NEWTON’S METHOD

Review Problems

Exercise 1. (Mean Value Theorem): Show that there exists some \(c \) in the given interval such that \(f'(c) \) satisfies the relationship described.

(i) \(f(x) = \sqrt{x} \) \[9, 25\] \(f'(c) = \frac{1}{6} \)

(ii) \(f(x) = x - \sin \pi x \) \([-1, 1]\) \(f'(c) = 1 \)

(iii) \(f(x) = (x - 1)(x - 3) \) \([1, 3]\) \(f'(c) = 0 \)

For more practice, you can find a specific \(c \) satisfying the relationship.

Exercise 2. (Implicit Differentiation): Give the equation for the tangent line of the given curve at the given point.

(i) \(xy + x^2y^2 = 6 \) at the point \((2, 1)\)

(ii) \(x^2 + \sin y = xy^2 + 1 \) at the point \((1, 0)\)

(iii) \(2x^{1/2} + 4y^{-1/2} = xy \) at the point \((1, 4)\)

(iv) \(\sin(2x - y) = \frac{x^2}{y} \) at the point \((0, \pi)\)

Exercise 3. (Extrema): Find all local extrema of the following functions

(i) \(f(x) = \frac{1}{\sin x + 4} \)

(ii) \(f(x) = 9x^{7/3} - 21x^{1/2} \)

(iii) \(f(x) = 3x^4 - 6x^3 + 6x^2 \)

(iv) \(f(x) = \sin(x) \cos(x) \) (potential challenge)

Exercise 4. (Concavity): Determine the intervals on which the function is concave up or down and find the points of inflection.

(i) \(y = 10x^3 - x^5 \)

(ii) \(y = (x - 2)(1 - x^3) \)

(iii) \(y = x^{7/2} - 35x^2 \)

(iv) \(f(x) = \frac{x^3}{1+x} \)

(v) \(f(x) = \tan(x) \) (potential challenge)

Newton’s Method

Newton’s Method is a way of using the derivative of a function \(f(x) \) to numerically find (or approximate) the roots \(f(x) = 0 \). It does this by starting with a guess point \(x_0 \), assuming that \(f(x) \approx f(x_0) + f'(x_0)(x - x_0) \)
and then using this to determine a next best guess \(x_1 \). Iterating this process, we get better and better guesses \(x_0, x_1, x_2, \ldots \). More definitively, the process is defined as

\[
\begin{align*}
\textbf{Theorem. Newton’s Method:} & \quad \text{To approximate a root of } f(x) = 0, \\
\text{ (1) Choose an initial guess } x_0 \text{ (close to the desired root if possible)} \\
\text{ (2) Generate successive approximations } x_1, x_2, \ldots \text{ where} \\
& \quad x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}
\end{align*}
\]

As a good rule of thumb, if \(x_n \) and \(x_{n+1} \) agree to \(m \) decimal places, then you can usually safely assume that \(x_n \) agrees with a root to \(m \) decimal places.