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Chapter 1

Math 31A

Week 1 - Limits and Continuity

Limits

Limit

The limit of a function is what the function apprroaches as x approaches some value c.

More technically, we say that the limit of f (x) as x approaches c is equal to L if | f (x)−L| can be

made arbitrarily small by taking x sufficiently close (but not equal) to c. This is denoted by

lim
x→c

f (x) = L

Without any other machinery, there are two main ways to investigate limits.

Graphically : Plot the function f (x). As x gets close to c, what does f (x) get close to?

Numerically : Make a table of f (x) for values x < c where |x −c| is small and of values x > c where

|x − c| is small. If both of these tables approach the same value, then the limit exists.

As defined, the limit is a two-sided idea. It matters not only what f (x) does for x > c but also what f (x)

does for x < c. We can investigate these ideas separately using the left and right handed limits, which is

the same as the limit but restricted to x < c and x > c respectively. The limit exists if and only if the left

and right handed limits exist and are equal.
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WEEK 1 - LIMITS AND CONTINUITY CHAPTER 1. MATH 31A

Basic Limit Laws

Theorem. If limx→c f (x) and limx→c g (x) exist, then

(i) Sum Law : limx→c [ f (x)+ g (x)] exists and

lim
x→c

[ f (x)+ g (x)] = lim
x→c

f (x)+ lim
x→c

g (x)

(ii) Constant Multiple Law : For any k ∈R, limx→c k f (x) exists and

lim
x→c

k f (x) = k
(

lim
x→c

f (x)
)

(iii) Product Law : limx→c f (x)g (x) exists and

lim
x→c

f (x)g (x) =
(

lim
x→c

f (x)
)(

lim
x→c

g (x)
)

(iv) Quotient Law : If limx→c g (x) ̸= 0 then limx→c
f (x)
g (x) exists and

lim
x→c

f (x)

g (x)
= limx→c f (x)

limx→c g (x)

(v) Powers and Roots : If p, q are integers with q ̸= 0 then limx→c [ f (x)]p/q exists and

lim
x→c

[ f (x)]p/q =
(

lim
x→c

f (x)
)p/q

Provided that limx→c f (x) ≥ 0 if q is even and that limx→c f (x) ̸= 0 if p/q < 0.

Note that this is easily applied to [ f (x)]n and [ f (x)]1/n for integer n.

Continuity

Continuous at a Point

Assume that f (x) is defined on an open interval containing x = c. Then f is continuous at x = c if

lim
x→c

f (x) = f (c)

If the limit does not exist or is not equal to f (c), then we say that f (x) is discontinuous at x = c.

So to show that a function f (x) is continuous at x = c, we must show that

(1) f (c) is defined

(2) limx→c f (x) is defined

(3) limx→c f (x) = f (c)
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WEEK 1 - LIMITS AND CONTINUITY CHAPTER 1. MATH 31A

If a function is continuous at all points in its domain, we simply say that it is continuous.

Theorem. Laws of Continuity : Sums, products, multiples, inverses and composites of continu-

ous functions are continuous. The same holds for a quotient f (x)/g (x) at points where g (x) ̸= 0.

Intuitively, we can think of continuous functions as having a graph that doesn’t have any disconnections.

That is, we can think of continuous functions as having graphs that could be drawn without your pencil

leaving the paper.

Indeterminate Forms

Indeterminate Form

If the formula for f (c) yields an undefined expression of the form

0

0
,

∞
∞ , ∞∗0, or ∞−∞

Then we say that f (x) has an indeterminate form at x = c or that f (x) is indeterminate at x = c.

Note that if f (x) is indeterminate at x = c then this does not imply that limx→c f (x) does not exist. Rather,

it only implies that this limit is more difficult to find than by simply checking f (c).

If f (x) is indeterminate at x = c, then we currently have two main methods to determine limx→c f (x)

(1) (Best option for now.) Algebraically transform f (x) into a new expression that is defined and con-

tinuous at x = c and then evaluate by plugging c in. This is usually accomplished by factoring the

top and bottom and then cancelling. More complicated, but equally useful, is multiplying the top

and bottom by a conjugate of either the top or bottom.

(2) (Worst option for now.) Examine the function graphically or numerically.

In the future, when we have derivatives and other machinery, we can evaluate these in more elegant

ways.

Practice Problems
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WEEK 1 - LIMITS AND CONTINUITY CHAPTER 1. MATH 31A

Exercise 1. Use the basic limit laws to complete the following.

(a) Find

lim
t→−1

t 2 +1

(t 3 +2)(t 4 +1)

(b) Can you apply the quotient rule to
sin(x)

x
Why or why not?

Exercise 2. Give an example where limx→∞( f (x) + g (x)) exists but neither limx→0 f (x) nor

limx→0 g (x) exist.

Exercise 3. Draw the graph of a function f : [0,5] → R such that f is right but not left continuous

at x = 1, left but not right continuous at x = 2 and neither right nor left continuous at x = 3.

Exercise 4. Challenge : Give an example of functions f , g such that f (g (x)) is continuous but g

has at least one discontinuity.

Exercise 5. Challenge : Show that the following function is only continuous at x = 0,

f (x) =
 x, x is rational

−x, x is irrational
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WEEK 2 - SQUEEZE THEOREM AND LIMITS AT INFINITY CHAPTER 1. MATH 31A

Week 2 - Squeeze Theorem and Limits at Infinity

Squeeze Theorem

Theorem. (Squeeze Theorem) : If there exists an open interval I containing c such that for all

x ∈ I \ {c} (I excluding c)

ℓ(x) ≤ f (x) ≤ u(x) and lim
x→c

ℓ(x) = lim
x→c

u(x) = L

Then limx→c f (x) exists and limx→c f (x) = L.

Intuition : Near, but not necessarily at, c, f is bounded above by u(x) and below by ℓ(x). So the

limit of f (x) must be between the limits of ℓ(x) and u(x).

Significant Trigonomoetric Limits

Using the squeeze test and some cleverness, we can show that

Theorem.

lim
x→0

sin(x)

x
= 1

Theorem.

lim
x→0

1−cos(x)

x
= 0

Limits at Infinity

Intuitively, limits at infinity behave exactly the same as limits at any other point. We say that limx→∞ f (x) =
L if we can make | f (x)−L| arbitrarily small if we choose x sufficiently large.

For exponents, we know that following rules,

Theorem. For all n > 0,

lim
x→∞xn =∞ and lim

x→∞x−n = 0

If n is a positive whole number,

lim
x→−∞xn =

∞, if n is even

−∞, if n is odd
and lim

x→−∞x−n = 0
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WEEK 2 - SQUEEZE THEOREM AND LIMITS AT INFINITY CHAPTER 1. MATH 31A

Theorem. (Limits of a Rational Function) : The asymptotic behavior of a rational function de-

pends only on the leading terms of its numerator and denominator. If an ,bm ̸= 0 then

lim
x→±∞

an xn +an−1xn−1 +·· ·+a0

bm xm +bm−1xm−1 +·· ·+b0
= an

bm
lim

x→±∞xn−m

9



WEEK 2 - SQUEEZE THEOREM AND LIMITS AT INFINITY CHAPTER 1. MATH 31A

Practice Problems

Exercise 6. Draw the graph of a function f : [0,5] → R such that f is right but not left continuous

at x = 1, left but not right continuous at x = 2 and neither right nor left continuous at x = 3.

Exercise 7. Evaluate the following limits using the identity

a3 −b3 = (a −b)(a2 +ab +b2)

(a)

lim
x→1

x2 −5x +4

x3 −1

(b)

lim
x→1

x4 −1

x3 −1

Exercise 8. Using the squeeze theorem, evaluate the following limit

lim
x→0

tan

(
x cos

(
sin

(
1

x

)))

Exercise 9. Do the following inequalities provide enough information to determine limx→1 f (x)

by the squeeze theorem?

(a) 4x −5 ≤ f (x) ≤ x2

(b) 2x −1 ≤ f (x) ≤ x2

(c) 4x −x2 ≤ f (x) ≤ x2 +2

Exercise 10. (Challenging) : Let an ,bm ̸= 0. What are all possible values of the following limit and

what conditions cause each limit?

lim
x→∞

an xn +·· ·+a0

bm xm +·· ·+b0

Exercise 11. (Challenging) : Intuitively, explain why the limit at infinity of a rational function is

what it is.
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WEEK 3 - INTERMEDIATE VALUE THEOREM AND DERIVATIVES CHAPTER 1. MATH 31A

Week 3 - Intermediate Value Theorem and Derivatives

Intermediate Value Theorem

Theorem. (Intermediate Value Theorem) : If f is continuous on a closed interval [a,b], then

for every M , strictly between f (a) and f (b), there exists at least one value c ∈ (a,b) such that

f (c) = M .

This can be used to show that functions attain certain values somewhere. Perhaps most usefully, it can

be shown that functions have zeros within different locations. Specifically,

Theorem. (Existence of Zeros) : If f is continuous on [a,b] and one of f (a) or f (b) is negative

and the other is positive (equivalently if f (a) f (b) is negative) then f has a zero in [a,b].

This is useful when faced with problems like "Show that f (x) = g (x) for some x." because you can con-

sider the function f (x)− g (x) and then show that it has a zero somewhere.

The Derivative

The Derivative

The derivative of f at a point a, if it exists, is the limit

f ′(a) = lim
h→0

f (x +h)− f (x)

h
= lim

x→a

f (x)− f (a)

x −a

When the derivative exists, we say that f is differentiable at a.

By definition, this implies that if f is differentiable at a, then f ′(a) is approximately ( f (x +h)− f (x))/h

for small h. That is

Theorem. Let f be differentiable at a. For small h,

f ′(a) ≈ f (x +h)− f (x)

h

Using the derivative, we can find a tangent line to the graph of a function at any point. This is given by

Tangent Line

Let f be differentiable at a. Then the line tangent to the graph of y = f (x) at P = (a, f (a)) is the

line through P with slope f ′(a). The equation of this line is

y = f ′(a)(x −a)+ f (a)
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WEEK 3 - INTERMEDIATE VALUE THEOREM AND DERIVATIVES CHAPTER 1. MATH 31A

Though the prime notation used above is popular, there is another notation that is just as popular, if not

more so. This is called Leibniz notation

Leibniz Notation

Leibniz notation replaces the prime symbol with d
d x instead. It is popular because it emphasizes

how the derivative is found through a ratio of the change in f to the change in x. Additionally,

it makes it clear which variable you are differentiating with respect to, in the case that there are

multiple. It is specifically written as

f ′(x) = d f

d x

The Derivative as a Function

In the previous section, we defined what it means for f to be differentiable at a point a. We can now

expand that into something much broader.

Differentiable

If the derivative of f exists for all x ∈ (a,b), then we say that f is differentiable on (a,b). Similarly,

if the derivative of f exists for all real numbers x (or if the derivative of f exists on the whole

domain of f ), then we say that f is differentiable.

Derivative Rules

There are many rules for derivatives that can make calculating them very quick. The most important

ones for now are

Theorem. (Constant Rule) : The derivative of a constant is 0. Specifically,

d

d x
c = 0

Theorem. (Power Rule) : For any exponent n,

d

d x
xn = nxn−1

Theorem. (Linearity Rules) : The derivative of the sum of two functions is the sum of the deriva-

tives. Specifically,
d

d x
( f + g ) = d f

d x
+ d g

d x

12



WEEK 3 - INTERMEDIATE VALUE THEOREM AND DERIVATIVES CHAPTER 1. MATH 31A

The derivative of a constant times a function is the constant times the derivative of the function.

Specifically, for a function f and a constant c,

d

d x
(c f ) = c

d f

d x
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WEEK 3 - INTERMEDIATE VALUE THEOREM AND DERIVATIVES CHAPTER 1. MATH 31A

Differentiability, Continuity, and Local Linearity

From the definition of the derivative, we find two nice properties

Theorem. (Differentiability Implies Continuity) : If f is differentiable at x = c then f is contin-

uous at x = c.

Theorem. (Local Linearity) : If f is differentiable at x = c then in small neighborhoods of c, f is

approximately equivalent to the tangent line at x = c.

Practice Problems

Exercise 12. (Optional) Using the intermediate value theorem, show that
p

2 exists.

Exercise 13. Using the intermediate value theorem, show that

cos(x) = tan(x)

has a solution.

Exercise 14. Using the limit definition of the derivative, calculate the derivative of

f (x) = x3 +2x

Exercise 15. Given

f (x) = x −2x2

Use the limit definition to compute f ′(3) and find an equation of the tangent line.

Exercise 16. Sketch a graph of

f (x) = x2/5

and identify the points where f ′(c) does not exist.

Exercise 17. Calculate the derivative of

g (x) = x2 +4x1/2

x2

14



WEEK 3 - INTERMEDIATE VALUE THEOREM AND DERIVATIVES CHAPTER 1. MATH 31A

Math31A Week 4 - Midterm Review

Practice Problems

Exercise 18. Calculate the following limits,

(1)

lim
x→1

(
1

1−x
− 2

1−x2

)
(2)

lim
x→1

(
1p

x −2
− 4

x −4

)
(3)

lim
θ→π/2

(secθ− tanθ)

Exercise 19. Identify points of discontinuity of the following functions, state why they are discon-

tinuities, and give what type of discontinuity.

(1)

f (x) =
x +1, x < 1

1/x, x ≥ 1

(2)

f (x) =
 x2−3x+2

|x−2| , x ̸= 2

0, x = 2

Exercise 20. Use the IVT to show that the following have solutions

(1)

2x +3x = 4x

(2) p
x +p

x +2 = 3

(3)

cos(x) = tan(2x) on (0,1)

Exercise 21. Use the limit definition of the derivative to calculate f ′(x) when

(1)

f (x) = x3 +2x

15



WEEK 3 - INTERMEDIATE VALUE THEOREM AND DERIVATIVES CHAPTER 1. MATH 31A

(2)

f (x) =p
x +4 on x >−4

(3)

f (x) = 1

1−x
on x ̸= 1
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WEEK 5 - POST MIDTERM REVIEW AND DERIVATIVES CHAPTER 1. MATH 31A

Week 5 - Post Midterm Review and Derivatives

Practice Problems

Exercise 22. Use the product rule to calculate the derivative of

(1)

f (x) = (3x −5)(2x2 −3)

(2)

f (x) = (t −8t−1)(t + t 2)

Find the tangent line at t = 1.

Exercise 23. Use the quotient rule to calculate the derivative of

(1)

f (x) = x +4

x2 +x +1

(2)

f (x) = z2

p
z + z

Exercise 24. Use the chain rule to calculate the derivative of

(1)

f (x) = cos(x3)

(2)

f (x) =
p

9+x + sin x

Exercise 25. Calculate the following limits,

(1)

lim
θ→0

sinθ− sinθcosθ

θ

(2)

lim
x→4

3x −12p
x −2

Exercise 26. Let f (x) = 7xex2
.

(1) Calculate the derivative f ′(x).
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WEEK 5 - POST MIDTERM REVIEW AND DERIVATIVES CHAPTER 1. MATH 31A

(2) Give the equation for the tangent line of f at x = 0.

Exercise 27. Calculate the following limit

lim
x→∞

12x4 +3x2 +4

22x4 +15

Exercise 28. Let f be defined by

f (x) =
 sin x

x , x ̸= 0

1, x = 0

(1) Show that f is continuous at x = 0.

(2) Show that f is differentiable at 0 and f ′(0) = 1 by using the limit definition of the derivative.

Hint :

lim
θ→0

sinθ−θ
θ2 = 0

18
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Week 6 - Implicit Differentiation and Extrema

Implicit Differentiation

Thus far, we have developed formulas for when we have y explicitly written as a function of x. However,

what if y is related to x by an equation like the following?

y3 + 1

x y
= 16−9x2 y

In this case, we can differentiate both sides of the equation and then gather all terms of d y
d x onto one side

and solve for them.

In the case of the equation above,

d

d x

(
y3 + 1

x y

)
= d

d x

(
16−9x2 y

)
3y2 d y

d x
+ −1

x y2

d y

d x
+ −1

x2 y
=−18x y −9x3 d y

d x

3y2 d y

d x
+ −1

x y2

d y

d x
+9x3 d y

d x
= 1

x2 y
−18x y

d y

d x
=

1
x2 y −18x y

3y2 + −1
x y2 +9x3

d y

d x
= y −18x3 y3

3y4x2 −x +9x5 y2

For implicit differentiation, it is important to go slowly and be careful about when you use various deriva-

tive rules. The chain rule will be especially helpful in these types of problems.

Extreme Values

Extreme Values on an Interval

Let f be a function on an interval I and let there exist a ∈ I . We say that f (a) is

• Absolute minimum of f if f (a) ≤ f (x) for all x ∈ I

• Absolute maximum of f if f (a) ≥ f (x) for all x ∈ I

Theorem. (Existence of Extrema on a Closed Interval) : A continuous function f on a closed

and bounded interval takes on both a minimum and a maximum value on I .
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Local Extrema and Critical Points

Local Extrema

We say that f (c) is a

• Local minimum occurring at x = c if f (c) is the minimum value of f on some open interval

containing c

• Local maximum occurring at x = c if f (c) is the maximum value of f on some open interval

containing c

It seems intuitively easy to find the absolute minimum and maximum of a function, but how do we find

the local extrema? We can actually use the derivative to easily find the points that can be local extrema

through the use of critical points

Critical Points

A number c in the domain of f is called a critical point if either f ′(c) = 0 or f ′(c) does not exist.

Which benefit us through the following theorem

Theorem. (Fermat’s Theorem on Local Extrema) : If f (c) is a local minimum or maximum, then

c is a critical point of f .

Optimizing on a Closed Interval

Theorem. (Extreme Values on a Closed Interval) : Let f be continuous on [a,b] and let f (c) be

the minimum or maximum value on [a,b]. Then c is either a critical point or one of the endpoints,

a or b.

First Derivative Test

Given a critical point, we can determine the nature of f at that point through the first derivative test.

Theorem. (First Derivative Test) : Let c be a critical point of f . Then

• f ′(x) changes from + to − implies that f (c) is a local maximum

• f ′(x) changes from − to + implies that f (c) is a local minimum
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The Mean Value Theorem

The mean value theorem is analogous to the intermediate value theorem. Based on the values of f on

the endpoints of an interval, we can determine the existence of points in the interval with a specific

derivative.

Before the general mean value theorem, we have a specific case

Theorem. (Rolle’s Theorem) : Assume that f is continuous on [a,b] and differentiable on (a,b).

If f (a) = f (b) then there exists number c between a and b such that f ′(c) = 0.

This generalizes to

Theorem. (Mean Value Theorem) : Assume that f is continuous on [a,b] and differentiable on

(a,b). Then there exists some c in (a,b) such that

f ′(c) = f (b)− f (a)

b −a

Practice Problems

Exercise 29. Find d y/d x in terms of x and y given the following equation

(1)
y

x
+ x

y
= 2y

(2)

tan(x2 y) = (x + y)3

Exercise 30. Find the extreme values of f (x) on the given interval.

(1)

f (z) = z5 −80z, [−3,3]

(2)

f (y) =
√

x +x2 −2
p

x, [0,4]

Exercise 31. Find all critical points the following functions and use the first derivative test to

determine whether they are local maxima or local minima

(1)

y = 1

3
x3 + 3

2
x2 +2x +4
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(2)

y = 2x +1

x2 +1

22



WEEK 7 - MVT, SECOND DERIVATIVES, AND L’HOPITAL’S RULE CHAPTER 1. MATH 31A

Week 7 - MVT, Second Derivatives, and L’Hopital’s Rule

The Mean Value Theorem

The mean value theorem is analogous to the intermediate value theorem. Based on the values of f on

the endpoints of an interval, we can determine the existence of points in the interval with a specific

derivative.

Before the general mean value theorem, we have a specific case

Theorem. (Rolle’s Theorem) : Assume that f is continuous on [a,b] and differentiable on (a,b).

If f (a) = f (b) then there exists number c between a and b such that f ′(c) = 0.

This generalizes to

Theorem. (Mean Value Theorem) : Assume that f is continuous on [a,b] and differentiable on

(a,b). Then there exists some c in (a,b) such that

f ′(c) = f (b)− f (a)

b −a

Monotonicity

The derivative helps us to classify whether a function is increasing or decreasing on any given interval.

In particular,

Theorem.

f ′(x) > 0 for x ∈ (a,b) implies that f is increasing on (a,b)

f ′(x) < 0 for x ∈ (a,b) implies that f is decreasing on (a,b)

Between adjacent critical points, the derivative of a function cannot be 0. So we know that the function

must be increasing or decreasing on these intervals.

Second Derivative

We have seen that the derivative can be used to see how the function behaves on given intervals, whether

it is increasing or decreasing, maximum or minimum, etc. The second derivative can be used in much the

same ways, except now it tells use how the first derivative behaves, which then tells us how the function

behaves. So the process now has two steps.

In helping with this discussion, we define concave up and concave down as follows
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Concavity

Let f be a differentiable function on an open interval (a,b). Then

• f is concave up on (a,b) if f ′ is increasing on (a,b)

• f is concave down on (a,b) if f ′ is decreasing on (a,b)

In the same manner that the first derivative was used to determine if f was increasing or decreasing, we

can use the second derivative to determine if f ′ is increasing or decreasing. Therefore we arrive at the

following test for concavity

Theorem. (Test for Concavity) : Assume that f ′′(x) exists for all x ∈ (a,b). Then

• If f ′′(x) > 0 for all x ∈ (a,b) then f is concave up on (a,b)

• If f ′′(x) < 0 for all x ∈ (a,b) then f is concave down on (a,b)

Just like how we cared about the points where the derivative was zero, we also care about the points

where the second derivative is zero.

Point of Inflection

A point c is a point of inflection of f if the concavity changes from up to down at x = c.

We can test for points of inflection in the exact same way that we tested for critical points, by looking at

the second derivative and seeing where it is 0 or undefined.

Theorem. (Test for Inflection Points) : If f ′′(c) = 0 or f ′′(c) does not exists and f ′′(x) changes sign

at x = c, then f has a point of inflection at x = c.

Second Derivative Test

When we did the first derivative test to determine if a point was a local maximum, minimum, or neither,

we checked whether the derivative went from positive to negative or vice versa. Now, we can look at this

in terms of the second derivative. If the derivative goes from positive to negative at a point, then that

means that the second derivative (if it exists) must be negative at that point because the derivative is

decreasing. If the derivative goes from negative to positive at a point, then that means that the second

derivative (if it exists) must be positive at that point because the derivative is increasing. This leads us to

the following test to determine the nature of critical points.

Theorem. (Second Derivative Test for Critical Points) : Let c be a critical point of f . If f ′′(c)

exists, then
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• f ′′(c) > 0 implies that f (c) is a local maximum

• f ′′(c) < 0 implies that f (c) is a local minimum

• f ′′(c) = 0 implies nothing. f (c) may be a local max, local min, or neither

L’Hôpital’s Rule

L’Hôpital’s Rules is a valuable tool for computing certain limits, especially the limits of quotients when

the quotient rule cannot be applied. It is stated as follows

Theorem. (L’Hôpital’s Rule) : Suppose that f and g are differentiable on an open interval con-

taining a and that f (a) = g (a) = 0. Also assume that g ′(x) ̸= 0 except possibly at a. Then

lim
x→a

f (x)

g (x)
= lim

x→a

f ′(x)

g ′(x)

if the limit on the right exists or is infinite. This conclusion also holds if f and g are differentiable

for x near (but not equal to) a and

lim
x→a

f (x) =±∞ lim
x→a

g (x) =±∞

Furthermore, this rule is valid for one-sided limits.

Note that if you do L’Hôpital’s rule once and still find an indeterminate form, then you may do it again

until you don’t.

All review materials and problems on this document are taken from Jon Rogawski’s Single Variable

Calculus, 4th edition. Special thanks to him for these materials.

Practice Problems

Exercise 32. Suppose the f (0) = 2 and f ′(x) ≤ 3 for x > 0. Apply the MVT to the interval [0,4] to

show that f (4) ≤ 14.

In addition, show that f (x) ≤ 2+3x for all x > 0.

Exercise 33. Determine the intervals on which the function is concave up or concave down and

find the points of inflection.

(i) y = (x −2)(1−x3)

(ii) y = θ−2sinθ on [0,2π]

(iii) y = x4−1
x
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Exercise 34. Find all critical points and apply the second derivative test.

(i) f (x) = x5 −x3

(ii) f (x) = 3x4 −8x3 +6x2

(iii) f (x) = 1
x2−x+2

(iv) y = sin2 x +cos x

Exercise 35. Evaluate the following limits, using L’Hôpital’s Rule where it applies

(i) limx→4
x3−64
x2+16

(ii) limx→0
sin4x

x2+3x+1

(iii) limx→0
sin2x
sin7x

(iv) limx→0(cos x)3/x2

Hint : ax = e log(a)x and limx→a e f (x) = e limx→a f (x) because ex is continuous.

Exercise 36. (Challenge) Show that if f (0) = g (0) and f ′(x) ≤ g ′(x) for x ≥ 0, then f (x) ≤ g (x) for

all x ≥ 0. Hint : consider the function h(x) = g (x)− f (x) and show that it is non-decreasing.

The following problem will most likely not be included on homeworks or exams, but it is cool, so I

thought I would include it.

Exercise 37. (Challenge) Assume that f ′′ exists and f ′′(x) = 0 for all x. Show that f (x) = mx +b

where m = f ′(0) and b = f (0).
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Week 8 - Second Midterm Review and Newton’s Method

Newton’s Method

Newton’s Method is a way of using the derivative of a function f (x) to numerically find (or approximate)

the roots f (x) = 0. It does this by starting with a guess point x0, assuming that f (x) ≈ f (x0)+ f ′(x0)(x−x0)

and then using this to determine a next best guess x1. Iterating this process, we get better and better

guesses x0, x1, x2, . . . . More definitively, the process is defined as

Theorem. Newton’s Method : To approximate a root of f (x) = 0,

(1) Choose an initial guess x0 (close to the desired root if possible)

(2) Generate successive approximations x1, x2, . . . where

xn+1 = xn − f (xn)

f ′(xn)

As a good rule of thumb, if xn and xn+1 agree to m decimal places, then you can usually safely

assume that xn agrees with a root to m decimal places.

Review Problems

Exercise 38. (Mean Value Theorem): Show that there exists some c in the given interval such that

f ′(c) satisfies the relationship described.

(i) f (x) =p
x [9,25] f ′(c) = 1

8

(ii) f (x) = x − sinπx [−1,1] f ′(c) = 1

(iii) f (x) = (x −1)(x −3) [1,3] f ′(c) = 0

For more practice, you can find a specific c satisfying the relationship.

Exercise 39. (Implicit Differentiation) : Give the equation for the tangent line of the given curve

at the given point.

(i) x y +x2 y2 = 6 at the point (2,1)

(ii) x2 + sin y = x y2 +1 at the point (1,0)

(iii) 2x1/2 +4y−1/2 = x y at the point (1,4)

(iv) sin(2x − y) = x2

y at the point (0,π)
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Exercise 40. (Extrema) : Find all local extrema of the following functions

(i) f (x) = 1
sin x+4

(ii) f (x) = 9x7/3 −21x1/2

(iii) f (x) = 3x4 −6x3 +6x2

(iv) f (x) = sin(x)cos(x) (potential challenge)

Exercise 41. (Concavity) : Determine the intervals on which the function is concave up or down

and find the points of inflection.

(i) y = 10x3 −x5

(ii) y = (x −2)(1−x3)

(iii) y = x7/2 −35x2

(iv) f (x) = x3

1+x

(v) f (x) = tan(x) (potential challenge)
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Week 9 - Integrals

Definite Integral

Given a function f on an interval [a,b], a surprisingly insightful question to ask is "What is the area

between the graph of f and the x-axis?" We can determine this area through the definite integral. But

that question alone leaves some aspects of the integral ambiguous. Such as "What about when f (x) is

negative?" and "How do you calculate that area when f (x) isn’t nice?" With these questions in mind, we

can go and work up to define the definite integral.

Let f : [a,b] →C be a continuous function. In order to find the area under the curve of f , we approximate

the area by a series of rectangles and then let these rectangles become really small. In determining these

rectangles, we need a few concepts

Partition P of Size N

A choice of points that divides [a,b] into N subintervals (not necessarily of equal width). This is

normally denoted as

P : a = x0 < x1 < ·· · < xN = b

Sample Points

Given a partition P , we define the set of sample points C = {c1, . . . ,cN } such that ci is an element

of the interval [xi−1, xi ] for all i = 1, . . . , N . It doesn’t matter which points are chosen, as long as

they are within the specific interval.

Length of Subinterval

Given a partition P of [a,b], the length of a subinterval [xi−1, xi ] is

∆xi = xi −xi−1

Norm of Partition

Given a partition P of [a,b], the norm of P , denoted ∥P∥, is the maximum length of the subinter-

vals. That is,

∥P∥ = max
i
∆xi

We will briefly connect these definitions back to the rectangls. A partition P gives breaks the interval [a,b]

down into pieces that will become the bases of our rectangles. The sample points C , give test points for

the value of f on each of these intervals. We will take the height of each rectangle to be f (ci ). Note here

that f (ci ) could be negative, at which point our rectangle has negative area. The lengths of the intervals

gives us the length of the base of our rectangles. Finally, the norm of a partition gives one number to how

"big" our partition is. By forcing the norm to become really small, we force our partition to become really

fine and our rectangles to become really small.
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With these, we define the Riemann sum of f over P as

Riemann Sum

The Riemann Sum of f over the partition P with sample points C is given by

R( f ,P,C ) =
N∑

i=1
f (ci )∆xi = f (c1)∆x1 +·· ·+ f (cN )∆xN

Finally, to define the Riemann integral, we let the rectangles get really small. Equivalently, we let the

norm of the Partition go to 0. Defining this explicitly,

Definite Integral

The definite integral of f over [a,b] is the limit of Riemann sums as ∥P∥→ 0. It is defined as∫ b

a
f (x)d x = lim

∥P∥→0
partitions P with sample points C

R( f ,P,C ) = lim
∥P∥→0

N∑
i=1

f (ci )∆xi

When this limit exists and is finite, we say that f is integrable over [a,b].

This leads us to our first theorem

Theorem. (Almost Continuous Functions are Riemann Integrable) :

If f is continuous on [a,b], or if f is continuous except at finitely many jump discontinuities, then

f is integrable over [a,b].

Properties of the Definite Integral

Given the definition earlier, we can show many properties of the definite integral. These will not be

shown here, as the proofs are long and not particularly insightful. However, you should note that all of

the following theorems make intuitive sense when the integral is thought of as the area under the curve.

Theorem. (Linearity of the Integral) : If f and g are integrable over [a,b] and c is a real constant,

then f + g and c f are integrable and∫ b

a

(
f (x)+ g (x)

)
d x =

∫ b

a
f (x)d x +

∫ b

a
g (x)d x∫ b

a
c ∗ f (x)d x = c

∫ b

a
f (x)d x
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Reversing the Limits of Integration

Let f be a function. Then for a < b, we define∫ b

a
f (x)d x =−

∫ a

b
f (x)d x

Theorem. (Additivity for Adjacent Integrals) : Let a ≤ b ≤ c and let f be integrable. Then∫ c

a
f (x)d x =

∫ b

a
f (x)d x +

∫ c

b
f (x)d x

Theorem. (Comparison Theorem) : If f , g are integrable over [a,b] and f (x) ≤ g (x) for all x in

[a,b] then ∫ b

a
f (x)d x ≤

∫ b

a
g (x)d x

Indefinite Integral

The indefinite integral is difficult to motivate without defining it first and finding out what properties it

has. Instead, we will arrive at it in a roundabout way by asking "What happens if we take a derivative but

backwards?"

Antiderivate

A function F is an antiderivative of f on an open interval (a,b) if F ′(x) = f (x) for all x in (a,b).

Now, unlike the derivative, the antiderivative is not necessarily unique. This comes from the fact that the

derivative of a constant is 0, and so adding a constant to a function doesn’t change its derivative. This

leads to the following theorem

Theorem. (The General Antiderivative) : Let y = F (x) be an antiderivative of y = f (x) on (a,b).

Then every antiderivative of f on (a,b) is of the form y = F (x)+ c for some constant c.

From this, we define the indefinite integral. The connection between this and the definite integral will

be seen soon, but for now you will have to trust that they connect.

Indefinite Integral

The notation ∫
f (x)d x = F (x)+ c means that F ′(x) = f (x)

We say that F (x)+ c is the general antiderivative or indefinite integral of y = f (x).
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Properties of the Indefinite Integral

The indefinite integral has many of the same properties as the definite integral. Namely,

Theorem. (Linearity of the Indefinite Integral) :∫ (
f (x)+ g (x)

)
d x =

∫
f (x)d x +

∫
g (x)d x∫

c ∗ f (x)d x = c
∫

f (x)d x

Important Indefinite Integrals

Using the power rule for derivatives and the standard trig function derivatives, we can derive a couple of

important indefinite integrals. In particular,

Theorem. (Power Rule for Indefinite Integral) :∫
xnd x = xn+1

n +1
+ c

Theorem. (Basic Trigonometric Integrals) :∫
sin xd x =−cos x + c

∫
cos xd x = sin x + c∫

sec2 xd x = tan x + c
∫

csc2 xd x =−cot x + c∫
sec x tan xd x = sec x + c

∫
csc x cot xd x =−csc x + c

The Fundamental Theorem of Calculus

Now that we’ve defined the indefinite integral, it’s time to show why it is such an important concept.

That importance, and the connection between the indefinite and definite integrals, comes from the fun-

damental theorem of calculus. There are two parts to the fundamental theorem of calculus, both of

which we give here

Theorem. (The First Fundamental Theorem of Calculus) : Let a < b and let f be continuous on

(a,b). If F is an antiderivative of f on [a,b] then∫ b

a
f (x)d x = F (b)−F (a) = F (x)

∣∣∣b

x=a
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Theorem. (The Second Fundamental Theorem of Calculus) : Let f be continuous on an open

interval I and let a be in I . Then the area function

A(x) =
∫ x

a
f (t )d t

is an antiderivative of f on I . So
d

d x

∫ x

a
f (t )d t = f (x)

The first fundamental theorem of calculus tells us that taking the indefinite integral of a function (finding

the antiderivative) gives us a way to compute any integral of the function quickly and easily. The second

fundamental theorem of calculus tells us that any continuous function has an antiderivative and that the

integral is, intuitively, the inverse of the derivative, and vice versa.

With these tools, we can calculate lots of integrals quickly and easily!

Practice Problems

Exercise 42. Calculate the integral of the following functions on the following intervals

(1)

f (x) =



10, x in [0,0.5)

25, x in [0.5,1.5)

15, x in [1.5,2)

20, x in [2,3]

on [0,3]

(2)

f (x) =


x, x in [0,1)

2−x, x in [1,2)

−3, x in [2,3]

on [0,3]

Exercise 43. Express the following in one integral

(1) ∫ 3

0
f (x)d x +

∫ 7

3
f (x)d x

(2) ∫ 9

2
f (x)d x −

∫ 9

4
f (x)d x

(3) ∫ 3

7
f (x)d x +

∫ 9

3
f (x)d x
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Exercise 44. Challenge : Let f be an odd function. Show that∫ a

−a
f (x)d x = 0

Exercise 45. Find the indefinite integral of f and check your answer by differentiating

(1)

f (x) = 18x2

(2)

f (x) = x−3/5

(3)

f (x) = 2cos x −9sin x

(4)

f (x) = 4x7 −3cos x
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Week 10 - FTC and Change of Variables

The Fundamental Theorem of Calculus

Now that we’ve defined the indefinite integral, it’s time to show why it is such an important concept.

That importance, and the connection between the indefinite and definite integrals, comes from the fun-

damental theorem of calculus. There are two parts to the fundamental theorem of calculus, both of

which we give here

Theorem. (The First Fundamental Theorem of Calculus) : Let a < b and let f be continuous on

(a,b). If F is an antiderivative of f on [a,b] then∫ b

a
f (x)d x = F (b)−F (a) = F (x)

∣∣∣b

x=a

Theorem. (The Second Fundamental Theorem of Calculus) : Let f be continuous on an open

interval I and let a be in I . Then the area function

A(x) =
∫ x

a
f (t )d t

is an antiderivative of f on I . So
d

d x

∫ x

a
f (t )d t = f (x)

The first fundamental theorem of calculus tells us that taking the indefinite integral of a function (finding

the antiderivative) gives us a way to compute any integral of the function quickly and easily. The second

fundamental theorem of calculus tells us that any continuous function has an antiderivative and that the

integral is, intuitively, the inverse of the derivative, and vice versa.

With these tools, we can calculate lots of integrals quickly and easily!

The Substitution Method

The substitution method is to integrals what the chain rule is to derivatives. It is a way of composing and

uncomposing functions to make integrals easier. Intuitively, it can be viewed as doing the chain rule in

reverse, which is reflected in how it looks.

Theorem. (The Substituion Method) : If F ′(x) = f (x) and u is a differentiable function whose

range includes the domain of f , then∫
f (u(x))u′(x)d x = F (u(x))+C

Unfortunately, as it stands, it is a difficult theorem to apply. It is very useful, but it is constraining in its
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requirements and form. Thankfully, we can generalize it to the change of variable formula as follows

Theorem. (Change of Variables Formula) :∫
f (u(x))︸ ︷︷ ︸

f (u)

u′(x)d x︸ ︷︷ ︸
du

=
∫

f (u)du

Finally, we can take this change of variables and apply it to the definite integral case, which is done as

follows

Theorem. (Change of Variables for Definite Integral) : If u′ is continuous on [a,b] and f is

continuous on the range of u, then∫ b

a
f (u(x))u′(x)d x =

∫ u(b)

u(a)
f (u)du

Practice Problems

Exercise 46. Evaluate the following integrals

(a) ∫ 2

0
(12x5 +3x2 −4x)d x

(b) ∫ 1

1/16
t 1/4d t

(c) ∫ 5

0
|x2 −4x +3|d x

(d) ∫ π

0
|cos x|d x

(e) ∫ 3

−2
f (x)d x where f (x) =

12−x2, for x ≤ 2

x3, for x > 2

Exercise 47. Find explicit formulas for the functions represented by the following integrals

(a)

f (x) =
∫ x

0
sinudu
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(b)

k(x) =
∫ x2

1
td t

(c)

h(x) =
∫ x/4

x/2
sec2 udu

(d)

g (x) =
∫ p

x

2

d t

t 2

37



WEEK 10 - FTC AND CHANGE OF VARIABLES CHAPTER 1. MATH 31A

Exercise 48. Write out the following integrals in terms of u and du. Then evaluate

(a) ∫
t
√

t 2 +1d t , u = t 2 +1

(b) ∫
t 3

(4−2t 4)11 d t , u = 4−2t 4

(c) ∫ p
4x −1d x, u = 4x −1

Exercise 49. Evaluate the indefinite integral

(a) ∫
xp

x2 +9
d x

(b) ∫
x2

√
x3 +1d x

(c) ∫
x(3x +8)11d x

(d) ∫
x3(x2 −1)3/2d x

(e) ∫
sin x cos xp

sin x +1
d x
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Chapter 2

Math 31B

Week 1 - Exponentials and Inverse Functions

Derivative of an Exponential Functions

Exponential Function

For some b > 0,b ̸= 1, an exponential function with base b, is f (x) = bx . The most famous example

of this is b = e.

By definition, we then compute that for all b > 0,b ̸= 1,

d

d x
bx = lim

h→0

bx+h −bx

h
= bx lim

h→0

bh −1

h

For now, we let m(b) = limh→0(bh −1)/h and note that m(e) = 1.

Inverse Functions

Inverse Function

Let there be a function f with domain D and range R. Suppose there exists a function g with

domain R such that for any x ∈ D and for any y ∈ R,

g ( f (x)) = x and f (g (y)) = y

If this holds then we denote g = f −1.

NOTE : We use f −1 to denote the inverse of f . This should not be confused with the reciprocal of f ,

which is denoted 1/ f .
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Week 2 - Logarithms

Fix some b > 0,b ̸= 1 and consider the exponential function f (x) = bx . If we graph this function, then

we see that it passes the horizontal line test and so it has an inverse f −1(x). We denote this inverse by

logb(x) and note that

blogb x = x and logb

(
bx)= x.

For b = e, we let ln(x) = loge (x).

Analogous to exponentials, logarithms have nice properties when it comes to multiplication, division,

and exponentiation.

Theorem. (Properties of Logarithms) :

(Products) : logb(x y) = logb(x)+ logb(y)

(Quotients) : logb(x/y) = logb(x)− logb(y)

(Powers) : logb (x y ) = y logb x

We can also use these properties to change the base of a logarithm as follows

Theorem. (Change of Bases) : For all bases a,b,

logb(x) = loga(x)

loga(b)

In particular, for all bases b,

logb(x) = ln(x)

ln(b)

Derivative of Logarithms

We start with the simplest case of the natural logarithm. Using the inverse derivative formula,

d

d x
ln(x) = 1

e ln(x)
= 1

x

For an arbitrary base b > 0,b ̸= 1, we can find the derivative by first changing basis. Doing so

d

d x
logb(x) = d

d x

ln x

lnb
= 1

x lnb

For general functions f (x), the chain rule then gives us the logarithmic derivative,

d

d x
ln( f (x)) = f ′(x)

f (x)

In particular, this implies that for any differentiable function f ,

f ′(x) = f (x)
d

d x
ln( f (x))

This allows us to use the nice properties of the natural logarithm to simplify some calculations.
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Exercise 50. Calculate the derivative of f (x) by first differentiating ln( f (x)).

(a) f (x) = (x+1)(x+2)
x+3

(b) f (x) = ex (x2+1)
sin(x)cos(x)

(c) f (x) = (sin(x))x

(d) f (x) = xx2+2

Antiderivative of 1/x

As shown earlier, we know that (ln x)′ = 1/x, so the the antiderivative of 1/x is ln x. However, we need to

be careful about where this is defined when using this. The function 1/x is only defined for x ̸= 0 and the

function ln(x) is only defined for x > 0. Therefore, the anti-derivative of 1/x for x > 0 is ln(x), but what

about x < 0?

For x < 0, we know that |x| = −x. Then d/d x(|x|) =−1 and so

d

d x
ln |x| = −1

|x| =
1

x

for all x < 0. Therefore for all x ̸= 0, d/d x(ln |x|) = 1/x.

A word of caution though, this anti-derivative only exists when x ̸= 0. If you try to use this to integrate

1/x across 0, this will fail.

Exercise 51. Explain why the fundamental theorem of calculus cannot be applied in the following

situation ∫ 1

−1

1

x
d x

Inverse Trig Functions

When considering whether different functions have inverses, all we need to figure out is if the function

is one-to-one (otherwise called injective). We call a function one-to-one if f (x) = f (y) implies that x =
y . Intuitively, this is saying that any output of f can only be created by a single input. If we have this

property, then we can define an inverse of f and if we don’t have this property then we can’t.

But what about the function sin(x)? We know what the graph of sin(x) looks like and it definitely isn’t

one-to-one. In fact, every output has infinitely many inputs that could have created it! In this case, we

can create an inverse function if we restrict the domain of sin(x).

By default, we consider sin(x) as a function that takes in any real number and spits out a real number.

But if we restrict sin(x) so that it only takes in values −π/2 ≤ x ≤ π/2, then sin(x) becomes one-to-one.

On this region, we define sin−1(x) as the inverse of sin(x).
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Similarly, we can restrict cos(x) to the region [0,π] to define cos−1(x) and tan(x) to the region (−π/2,π/2)

to define tan−1(x).

Using the inverse derivative formula and some clever trigonometry that I won’t repeat here, we find the

derivatives of inverse trig functions

Theorem. (Derivatives of Inverse Trig Functions) :

1. d
d x sin−1(x) = 1p

1−x2

2. d
d x cos−1(x) = −1p

1−x2

3. d
d x tan−1(x) = 1

1+x2
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Week 3 - L’Hopital’s Rule

L’Hôpital’s Rules is a valuable tool for computing certain limits, especially the limits of quotients when

the quotient rule cannot be applied. It is stated as follows

Theorem. (L’Hôpital’s Rule) : Suppose that f and g are differentiable on an open interval con-

taining a and that f (a) = g (a) = 0. Also assume that g ′(x) ̸= 0 except possibly at a. Then

lim
x→a

f (x)

g (x)
= lim

x→a

f ′(x)

g ′(x)

if the limit on the right exists or is infinite. This conclusion also holds if f and g are differentiable

for x near (but not equal to) a and

lim
x→a

f (x) =±∞ lim
x→a

g (x) =±∞

Furthermore, this rule is valid for one-sided limits.

Note that if you do L’Hôpital’s rule once and still find an indeterminate form, then you may do it again

until you don’t.

Exercise 52. Evaluate the following limits, using L’Hôpital’s Rule where it applies

(i) limx→4
x3−64
x2+16

(ii) limx→0
sin4x

x2+3x+1

(iii) limx→0
sin2x
sin7x

(iv) limx→0(cos x)3/x2

Hint : ax = e log(a)x and limx→a e f (x) = e limx→a f (x) because ex is continuous.

(v) limx→∞
(
1+ r

x

)x = er

(vi) limx→0+ xsin x

We can also use L’Hopital’s rule at infinity via

Theorem. Assume that f , g are differentiable on (b,∞) and that g ′(x) ̸= 0 on (b,∞). If

limx→∞ f (x) and limx→∞ g (x) both are 0 or both are ±∞ then

lim
x→∞

f (x)

g (x)
= lim

x→∞
f ′(x)

g ′(x)

provided that the limit on the right exists. This also holds for x →−∞.
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Growth of Functions

By considering the limits of the quotient of functions, we can also determine how fast functions grow rel-

ative to one another as x →∞. If a function f grows faster than g , then we would expect that eventually,

f is so big compared to f that g / f is really really small. With this intuition, we define

We say that f (x) grows faster than g (x) if

lim
x→∞

g (x)

f (x)
= 0

we denote this by g ≪ f . Equivalently, g ≪ f if limx→∞ f (x)/g (x) =∞.
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Week 4 - Integration by Parts

When we first worked with derivatives, we had a slew of nice properties. We could take the derivatives of

sums, differences, products, quotients, scalar multiplication, and compositions. When we then defined

integration, we had some similar properties. The integral of a sum is the sum of the integrals, similar

to the sum rule for derivation. We could take the integrals of scalar multiples or the difference of two

functions. We could even do something similar to the chain rule with u-substitution. However, we did

not develop any tools for taking the integrals of products or quotients. We fix that hole in our knowledge

with integration by parts.

The product rule for differentiation tells us that

( f g )′ = f ′g + f g ′

If we then take the indefinite integral of both sides with respect to x, we find that

f g =
∫

f ′g d x +
∫

f g ′d x

Rearranging then yields ∫
f g ′d x = f g −

∫
f g ′d x

Which is the integration by parts formula. Intuitively, integration by parts allows us to take a derivative

from one term in our integral and move that derivative to another term, provided we spit out an addi-

tional term of f g .

If we took a definite integral of our product rule first, then the fundamental theorem of calculus and a

similar calculation would tell us that ∫ b

a
f g ′d x = f g |ba −

∫ b

a
f ′g d x

Finally, we remember that d g = g ′d x and d f = f ′d x so we can rewrite this nicely as∫
f d g = f g −

∫
g d f

and similarly for the definite integral case. Most commonly, this is stated with u, v instead of f , g .

Applying integration by parts is often a big challenge. It’s simple to understand what it does, but it is not

simple to understand how to use that. To understand this, let’s look at a simple example. Consider the

integral ∫
xex d x

Integration by parts allows us to move a derivative from either x or ex to the other term. If we briefly

ignore the fact that we have to take a derivative from x or ex , let’s consider what happens once we move

the derivative over.

If we move the derivative to ex , then ex turns into ex . Which doesn’t really help us since nothing changes.

Instead, if we move the derivative over to the x, then x becomes 1, which is great! That would simplify

our integral down to only one term.
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To move the derivative to the x, we need to steal a derivative from the ex . Equivalently, we can take an

anti-derivative of ex . The anti-derivative of ex is ex , so that’s easy.

Putting all these steps together, we can evaluate the integral. Often we will use the notation
∫

ud v =
uv −∫

vdu for integration by parts, so let’s use that here. We want to put the derivative on x, so we have

u = x. We want to take the derivative from ex , so we have d v = ex d x. Then du = x ′d x = d x and v = ex by

taking a derivative and anti-derivative respectively. This implies∫
xex d x = xex −

∫
ex d x = xex −ex + c

as desired.

Exercise 53. Use integration by parts to evaluate the following

(a)
∫

arcsin(x)d x

(b)
∫

x3 cos(x2)d x

(c)
∫

x3 ln xd x

(d)
∫

x5x d x

(e)
∫

x cos(5x)d x

(f)
∫

r er /2d x

(g)
∫

x2 sin(πx)d x

(h)
∫

ln(2x +1)

(i)
∫

t sec2(2t )d t

(j)
∫

(ln x)2d x

(k)
∫

e−θ cos(2θ)dθ

(l)
∫ 2

1
ln x
x2 d x

(m)
∫ 1

0 (x2 +1)e−x d x

(n)
∫ p

3
1 arctan(1/x)d x

(o)
∫

sin(ln x)d x

(p)
∫

cos(x) ln(sin(x))d x
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Week 5 - Partial Fractions and Numerical Integration

Partial Fraction Decomposition

We turn our attention now to integrals of the form∫
P (x)

Q(x)
d x

Where P,Q are polynomials in x. If P has a larger degree than Q, then we can use long division to simplify

P/Q. If P has a smaller or equal degree to Q, then we use partial fractions to simplify.

We know that when we have two fractions and want to add them, that we find a common denominator

and then combine. For example,
1

2
+ 1

3
= 3

6
+ 2

6
= 5

6
Partial fractions is this exact same process, except in reverse, such as

2

x2 −1
= 2

(x −1)(x +1)
= (x +1)− (x −1)

(x −1)(x +1)
= 1

x −1
− 1

x +1

Using this for integration, we can find that∫
2

x2 −1
d x =

∫
1

x −1
d x −

∫
1

x +1
d x = ln(x −1)− ln(x +1)+ c

In general, we have the following theorem

Theorem. (Partial Fraction Decomposition) : Suppose that P,Q are polynomials with Q(x) =
qk1

1 (x)qk2
2 (x) . . . qkn

n (x) where q j are irreducible polynomials of degree d j and deg(P ) ≤ n. Then

there exists polynomials p1,1, . . . , p1,k1 , p2,1, . . . , p2,k2 , . . . , pn,kn such that pi , j is of degree at most di

and
P (x)

Q(x)
= p1,1(x)

q1(x)
+ p1,2(x)

q2
1 (x)

+·· ·+ p1,k1 (x)

qk1
1 (x)

+·· ·+ pn,kn (x)

qkn
n (x)

=
n∑

i=1

ki∑
j=1

pi , j (x)

q j
i (x)

Intuitively, we need to have a term for each power of each factor on the denominator, and each numera-

tor is the degree of the polynomial in the denominator, ignoring the outside power. Understanding this

theorem in full generality is difficult, so it’s best to do a good number of practice problems to master it.

Exercise 54. Find the partial fraction decomposition of the following rational functions :

(a)
∫ d x

(x−2)(x−4)

(b)
∫ d x

(x−1)2(x−2)2

(c)
∫ 4x2−20

(2x+5)3

(d)
∫ 6x2+2

x2+2x−3 d x
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(e)
∫ 10d x

(x−1)2(x2+9)

Numerical Integration

When we first defined integration, we defined it by using skinny rectangles to approximate the area under

the curve. So over an interval [a,b], we took a partition a = x0 < x1 < ·· · < xn = b of [a,b] and chose a

point ci from [xi−1, xi ] for i = 1, . . . ,n. Then we approximated
∫ b

a f (x)d x as∫ b

a
f (x)d x ≈

n∑
i=1

f (ci )(xi −xi−1)

In practice, we have full control over both the partition x0, . . . , xn and the points chosen c1, . . . ,cn . For the

purposes of this class, we will only work with evenly spaced partitions, so xi − xi−1 =∆x regardless of i .

We have a few different systematic ways to choose the point ci , but we focus now on the midpoint rule.

The midpoint rule

For each interval [xi−1, xi ], we choose ci to be the midpoint, ci = 1
2 (xi + xi−1). Since we want evenly

spaced intervals, for any n we let x0 = a, x1 = a + (b − a)/n, x2 = a + 2(b − a)/n, . . . , xn = b. With this

method, we have the error bound∣∣∣∣∣∣∣∣∣
∫ b

a
f (x)d x − b −a

n

(
f (c1)+·· ·+ f (cn)

)
︸ ︷︷ ︸

Mn

∣∣∣∣∣∣∣∣∣≤
(b −a)3

24n2 max
x∈[a,b]

| f ′′(x)|

Trapezoidal Rule

Instead of using rectangles to approximate our area, we can be more accurate by using trapezoids. For

each interval [xi−1, xi ], we can make a trapezoid with vertices xi−1, xi , f (xi ), f (xi−1). This trapezoid will

then have area

Ai = (xi −xi−1)
f (xi )+ f (xi−1)

2
= (b −a)( f (xi )+ f (xi−1))

2n

We can then approximate
∫ b

a f (x)d x with these n trapezoids, with which we get the error bounds∣∣∣∣∣∣∣∣∣
∫ b

a
f (x)d x − b −a

2n

(
f (a)+2 f (x1)+·· ·+2 f (xn−1)+ f (b)

)
︸ ︷︷ ︸

Tn

∣∣∣∣∣∣∣∣∣≤
(b −a)2

12n2 max
x∈[a,b]

| f ′′(x)|

As presented here, this trapezoid rule does not fit into the ci method that we gave above. However, if f is

continuous then the intermediate value theorem tells us that there exists some ci in [xi−1, xi ] such that

f (ci ) = 1
2

(
f (xi )+ f (xi−1)

)
, so this isn’t too far of a departure.
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Exercise 55. Calculate Tn , Mn for the value of n indicated

1.
∫ π/2

0

p
sin(x)d x, n = 6

2.
∫ 2

1 ln(x)d x, n = 5

3.
∫ 1

0 e−x2
d x, n = 5
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Week 6 - Arc Length, Surface Area, and Improper Integrals

This is best explained via picture, but a valiant effort is made here.

One application of these new integration techniques is computing arc length. Suppose we have a curve

parameterized by (x, f (x)) for a ≤ x ≤ b. To compute the length of this curve, we break it down into small

steps, ∆x, which induce small jumps in our function ∆ f (x). Adding up all of these small segments, we

find that our arclength is approximately given by

L ≈∑√
(∆x)2 + (

∆ f (x)
)2

where the sum is taken over all the segments of the curve. To get equality here, we take our segments to

be infinitely small and then we take infinitely many segments. This causes ∆x → d x and ∆ f → d f in an

intuitive, but informal sense. Additionally, this transforms our sum into an integral, which gives us our

equation for arc length,

L =
∫ b

a

√
d x2 +d f 2 =

∫ b

a

√
1+

(
d f

d x

)2

d x =
∫ b

a

√
1+ ( f ′(x))2d x

An extension of this concept is to compute the surface area of a curve rotated around the x axis. Following

the same reasoning as above, we can approximate the surface area of this rotated curve by

L ≈∑
2π f (x)

√
(∆x)2 + (

∆ f (x)
)2

with the 2π f (x) following since the circumference of a circle is 2πr . Then by the same limiting argument,

S A =
∫ b

a
2π f (x)

√
1+ ( f ′(x))2d x

Exercise 56. Find the arc length of y = 1
12 x3 +x−1 for 1 ≤ x ≤ 2.

Exercise 57. Show that a spherical cap of height h and radius R has a surface area of 2πRh. (height

is taken from the top of the sphere down)

Improper Integrals

When we defined Riemann integration, there were a few flaws inherent in the definition.

(i) Infinite region : If the region of integration is infinite, such as
∫ ∞

0 f (x)d x or
∫ 5
−∞ f (x)d x.

(ii) Infinite function : If the function f has an infinite discontinuity, such as the discontinuity of 1/x

at 0 or ln(x) at 0.

50



WEEK 6 - ARC LENGTH, SURFACE AREA, AND IMPROPER INTEGRALS CHAPTER 2. MATH 31B

In these cases, Riemann integration fails to converge. However, that doesn’t mean that the notion of

"area under the curve", which motivated the definition of Riemann integration, is ill-defined. Often, we

can still define integration in these situations, we just need to be more clever in how we use Riemann

integration. In these cases, we call these improper Riemann integrals.

To evaluate an improper Riemann integral, we use a limit to cut out the problem area. If we have region

that extends to infinity, then we instead extend it to some large number R and then take a limit. For

example, ∫ ∞

1
x−2d x = lim

R→∞

∫ R

1
x−2d x = lim

R→∞
1− 1

R
= 1

Similarly, if we have an infinity discontinuity, then we use limits to cut out the discontinuity before con-

tinuing. For example, ∫ 2

0
x−1/2d x = lim

ε→0

∫ 2

ε
x−1/2d x = lim

ε→0
2
p

2−2
p
ε= 2

p
2

When multiple issues arise, we will need to use multiple limits to cut out all of the issues. With these

methods, we find two useful theorems.

Theorem. (Comparison Test) : Suppose that f , g satisfy

0 ≤ f (x) ≤ g (x)

on a region (a,b) where a,b might be ±∞. Then∫ b

a
f (x)d x converges =⇒

∫ b

a
g (x)d x converges∫ b

a
g (x)d x diverges =⇒

∫ b

a
f (x)d x diverges

Theorem. (p-test): For all real numbers a, ∫ ∞

a
x−p d x

converges if and only if p > 1.

Similarly, ∫ a

0
x−p d x

converges if and only if p < 1.

Exercise 58. Compute the following integrals or show that they do not exist.

(a)
∫ ∞

2 x−3d x

(b)
∫ 0
−∞ x2ex d x

(c) For which values of a does
∫ ∞

0 eax d x converge?
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(d)
∫ ∞
−∞ e−|x|

2
d x

Exercise 59. State whether the following integrals converge or diverge

1.
∫ ∞
−∞ e−|x|

2
d x

2.
∫ ∞

1 (x4 +1)1/2d x

3.
∫ ∞

1 (x3 +4)−1d x

4.
∫ 1

0
d x

x(2x+5)
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Week 7 - Sequences and Series

A sequence is an infinity list of numbers a1, a2, a3, a4, . . . , often denoted (an). Some classic examples are

1,2,3,4,5,6,7, . . . rule : an = n

(Fibonacci) 0,1,1,2,3,5,8, . . . rule : an = an−1 +an−2

−1,1,−1,1,−1,1,−1, . . . rule : an = (−1)n

We define the limit of a sequence in the same way that we defined the limit of a function. Namely,

Limit of a Sequence

A sequence a1, a2, a3, . . . converges to some limit L if for all ε> 0 there exists an N ≥ 1 such that if

n ≥ N then

|an −L| < ε

As before, we don’t concern ourselves much with the precise definition and will not use it often.

Very often, it will be easier to work with a function rather than a sequence. With functions, we have the

ability to use L’Hôpital’s rule and other continuity tools that do not exist with sequences. For this, we

have the following theorem

Theorem. If limx→∞ f (x) exists then the sequence an = f (n) converges and

lim
n→∞an = lim

x→∞ f (x)

Similarly, we may use the continuity of functions to evaluate limits.

Theorem. If f is continuous at limn→∞ an = L, then

lim
n→∞ f (an) = f

(
lim

n→∞an

)
= f (L)

We have a few specific examples of sequences that are easier to work with than others, namely

Special Sequences

A sequence is bounded from above if there exists M such that an ≤ M for all n.

A sequence is bounded from below if there exists m such that an ≥ m for all n.

A sequence is increasing if an+1 > an for all n.

A sequence is decreasing if an+1 < an for all n.

A sequence is non-increasing if an+1 ≤ an for all n.

A sequence is non-decreasing if an+1 ≥ an for all n.

A sequence is monotonic if it is increasing or decreasing.

With these, we have the following limit laws
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Theorem. If (an) is non-decreasing (includes increasing) and bounded above by M , then

limn→∞ an ≤ M exists.

If (an) is non-increasing (includes decreasing) and bounded from below by m, then limn→∞ an ≥
m exists.

Exercise 60. Determine the limits of the following sequences, if they exist

(i)

an =
√

4+ 1

n

(ii)

an = e4n/(3n+9)

(iii)

an = tan−1(e−n)

Series

Now that we have these long sequences of numbers, the next natural question is what can we do with

them? Namely, can we add up all the numbers? For this question, we look at infinite series. Given a

sequence (an), we look at the infinite sum
∞∑

n=1
an

and determine whether this sum converges or diverges, and in the case of convergence, what it converges

to.

To view this series formally, we need to introduce a limit. To do this, we write

∞∑
n=1

an = lim
N→∞

N∑
n=1

an = lim
N→∞

SN

where SN is the N th partial sum.

With this notation, we say that an infinite series
∑∞

n=1 an converges if and only if the partial sums (Sn)

converge as a sequence. With this definition, just as with sequences, we have all the usual properties of

limits. An immediate consequence of this definition is the following theorem

Theorem. (Divergence Test) : If
∑∞

n=1 an exists then limn→∞ an = 0.

Some particularly special examples of these series are as follows

Telescoping Series
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A series is telescoping if it is of the form

∞∑
n=1

(an+1 −an) = lim
N→∞

aN+1 −aN +aN −aN−1 +·· ·−a1 = lim
n→∞an −a1

Geometric Series

A series is geometric if it is of the form
∞∑

n=1
cr n

It converges if and only if |r | < 1.

Geometric series will become very important when we discuss Taylor series.

Exercise 61. Evaluate the following series or show that they do not exist

(a) ∞∑
n=1

1

n(n +3)

(b) ∞∑
n=1

(−1)n n −1

n

(c) ∞∑
n=1

8+2n

5n
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Week 8 - Positive Series

We now consider specifically positive series. That is, series of the form
∑∞

n=1 an where an > 0. In this case,

the question of whether a series converges is simpler because the partial sums SN are increasing. This

means that either the partial sums SN converge to some limit S or they diverge to infinity.

We recall that an increasing sequence will converge if and only if it is bounded above. Therefore, a posi-

tive series
∑∞

n=1 an will converge if and only if its partial sums SN are bounded from above.

However, showing that these partial sums are bounded from above is not always easy. So to help with

this, we develop a few tools.

Theorem. (Integral Test): Let f be a positive, continuous, decreasing function on [1,∞) and let

an = f (n). Then
∑∞

n=1 an converges if and only if
∫ ∞

1 f (x)d x converges.

An immediate consequence of this is

Theorem. (p-series) :
∑∞

n=1 n−p converges if and only if p > 1.

Similar to improper integrals, we also have a comparison test for series, which states

Theorem. (Comparison Test) : Suppose there exists two sequences an ,bn such that 0 ≤ an ≤ bn

for all n ≥ M . If
∑

bn converges then
∑

an converges and if
∑

an diverges then
∑

bn diverges.

(The purpose of M here is to specify that we only need the bound an ≤ bn for large n, since we

can always deal with small n anyways.)

Exercise 62. Use the integral test on the following series

(a) ∞∑
n=2

1

n(lnn)3/2

(b) ∞∑
n=1

ne−n2

(c) ∞∑
n=1

1

n(n +5)

Exercise 63. Use the comparison test on the following series

(a) ∞∑
n=1

np
n3 +1
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(b) ∞∑
n=3

3n +5

n(n −1)(n −2)

(c) ∞∑
n=1

en +n

e2n −n2
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Week 9 - Series Convergence

We develop a number of theorems to help with determining whether series converge.

Theorem. (Limit Comparison Test) : Suppose that an ,bn > 0 and that L = limn→∞ an
bn

. Then

(i) If L > 0 then
∑

an converges if and only if
∑

bn converges.

(ii) If L =∞ then
∑

an converging implies that
∑

bn converges.

(iii) If L = 0 then
∑

an divering implies that
∑

bn diverges.

Absolute Convergence

The series
∑

an converges absolutely if
∑ |an | converges.

Theorem. If
∑ |an | converges then

∑
an converges.

Theorem. (Alternating Series Test) : Suppose that bn > 0 decreases to 0. Then
∑

(−1)nbn converges

if limn→∞ bn = 0.

Conditional Convergence

A series
∑

an converges conditionally if
∑

an converges but
∑ |an | diverges.

Theorem. (Ratio Test): Suppose that

ρ = lim
n→∞

∣∣∣∣ an+1

an

∣∣∣∣
(i) If ρ < 1 then

∑
an converges absolutely.

(ii) If ρ > 1 then
∑

an diverges.

(iii) ρ = 1 then the test is inconclusive.

Theorem. (Root Test): Suppose that

L = lim
n→∞ |an |1/n

(i) If L < 1 then
∑

an converges absolutely.

(ii) If L > 1 then
∑

an diverges.

(iii) If L = 1 then the test is inconclusive.
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Exercise 64. Determine whether the following series converge absolutely, conditionally, or not at

all.

(a) ∞∑
n=1

sin(πn/4)

n2

(b) ∞∑
n=1

(−1)n

1+1/n

(c) ∞∑
n=2

1

(lnn)2

(d) ∞∑
n=1

(−1)nn2e−n3/3

Exercise 65. Use the ratio test on the following series.

(a) ∞∑
n=1

1

5n

(b) ∞∑
n=1

n

n2 +1

(c) ∞∑
n=1

1

n3/2 lnn

(d) ∞∑
n=1

1

lnn

Exercise 66. Use the root test on the following series.

(a) ∞∑
n=0

1

10n

(b) ∞∑
n=1

1

nn

(c) ∞∑
n=0

( n

3n +1

)n
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(d) ∞∑
n=1

(
2+ 1

n

)n

Week 10 - Taylor Series and Power Series

Back in Math 31A, we found that we could approximate differentiable functions by the tangent line as

f (x) ≈ f (a)+ f ′(a)(x −a)

for any real number a. If we allow ourselves to take this approximation further, using all of the derivatives

instead of just the first, then we can transform our approximation into an equality. Doing so, we end up

with a power series (infinite polynomial), called the Taylor series, given by

f (x) = f (a)+ f ′(a)(x −a)+ f ′′(a)

2
(x −a)2 +·· ·+ f (n)(a)

n!
(x −a)n + . . .

Now the existence of a Taylor series relies on our function being infinitely differentiable and sufficiently

nice. Regardless, if we are only finitely differentiable, then this gives us an approximation to our function

if we truncate this infinite series to only the first n+1 terms. Doing so, we get the nth Taylor polynomial,

which we denote by

Tn(x) = f (a)+ f ′(a)(x −a)+·· ·+ f (n)(a)

n!
(x −a)n

As usual with an approximation of this form, we have an associated error bound.

Theorem. Supposed that f (n+1) is (n + 1)-times continuously differentiable and fix some real

numbers a, x. Let K be a number such that

max
t∈[a,x]

or t∈[x,a]

| f (n+1)(t )| ≤ K

so K is an upper bound for the (n +1)st derivative of f . Then

| f (x)−Tn(x)| ≤ K
|x −a|n+1

(n +1)!

Note that if we center the Taylor series at a = 0 then we call it a Maclaurin series.

Some common example of Taylor series that would be good to know are

ex = 1+x + 1

2
x2 + 1

3!
x3 +·· ·+ 1

n!
xn + . . .

cos(x) = 1− 1

2
x2 + 1

4!
x4 − . . .

sin(x) = x − 1

3!
x3 + 1

5!
x5 − . . .
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ln(x) = (x −1)− 1

2
(x −1)2 +·· ·+ (−1)n−1

n
(x −1)n + . . .

1

1−x
= 1+x +x2 + . . .

Exercise 67. Calculate T3 of the given function at the given center

(a) f (x) = tan x, a = 0

(b) f (x) = e−x +e−2x , a = 0

(c) f (x) = x2e−x , a = 1

(d) f (x) = ln(x)/x, a = 1

Exercise 68. Calculate the Taylor series of the given function centered at the given point

(a) f (x) = 1
1+x , a = 0

(b) f (x) = ex , a = 1

(c) f (x) = sin3θ, a = 0

(d) f (x) = x−2, a = 1

Exercise 69. Let Tn be the Taylor polynomial for f (x) = ln x at a = 1 and let c > 1. Show that

| lnc −Tn(c)| ≤ |c −1|n+1

n +1

Power Series

In the previous section, we started with a function and found a power series that represented it. In this

section, we start with a power series and determine whether it defines a function.

Power Series

A power series with center a is an infinite series

F (x) =
∞∑

n=0
cn(x −a)n

Whether or not a power series converges depends on the coefficients cn and the distance |x −a|. Given

this, we have three possibilities, based on the radius of convergence
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Radius of Convergence

Given a power series
∑∞

n=0 cn(x −a)n , the radius of convergence is a value 0 ≤ R ≤∞ such that

(i) If R = 0 then
∑∞

n=0 cn(x −a)n only converges at x = a.

(ii) If R =∞ then
∑∞

n=0 cn(x −a)n converges absolutely for all x.

(iii) If 0 < R <∞ then
∑∞

n=0 cn(x−a)n converges absolutely for |x−a| < R, diverges for |x−a| > R

and might converge or diverge at |x −a| = R.

Given this, we define a similar notion

Interval of Convergence

The interval of convergence of
∑∞

n=0 cn(x −a)n is the interval containing all values of x such that

the series converges at x.

To calculate the radius of convergence, we use the ratio test or the root test, as presented earlier.

Once we understand where a power series converges, the next natural question is to figure out what we

can say about it as a function. Since this is a calculus course, we always care about limits and integrals.

To this end, we find the following theorem

Theorem. (Differentiation and Integration Term-by-Term): Suppose that
∑∞

n=0 cn(x − a)n has ra-

dius of convergence R > 0. Then F (x) = ∑∞
n=0 cn(x −a)n is differentiable on (a −R, a +R) and for

any x ∈ (a −R, a +R),

F ′(x) =
∞∑

n=1
ncn(x −a)n−1

∫
F (x)d x =

∞∑
n=0

cn

n +1
(x −a)n+1 + c

Exercise 70. Find the interval of convergence

(a) ∞∑
n=8

n7xn

(b) ∞∑
n=0

8n

n!
xn

(c) ∞∑
n=1

(−1)nn5(x −7)n
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(d) ∞∑
n=12

en(x −2)n

(e)
∞∑

n=1

x3n+2

lnn
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