integral in the nonlinearity, but breaks the averaging.
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Main Theorem [K.]

Hs

max(sm, 0)

sm = d
2
− 2

p

si =
d
2
− 4

p

Analytically Well-posed in Hs (s ≥ max(sm, 0))

For all u0 ∈ Ḣmax(sm,0), there exists a unique corresponding solution

u ∈ CtḢ
max(sm,0)
x ((−T ,T )× Rd) of (GT) for T ∼ ∥u0∥−p

Ḣmax(sm,0) .

Moreover, the data-to-solution map u0 → u is analytic.

Open Problem

Failure of uniform continuity is expected; see [KPV01].

Analyticity Fails in Hs (s < sm)

The data-to-solution map fails to be C p+1.

Norm Inflation Expected in Hs (s < si )

We expect that for all ε > 0, there exists initial data u0 with

∥u0∥Hs < ε and a time |t| < ε such that the corresponding

solution u(t) satisfies ∥u(t)∥Hs > ε−1.

This is resolved in the mass-subcritical (s < min(si , 0)) and

energy-supercritical (1 ≤ s < si ) cases.



Norm Inflation



Norm Inflation

Definition (Norm inflation in Hs)

We say that norm inflation occurs in Hs if, for all ε > 0, there exists a

solution u(t) to (GT) with smooth initial data u0 that satisfies

∥u0∥Ḣs < ε with ∥u(T )∥Ḣs > ε−1, for some |T | < ε.

This indicates that the data-to-solution map fails to be continuous at

u0 = 0 and hence the equation is ill-posed.

Theorem (Mass-subcritical norm inflation [K.])

For the one-dimensional cubic (GT), norm inflation occurs in Hs for

s < si = − 3
2 .

Theorem (Energy-supercritical norm inflation [K.])

Suppose that si > 1. Then norm inflation occurs in Hs for (GT) for all

1 ≤ s < si .
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Standard Method for Positive Regularity

The usual proof of norm inflation due to Christ–Colliander–Tao

[CCT03, CCT] relies on approximate solutions found in the zero

dispersion limit. If you consider NLS with variable dispersion,

i∂tu + γ∆u ± |u|pu = 0, u(0, x) = u0(x),

then in the limit as γ → 0, we find an ODE with explicit solution

u(t) = e±it|u0|pu0.

This solution moves to high frequencies in a predictable manner and

gives an approximate solution to NLS. Under re-scaling, this frequency

cascade can be made to occur arbitrarily quickly for small initial data.
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Energy-supercritical case

We fix our attention to the ’defocusing’ ⟨γ⟩ = −1 case.

(GT) has a conserved energy, akin to the monomial NLS,

E (u) = 1
2

∫
|∇u|2︸ ︷︷ ︸

kinetic

+ 1
p+2

∫∫ 1

0

|e iσ∆u|p+2dσdx︸ ︷︷ ︸
potential

.

Rough idea: Construct initial data with high potential energy and low

kinetic energy. Potential energy should convert to kinetic, causing a

growth in Hs provided s ≥ 1. To make this formal, we look for a energy

equipartition phenomenon.
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Virial identity

Proposition (Virial identity [CHL25, K.])

Let u be the maximal solution of (GT) for p ≥ 8
d , with initial data

u0 ∈ S(Rd). Define the variance of u as

v(t) =

∫
Rd

|x |2|u(t, x)|2dx .

In the defocusing case, ⟨γ⟩ = −1, we find that for − 1
2 ≤ t ≤ 0,

v(t) ≤ v(0)− tv̇1(0) + C (p, d)E (u)t2 + error terms (2)

where C (p, d) > 0 for p ≥ 8
d and v̇1 is given by

v̇1(t) =

∫
u(x · ∇u)dx ≥ v̇1(0)− 16E (u)t.
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Norm Inflation Proof

Proof. To show energy equipartition and norm inflation in the

energy-supercritical case, we work directly with skinny Gaussians. We

choose our initial data:

u0(x) = Ae−|x|2/4σ2

.

Then

∥e iσ∆u0∥p+2

Lp+2
σ,x ([0,1])

∼ Ap+2σd+2 and ∥u0∥2H1 ∼ A2σd−2.

Provided s < si , we can then choose σ ≪ 1 and A ≫ 1 with

Apσ4 ≫ 1 and ∥u0∥Hs ∼ A2σd−2s ≪ 1.

This implies that potential energy greatly outweighs the kinetic energy.

This seems to imply that s < si is necessary, at least for s ≥ 1.
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Norm Inflation Proof (continued)

Proof cont. As u0 is real-valued, we find that v̇1(0) = 0. Applying the

virial identity for v̇1, we then find that

−16E (u)t ≤ 4 Im

∫
u(x · ∇u(t))dx ≲

√
v(t)∥u(t)∥Ḣ1 .

With the virial identity, we then find that for − 1
2 ≤ t ≤ 0.

∥u(t)∥2
Ḣ1 ≳

E (u)2t2

v(0) + E (u)t2
. (3)

From this identity, we see that at time T 2 = v(0)/E (u) for T < 0,

∥u(T )∥2
Ḣ1 ≳ E (u) ∼ ∥e iσ∆u0∥p+2

Lp+2
σ,x ([0,1])

.

Finally, we calculate that T 2 ∼ A−p ≪ 1 and hence norm inflation

occurs.
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Local Well-posedness



Power Series Expansion

In the standard way, a solution to (GT) satisfies the Duhamel formula

u(t) = e it⟨γ⟩∆u0 + i

∫ t

0

∫ 1

0

e i⟨γ⟩(t−s)∆−iσ∆
[∣∣e iσ∆u(s)∣∣p · e iσ∆u(s)]dσds.

We decompose this into a linear component and nonlinear correction as

Lf = e it⟨γ⟩∆f ,

Np(f0, · · · , fp) = i

∫ t

0

∫ 1

0

e i⟨γ⟩(t−s)∆−iσ∆
[
e iσ∆f0(s) · . . . · e iσ∆fp(s)

]
dσds.

With this notation, a solution u of (GT) with initial data u0 satisfies

u = Lu0 + Np(u, · · · , u).

Ouroborically substituting this formula into itself, we find the formal

expansion

u = Lu0+Np(Lu0, · · · , Lu0)+Np

[
Lu0, · · · , Lu0,Np(Lu0, · · · , Lu0)

]
+ · · · .
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Power Series Expansion (continued)

Grouping terms of equal order, we recursively define

Ξ0(u0) = L(u0),

Ξj(u0) =
∑

j0,...,jp≥0
j0+···+jp=j−1

Np(Ξj0(u0), · · · ,Ξjp (u0)).

This implies that u has the following (formal) power series expansion

u =
∑
j≥0

Ξj(u0). (4)

Proposition (Quantitative Well-posedness [K.])

Let D = Ḣmax(sm,0) denote the space of initial data, and

S = CtḢ
max(sm,0)((−T ,T )× Rd) the space of solutions. The operators

Np : Sp+1 → S and L : D → S are bounded in the following sense:

∥Lg∥S = ∥g∥D
∥Np(f0, . . . , fp)∥S ≤ CpT∥f0∥S . . . ∥fp∥S .
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Local Well-posedness Statement

Theorem (Local well-posedness, [K., KM26])

For u0 ∈ Ḣmax(sm,0) and T ∼ ∥u0∥−p

Ḣmax(sm,0)
, there exists a unique solution

to (GT):

u ∈ CtḢ
max(sm,0)((−T ,T )× Rd) with u(0, x) = u0(x).

Moreover, the data-to-solution map is real analytic on a neighborhood

of u0 = 0: for ∥u0∥Ḣmax(sm,0) ≤ R and T ∼ R−p the data-to-solution map

u0 ∈ BR

(
Ḣmax(sm,0)

)
7−→ u ∈ CtḢ

max(sm,0)
x

(
(−T ,T )× Rd

)
satisfies the power series expansion (4).

In addition, there exists δ = δ(p, d) such that for all ∥u0∥Ḣmax(sm,0) < δ,

the associated solution u may be extended to a global solution in

CtḢ
max(sm,0)
x (R× Rd) which scatters.
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Failure of Analyticity



Failure of Analyticity

We consider the (p + 1)st directional derivative of the data-to-solution

map [Bou97, §6]: For ϕ ∈ S(Rd), consider the initial value problem (GT)

with initial data

u0 = δϕ for δ > 0.

Let u = u(δ, ϕ) be the corresponding local solution. Then,

∂p+1u

∂δp+1

∣∣∣∣
δ=0

= i

∫ t

0

∫ 1

0

e i⟨γ⟩(t−s)∆−iσ∆
[∣∣e i(s+σ)∆ϕ

∣∣p·e i(s+σ)∆ϕ
]
dσds = Ξ1(ϕ).

To show that the data-to-solution map u0 7→ u fails to be C p+1, it then

suffices to show that Ξ1 fails to be bounded Hs → L∞t Hs
x ((−T ,T )) for

all T > 0. We fix ⟨γ⟩ = 1 for simplicity.
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Failure of Analyticity (statement)

Theorem (Failure of Analyticity [K.])

For any T > 0 and s < sm, the (p + 1)st derivative of the

data-to-solution map, Ξ1, fails to be bounded Hs → L∞t Hs
x ((−T ,T ))

for Schwartz data.

Proof. Using the dual formulation of Hs and testing Ξ1(ϕ) against e
it∆ϕ,

we may estimate Ξ1(ϕ) from below as

∥∥Ξ1(ϕ)
∥∥
L∞
t Hs

x ([0,T ))
≳

1

∥ϕ∥H−s
x

∫ T

0

∫ 1

0

∫
Rd

∣∣e i(s+σ)∆ϕ
∣∣p+2

dxdσds.
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Failure of Analyticity (proof)

Proof cont. We make the change of variables τ = σ + s and ρ = s − σ.

Assuming that T < 1, we then find∥∥Ξ1(ϕ)
∥∥
L∞
t Hs

x ([0,T ))
≳

1

∥ϕ∥H−s
x

∫ 3T
2

T
2

∫ T
2

− T
2

∫
Rd

∣∣e iτ∆ϕ∣∣p+2
dxdρdτ

=
T

∥ϕ∥H−s
x

∫ 3T
2

T
2

∫
Rd

∣∣e iτ∆ϕ(x)∣∣p+2
dxdτ.

Shifting our initial data e iT∆ϕ 7→ ϕ, we then find∥∥Ξ1(ϕ)
∥∥
L∞
t Hs

x ([0,T ))
≳

T

∥ϕ∥H−s
x

∫ T
2

− T
2

∫
Rd

∣∣e iτ∆ϕ(x)∣∣p+2
dxdτ.

Suppose that Ξ1 : H
s → L∞t Hs

x ((−T ,T )) is bounded. Then

T

∥ϕ∥H−s
x

∫ T
2

− T
2

∫
Rd

∣∣e iτ∆ϕ(x)∣∣p+2
dxdτ ≲ ∥ϕ∥p+1

Hs .

22



Failure of Analyticity (conclusion)

Proof cont. Given∫ T
2

− T
2

∫
Rd

∣∣e iτ∆ϕ(x)∣∣p+2
dxdτ ≲T ∥ϕ∥p+1

Hs ∥ϕ∥H−s ,

we now choose ϕ Schwartz such that

ϕ̂(ξ) =

{
1 |ξ| ∈ [N/2, 2N]

0 |ξ| /∈ [N/4, 4N]

Standard scaling arguments then imply that

Nd(p+2)−d−2 ≲T N(p+1)(s+ d
2 )+

d
2−s

Np( d
2−

2
p−s) ≲T 1.

Sending N → ∞ implies that s ≥ sm = d
2 − 2

p , as desired. Hence, if

Ξ1 : H
s → L∞t Hs

x ((−T ,T )× Rd) is bounded as a (p + 1)-linear map,

then s ≥ sm.
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Norm Inflation

Definition (Norm inflation in Hs)

We say that norm inflation occurs in Hs if, for all ε > 0, there exists a

solution u(t) to (GT) with smooth initial data u0 that satisfies

∥u0∥Ḣs < ε with ∥u(T )∥Ḣs > ε−1, for some |T | < ε.

This indicates that the data-to-solution map fails to be continuous at

u0 = 0 and hence the equation is ill-posed.

Theorem (Mass-subcritical norm inflation [K.])

For the one-dimensional cubic (GT), norm inflation occurs in Hs for

s < si = − 3
2 .

Theorem (Energy-supercritical norm inflation [K.])

Suppose that si > 1. Then norm inflation occurs in Hs for (GT) for all

1 ≤ s < si .
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Mass-subcritical Case

When s < min(si , 0), norm inflation is driven by high-to-low frequency

cascades. We consider ⟨γ⟩ = −1, d = 1, and p = 2 for the sake of

exposition, though we expect these results to generalize naturally.

Consider initial data of the form:

ϕ̂ = R
(
χ[N,N+A] + χ[2N,2N+A]

)
, (5)

with A = N1− and R = N1+. Recall

Ξ1(ϕ) = i

∫ t

0

∫ 1

0

e i⟨γ⟩(t−s)∆−iσ∆
[∣∣e i(s+σ)∆ϕ

∣∣2 · e i(s+σ)∆ϕ
]
dσds.

The high frequencies of ϕ interact in Ξ1 to create mass near ξ = 0,

causing a growth in Hs for s < 0. Choosing A,N,T carefully allows for

this to occur arbitrarily quickly.

This method is due to [IO15] and [Kis19, Oh17].
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Mass-subcritical Case (continued)

ξ
A

R

ϕ̂ϕ̂

ϕ̂ϕϕ

∼ A
∼

A
2
R

3
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Mass-subcritical Case (continued)

When u0 interacts with itself, a high-low frequency cascade occurs,

causing growth in the Hs norm for s < 0:

Lemma

Fix s < − 1
2 , R > 0, 1 ≪ A ≪ N, and ϕ as in (5). Then∥∥[Ξ1(ϕ)](t)

∥∥
Hs ≳ tN−2A2R3,

uniformly in A,N,R and 0 < t ≪ N−2.

To ensure that higher-order terms do not negate this growth, we bound:

Lemma

Fix s < − 1
2 , R > 0, 1 ≪ A ≪ N, and ϕ as in (5). Then for all j ,

∥[Ξj(ϕ)](t)∥Hs ≤ C j t jR2j+1(logA)2j ,

for some universal constant C, uniform in R,N,A and 0 < t ≪ N−2. 27



Constraints on A,R ,N ,T

A number of relationships are necessary between A,N,R,T :

(i) Local well-posedness:

T∥ϕ∥2L2 ≪ 1 ⇐⇒ TR2A ≪ 1

.(ii) Small initial data:

∥ϕ∥Hs ∼ NsRA
1
2 ≪ 1.

(iii) Norm growth / high-to-low frequency cascade in Ξ1:

TN−2A2R3 ≫ 1.

(iv) Convergence of higher order terms:

TR2(logA)2 ≪ 1 and TR2N2A−2(logA)4 ≪ 1.

(v) Separation:

1 ≪ A ≪ N.

(vi) Instantaneity:

T ≪ 1. 28



Mass-subcritical Conclusion

To achieve these requirements, we fix some N ≫ 1 and then choose

R = N1+3δ, A = N1−δ, and T = N−3−6δ,

where δ > 0 is chosen sufficiently small so that s + 3
2 + 5

2δ < 0.

We note that this differs from the parameters one would choose for NLS.

The time T is significant smaller and R is significantly larger; see [Oh17].
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Thank you!
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