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Continuity

With axiom of choice, the following two definitions of continuity are equivalent.

Epsilon Delta Definition of Continuity
Let (X, d) and (Y, d) be metric spaces. Then f : X → Y is continuous at x if for all ε > 0 there exists
some δ > 0 such that

d(x, y) < δ =⇒ d(f(x), f(y)) < ε

Sequential Definition of Continuity
Let (X, d) and (Y, d) be metric spaces. Then f : X → Y is continuous at x if for all sequences (xn)

such that xn → x, f(xn)→ f(x).

By defining

Oscillation
We define the oscillation of a function f over an interval I as

osc(f, I) = sup
x,y∈I

|f(x)− f(y)|

Which leads to the following theorem/definition of continuity

Oscillation Definition of Continuity
f : R → R is continuous at x if and only if for all ε > 0 there exists some open interval I such that
x ∈ I and osc(f, I) < ε.

Theorem. A function f is continuous if and only if f−1(U) is open for all open U .

Theorem. (Intermediate Value Theorem) : For a continuous functioin f with f(x) = a and
f(y) = b. For all c between a and b there exists some z ∈ [x, y] such that f(z) = c.

4



Anonymous UCLA Basic (Based on Notes/Lectures from Sylvester): Analysis Notes Exercise 1

Countability

Countability
A set A is countable if there exists an injective map f : A→ N.
(NOTE: this definition includes finite as well)

Theorem. The countable union of countable sets is countable.
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Special Classes of Functions

Increasing Functions

Increasing Function
A function f : I → R is increasing if for all x ≤ y ∈ I, f(x) ≤ f(y).
Strictly increasing : x < y implies f(x) < f(y)

Theorem. The set of discontinuities of an increasing function is countable.

Proof. Let f be an increasing function. Let D be the set of discontinuities of f .
By definition, for all x ∈ D, limx→a− f(x) 6= limx→a+ f(x). Because f is increasing,
limx→a− f(x) ≤ limx→a+ f(x). Therefore, limx→a− f(x) < limx→a+ f(x).
By the density of Q in R, there exists some qa ∈ (limx→a− f(x), limx→a+ f(x)). Consider the
function g : D → Q where a 7→ qa. Let there exist some b ∈ D such that a 6= b. If a < b then
because f is increasing,

qa < lim
x→a+

≤ lim
x→b−

< qb

Similarly, if b < a then
qa > lim

x→a−
≥ lim
x→b+

> qb

In either case, qa 6= qb for b 6= a. Therefore g : D → Q is injective. Becaue Q is countable,
this implies that D is countable.

Convex Function

Convex Function
A function f : I → R is convex if for all x, y ∈ I and for all t ∈ [0, 1],

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y)

Intuition : The graph of a convex function is below the line between two points on the graph.

Alternate Definition
A function f : I → R is convex if for all x, y ∈ I and for all t ∈ [0, 1],

f((1− t)x+ ty)− f(x)

t(y − x)
≤≤ f(y)− f(x)

y − x
≤ f(y)− f((1− t)x+ ty)

(1− t)t(y − x)

Intuition : The slope of a convex function is increasing.

Theorem. Let f be a C1 function. Then f ′ is increasing if and only if f is convex.
Corollary. Let f be a C2 function. Then f is convex if and only if f ′′ ≥ 0.

6
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Proof. Follows immediately from the alternative definition and the mean value theorem.

Theorem. If f : (a, b)→ R is convex, then it is continuous.
Note : f must take on real values only. If f is infinite, then the proof fails.

Proof. Let there exist some x ∈ (a, b). Let there exist u ∈ (a, x) and v ∈ (x, b). Pick some
z ∈ (a, b) such that z 6= x. If x < z then by the alternate definition of convexity,

f(z)− f(x)

z − x
≤ f(v)− f(x)

v − x

If x > z then by the alternate definition of convexity,

f(x)− f(z)

x− z
≤ f(x)− f(u)

x− u

Define C as
C = max

(∣∣∣∣f(x)− f(u)

x− u

∣∣∣∣ , ∣∣∣∣f(v)− f(x)

v − x

∣∣∣∣)
Then by the previous inequalities,∣∣∣∣f(z)− f(x)

z − x

∣∣∣∣ ≤ C
|f(z)− f(x)| ≤ C|z − x|

Continuity at x follows immediately from this inequality with δ = ε/(C + 1).

Theorem. A convex function f : (a, b)→ R is differentiable at all but countably many points.

7
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Proof.

Right/Left Hand Derivatives
If they exist, the right and left hand derivatives of f are given by

∂rf(x) = lim
h→0+

f(x+ h)− f(x)

h

∂`f(x) = lim
h→0−

f(x+ h)− f(x)

h

Pick some x ∈ (a, b) and let there exist u ∈ (a, x) and v ∈ (x, b). By the alternate definition
of convexity, we know that

f(x+ h)− f(x)

h

is monotonically increasing in h and x. Additionally, we know that

f(x)− f(u)

x− u
≤ f(x+ h)− f(x)

h
≤ f(v)− f(x)

v − x

Therefore, f(x+h)−f(x)
h is monotonic and bounded in h, so ∂rf(x) and ∂`f(x) exist.

As shown, f(x+h)−f(x)
h is monotonically increasing in x. Therefore, ∂rf(x) and ∂`f(x) are

monotonically increasing. This impliees that ∂rf(x) is continuous except at countably many
points. Let ∂rf and ∂`f be continuous at x and let there exist ε > 0. By definition of
continuity, there exists some δ such that

|∂rf(x+ δ)− ∂rf(x)| ≤ ε
|∂rf(x)− ∂rf(x− δ)| ≤ ε

By definition of convexity, we know that ∂`f(z) ≤ ∂rf(z) for all z. Therefore, by the mono-
tonicity of ∂`f , for all z ∈ Bδ(x),

∂rf(x− δ) ≤ ∂`f(z) ≤ ∂rf(x+ δ)

Which implies that for all z ∈ Bδ(x),

|∂rf(z)− ∂rf(x)| ≤ ε

As this holds for all ε and ∂`f and ∂rf are continuos at x, this implies that ∂`f(x) = ∂rf(x) =

f ′(x). As this holds for all but countably many x, this implies that f is differentiable at all
but countably many points.
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Riemann Integration

Partition
A finite set P ⊂ [a, b] is a partition of [a, b] if P = {x1, . . . , xn} with x1 = a, xn = b and xi < xi+1.

Upper and Lower Sum
Given any function f : [a, b]→ R, we define

U(P, f) =

n−1∑
i=1

sup
x∈[xi,xi+1]

f(x)(xi+1 − xi)

L(P, f) =

n−1∑
i=1

inf
x∈[xi,xi+1]

f(x)(xi+1 − xi)

Refinement
A partition P is a refinement of a partition P ′ if P ⊂ P ′.

Theorem. Let P be a refinement of P ′. Then

U(f, P ) ≥ U(f, P ′)

L(f, P ) ≤ L(f, P ′)

Proof. Follows immediately from supremum and infimum.

Riemann Integrability
A function f : [a, b]→ R is Riemann integrable if supP L(f, P ) infP U(f, P ).
Note : This immediately implies that f must be bounded.

Theorem. For any partitions P,Q of [a, b] and function f : [a, b]→ R,

L(f, P ) ≤ U(f,Q)

Corollary : ˆ
f = sup

P
L(f, P ) ≤ inf

P
U(f, P ) =

ˆ
f

9
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Proof. Let P,Q be partitions of [a, b]. Then by definition, P and Q are refinements of P ∪Q.
Therefore

L(f, P ) ≤ L(f,Q ∪ P )

≤ U(f,Q ∪ P )

≤ U(f,Q)

The corollary follows immediately by applying an infimum to the left and then a supremum
to the right.

Alternate Riemann Integrability Definition
A function f : [a, b]→ R is Riemann integrable if for all ε > 0 there exists some partition P such that

U(f, P )− L(f, P ) < ε

Note : The equivalence of this definition to the original can be found with a ε proof utilizing common
refinements.

Continuity and Integrability

Theorem. (Riemann-Lebesgue Condition) : A bounded function f : [a, b] → R is Riemann
integrable if and only if the set of discontinuities has measure zero.

The proof of this is too long for the basic exam. No need to know it.

Theorem. (Fundamental Theorem of Calculus) : Suppose f ∈ C1[a, b]. Then

f(b)− f(a) =

ˆ b

a

f ′(x) dx

Theorem. (Mean Value Theorem for Integrals) : Suppose f : [a, b] → R is continuous and
g : [a, b]→ [0,∞) is Riemann integrable. Then there exists c ∈ [a, b] such that

ˆ b

a

f(x)g(x) dx = f(c)

ˆ b

a

g(x) dx

Theorem. (Integration by Parts) : Suppose there exists f, g ∈ C1[a, b]. Then

ˆ b

a

f(x)g′(x) dx = f(x)g(x)

∣∣∣∣b
x=a

−
ˆ b

a

f ′(x)g(x) dx

Using the fundamental theorem of calculus, we can prove a weak version of the mean value theorem

10
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Theorem. (Weak Mean Value Theorem) : Let there exist f ∈ C1[a, b]. Then there exists
c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a

Utilizing the extreme value theorem, it can be shown that the mean value theorem holds for any differentiable
function.

Utilizing integration by parts, we also can arrive at a function approximation, Taylor’s theorem.

Theorem. (Taylor’s Theorem) : Let there exist a < b, f : [a, b] → R, and n ∈ N such that
f (n−1) is continuous on [a, b] and differentiable on (a, b). Then for all x0 ∈ [a, b] there exists some ξ
between x0 and x such that

f(x) =

n−1∑
k=0

f (k)(x0)

k!
(x− x0)k +

f (n)(ξ)

n!
(x− x0)n

11
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Metric Space

Metric
Let X be a space. A function d : X ×X → [0,∞) is a metric if

(1) Positive Definiteness : For all x, y ∈ X, d(x, y) ≥ 0 with equality if and only if x = y.

(2) Symmetry : For all x, y ∈ X, d(x, y) = d(y, x).

(3) Triangle : For all x, y, z ∈ X, d(x, y) ≤ d(x, z) + d(z, y).

Metric Space
A space X along with a metric d : X ×X → [0,∞) is a metric spcae.

Open
A set U is open if for all x ∈ U there exixts δ > 0 such that B(x, δ) ⊂ U .

Convergence
A sequence (xn) ⊂ X converges to x if limn→∞ d(x, xn) = 0. This is denoted by xn → x.

Closed
A set E ⊂ X is closed if for all convergent sequences xn → x where (xn) ⊂ E then x ∈ E.

Ultrametric Space

Ultrametric Space
A metric space whose metric such that for all y ∈ X,

d(x, z) ≤ max{d(x, y), d(y, z)}

12



Anonymous UCLA Basic (Based on Notes/Lectures from Sylvester): Analysis Notes Exercise 1

Normed Vector Space

Norm
Let V be a vector space. A norm ‖ ∗ ‖ : V → [0,∞) is a function satisfying

(1) Positive Definiteness : For all x ∈ V , ‖x‖ = 0 if and only if x = 0.

(2) Homogeneity : For all x ∈ v and scalar c, ‖cx‖ = |c|‖x‖.

(3) Triangle Inequality : For all x, y ∈ V , ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Normed Vector Space
A vector space equipped with a norm.

Theorem. Any normed vector space can be made into a metric space with d(x, y) = ‖x− y‖.

Inner Product Space

Real Inner Product Space
A real vector space V equipped with a function 〈∗, ∗〉 : V × V → R such that 〈∗, ∗〉 satisfies

(1) Symmetry : 〈x, y〉 = 〈y, x〉

(2) Bi-Linearity : 〈ax+ by, z〉 = a〈x, z〉+ b〈y, z〉

(3) Positive Definiteness : 〈x, x〉 ≥ 0 with equality if and only if x = 0

Theorem. Any real inner product space can be made into a normed space with ‖x‖ =
√
〈x, x〉.

13
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Completeness

Cauchy
A sequence xn ∈ X is Cauchy if for all ε > 0 there exists N such that for all n,m ≥ N , d(xn, xm) ≤ ε.

Complete
A space X is complete if every Cauchy sequence has a limit.

Banach Space

Banach Space
A Banach space is a complete normed space.

Hilbert Space

Hilbert Space
A Hilbert space is a complete normed inner product space.

Compactness

In a metric space, the following three definitions are equivalent for compactness.

Compactness
A space X is compact if every open covers admits a finite subcover.

Sequentially Compact
For all sequences xn ∈ X, there exists a convergent subsequence.

Finite Intersection Property
Let there exist Fi ⊂ X with i ∈ I such that Fi are closed and such that ∩i∈G⊂IFi 6= ∅. Then
∩i∈IFi 6= ∅.

Theorem. A set X is compact if and only if X is totally bounded and X is complete.

Totally Bounded
A set X is totally bounded if for all ε > 0 there exists s1, . . . , xn such that X ⊂ ∪ni=1B(xi, ε).

14
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Separability

Dense
A set D ⊂ X is dense if for all x ∈ X and for all ε > 0, we have B(x, ε) ∩D 6= ∅.

Basis
A collection of open sets B in X is a basis for the topology if for all open sets U ⊂ X, for all x ∈ U ,
there exists B ∈ B such that x ∈ B ∈ B.

Separability
A set X is separable if there exists a countable dense subset D ⊂ X or if there exists a countable
basis for the topology.

Epsilon Nets

One very useful tool in determining compactness and separability is the epsilon-net.

ε-Net
An ε-net is a subset S ⊂ X such that S is a maximal ε-separated set. Maximal here implies that if
S cannot have points added to it and remain ε-separated.

Theorem. A complete space X is compact if it has a finite ε net for every ε > 0.

Proof. Follows immediately by restating totally bounded.

Theorem.

(1) X is separable if every ε separated set is countable.

(2) X is non-separable if there exists ε > 0 and an ε-separated set S which is uncountable.

Proof.

1. Let S1/n be a countable 1/n-net. Define S = ∪nS1/n. Then S is dense.

2. Let there exist an uncountable ε-net Sε. Assume that X is separable, with countable
dense set D. Then for all s ∈ Sε, there exists ds ∈ D such that d(ds, s) < ε/2. Because
Sε is ε-separated, this implies that ds 6= dr for all r 6= s ∈ Sε. However, because Sε is
uncountable, this implies that D is uncountable, which is a contradiction. Therefore, X
is not separable.

15
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Embedding of Banach Space

Theorem. (Kuratowski Embedding) : Every metric space X embeds to a Banach Space
isometrically.

Proof. For some x0 ∈ X, the function

φ : X → Cb(X) x 7→ fx(z) = d(x, z)− d(x0, z)

Embeds X into Cn(X).

Connectivity

Relatively Open and Relatively Closed
Let (X, d) be a metric space with E ⊂ Y ⊂ X. We say that E is relatively closed or relatively open
with respect to Y if it is closed or open in the metric space (Y, d|Y×Y )

Separated
Let (X, d) be a metric space. Two subsets A,B ⊂ X are separated if A ∩B = A ∩B = ∅.

Disconnected
There are many equivalent definitions of disconnected. Let (X, d) be a metric space. X is said to be
disconnected if

(1) there exists disjoint non-empty open sets V,W ⊂ X such that V ∪W = X.

(2) there exists disjoint non-empty closed sets V,W ⊂ X such that V ∪W = X.

(3) there exists non-empty separated sets V,W ⊂ X such that V ∪W = X.

Note that the subsets are open/closed/separated RELATIVE TO X. Though that doesn’t actually
matter for separated I don’t think.

Connected
Not disconnected. That’s the only way to characterize it and prove it.

Theorem. A metric space (X, d) is disconnected if and only if it contains a non-empty proper
subset (not X or ∅) which is both open and closed.

Proof. Follows immediately from definition. Separated definition appears to be the most
straightforward.

16
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Connected Set
Let (X, d) be a metric space with a subset Y . We say that Y is connected if and only if the metric
space (Y, d|Y×Y ) is connected.

Path Connected
Let (X, d) be a metric space with a subset E. We say that E is path-connected if and only if for all
x, y ∈ E there exists a continuous map γ : [0, 1]→ E such that γ(0) = x and γ(1) = y.

Other Types of Sets

Perfect Set
Let (X, d) be a metric space with subset E. Then E is perfect if E is closed and every point of E is
a limit point.

Hausdorff Space
A topological space X is Hausdorff if for all x 6= y ∈ X there exists disjoint open sets U, V ⊂ X with
x ∈ U and y ∈ V .

Continuum
A continuum is a compact connected Hausdorff space.

17
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Existence for ODE’s

Consider the ODE

y′(t) = f(y(t), t)

y(t0) = y0

If f is continuos, then we can rewrite this using the fundamental theorem of calculus as

y(t) = y0 +

ˆ t

t0

f(y(s), s) ds

But how do we know when this ODE has a unique solution? Well the following theorem can certainly be
helpful.

Theorem. (Fixed Point Theorem) or (Contraction Mapping Principle) : Suppose that X
is complete and T : X → X is a

λ-Contraction
A transformation such that for all x, y ∈ X,

d(T (x), T (y)) ≤ λd(x, y)

for some λ ∈ (0, 1). Then there exists a unique fixed point x∗ (T (x∗) = x∗).

Proof. Consider the sequence x, T (x), T (T (x)), . . . . Completeness gives a limit and conti-
nuity of the metric implies that the limit is a fixed point. Continuity of the metric follows
immediately from |d(x, y)− d(x, z)| ≤ d(y, z).

18
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Baire Category Theorem

Gδ Set
A set U is a Gδ set if U is the countable intersection of open sets.

Fδ Set
A set U is a Fδ set if U is the countable union of closed sets.

Theorem. The set of discontinuities of a function f : R→ R is Fδ.

Proof.

{x|f is continuous at x} = {x|for all 1/n > 0 there exists open interval I s.t. osc(f, I) < 1/n}

=

∞⋂
n=1

⋃
open I⊂R

s.t. osc(f,I)<1/n

I

︸ ︷︷ ︸
open

= Fδ

Baire Category Theorem

Theorem. (Baire Category Theorem) : If X is a complete metric space, then

(1) If Ui are countably many open sets which are dense in X, then the Gδ set

∩iUi

is non-empty and dense.

(2) If Ei are countably many closed sets so that X ⊂ ∪iEi then at least one of the Ei has non-empty
interior.

19
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Uniform Convergence

Convergence

(1) fn converges pointwise to f if for all x ∈ [a, b], limn→∞ fn(x)f(x)

(2) fn converges uniformly to f if for all ε > 0 there exists N such that for all n ≥ N and for all
x ∈ [a, b], |fn(x)− f(x)| < ε

Supremum Norm
We can treat the space of continuous function as a metric space by defining the supremum norm as

‖f‖∞ = sup
t∈[a,b]

|f(t)|

Which induces a metric on C([a, b]) in the usual way as

d(f, g) = ‖f − g‖∞ (1)

Often, the ∞ subscript is dropped.

Theorem. (Equivalence of Sup Norm and Uniform Convergence) : fn converges uniformly
to f if and only if

lim
n→∞

‖fn − f‖∞ = 0

Exchanging Limits

Convergence and Continuity

Theorem. (Uniform Convergence Preserves Continuity) : Let there exist continuous fn :

[a, b]→ R such that fn ⇒ f . Then f is continuous.

Proof. Bound things by ε/3 and then use the triangle inequality.

Convergence and Integration

Theorem. If there exists continuous fn : [a, b]→ R such that fn ⇒ f , then

lim
n→∞

ˆ b

a

fn(t)dt =

ˆ b

a

f(t)dt (2)

Note : [a, b] can be extended to an unbounded set if for all ε > 0 there exists some M such that for

20
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all n,
(´∞

M
+
´M
−∞

)
|fn(x)|dx < ε.

Theorem. (Dominated Convergence) : |fn(x)| ≤ g(x) for all x and
´∞

0
g(x)dx <∞.

Theorem. (Weierstrass M-Test) : Let there exist fn : X → R such that

‖fn‖∞ ≤Mn

and
∞∑
n=1

Mn <∞

Then
∑
n fn(x) converges uniformly.

Proof. Follows from Cauchy convergence criterion.

Convergence and Derivative

Theorem. Let K : R × [0, 1] → R be continuous such that K(∗, t) is differentiable for all t. Such
that |∂xK(x, t)| ≤M and ∂xK is continuous for all t.
Let f(x) =

´ 1

0
K(x, t)dt. Then f is C1 with f ′(x) =

´ 1

0
∂xK(x, t)dt.

Fubini

Let g : R2 → R be continuous. Suppose
´
I

´
J
|g(x, y)|dxdy <∞. Then

ˆ
I

ˆ
J

g(x, y)dxdy =

ˆ
J

ˆ
I

g(x, y)dydx

Newton’s Method

Theorem. Let there exist f ∈ C2(R) and suppose f(x∗) = 0 with f ′(x∗) 6= 0. Then there exists δ
such that if x ∈ (x∗ − δ, x∗ + δ) then the Newton iteration

x0 = x

xn = xn−1 −
f(xn−1)

f ′(xn−1)

converges to x∗ quadratically.

If a question asks about Euler’s method, then consult the CCLE notes on desktop because idk.
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Stone-Weierstrass

Theorem. (Stone-Weierstrass Generalized Theorem) : Suppose A ⊂ C(X) is an algebra of
continuous functions and X is compact. If for all x 6= y ∈ X there exists f such that f(x) 6= 0 and g
such that g(x) 6= g(y), then A is dense in C(X).
Then for all f ∈ C(X) there exists pn ∈ A such that pn ⇒ f .

Algebra
A vector space over a field equipped with a bilinear form. Need to show closure under addition,
multiplication, scalar multiplication.

Arzelà Ascoli

Equibounded
A family of functions F is equibounded if there exists some M that bounds all f ∈ F .

Equicontinuos
A family of functions F is equicontinuous if for all ε > 0 there exists some δ > 0 such that for all
f ∈ F and for all x, y satisfying |x− y| < δ, |f(x)− f(y)| < ε.
Note that this is perhaps better understood as uniform equicontinuity.

Theorem. (Arzelà Ascoli Theorem) : Let there exist a family of functions F ⊂ C(X) where X
is compact. F is compact if and only if

• F is closed

• F is equibounded

• F is equicontinuous

Corollary : A sequence in C(X) is uniformly convergent if and only if it is equicontinuous and it
converges pointwise to some limit.
Corollary : A sequence in C(X) has a uniformly convergent subsequence if it is equibounded and
equicontinuous.e
Corollary : A family of functions F ⊂ C(X) is pre-compact (not closed, but everything else) if and
only if F is equibounded and eqeuicontinuous.
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Proof. Pick some arbitrary sequence. We aim to show that there is a uniformly convergent
subsequence.
Backwards : The backwards direction follows from the diagonal argument. Pick some count-
able dense set D and consider the sequence of functions on this set. The diagonal argument
shows that there is a subsequence that converges on all points of D.
Using equicontinuity, it is easy to show that this limit function is equicontinuous on D with
the rest of the family. Then extend said limit function by continuity to the other points
continuously by taking f(x) = limn→∞(xn).
Show that the subsequence converges uniformly by considering a finite (from compactness)
δ-net inside D of the space. Pointwise convergence and equicontinuity extends the convergence
to the remaining points. Maximum over all Ni and done.
f is continuous by uniform convergence. Bounded follows from convergence as well. Then the
subsequence converges uniformly within F
Forwards : If F is compact then it is bounded (equibounded) and closed. It remains to show
equicontinuous.
Assume otherwise. Then for all ε > 0 and 1/n there exists fn, xn, and yn such that d(xn, yn) <

1/n but |fn(xn) − fn(yn)| ≥ ε. By construction, the sequence is not equicontinuous and no
subsequence is equicontinuous.
Then compactness shows uniform convergence of subsequence. Because continuous func-
tions converge uniformly to continuous function implies equicontinuity, this is a contradiction.
Therefore our assumption is wrong and the space is equicontinuous.

Sequences and Series

Sequences

Convergence of Sequence
A sequence (an) converges to a if for all ε > 0 there exists some N such that for all n ≥ N , |an−a| < ε.
This is denoted as limn→∞ an = a.

How to Prove Convergence :

(1) If (an) is monotone and bounded, then it converges.

(2) If an is Cauchy and we’re working in a complete metric space.

Cauchy
For all ε > 0 there exists some N such that for all n,m ≥ N , |an − am| < ε

(3) Know the limit and show that |an − a| ≤ ε or limn→∞ |an − a| = 0.

How to Find Limit :

(1) Just know the limit.
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(2) Take the log and then find it.

(3) Apply some other continuous function to it and then find the limit.

(4) L’Hopital’s rule if you can show that the function can be made differentiable easily.

How to show not convergent :

(1) Unbounded

(2) Not Cauchy

(3) Alternating but in a bad way

There isn’t a whole lot of trickery to sequences.

Series

Series Convergence
Consider a series

∑∞
n=1 an. Define Sm =

∑m
n=1 an. The series converges if and only if Sm converges

with respect to m.

Theorem. (Monotone Test) : If an ≥ 0 for all n and there exists M such that Sm ≤ M for all
m, then the series converges.

Theorem. (Absolute Convergence) : If
∑∞
n=1 |an| <∞ then

∑∞
n=1 an converges.

Absolutely Convergent∑
n an is absolutely convergent if

∑
n |an| converges. If a series is absolutely convergent then you can

basically do whatever the hell you want to it and nothing will change.

Conditionally Convergent∑
n an is conditionally convergent if

∑
n |an| diverges. If a series is conditionally convergent then DO

NOT REARRANGE. THE SERIES CAN CONVERGE TO LITERALLY ANYTHING.

Theorem. (Alternating Series Test) : The series
∑∞
n=1(−1)nan converges if an ≥ 0, an is

decreasing, and limn→∞ an = 0.

See the wikipedia page for more tests.
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Submultiplicative and Subadditive Sequences

Theorem. (Summation by Parts) : Let there exist (an) and (bn) and define An =
∑n
k=1 ak

with A0 = 0. Then

N∑
n=1

anbn =

N∑
n=1

(An −An−1)bn

= ANbN +

N−1∑
n=1

An(bn − bn+1)

Note : This is useful if An is bounded or if (bn − bn+1 dies quickly.

Theorem. (Dirichlet Test) : Suppose there exists M such that |
∑N
n=1 an| ≤M for all N and bn

is a decreasing sequence that converges to 0. Then

∞∑
n=1

anbn

converges.

Proof. Summation by parts

Infinite Products

Consider the infinite product
∏n
i=1 an. The most, and really only, method for evaluating these is

Theorem. (Logarithm Test) : For an > 0,
∏∞
n=1 an converges if and only if one of the following

holds

(i)
∑∞
n=1 log(an) = −∞. Then

∏∞
n=1 an = 0.

(ii)
∑∞
n=1 log(an) =∞. Then

∏∞
n=1 an =∞.

(iii)
∑∞
n=1 log(an) ∈ (0,∞). Then

∏∞
n=1 an = e

∑∞
n=1 log(an).
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Multivariable Stuff

Differentiation

There are three types of derivatives when it comes to multivariable.

Partial Derivative
The directional derivative of f at x in the direction xi where xi is a basis vector of the space is given
by

∂if(x) = lim
t→0

f(x+ txi)− f(x)

t

A partial derivative is a directional derivative in the direction of a standard basis vector.

Directional Derivative
The directional derivative of f at x in the direction e is given by

∂ef(x) = lim
t→0

f(x+ te)− f(x)

t

Differentiable
f : Rn → Rm is differentiable at x if there exists a linear transformation A : Rn → Rm such that

lim
h→0

|f(x+ h)− f(x)−Ah|
|h|

= 0

Then f ′(x) = A.

Theorem. If ∂xf exists and is continuous for all i then f is differentiable.

Theorem. (Chain Rule) : If f : Rp → Rq and G : Rq → Rn are continuously differentiable then

D(G ◦G)(x0) = DG(F (x0)) ·DF (x0)

Theorem. (Claytor’s Theorem) : If f : Rn → R is C2 then

∂i∂jf(x) = ∂j∂if(x)

for all x ∈ Rn.

Inverse Function Theorem

Theorem. (Inverse Function Theorem) : Let there exist some x0 ∈ Ω ⊂ Rn where Ω is open.
If F : Ω→ Rn is C1 with JF (x0) = det(DF (x0)) 6= 0 then there exists an open U containing x0 and
an open V containing F (x0) such that f : U → V is bijective and F−1 : V → U is C1
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Open Function
A function f : X → Y is open if f(U) is open for open U .

Theorem. (Corollary) : If F : Ω ⊂ Rn → Rn is C1 and JF (x) 6= 0 for all x ∈ Ω, then F is open.

Implicit Function Theorem

Theorem. (Implicit Function Theorem) : Let there exist F : Rn → Rm with m < n such that
rank(DF ) = m. Let there exist x0 ∈ Rn and let F (x0) = y0.
Then there exist i1, . . . , in−m and g(xi1 , . . . , xin−m) such that

F (xi1 , . . . , xin−m , g(xi1 , . . . , xin−m) = 0

More clearly, this states that there exists some g : Rn−m → Rm such that

F (x, g(x)) = y0

For all x in some neighborhood U of x0.

Taylor Expansion

Theorem. (Second Order Taylor Expansion) : Let f be C2 then

f(x+ h) = f(x) +∇f(x) · h+
1

2
〈∇2f(x)h, h〉+O(‖x‖3) (3)

or
f(x+ h) = f(x) +∇f(x) · h+

1

2
〈∇2f(x)h, h〉+ E(x) (4)

Where E(x) is an eerror term such that limx→∞ ‖E(x)‖/‖x‖2 = 0.

Theorem. (General Taylor Expansion) : Let f be Ck then

f(x+ h) =
∑
|α|≤n

f (α)(x)

α!
+
∑
|α|=k

f (α)(x+ ξh)

α!
hα

where α = (α1, . . . , αn) with

|α| = α1 + · · ·+ αn

α! = α1! . . . αn!

xα = xα1
1 . . . xαn

n

f (α)(x) =
∂|α|f

∂xα1
1 . . . ∂xαn

n
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Integration

Theorem. (Fubini’s Theorem) : If

ˆ b

a

ˆ d

c

|f |dxdy <∞

Then ˆ b

a

ˆ d

c

fdxdy =

ˆ d

c

ˆ b

a

|f |dydx

Theorem. (Integrals Preserve Inequalities) : If f ≤ g then
¨
R

f ≤
¨
R

g

Theorem. (Mean Value Theorem) : If R is connected and f is continuous then there exists
ξ ∈ R such that ¨

R

f = |R|f(ξ)

Green’s Theorem and Others

Theorem. (Green’s Theorem) : Let C be a positively oriented, piecewise smooth, simple closed
curve in R2. Let D be the region bounded by C. Then

˛
C

f dx+ g dy =

¨
D

(∂xg − ∂yf) dA

Where integration along C is counter-clockwise. (The constraints on C can be a little looser I think.)

Theorem. (Divergence Theorem) : Suppose V is a subset of R3 which is bounded and has
piecewise smooth boundary ∂V . If F is a C1 vector field defined on a neighborhood of V , then

˚
V

∇ · FdV =

‹
∂V

F · dS

where ∂V is oriented by outward normals. And dS = ndS

Theorem. (Stokes Theorem) : For a smooth oriented surface Σ in R3 with boundary ∂Σ and
A : R3 → R3 with continuous partial derivatives,

¨
Σ

(∇×A) · da =

˛
∂Σ

A · dl
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Surfaces

There are three main, equivalent ways to describe (locally) C1 surfaces in R3.

Parametric Form
For a surface S and p ∈ S. If there exists

(i) an open neighborhood U ⊂ R2 of (0, 0) ∈ R2

(ii) an open neighborhood V ⊂ R3 of p ∈ R3.

(iii) A C1 function φ : U → V such that Dφ has rank 2 and φ(U) = V ∩ S, φ(0, 0) = p.

Then S is locally a C1 surface about p.

Graph Form
S is locally a graph at p = (x0, y0, z0) if there exists

(i) open neighborhood U of (x0, y0) ∈ R2

(ii) open neighborhood V of p in R3 and a C1 function z : U → R such that

{(x, y, z(x, y)) : (x, y) ∈ U} = V ∩ S and z(x0, y0) = z0

Level Surface
S is locally a level surface at p if there exists

(i) a neighborhood V of p in R3

(ii) a function f : V → R which is C1 such that

(a) S ∩ V = f−1(0) ∩ V

(b) ∇f 6= 0 on S ∩ V

C1 Surface
S is a C1 surface if and only if any of the previous three definitions are satisfied for all p ∈ S.
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