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Basic Concepts, Nothing Special

Basis
Let V be a vector space. A set of vectors B is a basis for V if any v ∈ V can be written as a linear
combination of vectors from B, in a unique way.

Theorem. Every vector space has a basis.

Proof. The proof of this is not simple or fun and should not appear on the basic.

Note : Unless otherwise stated, we will assume that any vector space has a finite basis.

Theorem. (Steinitz Replacement) : Let {y1, . . . , ym} ⊂ V be linearly independent. Let
V = span{x1, . . . , xn}. Then m ≤ n and V has a basis of the form y1, . . . , yn, xi1 , . . . , xi` for some
` ≤ n−m.

Span
The span of a subset S ⊂ V , denote span(S), is the smallest subspace of V containing S.

Commutator
Let T, S : V → V be linear operators. The commutator [T, S] is the operator

[T, S] = TS − ST

We say that the operators T, S commute if [T, S] = 0.

Affine Subspace
A set A ⊂ V is said the be an affine subspace if there exists w ∈ A such that

A− w = {v − w : v ∈ A}

is a subspace of V . The dimension of A is defined to be the dimension of A− w.
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Rank

Rank and Nullity
Let T : V →W be a linear transformation between vector spaces. Then

rank(T ) = dim(im(T )) nullity(T ) = dim(ker(T ))

Theorem. (Rank Nullity Theorem) : Let T : V → W be a linear transformation between
vector spaces. Then

rank(T ) + nullity(T ) = dim(V )

Proof. There are two main proofs of the rank nullity theorem, both of which I will present.

(1) By definition, kerT is a subspace of V . Therefore, it has a basis w1, . . . , wm for some m ≤
dim(V ). By the Steinitz exchange theorem, we may extend w1, . . . , wm to a full basis by adding
vectors vm+1, . . . , vn where n = dim(V ).

We claim the T (vi) is a basis of Im(T ). To show this, we must show that {T (vi)} is linearly
independent and generating.

Generating : Consider an arbitrary y ∈ W . By definition, there exists some x ∈ V such that
T (x) = y. Because w1, . . . , wm, . . . , vn is a basis of V , there exists some α1, . . . , αn such that
x = α1w1 + · · ·+ αnvn. By the linearity of T and the definition of wi, this implies that

T (x) = y

α1 T (w1)︸ ︷︷ ︸
=0

+ · · ·+ αm T (wm)︸ ︷︷ ︸
=0

+αm+1T (vm+1) + · · ·+ αnT (vn) = y

αm+1T (vm+1) + · · ·+ αnT (vn) = y

Therefore {T (vi)} is generating.

Linearly Independent : Let there exist αm+1, . . . , αn such that

αm+1T (vm+1) + · · ·+ αnT (vn) = 0

Then by the linearity of T ,

T (αm+1vm+1) + · · ·+ αnvn) = 0

and so αm+1vm+1) + · · ·+ αnvn ∈ kerT . Because w1, . . . , wm are a basis for kerT , this implies
that there exists −α1, . . . ,−αm such that

αm+1vm+1) + · · ·+ αnvn = −α1w1)− · · · − αmwm
α1w1) + · · ·+ αmwm + αm+1vm+1) + · · ·+ αnvn = 0

Because {wi, vi} is a basis, it is linearly independent. Therefore αi = 0 for all i, namely for
i = m+ 1, . . . , n. This implies that {T (vi)} are linearly independent.

5



Anonymous UCLA Basic (Based on Notes/Lectures from Ben): Algebra Notes Exercise 1

(2) Consider the matrix form of T with respect to any basis. Putting T into echelon form, we know
that

# of columns of T with pivots = dim im(T ) = rankT

# of columns of T without pivots = dim ker(T ) = nullity T

# of columns of T = dim(V )

Because each column must either have a pivot or not have a pivot, this implies that

# of columns with pivots + # of columns without pivots = # of columns

rankT + nullity T = dim(V )

Isomorphic
Two vector spaces V,W are isomorphic if there exists linear maps L : V → W and K : W → V so
that

KL = IV LK = IW

6
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Subspace Theorem

Quotient Space
Let W ⊂ V be a subspace. The quotient space, V/W is the vector space of equivalence classes
under the equivalence relation v w if v−w ∈W , endowed with the induced scalar multiplication and
addition operations

λ[v] = [λv] [v] + [w] = [v + w]

Where [v] = v +W is the corresponding equivalence class.

This leads to the

Theorem. (Subspace Theorem) : Let W ⊂ V be a subspace. Then

dimV = dimW + dimV/W

Proof. Define a linear transformation T : V → V/W such that T (v) = [v]. Then kerT = W

and imT = V/W . Therefore by the rank nullity theorem,

dim(V ) = dim kerT + dim imT = dimW + dimV/W

Which is what was to be shown.

7
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Rank Theorem

Row Rank and Column Rank
Let A be an n×m matrix. Then the row rank of A is the maximal number of linearly independent
rows and the column rank is the maximal number of linearly independent rows.
Equivalently, row rank is the dimension of the span of the rows and column rank is the dimension of
the span of the columns. By definition of matrix multiplication, this implies that the rank of A is the
column rank.

Theorem. (Rank Theorem) : Let A be an n ×m matrix. Then the row rank of A is equal to
the column rank.

Proof. This follows immediately by counting pivots in the echelon form of A.
Alternatively,
Let x1, . . . , xc be a basis for the column space of A. Therefore, for each v in the column space,
there exists a unique α1, . . . , αc such that v = α1x1+· · ·+αcxc. Define a linear transformation
B : column space of A→ Fc such that Bv = (α1, . . . , αc)

T where v = α1x1 + · · ·+αcxc. With
this definition,

A =
[
x1 x2 . . . xc

]
B

Taking the transpose,
AT = BT

[
x1 x2 . . . xc

]T
Therefore dim imAT ≤ dim(column space of A). Because imAT is the span of the columns of
AT , it is the span of the rows of A, and so is the row space of A. Therefore, the row rank of
A is at most the column rank of A. Repeating this argument but starting with AT , we find
the reverse inequality. Therefore the row rank and column rank are equivalent.

8
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Dual Space

Dual Space
If V is a vector space then

V ′ = hom(V,F) := {f : V → F | f is linear }

Note : if V is infinite dimensional then V ′ is the algebraic dual space, not the continuous dual space.

Theorem. (Basis of Dual Space) : If V has basis v1, . . . , vn then V ′ has basis φ1, . . . , φn where
φi(vj) = δij . In particular, dim(V ) = dim(V ′).

Proof. The proof of this is straightforward manipulation of bases and is not useful.

Annihilator
If U ⊂ V is a subset then

U0 = U⊥ = {f ∈ V ′ : f(u) = 0 for all u ∈ U}

Theorem. Let V be a finite dimensional vector space with subspace W . Then

dim(V ) = dim(W ) + dim(W 0)

Proof. Define a linear transformation T : W → V such that T (v) = v. We can then define
its dual map T ′ : V ′ →W ′ as

T ′(f) = f ◦ T

Then kerT ′ = W 0 because imT = W and imT ′ = W ′ because T is the identity on W .
Therefore by rank nullity,

dimV ′ = nullity T ′ + rankT ′ = dimW 0 + dimW ′

Because we are working with finite dimensional vector spaces,

dimV = dimW 0 + dimW

Which is what was to be shown.
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Volume Forms and Determinants

Volume Forms

Volume Form
Let V be an n dimensional vector space over a field F. A volume form is a multilinear map

vol : V n → F

such that if vi = vj for i 6= j then
vol(v1, . . . , vn) = 0

Theorem. If 1 6= −1 then the volume form is alternating. That is

vol(v1, . . . , vi, . . . , vj , . . . , vn) = −vol(v1, . . . , vj , . . . , vi, . . . , vn)

Proof. By definition of a volume form,

0 = vol(v1, . . . , vi + vj , . . . , vi + vj , . . . , vn)

0 = vol(v1, . . . , vi, . . . , vi, . . . , vn) + vol(v1, . . . , vj , . . . , vi, . . . , vn)

vol(v1, . . . , vi, . . . , vi, . . . , vn) = −vol(v1, . . . , vj , . . . , vi, . . . , vn)

Which is what was to be shown.

Theorem. If v1, . . . , vn ∈ V satisfy vol(v1, . . . , vn) 6= 0 then v1, . . . , vn is a basis for V .

Proof. If v1, . . . , vn are linearly dependent then vol(v1, . . . , vn) = 0 because vi can be written
as a linear combination of the other vectors. Therefore, v1, . . . , vn are linearly independent.
Because there are n vectors, this implies that v1, . . . , vn are a basis.

Theorem. Let v1, . . . , vn be a basis of V . Then there exists a volume form vol such that

vol(v1, . . . , vn) = 1

Additionally, if vol′ is any other volume form then there exists λ ∈ F such that

vol′ = λvol

10
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Determinant

Determinant
Let v1, . . . , vn be a basis for V . Let vol be a non-trivial volume form. Then we define the determinant
of a linear operator T : V → V to be

detT =
vol(Tv1, . . . , T vn)

vol(v1, . . . , vn)

(This amounts to taking the volume form of the columns of T )

Theorem. (Laplace Expansion) : Row and Column Expansion of Determinant
Let n ≥ 2 and A ∈Mn(F). Denote the (i, j)th minor of A be Mij . Then

detA =

n∑
i=1

(−1)i+jaijMij for fixed j

detA =

n∑
j=1

(−1)i+jaijMij for fixed i

Corollary : Repeating this expansion,

det(A)I = (adjA)A = A(adjA)

Where (adjA)ij = (−1)i+jMji.

11
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The Characteristic Polynomial

Characteristic Polynomial
Let T : V → V be a linear operator. The characteristic polynomial of T is χT (t) = det(tI − T ).
Note : This is a monic polynomial of degree dimV .

Eigensection

Theorem. λ is an eigenvalue of T if and only if χT (λ) = 0.

Proof. We know that λI−T is invertible if and only if det(λI−T ) = χT (λ) = 0. Additionally,
λI − T is invertible if and only if ker(λI − T ) = {0}, which occurs if and only if there doesn’t
exist a v such that Tv = λv. Therefore, λ is an eigenvalue if and only if χT (λ) = 0.

Algebraic Multiplicity
Let λ be an eigenvalue of T . If χT (t) = (t−λ)mp(t) where p(λ) 6= 0 thenm is the algebraic multiplicity
of λ.

Geometric Multiplicity
Let λ be an eigenvalue of T . The geometric multiplicity of λ is

nullity(λI − T ) = dimEλ (1)

Where Eλ is the space of eigenvectors with eigenvalue λ.

Theorem. Let A ∈Mn(C) have eigenvalues λ1, . . . , λn repeated according to algebraic multiplicity.
then

detA =
∏
i

λi

trA =
∑
i

λi

12
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The Minimal Polynomial

Minimal Polynomial
Let T : V → V be a linear operator. The minimal polynomial of T is the smallest order monic
non-trivial polynomial

µT (t) = tk + αk−1t
k−1 + · · ·+ α0

Such that µT (T ) = 0.
As defined, k is the smallest positive integer such that {1, T, . . . , T k} is linearly dependent.
Note : If µT (t) is the minimal polynomial of T then no non-trivial polynomial of degree < k satisfies
p(T ) = 0.

Theorem. Let T : V → V be a linear operator with minial polynomial µ(t). Then

(1) If T satisfies a polynomial p(t) then µ|p.

(2) λ ∈ F is an eigenvalue of T if and only if µ(λ) = 0

Proof.

(1) If T satisfies p(t) then the degree of p(t) is at least the degree of µ(t). Therefore, because
F[x] is a Euclidean domain, there exists q(t) and r(t) such that r(t) has degree less than
µ(t) and

p(t) = q(t)µ(t) + r(t) =⇒ 0 = p(T ) = r(T )

Because r(t) has degree less than µ(t), this implies that r(t) = 0 and so p(t) = q(t)µ(t).

(2) Forwards : If λ is an eigenvalue of T then

µ(T )v = 0

µ(λ)v = 0

Which implies that µ(λ) = 0 because v 6= 0.

Backwards : If µ(λ) = 0 then µ(t) = (t−λ)p(t) for some p(t). Because µ(t) has minimal
degree, p(T ) 6= 0. Therefore, there exists some w ∈ V such that v = p(T )w 6= 0. Then

µ(T )w = 0

(T − λI)p(T )w = 0

(T − λI)v = 0

Tv = λv

So λ is an eigenvalue of T .

13
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Cayley-Hamilton Theorem

Theorem. (Cayley-Hamilton Theorem) : Let T : V → V be a linear operator. Then χT (T ) = 0.
In particular, µT |χt.

Cyclic Subspace Cv
Let T : V → V be a linear operator and let there exist v ∈ V . Then

Cv = span{v, Tv, T 2v, . . . }

is the cyclic subspace generated by T and v.

Theorem. Let V have dimension n and T : V → V be a linear operator. Then

(i) Cv is T -invariant. That is to say that T (Cv) ⊂ Cv.

(ii) If v 6= 0 then there exists a positive integer k ≤ n such that v, Tv, . . . , T k−1v is a basis for Cv.
Further, the matrix representation of T with respect to this basis is

T =



0 0 0 0 . . . −α0

1 0 0 0 . . . −α1

0 1 0 0 . . . −α2

0 0 1 0 . . . −α3

0 0 0 1 . . . −α4

...
...

...
...

. . .
...

0 0 0 0 . . . −αk−1


Where T kv + αk−1T

k−1v + · · ·+ α0v = 0.

(iii) The characteristic polynomial of T |Cv
is χT |Cv

(t) = tk + αk−1t
k−1 + · · ·+ α0 = 0.

Proof. Left as an exercise for me.

Proof. (Cayley-Hamilton Theorem ) : Let there exist v ∈ V \ {0}. Let v, Tv, . . . , T k−1v be a
basis for Cv. Extend to a basis v, Tv, . . . , T k−1v, wk+1, . . . , wn of V . Then T has block matrix form

T =

[
A B

0 D

]
Where A has the same form as in the previous theorem. Then χT (t) = χA(t)χD(t) which implies
that

χT (T )v = χA(T )χD(T )v︸ ︷︷ ︸
0

= 0

By the previous theorem. As this holds for all v ∈ V , χT (T ) = 0.

14
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Theorem. (Bon-Soon’s Theorem) : Let V be a vector field over F and let dim(V ) = n. Let
there exist a linear operator A : V → V . Then

χA(t)|µA(t)n

Proof. If we extend F to a splitting field, then the proof is trivial as any roots of µA must be
roots of χA and vice versa. Excluding the use of a splitting field, the proof is a little bit more
involved. I would recommend the lecture notes from Tuesday of week 2’s video.
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Diagonalizability

Diagonalizable
A linear operator T : V → V is diagonalizable if there is a basis of V consisting of eigenvectors of T .

Theorem. T : V → V is diagonalizable if and only if the minimal polynomial factors as

µT (t) = (t− λ1) . . . (t− λk)

Where the λi are distinct.

Theorem. If dimV = n and T has n distinct eigenvalues then it is diagonalizable.

Proof. Immediate corollary from previous theorem because µT |χT .

Theorem. Let V be a vector space over C. Then a linear operator T : V → V is diagonalizable if
and only if for every eigenvalue, the geometric and algebraic multiplicities are the same.

Jordan Canonical Form

For this section, all vector spaces are over C.

Theorem. (Jordan-Chevally Decomposition) : Let L : V → V be a linear operator. Then
L = S +N where S is diagonalizable, N is nilpotent (Nk = 0), and [N,S] = 0.

Theorem. (Jordan Canonical Form) : Let L : V → V be a linear operator where V is a complex
vector space. Then we can find L-invariant subspaces M1, . . . ,Ms such that

V = M1 ⊕ · · · ⊕Ms

and there is a basis for Mj such that the matrix representation of L|Mj
is a Jordan block.

Jordan Block
A block of the form 

λ 1 0 . . . 0

0 λ 1 . . . 0

0 0 λ . . . 0
...

...
...

. . .
...

0 0 0 . . . λ


Where λ is the eigenvalue associated with the block.

This decomposition is unique, up to reordering the blocks.

16
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How to Calculate the Jordan Form of a Matrix

Let A be a n×n complex matrix. This can be done with any matrix such that the characteristic polynomial
splits, but we will only use this for complex matrices.

(1) Find the distinct eigenvalues λ1, . . . , λk of A.

(2) Pick some eigenvalue λ and note the algebraic multiplicity, am(λ).

Theorem. The algebraic multiplicity of an eigenvalue is the total size of Jordan blocks
involving said eigenvalue.

(3) Compute

nullity(A− λI) = n1

nullity(A− λI)2 = n2

nullity(A− λI)3 = n3

...

nullity(A− λI)m = nm = am(λ)

Then there are

n1 Jordan blocks

n2 − n1 Jordan blocks of size ≥ 2

n3 − n2 − n1 Jordan blocks of size ≥ 3

...

nm − nm−1 − · · · − n1 Jordan blocks of size ≥ m (largest size)

From this, we find that

Theorem. The number of Jordan blocks corresponding to an eigenvalue is equivalent to the
geometric multiplicity of λ, which is nullity(A− λI).

Additionally,

Theorem. The power of (t− λ) in µA(t), the minimal polynomials of A, is the biggest block
with eigenvalue λ.

(4) Now we will find the basis that puts our matrix into this form. We will give a procedure to do it for
one eigenvalue, which must be repeated for all other blocks.

Find x such that (A − λI)am(λ)x = 0 but (A − λI)am(λ)−1x 6= 0. Then add x, (A − λI)x, . . . , (A −
λI)am(λ)x to our set of basis vectors.

Repeat this process for the next smallest block. However, it is crucial that the first vector chosen is
linearly independent from all previous vectors.

See Bonsoon’s notes below for extra clarification.

The vectors in this order will produce the classic Jordan canonical form.
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Inner Product Space

Unless otherwise stated, all vector spaces are finite dimensional spaces over C.

(Hermitian) Inner Product
An inner product is a map

〈∗, ∗〉 : V × V → C

such that for all x, y ∈ V ,

(i) Positive Definiteness : 〈x, x〉 ≥ 0 with equality if and only if x = 0.

(ii) Skew-Symmetry : 〈x, y〉 = 〈y, x〉

(iii) Linearity in First Argument : x 7→ 〈x, y〉 is linear.

From now on, V is a complex, finite dimensional, inner product space.

Norm Induced by Inner Product
We define the canonical norm on an inner product space to be

‖x‖ =
√
〈x, x〉

Orthogonal
Two vectors x, y ∈ V are orthogonal if 〈x, y〉 = 0.

Theorem. (Cauchy Schwartz and Others) : For all x, y ∈ V ,

(i) (This one is Cauchy Schwartz)
|〈x, y〉| ≤ ‖x‖‖y‖

(ii)
‖x+ y‖ ≤ ‖x‖+ ‖y‖

Theorem. (Pyhtagoras’ Inequality) : If x, y ∈ V are orthogonal then

‖x+ y‖2 = ‖x‖2 + ‖y‖2

Proof.

‖x+ y‖2 = 〈x+ y, x+ y〉
= 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉
= ‖x‖2 + ‖y‖2

19
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Orthogonal Projections

Orthogonal Projection
Let there exist y ∈ V \ {0}. The orthogonal projection of x ∈ V in the direction of y is

projy(x) = 〈x, y

‖y‖
〉 y
‖y‖

=
〈x, y〉
‖y‖2

y

Theorem. Let there exist y ∈ V \ {0}. Then

(i) projy : V → V is a projection

(ii) For any x ∈ V , projy(x) and x− projy(x) are orthogonal

(iii) For any x ∈ V ,
‖ projy(x)‖ ≤ ‖x‖

Orthogonal/Orthonormal Set
A set of vectors e1, . . . , en ∈ V are said to be orthogonal if 〈ei, ej〉 = 0 if i 6= j.
The set is said to be orthonormal if 〈ei, ej〉 = δij .

Theorem. Let e1, . . . , en be orthonormal. Then

(1) The set {e1, . . . , en} is linearly independent.

(2) If x ∈ span{e1, . . . , en} then

x =

n∑
j=1

〈x, ej〉ej

and

‖x‖2 =

n∑
j=1

|〈x, ej〉|2

Proof.

(1) If a1e1 + a2e2 + · · ·+ anen then

aj = 〈ej , a1e1 + a2e2 + · · ·+ anen〉 = 0

(2) Direct computation.

Theorem. (Gram-Schmidt Process) : For any linearly independent set {v1, . . . , vn}, there exists
an orthonormal set {e1, . . . , en} such that for all m ≤ n, span{v1, . . . , vm} = span{e1, . . . , em}.

20
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Proof. Proceed by induction on m. For m = 1 take

e1 =
v1
‖vi‖

Assume that we have constructed e1, . . . , em−1. Then let

wm = vm −
m−1∑
i=1

〈vm, ej〉ej

and finally
em =

wm
‖wm‖

Orthogonal Complement

Orthogonal Complement
Let M ⊂ V be a subspace. Then the orthogonal complement to M is

M⊥ = {x ∈ V : 〈x, z〉 = 0 for all z ∈M}

Orthogonal Projection
Let M ⊂ V be a subspace with orthonormal basis e1, . . . , en. Then the orthogonal projection of
x ∈ V onto M is

projM (x) =

n∑
j=1

〈x, ej〉ej

The matrix form of this is

projM =

n∑
j=1

eje
∗
j

Theorem. Let M ⊂ V be a subspace. Then

(i) The map projM : V → V is a projection onto M .

(ii) For all x ∈ V , projM (x) ∈M and x− projM (x) ∈M⊥.

(iii) V = M ⊕M⊥

(iv) (M⊥)⊥ = M

Theorem. Let M ⊂ V be a subspace. Then for all x ∈ V , projM (x) is the vector in M that is
closest to x.
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Proof. minm∈M ‖x − m‖ = minm∈M ‖(x − projM (x)) + projM (x) − m‖ = minm∈M ‖(x −
projM (x))‖+ ‖ projM (x)−m‖ Which is minimal if and only if m = projM x.

Adjoint

Theorem. Let L : V → V be a linear map between finite-dimensional inner product spaces over C.
Then there exists a unique linear map L∗ : W → V such that for all v ∈ V and for all w ∈W ,

〈Lv,w〉W = 〈v, L∗w〉

Proof. The proof of this really just comes from rearranging things. Viewing them in matrix
notation though,

〈Lv,w〉 = v∗L∗w = 〈v, L∗w〉

Adjoint
The linear map L∗ is called the adjoint of L.

Theorem. (The Fredholm Alternative) : Let L : V → W be a linear map between complex
inner product spaces. Then

kerL = im(L∗)⊥

kerL∗ = im(L)⊥

(kerL)⊥ = im(L∗)

(kerL∗)⊥ = im(L)

Theorem. (The Polarization Identity) : For x, y ∈ V ,

〈x, y〉 =
1

4

(
‖x+ y‖2 − ‖x− y‖2 − i‖x− iy‖2 + i‖x+ iy‖2

)

Isometry
A linear operator L : V → W between inner product spaces is said to be an isometry if, for every
x ∈ V ,

‖Lx‖W = ‖x‖V

Orthogonal Matrix
An isometry in Rn.
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Unitary Matrix
An isometry in Cn.

Special Types of Matrices

Self-Adjoint
L = L∗

Skew-Adjoint
L = −L∗

Normal
[L,L∗] = 0.

Spectral Theorem Fist Go

Theorem. If A ∈Mn(R) is symmetric and has largest eigenvalue λ ∈ R then for any v ∈ Rn,

〈Av, v〉 ≤ λ‖v‖2

with equality if and only if Av = λv.

Proof. Follows by definitions from the spectral theorem

Theorem. (The Spectral Theorem) : If A ∈Mn(R) is symmetric then there is an orthonormal
basis e1, . . . , en of Rn of eigenvectors of A.
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The Spectral Theorem

Theorem. (The Spectral Theorem) : Let L : V → V be a self-adjoint linear operator on a real
or complex inner product space. Then there exists an orthonormal bassi of V of eigenvectors of L.
Corollary : Let A ∈ Mn(R) be symmetric. Then there exists an orthogonal matrix O such that
OTAO is diagonal.
Corollary : Let A ∈Mn(C) be Hermitian. Then there exists a unitary matrix U such that U∗AU is
diagonal.

Proof. Usually, the spectral theorem is proven in four parts, outlined by this warm-up exercise.

Warm-up Problem 1 (S08-12, S10-2). Let A be an n× n real symmetric matrix.

(i) Prove that there exists x ∈ Sn−1 = {x ∈ Rn : ‖x‖ = 1} so that

〈Ax, x〉 = sup
{
〈Ay, y〉 : y ∈ Sn−1

}
.

(ii) Prove that if 〈x, y〉 = 0 then 〈Ax, y〉 = 0.

(iii) Use (ii) to prove that x is an eigenvector for A.

(iv) (The Spectral Theorem) Use induction to prove that Rn has an orthonormal basis of
eigenvectors for A.

(i) The function y 7→ 〈Ay, y〉 is continuous on Sn−1, which is compact. Therefore, the function
attains its maximum at some x ∈ Sn−1.

(ii) If this property holds for unit vectors y, then it easily generalizes to all vectors y. Therefore,
assume that y is a unit vector. Define a vector vt such that

vt = cos(t)x+ sin(t)y

Because 〈x, y〉 = 0, we know that vt is a unit vector. Define a function f such that

f(t) = 〈Avt, vt〉

Expanding this,

f(t) = 〈A(cos(t)x+ sin(t)y), cos(t)x+ sin(t)y〉
= cos2(t)〈Ax, x〉+ sin2(t)〈Ay, y〉+ 2 sin(t) cos(t)〈Ax, y〉

As shown by the expansion, f(t) is differentiable in t and has derivative,

f ′(t) = 2 cos(t) sin(t)〈Ax, x〉+ 2 sin(t) cos(t)〈Ay, y〉+ 2(cos2(t)− sin2(t))〈Ax, y〉

As found in part 1, f is maximal when vt = x. Therefore, f(t) has a maximum at x = 0 and so
f ′(0) = 0. This implies that

f ′(0) = 0

2 cos(0) sin(0)〈Ax, x〉+ 2 sin(0) cos(0)〈Ay, y〉+ (2 cos2(0)− 2 sin2(0))〈Ax, y〉 = 0

〈Ax, y〉 = 0
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(iii) For n = 1, the result is clear from the previous work.

Assume that the result holds for n − 1. By part (iii), we can find an unitary eigenvector x of
A. Complete x to an orthonormal basis x, e2, . . . , en. By part (ii), because 〈x, ei〉 = 0 for all
i, 〈Ax, ei〉 = 〈x,Aei〉 = 0 for all i. Therefore span{x}⊥ is A-invariant. Consider the operator
A|span{x}⊥ . By the inductive assumption, we can find an orthonormal basis of eigenvectors of
A|span{x}⊥ . This completes the proof.

Theorem. (The Min-Max Theorem) : Let L : V → V bee a self-adjoint linear operator on a
real or complex inner product space of dimension n. Let λ1, . . . , λn be the eigenvalues of L repeated
according to algebraic multiplicity. Then

λk = min
U⊂V subspace dimU=k

 sup
x∈U
‖x‖=1

〈Lx, x〉

 (2)

Theorem. (The Spectral Theorem for Skew-Adjoint): Let L : V → V be a skew adjoint linear
operator on a complex inner product space. Then there is an orthonormal basis of V of eigenvectors
of L.

Proof. Same as the spectral theorem but replace L with iL because iL is symmetric.

Theorem. (The Spectral Theorem for Normal Operators): Let L : V → V be a linear
operator on a complex inner product space. Then L is normal if and only if there is an orthonormal
basis of V of eigenvectors of L.

Proof. Decompose L =
1

2
(L+ L∗)︸ ︷︷ ︸

A

+i
1

2i
(L− L∗)︸ ︷︷ ︸
B

. Then A,B are self-adjoint and [A,B] = 0.

Then it can be shown that A and B are simultaneously diagonalizable.
Backwards direction follows easily.

Theorem. (Spectral Resolution): Let L : V → V be a normal linear operator on a complex inner
product space with distinct eigenvalues λ1, . . . , λk and corresponding eigenspaces Ej = ker(λjI −L).
Then

IV =

k∑
j=1

projEj

L =

k∑
j=1

λj projEj

(3)
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Real Canonical Form

Theorem. (Real Canonical Form) : Let L : V → V be a normal linear operator on a real inneere
product space V of dimension n. Then there is an orthonormal basis e1, . . . , ek, x1, y1, . . . , x`, y` where
k + 2` = n and

Lej = λjej

Lxj = αjxj + βjyj

Lyj = −βjxj + αjyj

With λj , αj , βj ∈ R. Then the matrix of L with respect to this basis is

L =



λ1 0 . . . 0 0 0 . . . 0 0

0 λ2 . . . 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . λk 0 0 . . . 0 0

0 0 . . . 0 α1 −β1 . . . 0 0

0 0 . . . 0 β1 α1 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 0 0 0 . . . α` −β`
0 0 . . . 0 0 0 . . . β` α`


Note : If considered in C, then L has eigenvalues λi ∈ R and αj + βji, αj − βji ∈ C.

Quadratic Forms

Bilinear Form
Let V be a real vector space. A bilinear form on V is a map B : V × V → R which is linear in both
variables. We say B is symmetric if for all x, y ∈ V , B(x, y) = B(y, x).

Sesquilinear Form
Let V be a complex vector space. A sesquilinear form on V is a map B : V × V → R which is linear
in the first variable and conjugate linear in the second. We say B is Hermitian if for all x, y ∈ V ,
B(x, y) = B(y, x).

Theorem. (Characterization of Symmetric/Hermitian Forms) : All these form things can
also be expressed in Matrix form just by Aij = B[ej , ei]. But also

(1) B is a symmetric bilinear form on Rn if and only if there is a symmetric matrix A ∈ Mn(R)

such that B[x, y] = 〈Ax, y〉 = yTAx.

(2) B is a Hermitian sesquilinear form on Cn if and only if there is a Hermitian matrix A ∈Mn(C)

such that B[x, y] = 〈Ax, y〉 = y∗Ax.
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Proof. Follows from Aij = B[ej , ei]. Cause obviously.

Positive/Negative (Semi)Definite
A self-adjoint matrix A ∈ Mn(F) with F = C or R is said to be positive/negative definite if 〈Ax, x〉
is strictly positive/negative whenever x 6= 0.
A self-adjoint matrix A ∈ Mn(F) with F = C or R is said to be positive/negative semidefinite if
〈Ax, x〉 is non-negative/non-positive for all x ∈ F.
The same terminology applies to the corresponding bilinear form.

Signature

Theorem. (Digaonalization of Symmetric/Hermitiaion Bilinear/Sesquilinear Form) :
Let B be a symmetric bilinear form on Rn. Then there exists an orthogonal matrix O ∈ Mn(R)

such that if x, y ∈ Rn and x = Ox′, y = Oy′ then

B[x, y] =

n∑
i=1

λix
′
iy
′
i

where λi ∈ R.
Similarly, if B is a Hermitian sesquilinear form on Rn. Then there exists a unitary matrix U ∈Mn(C)

such that if x, y ∈ Cn and x = Ux′, y = Uy′ then

B[x, y] =

n∑
i=1

λix
′
iy
′
i

where λi ∈ R.

Proof. Spectral Theorem

Signature
Taking λj as in the preceeding theorem, we define the signature of B to consist of n+ = number of
positive λj ’s, n− = number of negative λj ’s and n0 =number of zero λj ’s.

Theorem. (Decomposition by Signature) : Let B be a symmetric bilinear form on Rn with
signature (n+, n−, n0). Then there exists invertible P ∈ Mn(R) suhc that if x, y ∈ Rn with x = Px′

and y = Py′ then

B[x, y] =

n+∑
j=1

x′jy
′
j −

n++n−∑
j=n++1

x′jy
′
j

A similar result with obvious modifications occurs in the complex case.
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Proof. Spectral theorem and scaling

Theorem. (Sylvester’s Law of Inertia) : Let B be a symmetric bilinear form on Rn with
signature (n+, n−, n0). Let v1, . . . , vn be a basis of Rn such that B[vi, vj ] = 0 for all i 6= j. Then, up
to reordering, B[vj , vj ] is positive for j = 1, . . . , n+, negative for j = n+ + 1, . . . , n− + n+. and zero
otherwise.
An essentially identical statement holds in the complex case.

Quadratic Forms

Quadratic Form
A quadratic form on Rn is a map Q : Rn → R defined by

Q(x) = B[x, x]

Where B is a symmetric bilinear form on Rn. Notions of positive/negative (semi-)definiteness are
inherited from B.

Characterizations of Quadratic Forms
We say that a quadratic form Q on Rn is

• Elliptic if n+ = n or n− = n.

• Hyperbolic if n0 = 0 but n+ 6= n and n− 6= n.

• Parabolic if n0 6= 0.

Descartes’ Rule of Signs

Theorem. (Descartes’ Rule of Signs): Let p(t) = tn + an−1t
n−1 + · · ·+ a0 = (t− λ1) . . . (t− λn)

where aj , λj ∈ R. Then

(I) Zero is a root of p if and only if a0 = 0.

(II) All roots of p are negative if and only if aj > 0.

(III) All roots of p are positive if and only if an−1 < 0 and the remaining aj ’s alternate signs. As in
an−2 > 0, an−3 < 1, . . . .

(IV)
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Matrix Norms

Norm
Let V be a vector space over F = R,C. A norm is a map ‖ ∗ ‖ : V → [0,∞) such that

(i) ‖v‖ = 0 if and only if v = 0

(ii) If λ ∈ F and v ∈ V then
‖λv‖ = |λ|‖v‖

(iii) If v, w ∈ V then
‖v + w‖ ≤ ‖v‖+ ‖w‖

Note : If 〈∗, ∗〉 is an inner product on V then ‖v‖ =
√
〈v, v〉 is a norm.

Operator Norm
Let V,W be normed vector spaces and L : V →W be a linear map. The operator norm of L is

‖L‖ = sup{‖Lx‖W : x ∈ V and ‖x‖V = 1}

If it exists.

Theorem. Let V,W be finite dimensional normed vector spaces and L : V → W be a linear map.
Then

(1) ‖L‖ <∞

(2) For all x ∈ V ,
‖Lx‖W ≤ ‖L‖‖x‖V

(3) The operator norm is a norm on hom(V,W ).

Theorem. (hom(V,W ) is Complete) : If V,W are finite dimensional normed vector spaces and
(Ln)n≥1 ⊂ hom(V,W ) is Cauchy w.r.t the operator norm, then there exists a unique L ∈ hom(V,W )

such that Ln → L in operator norm.

Theorem. Let A ∈ Mn(C) satisfy ‖A‖ < 1. Then I − A is invertible and
∑∞
j=0A

j converges to
(I −A)−1.

Singular Value Decomposition

Theorem. (Singular Value Decomposition) : Let L : V → W be a linear operator between
finite dimensional inner product spaces. Then there exists an orthonormal basis e1, . . . , em for V such
that for some σ1, . . . , σm ≥ 0 we have

〈Lei, Lej〉 = σ2
j δij
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Moreover, there exists an orthonormal basis f1, . . . , fn of W such that the matrix of L with respect
to these bases is

σ1
. . .

σm
0 . . . 0
...

. . .
...

0 . . . 0


or

σ1 0 . . . 0
. . . 0 . . . 0

σm 0 . . . 0



If n ≥ m or n ≤ m respectively where σj = 0 for j > min{n,m}.

Singular Values
Taking σj as in the preceding section ordered such that σj = 0 if j > min{n,m} we say
σ1, . . . , σmin{n,m} are the singular values of L. They are the square roots of the eigenvalues of L∗L.

Theorem. Let L : V →W be a linear map between finite dimensional inner product spaces. Then

‖L‖ = max{σ : σ is a singular value of L}

p-Schatten norms
For 1 ≤ p ≤ ∞, the p-Schatten norm of a linear operator L : V →W with singular values σ1, . . . , σk
is

‖L‖p = ‖(σ1, . . . , σk)‖`p

=


(∑k

j=1 σ
p
j

)1/p
, if 1 ≤ p <∞

maxj σj , if p =∞

Frobenius Norm
If A ∈Mm×n(C) then the Frobenius norm, which is equivalent to the 2-Schatten norm, is

‖A‖22 = tr(A∗A) =

m∑
i=1

n∑
j=1

|aij |2

Theorem. IF L : V →W is a linear operator and 1 ≤ p ≤ q ≤ ∞, then

‖L‖q ≤ ‖L‖p
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Functions of Matrices

Matrix Exponential
Let A ∈Mn(C). The matrix exponential is the series

eA =

∞∑
j=0

1

j!
Aj

Theorem. Let 0 ∈ U ⊂ C be an open connected set and f : U → C be analytic. Suppose f has
Taylor series

f(z) =

∞∑
j=0

ajz
j

at 0, with radius of convergence R ∈ (0,∞]. Then, for any matrix A ∈ Mn(C) with operator norm
‖A‖ < R, the series

f(A) =

∞∑
j=0

ajA
j

converges in operator norm.

Theorem. If A,B ∈Mn(C) with [A,B] = 0 then

eAeB = eA+B

Theorem. If A = PΛP−1 for P ∈Mn(C) invertible and

Λ = diag(λ1, . . . , λn)

Then
eA = Pdiag(eλ1 , . . . , eλn)P−1

Function of Matrix
Lt A = PAP−1 for invertible P ∈Mn(C) and Λ = diag(λ1, . . . , λn). Let f : {λ1, . . . , λn} → C. Then
we may define

f(A) = Pdiag(f(λ1), . . . , f(λn))P−1

Theorem. Let A ∈Mn(C) and define

f : R→Mn(C)

by
f(t) = etA

Then f ′(t) = AetA exists for all t and x(t) = f(t)x0 is the solution to the ODE

x′ = Ax

x(0) = x0

Where x0 ∈ Cn.
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