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Abstract. We investigate distality and existence of distal expansions in valued fields and related

structures. In particular, we characterize distality in a large class of ordered abelian groups, provide

an AKE-style characterization for henselian valued fields, and demonstrate that certain expansions
of fields, e.g., the differential field of logarithmic-exponential transseries, are distal. As a new tool

for analyzing valued fields we employ a relative quantifier elimination for pure short exact sequences

of abelian groups.
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Introduction

Distal theories were introduced in [62] as a way to distinguish those NIP theories in which no stable
behavior of any kind occurs. Examples include all (weakly) o-minimal theories (e.g., the theory of the
exponential ordered field of reals) and all P -minimal theories (such as the theory of the field of p-adic
numbers and its analytic expansion from [24]); see the introduction of [18] for a detailed discussion.
Distality has been investigated both from the point of view of pure model theory [6, 7, 14, 49] and
in connection to the extremal combinatorics of restricted families of graphs. Indeed, as demonstrated
in [18], distality of a theory is equivalent to a definable version of the strong Erdős-Hajnal Property.
Further results in [11, 17] show that many of the combinatorial consequences of distality, including the
strong Erdős-Hajnal Property, improved regularity lemmas and various generalized incidence bounds,
continue to hold for structures which are merely interpretable in distal structures. Curiously, finding a
distal expansion also appears to be the easiest way of establishing these combinatorial results in a given
structure. This motivates the question: which NIP structures admit distal expansions? Currently,
the only known reason for not having a distal expansion comes from interpreting an infinite field of
positive characteristic; see Section 2 below, where we also point out that more generally, every infinite
distal unital ring without zero-divisors has characteristic zero.
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The aim of this paper is to investigate both issues—distality and existence of distal expansions—
in the setting of valued fields and various related structures: ordered abelian groups, short exact
sequences of abelian group, valued fields with operators. This provides new examples in which the
aforementioned combinatorial results hold, and along the way yields some general tools to address
these problems in similar settings. The question of classifying NIP (valued) fields is currently an
active area of research motivated by various versions of Shelah’s Conjecture. (See [27, 37, 42, 48] and
references therein for some recent results.) In particular, good understanding has been achieved in the
dp-minimal case [45, 46]; see Section 6.6 for more details. (We recall the definition of dp-minimality
in Section 1.1.) Our results demonstrate that some of the issues in this program simplify in the distal
case, where infinite fields of positive characteristic are ruled out, while new complications arise due
to the fact that distality is not preserved under taking reducts.

As a practical matter, we will not in general set out to prove from scratch that the structures we
are interested in are distal (or not distal). Instead, whenever possible we will view structures as mild
expansions of certain distal reducts, and then study how distality passes from the reduct up to the
original structure. For instance, in Section 7 we show that certain expansions of valued fields by unary
operators are distal by reducing the problem to the reduct of said valued field without the additional
operators. For this reason, we will often rely on abstract criteria which (under certain circumstances)
show how the distality of a structure can be deduced from the distality of a suitably chosen reduct.

In Section 1 we recall basic results and notions around distality, as well as prove some auxiliary lemmas
for verifying that certain expansions in an abstract model-theoretic setting are distal. In Section 2 we
briefly discuss distal fields and rings. Using Hahn products we give an example of an infinite unital
ring of prime characteristic which has a distal expansion.

In Section 3 we then study distality in the class of ordered abelian groups. While every ordered
abelian group G is NIP by [35], distality may fail due to the presence of infinite stable quotients of the
form G/nG. Theorem 3.13 makes this precise by characterizing distality in a large class of ordered
abelian groups. To properly state this result requires the many-sorted language Lqe of Cluckers and
Halupczok [19], so we only mention here a consequence and save the discussion of Lqe and the full
statement of Theorem 3.13 for Section 3.

Corollary. Let G be a strongly dependent ordered abelian group; then

G is distal ⇐⇒ G is dp-minimal ⇐⇒ G is non-singular (i.e., G/pG finite for every prime p).

In Section 4 we consider distality in short exact sequences of abelian groups with extra structure.
That is, we consider short exact sequences of abelian groups 0 → A → B → C → 0 viewed in a
natural way as three-sorted structures with the corresponding morphisms named as primitives, and
with arbitrary additional structure allowed on the sorts A and C. In Section 4.1 we give a general
quantifier elimination result for pure short exact sequences, i.e., where the image of A is assumed
to be a pure subgroup of B. (This applies when C is torsion-free.) In this case only sorts for
the quotients A/nA and certain induced maps B → A/nA have to be added in order to eliminate
quantification over B; see Corollary 4.3 for the precise statement. This generalizes a result in [15],
where all of the quotients A/nA (n ≥ 1) were assumed to be finite. Using this quantifier elimination,
we show in Section 4.2 that such a pure short exact sequence is distal (has a distal expansion) if
and only if both A and C are distal (have distal expansions, respectively). Note that the theory of a
pure short exact sequence is interpretable in the theory of the direct product A× C, as explained at
the beginning of Section 4.1; however in general, distality is not preserved under passing to reducts,
thus a precise description of the definable sets is necessary for our purpose. In Sections 4.3, 4.4,
and 4.5 we consider variants and extensions of our quantifier elimination theorem. We expect these
elimination theorems for short exact sequences to have many uses. As an illustration, we employ some
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of these variants in Section 5 to prove some quantifier elimination theorems for henselian valued fields
of characteristic zero.

In Section 6 we consider distality in henselian valued fields. Relying on the results of the previous
sections, in Sections 6.1 and 6.2 we prove the following Ax-Kochen-Eršov (AKE) type characterization.
Recall that a valued field K with valuation v : K× = K \ {0} → Γ = v(K×) is said to be finitely
ramified if for each n ≥ 1 there are only finitely many γ ∈ Γ such that 0 ≤ γ ≤ v(n). If Γ 6= {0}, then
this clearly implies that the field K has characteristic zero; if K has equicharacteristic zero, then K
is always finitely ramified.

Main Theorem. Let K be a henselian valued field, viewed as a structure in the language of rings
augmented by a predicate for the valuation ring, with value group Γ and residue field k. Then K is
distal (has a distal expansion) if and only if

(1) K is finitely ramified, and
(2) both Γ and k are distal (respectively, have distal expansions).

In this case k is either finite or of characteristic zero.

For example, this theorem implies that a finitely ramified henselian valued field K with regular
non-singular value group is distal if and only if the residue field of K is distal; this generalizes the
well-known facts that each p-adically closed field is distal, and that a real closed valued field is distal
iff its residue field is real closed.

In Section 6.3 we consider Jahnke’s results [42] on naming a henselian valuation in the distal case. In
Section 6.5 we formulate a conjectural classification of fields admitting a distal expansion: a (pure)
NIP field does not have a distal expansion if and only if it interprets an infinite field of positive
characteristic. We show that this statements holds modulo Shelah’s conjecture on NIP fields and
a conjecture on distal expansions of ordered abelian groups from Section 3. For this, we rely on
definability theorems of Koenigsmann-Jahnke [43], in a similar way as Johnson [47, Chapter 9]. In
Section 6.6 we concentrate on the dp-minimal case; based on Johnson’s results [46], we observe that
our conjecture does hold unconditionally for dp-minimal fields.

Finally, in Section 7 we show that a certain “forgetful functor” argument preserves distality. Utilizing
this, we exhibit expansions of (valued) fields with additional operators (e.g., derivations) which are
distal. Examples include the differential field of transseries [2] and certain topological fields with a
generic derivation in the sense of [36, 67]. This also implies that the theory of differentially closed
fields of characteristic zero admits a distal expansion (Corollary 7.7). These techniques also yield that
analytic expansions of distal valued fields of characteristic zero are distal (Corollary 7.10).

Conventions and notations. Throughout, m and n (possibly with decorations) range over the
set N = {0, 1, 2, . . .}. In general we adopt the model theoretic conventions of Appendix B of [2].
In particular, L can be a many-sorted language. Given a complete L-theory T , we will sometimes
consider a model M |= T and a cardinal κ(M) > |L| such that M is κ(M)-saturated and every reduct
of M is strongly κ(M)-homogeneous. Such a model is called a monster model of T . Then every model
of T of size ≤ κ(M) can be elementarily embedded into M. “Small” will mean “of size < κ(M)”.
We use x, y, z (sometimes with decorations) to denote multivariables. Unless otherwise specified, all
multivariables are assumed to have finite size, and the size of such a multivariable x is denoted by |x|.
We shall write “|= θ” to indicate that θ is an LM-formula and M |= θ. Likewise, “Φ(x) |= Θ(x)” will
mean that Φ(x) and Θ(x) are small sets of LM-formulas such that every a ∈ Mx realizing Φ(x) also
realizes Θ(x). We write “ϕ(x) |= Θ(x)” to abbreviate {ϕ(x)} |= Θ(x), etc.

Given linearly ordered sets I and J we denote by I_J the concatenation of I and J , that is, the
set K := I ∪ J (disjoint union) equipped with the linear ordering extending both the orderings of I
and J such that I < J . If, say, I = {i} is a singleton, we also write I_J = i_J . Similarly, given
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sequences a = (ai)i∈I and b = (bj)j∈J in Mx, where I, J are linearly ordered sets, we let a_b denote
the sequence (ck)k∈K where K = I_J and ci = ai for i ∈ I, cj = bj for j ∈ J . We extend this
notation to the concatenation of several (finitely many) linearly ordered sets respectively sequences
in the natural way. If a = (ai)i∈I is a sequence and J ⊆ I, we let aJ := (aj)j∈J . By convention
“indiscernible sequence” means “∅-indiscernible sequence”.

1. Preliminaries on Distality

Throughout this section L is a language and T is a complete L-theory. We also fix a monster model M
of T . The definitions below do not depend on the choice of this monster model.

1.1. Two ways of defining distality. Distality has many facets, and can be introduced in a number
of equivalent ways. In this subsection we present two of them: by means of indiscernible sequences,
and via honest definitions.

Definition 1.1. We say that T is distal if for every small parameter set B ⊆M, every indiscernible
sequence a = (ai)i∈I in Mx, and every i ∈ I, the following holds: if

(1) I< = I<i := {j ∈ I : j < i} and I> = I>i := {j ∈ I : i < j} are infinite, and
(2) aI\{i} is B-indiscernible,

then a is B-indiscernible. We say that an L-structure is distal if its theory is distal.

While the definition of distality given above involves checking a certain condition for all infinite linearly
ordered sets I< and I>, standard arguments show that this definition is equivalent to the variant
where I< and I> are fixed infinite linearly ordered sets. More precisely, fix a linearly ordered set I =
I<_i_I> where I<, I> are infinite; then the theory T is distal if for every small parameter set B ⊆M,
an indiscernible sequence (ai)i∈I in Mx is B-indiscernible provided (ai)i∈I\{i} is B-indiscernible. For
this reason, in practice we can (and often will) assume that I< and I> are “nice” infinite linearly
ordered sets such as Q or [0, 1].

Definition 1.1 can be localized to a particular indiscernible sequence:

Definition 1.2 ([62, Definition 2.1]). Let a = (ai)i∈I be an indiscernible sequence in Mx. Then a
is distal if for every indiscernible sequence a′ = (a′i)i∈I′ in Mx with the same EM-type as a and
I ′ = I1

_I2
_I3 where I1, I2, I3 are dense without endpoints, and all c, d ∈ Mx, the following holds:

if the sequences
a′I1

_c_a′I2
_a′I3 and a′I1

_a′I2
_d_a′I3

are indiscernible, then so is a′I1
_c_a′I2

_d_a′I3 .

Definitions 1.1 and 1.2 are connected by the following fact.

Fact 1.3 ([62, Lemma 2.7]). Suppose T is NIP, and let a = (ai)i∈I be an indiscernible sequence
in Mx; then the following are equivalent:

(1) a is distal;
(2) for every small parameter set B ⊆ M, b ∈ Mx, and B-indiscernible sequence a′ = (a′i)i∈I′

in Mx with I ′ = I1
_I2, I1 and I2 without endpoints, having the same EM-type as a, if

a′I1
_b_a′I2 is indiscernible, then it is also B-indiscernible.

In particular, T is distal if and only if every infinite indiscernible sequence is distal.

It is well-known that if T is distal, then T is NIP; for instance, see [34, Proposition 2.8]. Distality can
be thought of as a notion of pure instability among NIP theories. The following fact (which follows
from [62, Corollary 2.15]) is evidence for this point of view.

Fact 1.4. If T is distal then no infinite non-constant indiscernible sequence is totally indiscernible.
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In the dp-minimal case we also have a converse. We first recall the definition of dp-minimality. Recall
that a cut in a linearly ordered set I is a downward closed subset of I; such a cut c is trivial if c = ∅
or c = I. We let I be the set of nontrivial cuts in I, totally ordered by inclusion; if I does not have a
largest element, then the map which sends i ∈ I to the cut {j ∈ I : j ≤ i} is an embedding I → I of
ordered sets, and we then identify I with its image under this embedding. Now the theory T is called
dp-minimal if for each indiscernible sequence a = (ai)i∈I in Mx indexed by a dense linearly ordered
set I and each c ∈My there is a cut i ∈ I such that the sequences (ai)i<i and (ai)i>i are c-indiscernible.
(This is not the original definition from [54], but equivalent to it thanks to [61, Lemma 1.4].)

Fact 1.5 ([62, Lemma 2.10]). If T is dp-minimal and every non-constant indiscernible sequence of
singletons is not totally indiscernible, then T is distal. In particular, if T is dp-minimal and every
sort of M expands a linearly ordered set, then T is distal.

Linear orders in distal theories also occur on indiscernible sequences:

Corollary 1.6. Suppose T is distal, and let a = (ai)i∈I be a non-constant indiscernible sequence
in Mx. Then there is an L-formula θ(u, x, y, w) and some n such that for all I0, I1 ⊆ I of size n and
all i, j ∈ I such that I0 < i, j < I1 we have

i < j ⇐⇒ |= θ(aI0 , ai, aj , aI1).

Proof. By 1.4, a is not totally indiscernible, and for every indiscernible sequence which is not totally
indiscernible there are such θ and n; see, e.g., the explanation after [13, Fact 3.1]. �

In the following we sometimes employ L-formulas whose free variables have been separated into multi-
variables x, y thought of as object and parameter variables, respectively. We use the notation ϕ(x; y)
to indicate that the free variables of the L-formula ϕ are contained among the components of the mul-
tivariables x, y (which we also assume to be disjoint). We refer to ϕ(x; y) as a partitioned L-formula.
Given a ∈Mx and B ⊆My we let

tpϕ(a|B) :=
{
ϕ(x; b) : b ∈ B, |= ϕ(a; b)

}
∪
{
¬ϕ(x; b) : b ∈ B, |= ¬ϕ(a; b)

}
be the ϕ-type of a over B.

Definition 1.7. Let ϕ(x; y) be a partitioned L-formula, and let y1, y2, . . . be disjoint multivariables of
the same sort as y. A partitioned L-formula ψ(x; y1, . . . , yn) is a (uniform) strong honest definition
for ϕ(x; y) (in T ) if for every a ∈ Mx and finite B ⊆ My with |B| ≥ 2, there are b1, . . . , bn ∈ B such
that

|= ψ(a; b1, . . . , bn) and ψ(x; b1, . . . , bn) |= tpϕ(a|B).

Remark. A strong honest definition for ϕ(x; y) remains a strong honest definition for ¬ϕ(x; y).
Moreover, if ψ(x; y1, . . . , ym), ψ′(x; y′1, . . . , y

′
n) are strong honest definitions for the partitioned L-

formulas ϕ(x; y), ϕ′(x; y), respectively, with all multivariables yi, y
′
j disjoint, then ψ ∧ ψ′ is a strong

honest definitions for ϕ ∧ ϕ′.

By [14, Theorem 21] we have:

Fact 1.8. The following are equivalent:

(1) T is distal;
(2) every partitioned L-formula ϕ(x; y) has a strong honest definition in T .

When proving distality of a particular structure, Definition 1.1 is typically easier to verify. On
the other hand, occasionally 1.8(2) is more useful since it ultimately gives more information about
definable sets, and obtaining bounds on the complexity of strong honest definitions is important for
combinatorial applications.
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1.2. Reduction to singletons. In order to verify that a theory is distal, it is enough to check
distality for “singletons”. There are two ways to interpret this claim. First, we observe that existence
of strong honest definitions for all formulas reduces to formulas in a single free variable.

Proposition 1.9. Suppose every partitioned L-formula ϕ(x; y) with |x| = 1 has a strong honest
definition in T . Then every partitioned L-formula ϕ(x; y) with |x| arbitrary has a strong honest
definition in T , so T is distal.

Proof. We argue by induction on the size |x| of x, with the base case |x| = 1 given by the assumption.
Assume that x = (x0, x1), and let a partitioned L-formula ϕ(x0, x1; y) be given. By the inductive
assumption, take a strong honest definition ψ(x0; z1, . . . , zn) for the partitioned L-formula ϕ(x0;x1, y),
where zi = (x1i, yi) for i = 1, . . . , n. Set

χ(x0;x1, ~y ) := ψ
(
x0; (x1, y1), . . . , (x1, yn)

)
where ~y := (y1, . . . , yn),

let

χ+(x1; y, ~y ) := ∀x0

(
χ(x0;x1, ~y )→ ϕ(x0;x1, y)

)
,

χ−(x1; y, ~y ) := ∀x0

(
χ(x0;x1, ~y )→ ¬ϕ(x0;x1, y)

)
,

and by inductive assumption, let ρ+(x1; ~y +) and ρ−(x1; ~y −) be strong honest definitions for χ+

and χ−, respectively; here ~y + = (~y +
1 , . . . , ~y

+
n+) for some n+, and similarly with − in place of +. We

claim that
γ(x0, x1; ~y, ~y +, ~y −) := χ(x0;x1, ~y ) ∧ ρ+(x1; ~y +) ∧ ρ−(x1; ~y −)

is a strong honest definition for ϕ(x; y). To see this let ai ∈ Mxi (i = 0, 1) and a finite B ⊆ My

with |B| ≥ 2 be given. Applying ψ to a0 and the set of parameters {a1}×B, we obtain some ~b ∈ Bn
such that

|= χ(a0; a1,~b) and χ(x0; a1,~b) |= tpϕ
(
a0

∣∣{a1} ×B
)
.

Next choose ~b+ ∈
(
B × {~b}

)n+

such that

|= ρ+(a1;~b+) and ρ+(x1;~b+) |= tpχ+

(
a1

∣∣B × {~b }).
Then for any a′1 |= ρ+(x1,~b

+) and b ∈ B we have

|= χ(x0, a
′
1,
~b )→ ϕ(x0, a

′
1, b) ⇐⇒ |= χ(x0, a1,~b )→ ϕ(x0, a1, b)

⇐⇒ |= ϕ(a0, a1, b).

Similarly, we find ~b− ∈
(
B × {~b }

)n−
such that for any a′1 |= ρ−(x1,~b

−) and b ∈ B we have

|= χ(x0, a
′
1,
~b )→ ¬ϕ(x0, a

′
1, b) ⇐⇒ |= ¬ϕ (a0, a1, b) .

Combining, we see that for all a′1 |= ρ+(x1,~b
+)∧ ρ−(x1,~b

−) and a′0 |= χ(x0, a
′
1,
~b) and each b ∈ B we

have |= ϕ(a′0, a
′
1, b)↔ ϕ(a0, a1, b). Thus

γ(x0, x1;~b,~b+,~b−) |= tpϕ(a0a1|B) and |= γ(a0, a1;~b,~b+,~b−)

hold, as wanted. �

Remark. Let f(m) be the smallest possible number of parameters n in a strong honest defini-
tion ψ(x; y1, . . . , yn) for partitioned L-formulas ϕ(x; y) with |x| ≤ m. It follows from the proof
that if f(1) is finite, then f(m) ≤ 2f(1) + f(m− 1) for m ≥ 1; so f(m) ≤ (2m− 1)f(1) for all m ≥ 1.
This gives a naive upper bound on the growth of the size of distal cell decompositions, an important
parameter in combinatorial applications of distality isolated in [11, Section 2]. It is an interesting (and
challenging) problem to determine optimal bounds in various theories of interest, e.g., in o-minimal
or P -minimal theories.
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Secondly, in terms of indiscernible sequences we have the following equivalence.

Proposition 1.10. The following are equivalent:

(1) T is distal;
(2) for every indiscernible sequence a = (ai)i∈I in Mx, i ∈ I such that I<i and I>i are infinite,

and b ∈My with |y| = 1, if aI\{i} is b-indiscernible, then so is a;

(3) for every indiscernible sequence a = (ai)i∈I in Mx where |x| = 1, i ∈ I such that I<i and I>i

are infinite, and b ∈My, if aI\{i} is b-indiscernible, then so is a.

Proof. It is not hard to see that the condition in (2) can be iterated to obtain the same conclu-
sion with y an arbitrary multivariable, which is sufficient to satisfy Definition 1.1. (Alternatively,
Proposition 1.9 provides a more explicit version of this argument.) The equivalence of (1) and (3) is
established in [62, Theorem 2.28]. (See also Proposition 1.17 below for a discussion.) �

Corollary 1.11. The following are equivalent:

(1) T is not distal;
(2) there is an indiscernible sequence a = (ai)i∈Q in Mx and some b ∈ My such that aQ\{0} is

b-indiscernible, and some partitioned L-formula ϕ(x; y) such that

|= ϕ(ai; b) ⇐⇒ i 6= 0;

(3) the same statement as in (2) with |x| = 1.

Proof. To show (1) ⇒ (3), assume that the condition in Proposition 1.10(3) fails. Then we can take
some indiscernible sequence a = (ai)i∈Q in Mx where |x| = 1 and some b ∈ My such that aQ\{0} is
b-indiscernible, but a is not. Thus we can take an L-formula ψ(x1, . . . , xn; y), where x1, . . . , xn are
single variables of the same sort as x, as well as finite subsets I1, I2 of Q with |I1| + |I2| = n − 1
and I1 < 0 < I2, such that

(1) |= ¬ψ(aI1 , a0, aI2 ; b);
(2) |= ψ(aJ1 , aj , aJ2 ; b) for all J1, J2 ⊆ Q \ {0} and j ∈ Q \ {0} with |J1| + |J2| = n − 1 and

J1 < j < J2.

Let y′ := (y, y1, y2) where y1 = (x1, . . . , xm), y2 = (xm+2, . . . , xn), m = |I1|, and set

ϕ(x; y′) := ψ(y1, x, y2, y), b′ := (b, aI1 , aI2) ∈My′ .

Choose ε ∈ Q with I1 < −ε < 0 < ε < I2 and set I ′ := {i ∈ Q : −ε < i < ε}. Then the sequence aI′

is indiscernible and aI′\{0} is b′-indiscernible; moreover, for i ∈ I ′ we have

|= ϕ(ai; b
′) ⇐⇒ i 6= 0.

It follows that (3) holds. Finally, (3) ⇒ (2) and (2) ⇒ (1) are obvious. �

Remark 1.12. Let a = (ai)i∈Q be an indiscernible sequence in Mx and b ∈ My such that aQ\{0} is
b-indiscernible. It is easy to see that the set of L-formulas ϕ(x; y) violating the conclusion of (2) in
Corollary 1.11 (that is, such that |= ϕ(a0; b) or |= ¬ϕ(ai; b) for some, or equivalently, all i 6= 0) is
closed under positive boolean combinations.

Remark 1.13. Let Q∞ = Q ∪ {∞} where ∞ /∈ Q is a new symbol and the usual ordering of Q is
extended to a total ordering of Q∞ with Q <∞. Then Corollary 1.11 and Remark 1.12 remain true
with the linearly ordered set Q replaced by Q∞. (This is used in the proof of Theorem 4.6 below.)
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1.3. Induced structure and mild expansions. From [62] we record the following. (For part (2)
use [62, Corollary 2.9] along with Fact 1.3.)

Fact 1.14.

(1) If T is distal, then so is every complete theory bi-interpretable with T .
(2) Naming a small set of constants does not affect distality: if M is distal, then for each small

A ⊆M, the LA-structure MA is also distal.

In what follows, we will often be in a situation when T is NIP and we have a definable set D ⊆Mx

(often, a sort) such that the induced structure on D is distal. More precisely, denote the full induced
structure on D by Dind; that is, we introduce the one-sorted language Lind which contains, for each
L-formula ϕ(y1, . . . , yn) where each yi is a multivariable of the same sort as x, an n-ary relation
symbol Rϕ; then Dind is the Lind-structure with underlying set D where each relation symbol Rϕ is
interpreted by ϕM ∩Dn. The following is then straightforward by Definition 1.1.

Lemma 1.15. If T is distal, then Dind is also distal.

We have the following lemmas in the converse direction. In the rest of this subsection we assume
that T is NIP, and we let D be an ∅-definable set such that Dind is distal. Our goal is to conclude
that under suitable circumstances, T itself is distal.

Lemma 1.16. Let B ⊆ M be small and b ∈ My, and let (ai)i∈Q be a B-indiscernible sequence of
elements from D. If (ai)i∈Q\{0} is Bb-indiscernible, then so is (ai)i∈Q.

Proof. If a fails the conclusion of the lemma, then using distality of a (in the sense of Definition 1.2),
following the proof of [62, Lemma 2.7] gives a contradiction to T being NIP. �

We also have a dual fact, where the sequence may be anywhere in M, but the new parameters are
coming from our distal set D. (A similar observation is stated in [29, Remark 4.26].)

Proposition 1.17. Let a = (ai)i∈Q be an indiscernible sequence in Mx and b ∈ DN , where N ∈ N.
If (ai)i∈Q\{0} is b-indiscernible, then so is (ai)i∈Q.

This proposition can be shown along the same lines as the proof of [62, Theorem 2.28]; we provide
the details for the sake of completeness and correcting some inaccuracies there. First we recall some
terminology and facts from [62].

A nontrivial cut c in a linearly ordered set I is dedekind if c does not have a largest and I \ c does not
have a smallest element. Let a = (ai)i∈I be an (∅-) indiscernible sequence in Mx where I is endless,
and B ⊆M is an arbitrary parameter set. Recall that since T is NIP, the LB-formulas ϕ(x) with the
property that the set of i ∈ I with |= ϕ(ai) is cofinal in I form a complete x-type lim(a|B) over B.
(See, e.g., [63, Proposition 2.8].) Given a dedekind cut c in I, letting c+ denote the complement I \ c
of c ordered by the reverse ordering, we set

lim−(c|B) := lim(ac|B), lim+(c|B) := lim(ac+ |B).

(Here a is understood from the context.) We say that b ∈ Mx fills c in a if the sequence ac
_b_aI\c

is indiscernible.

Fact 1.18 (Strong base change, [62, Lemma 2.8]). Let a = (ai)i∈I be an indiscernible sequence in Mx

and A ⊆Mx be a small parameter set containing all ai. Let also (cλ)λ∈Λ be a family of pairwise
distinct dedekind cuts in I, and for each λ ∈ Λ, let aλ fill the cut cλ in a. Then there exists a
family (a′λ)λ∈Λ in Mx such that (a′λ) ≡a (aλ) and tp(a′λ|A) = lim+(cλ|A) for all λ ∈ Λ.

Let a = (ai)i∈I and b = (bj)j∈J be sequences in Mx and My, respectively, indexed by linearly ordered
sets I, J . We say that a is b-indiscernible if a is B-indiscernible where B := {bj : j ∈ J}. If a is
b-indiscernible and b is a-indiscernible, then a, b are said to be mutually indiscernible.
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Definition 1.19. ([62, Definition 2.12]) Indiscernible sequences a = (ai)i∈I and b = (bi)i∈I are
weakly linked if for all disjoint subsets I1, I2 ⊆ I, the sequences aI1 and bI2 are mutually indis-
cernible.

The following is [62, Lemma 2.14(1)]. It is stated there with the additional assumption that the
sequence of pairs (ai, bi)i∈I is indiscernible; however, this assumption is not needed, and this point is
important in the proof of Proposition 1.17 given below.

Lemma 1.20. Let a = (ai)i∈I and b = (bi)i∈I be weakly linked indiscernible sequences, where a is
distal; then a and b are mutually indiscernible.

Proof. We may arrange that I is dense. To show that a is indiscernible over b, let I ′ ⊆ I be an arbitrary
finite set; it is enough to show that a is bI′ -indiscernible. Now aI\I′ is bI′ -indiscernible as a, b are
weakly linked. Since a is distal, repeatedly applying Fact 1.3 we conclude that a is bI′-indiscernible.

Towards a contradiction assume that b is not a-indiscernible. This yields finite subsets I1, I2 of I
such that bI2 is not aI1-indiscernible. But then by indiscernibility of a over bI2 , there exists some
set I ′1 disjoint from I2 such that aI′1 ≡bI2 aI1 ; in particular, bI2 is not aI′1-indiscernible, contradicting
that a, b are weakly linked. �

Proof of Proposition 1.17. Toward a contradiction assume that the sequence (ai)i∈Q\{0} is b-indiscer-
nible but (ai)i∈Q is not. We will show that then there is an indiscernible sequence (bn) with bn ≡ b
which is not distal (in the sense of Definition 1.2); since bn ∈ DN , this will contradict distality
of Dind. We proceed by establishing a sequence of claims. In Claims 1.21–1.23 below we let I be a
dense linearly ordered set without endpoints and c be a dedekind cut in I.

Claim 1.21. There is a b-indiscernible sequence (a′i)i∈I and some a′ filling the cut c in (a′i) such that
tp(a′, b) 6= tp(a′i, b) for all i ∈ I.

Proof. By assumption a := (ai)i∈Q is not b-indiscernible, so we find finite subsets J1, J2 of Q and a
nonzero rational number j such that J1 < 0, j < J2 and

(1.1) aJ1
_a0

_aJ2 6≡b aJ1_aj_aJ2 .
We may assume J1, J2 6= ∅; let j1 := max J1, j2 := minJ2, and set

a′j := aJ1
_aj

_aJ2 for j ∈ J := (j1, j2) ⊆ Q.

Then (1.1) holds for all j ∈ J \ {0}, the sequence (a′j)j∈J is still indiscernible, (a′j)j∈J\{0} is b-
indiscernible, and tp(a′0, b) 6= tp(a′j , b) for j ∈ J \ {0}. Using compactness, this yields the claim. �

Let now (a′i) and a′ be as in Claim 1.21; to simplify notation (and since we have no use of our original
sequence (ai)i∈Q anymore), we now rename (a′i)i∈I , a

′ as (ai)i∈I , a, respectively. Thus

• (ai)i∈I is b-indiscernible, and
• a fills the cut c in (ai) and satisfies tp(a, b) 6= tp(ai, b) for all i ∈ I.

We also fix an L-formula θ(x, y) such that |= ¬θ(a, b) ∧ θ(ai, b) for all i ∈ I.

Claim 1.22. Let c′ be a dedekind cut in I with c ⊆ c′. Then there exists an a′ ∈Mx such that

(1) a′ fills the cut c′ in (ai),
(2) tp(a, b) = tp(a′, b), so in particular |= ¬θ(a′, b).

Proof. As (ai)i∈I is b-indiscernible, we can choose a′ satisfying (1) and (2) by compactness: given
finite subsets I1 ⊆ cα and I2 ⊆ I \ cα there is a b-automorphism of M which sends aI1 , aI2 to aJ1 , aJ2 ,
respectively, where J1 ⊆ c, J2 ⊆ I \ c. �

In the next claim we let α, β be ordinals, and let r, s (also with decorations) range over α respectively β.
We also assume that we have a strictly increasing sequence (cr) of dedekind cuts in I with c0 = c.
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Claim 1.23. There exists an array (ar,s) and a sequence (bs) such that:

(1) if s < s′, then |= θ(ar,s′ , bs);
(2) |= ¬θ(ar,s, bs);
(3) for all r0 < · · · < rn and pairwise distinct s0, . . . , sn, we have

(ar0,s0 , . . . , arn,sn) ≡ (ai0 , . . . , ain)

for some (equivalently, all) i0 < · · · < in in I;
(4) bs ≡ b.

Proof. By Claim 1.22 we obtain a sequence a′ = (a′r) such that for all r,

• a′r fills the cut cr in (ai), and
• |= ¬θ(a′r, b).

Let a := (ai). By induction on β we choose sequences (as) and tuples (bs), with as = (ar,s), such that

(a) ar,s |= lim+(cr|aa<sb<s), where a<s := (as′)s′<s and b<s := (bs′)s′<s; and
(b) bsas ≡a ba′.

We start with a0 := a′ and b0 := b. Then (a) holds since a′r fills the cut cr in a = (ai), and (b) holds
trivially. Assume that (as) and tuples (bs) have been chosen, for some given value of β. Applying
Fact 1.18 to the family (cr) of dedekind cuts in I and the family a′ = (a′r), where each a′r fills cr
in a, and a set of parameters A containing all components of a, a<β , and b<β , we find a sequence
aβ = (ar,β) such that ar,β |= lim+(cr|aa<βb<β) for each r (so (a) is satisfied for β in place of s)
and aβ ≡a a′. Using this, we can move a′ to aβ by an automorphism over a, and let bβ be the
corresponding image of b; then (b) holds for β in place of s.

Now let (ar,s) and (bs) be sequences as just constructed, satisfying (a), (b). We check that (1)–(4)
are satisfied.

(1) Let r and s < s′ with |= ¬θ(ar,s′ , bs). By (a) we have ar,s′ |= lim+(cr|bs), hence we can
take some i ∈ I such that |= ¬θ(ai, bs). But by (b) we have bs ≡ai b, hence |= ¬θ(ai, b),
contradicting our choice of θ.

(2) By (b) and choice of a′.
(3) Indeed, let r0 < · · · < rn and pairwise distinct s0, . . . , sn be given, and let ϕ(x0, . . . , xn)

be an L-formula with |= ϕ(ar0,s0 , . . . , arn,sn). Take the unique k ∈ {0, . . . , n} such that
sk = max{s0, . . . , sn}. Then by (a), for sufficiently large ik ∈ crk we have

|= ϕ(ar0,s0 , . . . , ark−1,sk−1
, aik , ark+1,sk+1

, . . . , arn,sn).

Repeating this procedure for the maximum of {s0, . . . , sk−1, sk+1, . . . , sn}, etc., we can thus
successively choose i0 < · · · < in in I (as cr0 ⊂ · · · ⊂ crn) such that |= ϕ(ai0 , . . . , ain), which
is sufficient to conclude the claim.

(4) is immediate by (b). �

For the following claim, recall our standing convention that m, n range over N.

Claim 1.24. There exists an array (am,n) and a sequence (bn) satisfying (1)–(4) of Claim 1.23 for
α = β = ω such that additionally

(5) (an, bn) is indiscernible, where an = (am,n), and
(6)

(
(am,n)n

)
is B-indiscernible where B = {b0, b1, . . . }.

Proof. We take an ordinal α sufficiently large compared to |T | (how large will become clear during the
course of the rest of the proof), and then an ordinal β ≥ α and sufficiently large compared to α (also
to be determined). Next, we take a linearly ordered set I which has more than |α| many dedekind
cuts, so that we can choose a strictly increasing sequence (cr) of dedekind cuts in I. Then Claim 1.23
applies and yields (ar,s) and (bs) having properties (1)–(4) in that claim. Set as = (ar,s).
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Assuming that β is large enough compared to α, Erdős-Rado and compactness (see, e.g., [63, Pro-
position 1.1]) give us an indiscernible sequence (a′n, b

′
n) such that for every l ∈ ω there exist some

s0 < · · · < sl such that (a′k, b
′
k)k≤l ≡ (ask , bsk)k≤l. In particular, (a′r,n) and (b′n) satisfy (1)–(4)

for β = ω, and (5) holds as well.
Assuming α is large enough compared to |T |, we can similarly find a B′-indiscernible sequence(

(a′′m,n)n
)
, where B′ = {b′0, b′1, . . . }, such that for every l ∈ ω there exist some r0 < · · · < rl such that(

(a′′k,n)
)
k≤l ≡B

(
(a′rk,n)

)
k≤l.

In particular, (a′′m,n), (b′n) still satisfy (1)–(5), and (6) holds as well. �

Let now (am,n) and (bn) be as in Claim 1.24; so (1)–(6) in Claims 1.23 and 1.24 hold.

Claim 1.25. The sequences (an,n) and (bn) are weakly linked, but not mutually indiscernible.

Proof. First note that (an,n) is indiscernible by (3) applied with η given by η(n) = n for each n,
and (bn) is indiscernible by (5). Clearly, the sequences are not mutually indiscernible because we
have |= θ(an,n, bm) for all m < n by (1), but |= ¬θ(an,n, bn) for all n by (2).

Given a finite tuple i = (i0, . . . , in−1) ∈ Nn, we write ai := (ai0,i0 , . . . , ain−1,in−1
) and bi :=

(bi0 , . . . , bin−1). We say that such a tuple is strictly increasing if i0 < · · · < in−1. To show that (an,n)
and (bn) are weakly linked, it is enough to show that for all strictly increasing i, i′, j, j′ ∈ Nn we have:

(∗1) (i ∪ i′) ∩ (j ∪ j′) = ∅ =⇒ aibj ≡ ai′bj′ .

(Here in the antecedent we identify the tuples i, i′, j, j′ with the corresponding subsets of N.) First
note that by (5) and (6), for strictly increasing i, i′, j, j′ ∈ Nn we easily have

(∗2) ij ≡qf
< i′j′ =⇒ aibj ≡ ai′bj′ ,

where ≡qf
< indicates the equality of quantifier-free types in the language of ordered sets. Hence in

order to prove (∗1), it is enough to show that for any finite tuples i, j, i′, j′ of natural numbers
with i ∩ j = ∅ and i′ ∩ j′ = ∅ and i1, i2, j ∈ N we have

(∗3) i, j < i1 < j < i2 < i′, j′ =⇒ a(i1) ≡aiai′bjbjbj′ a(i2).

Indeed, suppose i, i′, j, j′ ∈ Nn are strictly increasing with (i ∪ i′) ∩ (j ∪ j′) = ∅ as in (∗1). We

claim that we can use (∗2) and (∗3) to arrange that ij ≡qf
< i′j′. To see this let i = (i0, . . . , in−1)

and j = (j0, . . . , jn−1), and suppose we have k, l ∈ {0, . . . , n − 1} with ik < jl whereas i′k > j′l . If

k = n− 1, then we take any integer ĩk > jl; otherwise, using (∗2) we first arrange that ik+1 − jl is as

large as necessary so that we may take an integer ĩk /∈ j ∪ j′ with jl < ĩk < ik+1. In both cases set

ĩm := im for m 6= k and consider the strictly increasing tuple ĩ := (̃i0, . . . , ĩn−1) ∈ Nn; then by (∗3)
we have aibj ≡ aĩbj . Thus by induction on the number of pairs (k, l) with ik < jl and i′k > j′l , we

arrive at the case ij ≡qf
< i′j′, and then aibj ≡ ai′bj′ follows from (∗2).

To show (∗3), let now i, j, i′, j′ be finite tuples of natural numbers with i, j < i1 < j < i2 < i′, j′, and
towards a contradiction assume that we have an L-formula ψ(x, y, z) (for suitable disjoint multivari-
ables x, y, z), such that with ϕ(x, y) := ψ(x, y, aiai′bjbj′), we have |= ϕ(a(i1), bj), but |= ¬ϕ(a(i2), bj).
Recall that T is NIP, so we may letm be the alternation number of the partitioned L-formula ϕ(x; y, z).
(See [63, Section 2.1].) In view of (∗2), we can arrange:

i1 < j −m < j < j +m < i2,(∗4)

|= ϕ(ai,n, bj) for all i, n with j −m < n < j and j −m < i < j +m,(∗5)

|= ¬ϕ(ai,n, bj) for all i, n with j < n < j +m and j −m < i < j +m.(∗6)
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To see this first replace the tuple (i, j, i1, j, i2, i
′, j′) by a tuple with the same order type so that

i1 +m < j < i2−m; modifying ϕ accordingly, we then still have |= ϕ(a(i1), bj)∧¬ϕ(a(i2), bj) by (∗2),
and (∗4) holds. Next, note that if i1 < n < j, then the tuple (i, j, i1, j, i2, i

′, j′) has the same order
type as the tuple (i, j, n, j, i2, i

′, j′), so |= ϕ(a(n), bj) by (∗2). Similarly we see that |= ¬ϕ(a(n), bj) for
j < n < i2. Property (6) then implies (∗5) and (∗6).

Now let η : ω → ω be an injective function such that

• η(n) = n for |n− j| ≥ m,
• η(n) < j for even n with |n− j| < m, and
• η(n) > j for odd n with |n− j| < m.

Then the sequence (an,η(n)) is indiscernible by (4), and the truth value of the formula ϕ(x; bj) alter-
nates > m times on it by the choice of η and (∗5) and (∗6), a contradiction. �

By Lemma 1.20 and Claim 1.25, we conclude that the indiscernible sequence (bn) is not distal, and
bn ≡ b for all n by (4), as promised. �

Corollary 1.26. Suppose M ⊆ acl(D). Then T is distal.

Proof. We verify that T satisfies Definition 1.1. Let a = (ai)i∈Q be an indiscernible sequence, and let
some tuple b such that aQ\{0} is b-indiscernible be given. By assumption, there is some d ∈ Dn such
that b ⊆ acl(d). By Ramsey and compactness, moving d by an automorphism over b, we may assume
that aQ\{0} is d-indiscernible. By Proposition 1.17, a is d-indiscernible, hence it is also b-indiscernible
as desired. �

Corollary 1.27. T is distal if and only if T eq is distal.

Proof. If T eq is distal then so is T , by Lemma 1.15. For the converse note that since T is NIP, so
is T eq, and Meq ⊆ acl(M), where acl is taken in the structure Meq. Hence the previous corollary
applies to T eq in place of T . �

1.4. Distal expansions. We say that T has a distal expansion if there is an expansion L∗ of L
and a complete distal L∗-theory T ∗ which contains T . We also say that an L-structure has a distal
expansion if it can be expanded to a distal structure (in some language expanding L). Clearly, if an
L-structure M has a distal expansion, then so does its complete theory; the converse holds if M is
sufficiently saturated.

Lemma 1.28. Suppose T is interpretable in a complete distal L∗-theory T ∗ (for some language L∗).
Then T has a distal expansion.

Proof. The theory T is definable in (T ∗)eq, which is distal by Corollary 1.27. Hence we may replace T ∗

by (T ∗)eq and assume that T is definable in T ∗. Now Lemma 1.15 yields a distal expansion of T . �

So for example, the theory ACF0 of algebraically closed fields of characteristic zero has a distal
expansion, since it is interpretable (in fact, definable) in the theory RCF of real closed ordered fields:
if K is a real closed ordered field then its algebraic closure is K[i] (where i2 = −1), and the field K[i]
is 0-definable in K.

1.5. Distality and the Shelah expansion. Let M be an L-structure. Recall that the Shelah
expansion of M is the structure MSh in the language LSh obtained from M by naming all externally
definable subsets of M , i.e., sets of the form

φ(x, b)N ∩Mx =
{
a ∈Mx : N |= φ(a, b)

}
with φ(x, y) an L-formula and b ∈ Ny for some elementary extension N �M . (Here we can replace N
by an elementary extension if necessary and thus always assume N is sufficiently saturated.)
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Fact 1.29.

(1) M is NIP if and only if MSh is NIP (Shelah [60], see also [13]);
(2) M is distal if and only if MSh is distal (Boxall-Kestner [7]).

This implies the following remark on how the operations of taking Shelah expansions and reducts
interact with distality:

Lemma 1.30. Let L′ be an expansion of the language L and let M ′ be an L′-structure whose L-reduct
is M . If M ′ is distal, then MSh has a distal expansion, namely (M ′)Sh.

Proof. We first note that (M ′)Sh is indeed an expansion of MSh, since every sufficiently satu-
rated N � M can be expanded to an L′-structure N ′ such that N ′ � M ′. Hence MSh is a
reduct of (M ′)Sh, and the latter is distal by Fact 1.29(2). �

2. Distal Fields and Rings

We emphasize the following important fact:

Fact 2.1 ([18, Corollary 6.3]). No distal structure interprets an infinite field of positive characteristic.

We first observe that this generalizes from fields to rings without zero-divisors. In the rest of this
section we let R be a ring; here and in the rest of this paper, all rings are assumed to be unital.

Fact 2.2 (Jacobson, see e.g., [52, Theorem 12.10]). Assume that for every r ∈ R there is some n ≥ 2
such that rn = r. Then R is commutative.

Recall that the characteristic char(R) of R is the smallest n ≥ 1 such that n · 1 = 0, if such an n
exists, and char(R) := 0 otherwise. For a ∈ R we let C(a) := {b ∈ R : ab = ba}, a subring of R. We
also let Z(R) :=

⋂
a∈R C(a), a commutative subring of R, the center of R.

Proposition 2.3. Suppose R is infinite without zero-divisors and interpretable in a distal structure.
Then R has characteristic zero.

Proof. Note that R having no zero-divisors implies that the only nilpotent element of R is 0. First
assume that R is commutative. Then R is an integral domain, and interprets its fraction field F .
But F is of characteristic 0 by Fact 2.1, and hence so is R. Now suppose R is not commutative. In
this case, Fact 2.2 yields some r ∈ R such that rn 6= r for all n ≥ 2. Then the powers rn of r are
pairwise distinct, so the definable commutative subring R′ = Z(C(r)) of R is infinite. By what we
just showed, char(R′) = 0, hence char(R) = 0. �

Here is a slight strengthening of this proposition. An idempotent e of R is said to be central if e ∈
Z(R), and centrally primitive if e is central, e 6= 0, and e cannot be written as a sum e = a+ b of two
nonzero central idempotents a, b ∈ R with ab = 0. For every central idempotent e of R, the ideal Re
of R is a ring with multiplicative identity e; we have a surjective ring morphism r 7→ re : R → Re,
and if R has no zero-divisors, then so does Re.

Corollary 2.4. Suppose R is infinite and interpretable in a distal structure, and that for every
centrally primitive idempotent e of R, the ring Re is finite or has no zero-divisors. Then R has
characteristic zero.

Proof. Let B(R) be the set of central idempotents of R forms a boolean subring of R. Since R has NIP,
B(R) is finite. Thus there are some n ≥ 1 and centrally primitive idempotents e1, . . . , en of R such
that R = Re1 ⊕ · · · ⊕Ren (internal direct sum of ideals of R); see [52, §22]. For some i ∈ {1, . . . , n},
the ring Rei is infinite, and hence has no zero-divisors; by Proposition 2.3 we have char(Rei) = 0 and
thus char(R) = 0. �
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In the next three subsections we show that the hypothesis of not having zero-divisors cannot be
dropped in Proposition 2.3. To produce an example, we employ a certain valued Fp-vector space; here
and below, we fix a prime p.

2.1. Hahn spaces over Fp. We first define a language L and an L-theory T whose intended model
is the Hahn product H = H(Q,Fp), that is, the abelian group of all sequences h = (hq)q∈Q in Fp with
well-ordered support

supph :=
{
q ∈ Q : hq 6= 0

}
⊆ Q,

equipped with the valuation v : H → Q∞ satisfying

v(h) = min(supph) for 0 6= h ∈ H,

which makes H into a valued abelian group. (See, e.g., [2, p. 74].) Let L be the two-sorted language
with sorts sg (for the underlying abelian group) and sv (for the value set), and the following primitives:
a copy {0,−,+} of the language of abelian groups on the sort sg; a copy {≤,∞} of the language of
ordered sets with an additional constant symbol ∞ on the sort sv, as well as a a function symbol v
of sort sgsv. Next we define T− to be the (universal) L-theory whose models (G,S; . . . ) satisfy:

(4) (S;≤) is a linearly ordered set with largest element ∞,
(5) (G; 0,−,+) is an abelian group with pG = {0} (and hence is an Fp-vector space in a natural

way),
(6) v : G→ S is a (not necessarily surjective) Fp-vector space valuation: for every g, h ∈ G,

(a) v(g) =∞ iff h = 0,
(b) v(g + h) ≥ min

(
v(g), v(h)

)
,

(c) v(kg) = v(g) for every k ∈ Z \ pZ.
(7) for all g, h ∈ G with vg = vh 6= ∞ there is k ∈ {1, . . . , p − 1} such that v(g − kh) > vg (the

Hahn space property [2, p. 94]).

Finally, we define T to be the L-theory containing T− whose models (G,S; . . .) satisfy in addition:

(8) the ordered set (S;≤) is dense without smallest element, and
(9) the map v : G→ S is surjective.

Note that if (G,S; . . . ) is a model of T− which satisfies (9), then (G,S, v) is a Hahn space over Fp in
the sense of [2, Section 2.3]. All structures in the following two subsections will be models of T−; we
will denote them by (G,S), (G′, S′), (G∗, S∗), and their valuation indiscriminately by v.

2.2. Quantifier elimination. There are three relevant extension lemmas for models of T−:

Lemma 2.5. Let s ∈ S \ v(G). Then there are an extension (G′, S′) of (G,S) and g′ ∈ G′ such that

(1) v(g′) = s, and
(2) given any embedding i : (G,S) → (G∗, S∗) and an element g∗ ∈ G∗ such that v(g∗) = i(s),

there is an embedding i′ : (G′, S′)→ (G∗, S∗) which extends i such that i′(g′) = g∗.

Furthermore, given any (G′, S′) and g′ ∈ G′ which satisfy (1) and (2), we have G′ = G⊕Fpg′ (internal
direct sum of Fp-vector spaces), S′ = S, v(G′) = v(G) ∪ {s}, and the embedding i′ in (2) is unique.

Proof. Let g′ be an element of an Fp-vector space extension of G with g′ /∈ G, and set G′ := G⊕Fpg′,
and extend v : G→ S to a map G′ → S, also denoted by v, such that v(g+kg′) = min(vg, s) for g ∈ G,
k ∈ F×p . One verifies easily that then (G′, S) is a model of T− and (1), (2) hold. �

Lemma 2.6. Let P be a cut in S with P 6= S. Then there is an extension (G′, S′) of (G,S) and
some s′ ∈ S′ such that

(1) s′ realizes P , that is, P < s′ < S \ P ,
(2) given any embedding i : (G,S) → (G∗, S∗) and an element s∗ ∈ S∗ such that i(P ) < s∗ <

i(S \ P ), there is an embedding i′ : (G′, S′)→ (G∗, S∗) which extends i such that i′(s′) = s∗.
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Furthermore, given any (G′, S′) and s′ ∈ S′ which satisfy (1) and (2), we have G = G′, S′ =
P_s′_(S \ P ), and the embedding i′ in (2) is unique.

The easy proof of this lemma is left to the reader. Iterating the previous two lemmas routinely implies:

Corollary 2.7. Every model (G,S) of T− has a T -closure, that is, an extension (G′, S′) to a
model of T such that every embedding (G,S) → (G∗, S∗) into a model of T extends to an embed-
ding (G′, S′)→ (G∗, S∗).

We recall some basic definitions about pseudoconvergence in valued abelian groups; our reference for
this material is [2, Section 2.2]. Let (gρ) be a sequence in G indexed by elements of an infinite well-
ordered set without largest element. Then (gρ) is said to be a pseudocauchy sequence (abbreviated:
a pc-sequence) if there is some index ρ0 such that for all indices τ > σ > ρ > ρ0 we have v(gτ − gσ) >
v(gσ − gρ). Given g ∈ G, we write gρ ; g if the sequence

(
v(g − gρ)

)
in S is eventually strictly

increasing. We say that a pc-sequence (gρ) in G is divergent if there is no g ∈ G with gρ ; g. The
next lemma is immediate from [2, Lemma 2.3.1].

Lemma 2.8. Let (gρ) be a divergent pc-sequence in G. Then there is an extension (G′, S′) of (G,S)
and some g′ ∈ G′ such that:

(1) gρ ; g′, and
(2) given any embedding i : (G,S) → (G∗, S∗) and an element g∗ ∈ G∗ such that i(gρ) ; g∗,

there is an embedding i′ : (G′, S′)→ (G∗, S∗) which extends i such that i′(g′) = g∗.

Furthermore, given any (G′, S′) and g′ ∈ G′ which satisfy (1) and (2), we have G′ = G⊕Fpg′ (internal
direct sum of Fp-vector spaces), S′ = S, and the embedding i′ in (2) is unique.

We now combine the embedding lemmas above to show:

Proposition 2.9. The L-theory T has QE.

Proof. By Corollary 2.7 and one of the standard QE tests (see, e.g., [2, Corollary B.11.11]), it suffices
to show: Let (G,S) ( (G1, S1) be a proper extension of models of T and (G∗, S∗) be an |G|+-
saturated elementary extension of (G,S); then the natural inclusion (G,S)→ (G∗, S∗) extends to an
embedding (G′, S′)→ (G∗, S∗) of a substructure (G′, S′) of (G1, S1) properly extending (G,S).

If S 6= S1, pick an arbitrary g1 ∈ G1 with s1 := v(g1) ∈ S1 \ S. Then |G|+-saturation of (G∗, S∗)
yields an element s∗ of S∗ such that for each s ∈ S we have s < s∗ iff s < s1, and by Lemma 2.6,
setting G′ := G ⊕ Fpg1 and S′ := S ∪ {s1} gives rise to a substructure (G′, S′) of (G1, S1) with the
required property.

Now suppose S = S1. Then G 6= G1; pick an arbitrary g1 ∈ G1 \G. Then [2, Lemma 2.2.18] yields
a divergent pc-sequence (gρ) in G with gρ ; g1, and |G|+-saturation of (G∗, S∗) yields an element g∗

of G∗ with gρ ; g∗ (see the proof of [2, Lemma 2.2.5]). In this case, setting G′ := G ⊕ Fpg1 and
S′ := S we obtain a substructure (G′, S′) of (G1, S1) with the required property. �

Corollary 2.10. The L-theory T is complete; it is the model completion of T−.

Hence if (G,S) |= T and G0 is a subgroup of G with v(G0) = S, then (G0, S) is an elementary
substructure of (G,S). In particular, we have (H0,Q) � (H,Q) where H0 :=

{
h ∈ H : supp(h) finite

}
.

Remark. The previous proposition and its corollary can also be deduced (in a one-sorted setting) from
more general results in [51].

2.3. Indiscernible sequences. Let (G,S) |= T . In the following two lemmas we prove some prop-
erties of nonconstant indiscernible sequences in G. For this let (gi)i∈I be a sequence in G where I is a
nonempty linearly ordered set without a largest or smallest element. We let I∗ be the set I equipped
with the reversed ordering ≥.
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Lemma 2.11. Suppose (gi) is nonconstant and indiscernible. Then exactly one of the following holds:

(1) v(gi − gj) < v(gj − gk) for all i < j < k in I (we say that (gi) is pseudocauchy); or
(2) v(gi − gj) > v(gj − gk) for all i < j < k in I (so the sequence (gi)i∈I∗ is pseudocauchy).

Proof. Choose elements 0 < 1 < · · · < p + 1 of I and consider the p + 1 elements h0 := g0 −
gp+1, . . . , hp := gp − gp+1 of G. Let m, n range over {0, . . . , p}. We have three cases to consider:

Case 1: v(hm) = v(hn) for all m, n. Then by the Hahn axiom, for m ≥ 1 we get km ∈ {1, . . . , p− 1}
such that v(h0−kmbm) > v(h0). By the pigeonhole principle, there are 1 ≤ m < n such that km = kn.
Now note that

v(h0) < v
(
(h0 − kmhm)− (h0 − knhn)

)
= v

(
km(hn − hm)

)
= v(hn − hm) = v(gn − gm)

and thus

v(gn − gp+1) = v(hn) = v(h0) < v(gn − gm)

and so we are in case (2), by indiscernibility.

Case 2: There are m < n such that v(hm) < v(hn). Then by indiscernibility we are in case (1).

Case 3: There are m < n such that v(hm) > v(hn). We will actually show that this case cannot
happen. Note that in this case

v(gm − gn) = v
(
hm − hn

)
= v(hn) = v(gn − gp+1).

Thus by indiscernibility, for all i < j < k < l in I we have

v(gi − gj) = v(gj − gk) = v(gk − gl)

and thus taking an element i < m in I we have

v(hm) = v(gm − gp+1) = v(gi − gm) = v(gm − gn) = v(gn − gp+1) = v(hn),

a contradiction. �

In the rest of this subsection we let A ⊆ G and B ⊆ S.

Lemma 2.12. Suppose (gi) is nonconstant and AB-indiscernible, and let s ∈ v(A)∪B. Then either

(1) v(gi − gj) > s for all i 6= j, or
(2) v(gi − gj) < s for all i 6= j.

Proof. By Lemma 2.11 we have v(gi − gj) 6= v(gk − gl) for all i < j < k < l, and with 2 ∈ {<,=, >},
by s-indiscernibility of (gi): if v(gi − gj) 2 s for some pair i < j, then v(gi − gj) 2 s for all i < j. �

The two lemmas above motivate the following definition:

Definition 2.13. We say that (gi) is pre-AB-indiscernible if

(1) exactly one of the following is true:
(a) (gi)i∈I is pseudocauchy, or
(b) (gi)i∈I∗ is pseudocauchy;

(2) for each s ∈ v(A) ∪B, either
(a) v(gi − gj) > s for all i 6= j, or
(b) v(gi − gj) < s for all i 6= j;

(3) for every a ∈ A, exactly one of the following is true:
(a)

(
v(gi − a)

)
is constant,

(b)
(
v(gi − a)

)
is strictly increasing,

(c)
(
v(gi − a)

)
is strictly decreasing.
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If (gi) is nonconstant and AB-indiscernible, then it is pre-AB-indiscernible, by Lemmas 2.11 and 2.12
and A-indiscernibility of (gi). To show a converse, we first record some properties of pre-AB-
indiscernible sequences. We say that (gi) is a “pc-sequence” if it is pseudocauchy.

Lemma 2.14. Suppose (gi) is a pre-AB-indiscernible pc-sequence; then for each i the value si :=
v(gi − gj), where j > i, does not depend on j, and

(2′) for each s ∈ v(A) ∪B, either
(a) si > s for all i, or
(b) si < s for all i,

(3′) for each a ∈ A, either
(a)

(
v(gi − a)

)
is constant, and si > v(gj − a) for each i, j, or

(b) si = v(gi − a) for all i.

Proof. The first statement is clear since (gi) is a pc-sequence, and implies (2′) by property (2) in
Definition 2.13. To show (3′), let a ∈ A. Suppose (3)(a) in Definition 2.13 holds, and let s be the
common value of the v(gi − a); then v(gi − gj) ≥ s for all i < j, and since (si) is strictly increasing
and I does not have a smallest element, we obtain si = v(gi − gj) > s for i < j. If (3)(b) holds, then
si = v(gi − a) for each i. Case (3)(c) does not occur: otherwise, for i < j < k we have

si = v(gi − gj) = v
(
(gi − a) + (a− gj)

)
= v(gj − a)

and similarly si = v(gk − a), which is impossible. This yields (3′). �

We now arrive at our classification of nonconstant indiscernible sequences from G:

Proposition 2.15. Suppose A is a subgroup of G and (gi) is nonconstant. Then (gi) is AB-in-
discernible iff (gi) is pre-AB-indiscernible.

Proof. Suppose (gi) is pre-AB-indiscernible. To show that (gi) is AB-indiscernible we can assume
that (gi) is a pc-sequence; so for each i the value si := v(gi − gj), where j > i, does not depend on j.
For a ∈ A such that

(
v(gi− a)

)
is constant, denote by sa the common value of the v(gi− a). Let now

t(x1, . . . , xn) = k1x1 + · · ·+ knxn + a (k1, . . . , kn ∈ Z, a ∈ A)

be an LA-term of sort sg. By quantifier elimination (Proposition 2.9) and Lemma 2.14 it is enough
to show that

• v
(
t(gi1 , . . . , gin)

)
is constant and contained in v(A) for i1 < · · · < in, or

• there is g ∈ A such that v(gi − a) is constant and v
(
t(gi1 , . . . , gin)

)
= sa for i1 < · · · < in, or

• there is an m ∈ {1, . . . , n} such that v
(
t(gi1 , . . . , gin)

)
= sim for i1 < · · · < in.

For this we can assume km /∈ pZ for some m, since otherwise t(g) = a for all g ∈ G, and we are done;
take m minimal such that km /∈ pZ. Set k := k1 + · · ·+ kn. We distinguish two cases:

Case 1: k ∈ pZ. Then

t(h1, . . . , hn) = k1(h1 − hn) + · · ·+ kn−1(hn−1 − hn) + a for all h1, . . . , hn ∈ G.

Let s := va. If (2′)(a) in Lemma 2.14 holds, then v
(
t(gi1 , . . . , gin)

)
= s for i1 < · · · < in in I; if (2′)(b)

holds, then m < n, and v
(
t(gi1 , . . . , gin)

)
= sim for i1 < · · · < in in I.

Case 2: k /∈ pZ. Then we can take g ∈ A such that

t(h1, . . . , hn) = k1(h1 − hn) + · · ·+ kn−1(hn−1 − hn) + k(hn − h) for all h1, . . . , hn ∈ G.

If (3′)(a) holds, then v
(
t(gi1 , . . . , gin)

)
= sa for i1 < · · · < in in I; whereas if (3′)(b) holds, then

v
(
t(gi1 , . . . , gin)

)
= sim for i1 < · · · < in in I. �

Corollary 2.16. T is distal.
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Proof. By Corollary 1.26 it suffices to prove that the structure induced on the group sort sg of
models of T is distal. For this, suppose (gi)i∈I as above is indiscernible, the linearly ordered set I
is dense, and 0 is an element of I such that (gi)i∈I 6= is AB-indiscernible, where I 6= := I \ {0}; by
Proposition 1.10, it is enough to show that then (gi)i∈I is AB-indiscernible. This is clear if (gi)i∈I
is constant; thus we may assume that (gi)i∈I is nonconstant. Replacing A by the subgroup of G
generated by A we can also arrange that A is a subgroup of G, and by Lemma 2.11, that (gi)i∈I
is a pc-sequence. Let si := v(gi − gj) where j > i is arbitrary. Let s ∈ v(A) ∪ B; if si > s for
all i ∈ I 6=, then also s0 > s, and similarly with “<” in place of “>”. Together with Lemma 2.12
applied to (gi)i∈I 6= , this implies that (2) in Definition 2.13 holds. Similarly, using Lemma 2.14(3′)
for (gi)i∈I 6= we see that statement (3) in Definition 2.13 holds: Let a ∈ A. Suppose

(
v(gi − a)

)
i∈I 6=

is constant and si > v(gj − a) for all i, j ∈ I 6=; then si > v(gj − a) for all i ∈ I, j ∈ I 6= and thus
v(g0−a) = v

(
(g0− gj) + (gj −a)

)
= v(gj −a) for j 6= 0, hence (3)(a) holds. If si = v(gi−a) for i 6= 0,

then v(g0 − a) = v
(
(g0 − gj) + (gj − a)

)
= s0 for j > 0, hence (3)(b) holds. This shows that (gi)i∈I is

pre-AB-indiscernible, and hence AB-indiscernible by Proposition 2.15. �

We now use the above to give our promised example of an infinite ring of positive characteristic
interpretable a distal structure.

Example. Suppose R = Fp ×H, where H = H(Q,Fp) is as in the beginning of Section 2.1, equipped
with the componentwise addition and multiplication given by

(k, g) · (l, h) := (kl, kg + lh) for k, l ∈ Fp, g, h ∈ H.

Then R is a commutative ring of characteristic p, with multiplicative identity 1 = (1, 0). Moreover,
R is interpretable in the L-structure (H,Q) |= T , which is distal by Corollary 2.16.

Remark. Distality for a more general class of valued abelian groups and certain related structures is
established in [16], and is used there to demonstrate that in fact every abelian group (in the pure
group language) admits a distal expansion.

In the remainder of this section we point out a consequence of Fact 2.1 for henselian valued fields
with a distal expansion.

2.4. NIP in henselian valued fields. In this subsection K is a henselian valued field with value
group Γ and residue field k. We view K as a model-theoretic structure (K,O), where O is the
valuation ring of K. We recall the following facts; the proofs below are courtesy of Franziska Jahnke.

Fact 2.17. Suppose K is finitely ramified and k is NIP and perfect; then (K,O) is NIP.

Proof. In the case chark = 0 this follows from Delon [22] (using also [35]), and for chark > 0 and
unramified K this was shown by Bélair [5]. We reduce the finitely ramified case with chark = p > 0
to these cases. We use the notation and terminology of [2, Section 3.4]. First, after passing to
an elementary extension we can assume that (K,O) is ℵ1-saturated. Let ∆ := ∆0 be the smallest

convex subgroup of Γ containing vp, and let K̇ be the corresponding specialization of K. Then K̇ has
characteristic zero, cyclic value group ∆0, and residue field isomorphic to k; saturation implies that K̇
is complete. It is well-known (see, e.g. [69, Theorem 22.7]) that therefore K̇ is a finite extension of a

complete unramified discretely valued subfield L with the same residue field k as K̇. By [5], (L,OL)

is NIP, hence so is (K̇,OK̇). Now the ∆-coarsening (K, Ȯ) of K has residue field K̇, and hence is NIP

by [22]. The valuation ring of K̇ is definable in the pure field K̇ [50, Lemma 3.6]. Hence O is definable

in (K, Ȯ), and thus (K,O) is NIP. �

See Corollaries 5.18 and 5.23 below for versions of the preceding fact where k and Γ are permitted to
have additional structure. Here is a partial converse of Fact 2.17:



DISTALITY IN VALUED FIELDS AND RELATED STRUCTURES 19

Fact 2.18. Suppose (K,O) is NIP and k is finite; then K is finitely ramified.

Proof. We may assume that (K,O) is ℵ0-saturated. This time, we let ∆ be the biggest convex

subgroup of Γ not containing vp, and let K̇ be the corresponding specialization of K. Then K̇ has
characteristic p, value group ∆, and residue field isomorphic to k. The Shelah expansion of (K,O)

interprets every convex subgroup of Γ, and hence also the valued field (K̇,OK̇); in particular, (K̇,OK̇)
is NIP, by Fact 1.29(1). Now [48, Proposition 5.3] implies that ∆ = {0}, since k is finite. Hence for
every γ > 0 in Γ there is some n such that nγ ≥ vp. Saturation yields some n such that for every γ > 0
in Γ we have nγ ≥ vp; hence K is finitely ramified. �

Combining 2.1 and 1.15 with 2.18 implies:

Corollary 2.19. If (K,O) has a distal expansion, then K is finitely ramified and k has characteristic
zero or is finite.

Remark 2.20. If K is finitely ramified and k is finite, p = chark, then K has a specialization which
is p-adically closed of finite p-rank. (Let ∆ = ∆0 be as in the proof of Fact 2.17 and let K̇ be the

∆-specialization of K; then K̇ is henselian of mixed characteristic (0, p) with cyclic value group and
finite residue field k, hence is p-adically closed of finite p-rank [55, Theorem 3.1].)

See [1, Section 5.1] for a conjectural characterization of all NIP henselian valued fields.

3. Distality in Ordered Abelian Groups

In 1984, Gurevich and Schmitt [35] showed that every ordered abelian group is NIP. In this section,
we investigate distality for ordered abelian groups; the main result is Theorem 3.13 below. As a
warmup, in Section 3.1 we characterize distality for those ordered abelian groups which have quantifier
elimination in the Presburger language (see Theorem 3.2). This already applies to a variety of familiar
ordered abelian groups since it includes every ordered abelian group which is elementarily equivalent
to an archimedean one. In the rest of this section we assume m,n ≥ 1, and we let p, q range over the
set of prime numbers.

An ordered abelian group G is said to be non-singular if G/pG is finite for every p. The following
fact from [45, Proposition 5.1] will be used several times:

Fact 3.1. An ordered abelian group is dp-minimal if and only if it is non-singular.

3.1. The case of QE in LPres. In this subsection we consider ordered abelian groups in the Pres-
burger language

LPres =
{

0, 1, +, −, <, (≡m)
}
.

We naturally construe a given ordered abelian group G as an LPres-structure: the symbols 0, +, −, <
have their usual interpretations; the constant symbol 1 is interpreted by the least positive element
of G, provided G has one, and by 0 otherwise; and for each m, the binary relation symbol ≡m is
interpreted as equivalence modulo m, i.e., for g, h ∈ G,

g ≡m h :⇐⇒ g − h ∈ mG.
In the rest of this subsection G is an ordered abelian group, and all ordered abelian groups will be
construed as LPres-structures. Recall that an ordered abelian group is regular if it is elementarily
equivalent to an archimedean ordered abelian group; moreover, G is regular if either |G/nG| = n
for each n ≥ 1, or nG is dense in G for each n ≥ 1. In the first case, G is elementarily equivalent
to (Z; +, <), whereas any two dense regular ordered abelian groups G, H are elementarily equivalent iff
for each p either G/pG and H/pH are infinite or |G/pG| = |H/pH|. (See [59, 73].) In this subsection
we show the following.
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Theorem 3.2. Suppose G is regular; then the following are equivalent:

(1) G is distal;
(2) G is dp-minimal;
(3) G is non-singular.

Theorem 3.2 applies to archimedean G, so the ordered abelian groups (Z; +, <), (Q; +, <), and
(Z(2); +, <) are distal, whereas (Q>0; · , <) is not.

The rest of this subsection is devoted to proving Theorem 3.2. We rely on the following:

Fact 3.3 (Weispfenning, [71]). An ordered abelian group is regular if and only if it has QE in LPres.

We first note that the direction (2) ⇒ (1) in Theorem 3.2 holds by Fact 1.5. Furthermore, the
equivalence (2) ⇔ (3) is Fact 3.1. Thus it suffices to establish (1)⇒ (3). We will actually prove the
contrapositive. For the rest of the subsection we thus fix some p and assume:

(1) G is regular;
(2) G/pG is infinite;
(3) G is sufficiently saturated.

We shall prove that under these assumptions, G is not distal. By QE in LPres, we can easily describe
indiscernible sequences in a single variable:

Lemma 3.4. A sequence (ai)i∈I in G is indiscernible if and only if for all i1 < · · · < in and
j1 < · · · < jn from I, k, k1, . . . , kn ∈ Z, and m ≥ 2 we have

(1) k · 1 +
∑n
l=1 klail > 0 ⇐⇒ k · 1 +

∑n
l=1 klajl > 0;

(2) k · 1 +
∑n
l=1 klail = 0 ⇐⇒ k · 1 +

∑n
l=1 klajl = 0; and

(3) k · 1 +
∑n
l=1 klail ≡m 0 ⇐⇒ k · 1 +

∑n
l=1 klajl ≡m 0.

We think of (1) and (2) in Lemma 3.4 as geometric conditions and of (3) as algebraic conditions. It
is easy to prescribe a certain choice of geometric conditions in a rapidly increasing sequence; here we
say that a sequence (ai)i∈I in G is rapidly increasing if for all i < j from I and m, n,

0 ≤ m1 < nai < aj .

(That is, ai > 1 for all i, and the ai and 1 lie in distinct archimedean classes.)

Lemma 3.5. Suppose (ai)i∈I is a rapidly increasing sequence in G. Then for all i1 < · · · < in and
j1 < · · · < jn from I and all k, k1, . . . , kn ∈ Z, we have

(1) k · 1 +
∑n
l=1 klail > 0 ⇐⇒ k · 1 +

∑n
l=1 klajl > 0 ⇐⇒ (kn, . . . , k1, k) >lex (0, . . . , 0), and

(2) k · 1 +
∑n
l=1 klail = 0 ⇐⇒ k · 1 +

∑n
l=1 klajl = 0 ⇐⇒ k = k1 = · · · = kn = 0.

In general, it is more difficult to prescribe all of the algebraic conditions which hold in an indiscernible
sequence, but once we have an indiscernible sequence in G we can use the following:

Lemma 3.6. Suppose (ai)i∈I is an indiscernible sequence in G. Then for all distinct i1, . . . , in and
distinct j1, . . . , jn from I, all k, k1, . . . , kn ∈ Z and m ≥ 2, we have

(1) k · 1 +
∑n
l=1 klail = 0 ⇐⇒ k · 1 +

∑n
l=1 klajl = 0, and

(2) k · 1 +
∑n
l=1 klail ≡m 0 ⇐⇒ k · 1 +

∑n
l=1 klajl ≡m 0.

Proof. The sequence (ai) is indiscernible in the
{

0, 1,+,−, (≡m)
}

-reduct of G. However, this reduct
is just (an expansion by definitions and constants of) the underlying abelian group of G, which is
stable. Thus the sequence (ai) in this reduct is totally indiscernible, which implies the conclusion of
the lemma. �

Proposition 3.7. G is not distal.
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Proof. First, using Ramsey we obtain a rapidly increasing indiscernible sequence (bi)i∈(−1,1) in G such
that bi 6≡p bj for all i < j from (−1, 1). The argument uses that G/pG is infinite and that each coset
of pG is cofinal in G. We will use (bi) to obtain our counterexample to distality. For this, consider the
collection Φ(x) of LPres-formulas, with x = (xi)i∈(−1,1], consisting exactly of the following formulas:

(Φ1) for every i < j from (−1, 1] and every m, n, the formula

0 ≤ m1 < nxi < xj ,

(Φ2) for every i1 < · · · < in from (−1, 1) and k, k1 . . . , kn ∈ Z, if G |= k · 1 +
∑n
l=1 klbil ≡m 0, the

formulas

k · 1 +
∑n
l=1 klxil ≡m 0 and

(
k · 1 +

∑n
l=1 klxil ≡m 0

)
[x1/x0],

and otherwise the formulas

k · 1 +
∑n
l=1 klxil 6≡m 0 and

(
k · 1 +

∑n
l=1 klxil 6≡m 0

)
[x1/x0],

where [x1/x0] denotes replacing each occurrence of x0 in the preceding expression by x1, and
(Φ3) the formula x0 ≡p x1.

Thus Φ(x) expresses that (xi)i∈(−1,1] is rapidly increasing and satisfies the same algebraic conditions
as (bi), x0 and x1 have the same algebraic relations with (xi)i∈(−1,1)\{0}, however x1 and x0 are
congruent modulo p.

Claim 3.8. Φ(x) is finitely satisfiable in G.

Proof of Claim. Let Φ0 ⊆ Φ be finite. Set b∗i := bi for i ∈ (−1, 1); then clearly (b∗i )i∈(−1,1) satisfies
all formulas from (Φ1), (Φ2), and (Φ3) which do not involve x1. We claim that we can choose b∗1 ∈ G
so that (b∗i )i∈(−1,1] satisfies Φ0. To see this let N be the product of all moduli occurring in Φ0, and
pick b∗1 to be a sufficiently large member of the coset b0 + pNG. The “sufficiently large” ensures
that all formulas in Φ0 coming from (Φ1) are satisfied, the choice of N ensures that b0 ≡m b∗1 for all
relevant m, and thus all formulas from (Φ2) are satisfied, and clearly b0 ≡p b∗1. �

By the claim and after replacing our original sequence (bi)i∈(−1,1), we can assume that we have
some b1 ∈ G such that (bi)i∈(−1,1] realizes Φ(x). It is clear that (bi)i∈(−1,1) is indiscernible, and
that (bi)i∈(−1,1) is not b1-indiscernible. It remains to establish:

Claim 3.9. (bi)i∈(−1,1)\{0} is b1-indiscernible.

Proof of Claim. It is sufficient to show that (bi)i∈(−1,1]\{0} is indiscernible. By (Φ1) this sequence
is rapidly increasing, thus by Lemma 3.5 the geometric conditions (1) and (2) of Lemma 3.4 hold.
It suffices to check (3) from Lemma 3.4. Let i1 < · · · < in−1 < in = 1 from (−1, 0) ∪ (0, 1] and
j1 < · · · < jn from (−1, 1), and let k, k1, . . . , kn ∈ Z; it is sufficient to show that then

k · 1 +
∑n
l=1 klbil ≡m 0 ⇐⇒ k · 1 +

∑n
l=1 klbjl ≡m 0.

Now

k · 1 +
∑n
l=1 klbil ≡m 0 ⇐⇒

(
k · 1 +

∑n
l=1 klbil ≡m 0

)
[b0/b1]

by (Φ2), and (
k · 1 +

∑n
l=1 klbil ≡m 0

)
[b0/b1] ⇐⇒ k · 1 +

∑n
l=1 klbjl ≡m 0,

by Lemma 3.6 and the fact that (bi)i∈(−1,1) is indiscernible. �

This concludes the proof of the proposition. �
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3.2. A review of the Cluckers-Halupczok language. In the rest of the section, we consider or-
dered abelian groups which do not in general have QE in LPres. We use the language Lqe introduced by
Cluckers and Halupczok [19] (see also [39]) for their (relative) quantifier elimination result for ordered
abelian groups. This language is similar in spirit to one introduced by Gurevich and Schmitt [35],
however it is more in line with our modern paradigm of many-sorted languages and perhaps a little
more intuitive.

The rest of the subsection is taken essentially from [19]. In what follows G is an ordered abelian
group and we use the notation H b G to denote that H is a convex subgroup of G. We introduce Lqe

and at the same time describe how G is viewed as an Lqe-structure G. We begin by listing the sorts
of Lqe: besides the main sort G whose underlying set is that of the ordered abelian group G, these are
the auxiliary sorts Sp, Tp, T +

p (one for each p) associated with G. Here is how they are interpreted
in G:

Definition 3.10.

(1) For a ∈ G \ pG, let Gp(a) be the largest convex subgroup of G such that a /∈ Gp(a) + pG, and
for a ∈ pG let Gp(a) := {0}; then the underlying set of sort Sp is

{
Gp(a) : a ∈ G

}
;

(2) for b ∈ G, set G−p (b) :=
⋃{

Gp(a) : a ∈ G, b /∈ Ga
}

, where the union over the empty set is

declared to be {0}; then the underlying set of sort Tp is
{
G−p (b) : b ∈ G

}
;

(3) For b ∈ G, define G+
p (b) :=

⋂{
Gp(a) : a ∈ G, b ∈ Gp(a)

}
, where the intersection over the

empty set is G; then the underlying set of sort T +
p is

{
G+
p (b) : b ∈ G

}
.

Below we don’t distinguish notationally between the sort Sp and its underlying set (so we can write
Sp =

{
Gp(a) : a ∈ G

}
), and similar for the other auxiliary sorts. We let α range over (the underlying

sets of) the auxiliary sorts. In each case, α is a convex subgroup of G; if we want to stress this role
of α as a convex subgroup of G (rather than as an abstract element of the underlying set of a certain
sort of the structure G), we denote it by Gα, and we let πα : G � G/Gα be the natural surjection.
We let 1α denote the minimal positive element of G/Gα if the ordered abelian group G/Gα is discrete,
and set 1α := 0 ∈ G/Gα otherwise; for k ∈ Z we let kα := k · 1α. For a, b ∈ G and � denoting one of
the relation symbols =, <, or ≡m we also write a �α b+ kα if πα(a) � πα(b) + kα holds in the ordered
abelian group G/Gα. We also set

G[m]
α :=

⋂
Gα(HbG

(H +mG) and a ≡[m]
n,α b :⇐⇒ a− b ∈ G[m]

α + nG (a, b ∈ G).

We now describe the primitives of the Lqe-structure G; these are:

(G1) on the main sort G, the usual primitives 0, +, −, ≤ of the language of ordered abelian groups;

(G2) binary relations “α ≤ α′” on
(
Sp
·
∪ Tp

·
∪ T +

p

)
×
(
Sq
·
∪ Tq

·
∪ T +

q

)
, interpreted as Gα ⊆ Gα′

(each pair (p, q) giving rise to nine separate binary relations);
(G3) predicates for the relations a �α b + kα, where � ∈

{
=, <, (≡m)

}
and k ∈ Z (each of these

being ternary relations on G×G×X where X ∈ {Sp, Tp, T +
p });

(G4) for m ≥ n, the ternary relation x ≡[qm]
qn,α y on G×G× Sp;

(G5) a unary predicate discr of sort Sp which holds of α if and only if G/Gα is discrete;
(G6) for d ∈ N and n, two unary predicates of sort Sp defining the sets{

α ∈ Sp : dimFp
(
G[pn]
α + pG

)/(
G[pn+1]
α + pG

)
= d
}

and{
α ∈ Sp : dimFp

(
G[pn]
α + pG

)/
(Gα + pG) = d

}
.

We let A be the set of auxiliary sorts associated to G, and let LAqe be the sublanguage of Lqe with
sorts A and primitives listed in (G2), (G5), (G6).
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Definition 3.11. Let φ(x, η) be an Lqe-formula, where x and η are multivariables of sort G and A,
respectively. We say that φ(x, η) is in family union form if

φ(x, η) =

n∨
i=1

∃θ
(
ξi(η, θ) ∧ ψi(x, θ)

)
,

where θ is a multivariable of sort A, ξi(η, θ) are LAqe-formulas, each ψi(x, θ) is a conjunction of basic
formulas (i.e., atomic or negated atomic formulas), and for each ordered abelian group G, viewed as
an Lqe-structure G as above, the formulas ξi(η, α) ∧ ψi(x, α), with i ranging over {1, . . . , n} and α
over tuples of the appropriate sorts in G, are pairwise inconsistent.

The following is the main result from [19]:

Fact 3.12. In the theory of ordered abelian groups, each Lqe-formula is equivalent to an Lqe-formula
in family union form.

3.3. The case where all Sp are finite. The main result of this section is the following.

Theorem 3.13. Suppose that Sp is finite for all p. Then G is distal if and only if G is non-singular.

The hypothesis of the theorem holds if G is strongly dependent, by [12, 25, 30, 37]. The proof of
Theorem 3.13, which we now outline, is a generalization of the proof of Theorem 3.2, using Fact 3.12.

For the rest of this section, G is an ordered abelian group such that for each p the underlying set of
sort Sp is finite. Note that then the underlying sets of sorts Tp and T +

p are also finite, for each p.
It suffices to show that if G/pG is infinite for some p, then G is not distal. Here we construe G as
an Lqe-structure, together with constants which name all of A; since each Sp is finite, the underlying
sets of auxiliary sorts will not grow when we pass to an elementary extension of G. Thus we can also
assume that G is sufficiently saturated. In this setting, Fact 3.12 specializes as follows:

Proposition 3.14. In G, each Lqe-formula φ(x), where x is a multivariable of sort G, is equivalent
to a finite boolean combination of atomic formulas in which the only occurring predicates are those
from (G3).

Proof. In Fact 3.12, the quantifier “∃θ” can be replaced by a finite disjunction over all possible tuples
of constants of the same sort as θ. Upon substitution of these constants, each “ξi(θ)” becomes a
sentence, so in the theory of G, it is equivalent to ⊥ or >. Likewise for the unary relation discr(α),
the unary “dimension” relations applied to α, and the binary relations α ≤ α′. Finally, as each Sp is

finite, the ternary relations x ≡[qm]
qn,α y from (G4) are already taken care of by the relations x ≡qn,α′ y:

by [19, Lemma 2.4(2)] we have G
[qm]
α = Gα′ + qmG where α′ is the successor of α in Sqm with respect

to the linear ordering ≤ of Sqm from (G2). �

Proposition 3.14 should be viewed as saying that G has QE in a language which is essentially a union
of countably many copies of the Presburger language, one for each of the quotient groups G/Gα. With
this point of view, it is fairly straightforward to generalize everything in subsection 3.1 by including
“for every α” in many places. For instance, we have the following generalization of Lemma 3.4:

Lemma 3.15. A sequence (ai)i∈I in G is indiscernible iff for all i1 < · · · < in and j1 < · · · < jn
from I, all k, k1, . . . , kn ∈ Z, all α, and m ≥ 2, we have

(1)
∑n
l=1 klail >α kα ⇐⇒

∑n
l=1 klajl >α kα;

(2)
∑n
l=1 klail =α kα ⇐⇒

∑n
l=1 klajl =α kα; and

(3)
∑n
l=1 klail ≡m,α kα ⇐⇒

∑n
l=1 klajl ≡m,α kα.
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Next, following the proof of Theorem 3.2, the “rapidly increasing sequence” we construct here is a
sequence (ai)i∈I in G such that for all i < j from I, all m, n, and all α,

0 ≤α m · 1α <α n · ai <α aj .

That is, the sequence (ai) is a rapidly increasing sequence in each of the countably many quo-
tients G/Gα. This gives rise to an appropriate generalization of Lemma 3.5. We also use the fact that
the (unordered) abelian group reducts of the quotients G/Gα are all stable, to get a generalization of
Lemma 3.6. Finally, the proof of Proposition 3.7 generalizes to conclude our proof of Theorem 3.13.

We conclude this section with the following conjecture.

Conjecture 3.16. Every ordered abelian group admits a distal expansion.

There are some partial results towards this conjecture, but the general case remains open.

4. Distality and Short Exact Sequences of Abelian Groups

In this section we prove a general quantifier elimination theorem for certain short exact sequences of
abelian groups, and analyze distality in this setting. These results are used in Sections 5 and 6 below.
In Section 4.1 we show our main elimination result. The remaining subsections of this section discuss
an application to the preservation of distality as well as variants and refinements.

4.1. Quantifier elimination for pure short exact sequences. Let

0→ A
ι−−→ B

ν−−→ C → 0

be a short exact sequence of morphisms of abelian groups which is pure, which means that ι(A) is a
pure subgroup of B. (For example, this always holds if C is torsion-free.) We treat such a pure short
exact sequence as a three-sorted structure (A,B,C) consisting of three abelian groups, with the two
maps ι : A→ B and ν : B → C added as primitives. If A is ℵ1-saturated, then the short exact sequence
splits, i.e., B is the direct sum of A and C, with ι and ν being the natural embedding respectively
projection (see, e.g., [2, Corollary 3.3.38]). So the complete theory of (A,B,C) is uniquely determined
by the theory of A and the theory of C. Moreover, if (A,C,R0, R1, . . . ) is an arbitrary expansion of the
pair (A,C), then the theory of (A,B,C,R0, R1, . . . ) is determined by the theory of (A,C,R0, R1, . . . ).
For a syntactical formulation of this observation let us fix the languages involved:

• Lac = {0a,+a,−a, 0c,+c,−c}, the language of the pair (A,C) of abelian groups;
• Lb = {0b,+b,−b}, the language of abelian groups on B;
• Labc = Lac ∪ Lb ∪ {ι, ν}, the language of the three-sorted structure (A,B,C);
• L∗ac the language of an expansion (A,C,R0, R1, . . . ) of the Lac-structure (A,C);
• L∗abc = Labc ∪ L∗ac, the language of (A,B,C,R0, R1, . . . ).

Let Tabc be the Labc-theory of all structures arising from pure exact sequences as above. Viewing Tabc

as a set of sentences in the expanded language L∗abc, the observation above then reads as follows:

Corollary 4.1. Every L∗abc-sentence is equivalent in Tabc to an L∗ac-sentence.

This is also a consequence of the quantifier elimination theorem to be proved in this section. For its
formulation we note that for each n, our short exact sequence fits into a commutative diagram of
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group morphisms

0

��

0

��

0

��
0 // nA //

⊆
��

nB //

⊆
��

nC //

⊆
��

0

0 // A
ι //

πn
��

B
ν //

��

C //

��

0

0 // A/nA //

��

B/nB //

��

C/nC //

��

0

0 0 0

with exact rows and columns. We now expand (A,B,C) by new sorts with underlying sets A/nA
together with two unary functions: the natural surjection πn : A → A/nA and a function ρn : B →
A/nA, which, on ν−1(nC), is the composition of the group morphisms

ν−1(nC) = nB + ι(A)→
(
nB + ι(A)

)
/nB

∼−→ ι(A)/
(
nB ∩ ι(A)

) ∼−→ A/nA,

and zero outside ν−1(nC). Note that ρ0 : B → A agrees with the inverse of ι : A
∼−→ ι(A) on ι(A) =

ν−1(0) and is zero on B \ ι(A). (We identify A with A/0A in the natural way.) Note also that
πn = ρn ◦ ι. Moreover, if our short exact sequence splits, and π′ : B → A is a left inverse of ι, then ρn
agrees with πn ◦ π′ on ν−1(nC).

We denote the language of this expansion of the Labc-structure (A,B,C) by

Labcq = Labc ∪ {ρ0, ρ1, . . . , π0, π1, . . . },
and we let Tabcq be the Labcq-theory of all these structures arising from a pure exact sequence as
above. We also let

Lacq = Lac ∪ {π0, π1, . . . },
a sublanguage of Labcq. Note that the group operations on A/nA are 0-definable in the reduct of Tabcq

to the two-sorted language La∪{πn}, where La = {0a,+a,−a} is the language of the abelian group A.
Note also that πn, ρn are interpretable in the Labc-reduct of Tabcq; in particular, if M = (A,B,C, . . . )
and M ′ = (A′, B′, C ′, . . . ) are models of Tabcq, then every isomorphism between the Labc-reducts
of M , M ′ extends uniquely to an Labcq-isomorphism M →M ′.

Let the multivariables xa, xb, xc be of sort A, B and C, respectively. The Labcq-terms of the
form ρn

(
t(xb)

)
or ν

(
t(xb)

)
, for an Lb-term t(xb), are called special.

Theorem 4.2. In Tabcq every Labc-formula φ(xa, xb, xc) is equivalent to a formula

φacq

(
xa, σ1(xb), . . . , σm(xb), xc

)
where the σi are special terms and φacq is a suitable Lacq-formula.

For example, the formula xb = 0b is equivalent to ρ0(xb) = 0a ∧ ν(xb) = 0c. Also, xb is divisible by n
if and only if ρn(xb) = πn(0a) and ν(xb) is divisible by n.

Proof. Let σ0, σ1, . . . list all special terms. Given a tuple b in a model of Tabcq of the same sort as xb,
let us write σ(b) for the tuple σ0(b), σ1(b), . . . . Assume that we have two models M = (A,B,C, . . . )
and M ′ = (A′, B′, C ′, . . . ) of Tabcq. We let a, b, c range over tuples in M of the same sort as xa,
xb, xc, respectively, and similarly with the tuples a′, b′, c′ in M ′. Suppose we are given a, b, c in M
and a′, b′, c′ in M ′ such that the type of aσ(b)c in the Lacq-reduct Macq of M is the same as the
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type of a′σ(b′)c′ in the Lacq-reduct M ′
acq of M ′. It is enough to show that then abc and a′b′c′ have

the same type in M and in M ′, respectively.
For this, after replacing M , M ′ by suitably saturated elementarily equivalent structures, we may

assume that there is an isomorphism Macq

∼=−→ M ′
acq with aσ(b)c 7→ a′σ(b′)c′. We can then also

assume that the short exact sequences underlying M and M ′ split, thus this isomorphism extends to

an isomorphism M
∼=−→M ′. Hence we may assume that M = M ′, a = a′, c = c′ and σ(b) = σ(b′),

and it suffices to show that there is an automorphism of M which is the identity on A and C and
maps b to b′.

Let B0 denote the subgroup of B generated by b and B′0 the subgroup of B′ generated by b′.
Since for each Lb-term t(xb) we have t(b) = 0 if and only if t(b′) = 0, we obtain an isomorphism
f0 : B0 → B′0 such that f0(t(b)) = t(b′) for all Lb-terms t(xb); in particular, we have f0(b) = b′.
Furthermore we have ρn(b0) = ρn(f0(b0)) and ν(b0) = ν(f0(b0)) for all b0 ∈ B0. Set

A0 := B0 ∩ ι(A) = B′0 ∩ ι(A), C0 := ν(B0) = ν(B′0).

The map b0 7→ ι−1
(
f0(b0) − b0

)
is a group morphism B0 → A. Since f0 fixes all elements of A0,

the image of b0 ∈ B0 under this morphism only depends on ν(b0). So f0 induces a group morphism
h0 : C0 → A satisfying

f0(b0) = b0 + ι
(
h0(ν(b0))

)
for all b0 ∈ B0.

We show now that h0 is a partial morphism C → A in the sense of [74, p. 159], that is, h0(nC ∩C0) ⊆
nA for each n: given c ∈ nC ∩ C0, choose b0 ∈ B0 with ν(b0) = c; since ρn is a group morphism
on ν−1(nC), we then have

πn
(
h0(c)

)
= ρn

(
ι(h0(c))

)
= ρn

(
f0(b0)− b0

)
= ρn

(
f0(b0)

)
− ρn(b0) = 0,

from which we conclude that h0(c) ∈ nA.
Finally we may assume that A is pure injective. Then the partial morphism h0 extends to a group

morphism h : C → A [74, Corollary 3.3]. The formula b 7→ b + ι
(
h(ν(b))

)
defines an automorphism

of B which together with the identity on all other sorts is an automorphism of M which maps b to b′,
as required. �

The following corollary generalizes Corollary 4.1; here we view Tabcq as a set of L∗abcq-sentences.

Corollary 4.3. In Tabcq every L∗abc-formula φ∗(xa, xb, xc) is equivalent to a formula

φ∗acq

(
xa, σ1(xb), . . . , σm(xb), xc

)
where the σi are special terms and φ∗acq is a suitable formula in the language L∗acq := Lacq ∪ L∗ac.

Proof. This has exactly the same proof as Theorem 4.2. We show instead that the corollary follows
directly from the theorem itself. It is clear that the collection of all formulas equivalent in Tabcq to one
having the form in the statement of the corollary contains all atomic formulas, is closed under boolean
combinations and under quantification over A and over C. It remains to show that this collection
of formulas is also closed under quantification over B. Let yb be a multivariable of sort B disjoint
from xb, and consider the formula

φ∗(xa, xb, xc) = ∃ yb ψ
∗(xa, σ1(xb, yb), . . . , σm(xb, yb), xc

)
with special terms σi and a suitable L∗acq-formula ψ∗. We may assume that we have k ∈ {0, . . . ,m}
and n1, . . . , nk ∈ N such that σi is of sort A/niA for i = 1, . . . , k and of sort C for i = k + 1, . . . ,m.
Theorem 4.2 implies that for distinct variables z1, . . . , zk of sort A and zk+1, . . . , zm of sort C, the
Labcq-formula

∃ yb

(
k∧
i=1

πni(zi) = σi(xb, yb) ∧
m∧

i=k+1

zi = σi(xb, yb)

)
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is equivalent in Tabcq to a formula

χ
(
z1, . . . , zm, τ1(xb), . . . , τn(xb)

)
where the τj are special terms and χ is a suitable Lacq-formula. Then φ∗ is equivalent to

∃z1 · · · ∃zm
(
χ
(
z1, . . . , zm, τ1(xb), . . . , τn(xb)

)
∧ ψ∗

(
xa, πn1

(z1), . . . , πnk(zk), zk+1, . . . , zm, xc

))
,

which has the desired form. �

Remark. Corollary 4.3 implies the quantifier elimination result in [15]: when all quotients A/nA are
finite, the maps ρn are quantifier-free definable in the language used there.

4.2. Preservation of distality. In this section we prove a result on preservation of distality in pure
short exact sequences. Let

0→ A
ι−−→ B

ν−−→ C → 0

be a pure short exact sequence of morphisms of abelian groups. We allow here A and C to be
equipped with arbitrary additional structure, and denote the respective languages of these expansions
by L∗a and L∗c . We also let M =

(
A, (A/nA)n≥0, B,C; . . .

)
be the corresponding L∗abcq-structure as

in Section 4.1. In this situation we have:

Remark 4.4.

(1) The L∗abcq-structure M and its L∗abc-reduct (A,B,C) are bi-interpretable.

(2) The collection of the sorts A and A/nA (n ≥ 0) is fully stably embedded in M (by the QE
result in the previous section), and the full structure induced on it is bi-interpretable with A.

(3) Similarly, the sort C is fully stably embedded in M .

Lemma 4.5. M is NIP if and only if both the L∗a-structure A and the L∗c-structure C are NIP.

Proof. The forward direction is clear. Suppose A and C are NIP. To show the M is NIP we may
assume that it is a monster model of its theory. Adding a function symbol for a right-inverse of ν to the
language L∗abcq, we obtain a structure that is bi-interpretable with a two-sorted structure consisting
of two sorts given by A and C with their full induced structure; this implies that M is NIP, as a
reduct of a NIP structure. �

Theorem 4.6. M is distal if and only if both A and C are distal.

Proof. The forward implication is immediate by Lemma 1.15 and Remark 4.4; we prove the converse.
Suppose A and C are distal; again, we may assume that M is a monster model of its theory, and by
Lemma 4.5, M is NIP. Assume towards contradiction that M is not distal; then by Remark 4.4(1),
its L∗abc-reduct is also not distal, and hence satisfies condition (3) in Corollary 1.11. Thus, also using
Remark 1.13, we obtain a partitioned L∗abc-formula ϕ(x; y), where |x| = 1, as well as an indiscernible
sequence (bi)i∈Q∞ of the same sort as x and some tuple d of the same sort as the multivariable y such
that (bi)i∈Q∞\{0} is d-indiscernible and M |= ϕ(bi; d) ⇐⇒ i 6= 0. By assumption, Remark 4.4 and
Lemma 1.16, the variable x is necessarily of sort B. We say that a tuple is contained in d if all its
components appear as components of d.

It is easy to see from the QE (Corollary 4.3) that the formula ϕ(x; d) is equivalent to a positive
boolean combination of formulas of the form:

(1) ψ∗
(
ν(t1(x, b′)), . . . , ν(tm(x, b′)), c

)
where b′ is a tuple of sort B, c is a tuple of sort C, both

contained in d, the tk are Lb-terms, and ψ∗ is an L∗c -formula.
(2) θ∗

(
a, ρn1(t1(x, b′)), . . . , ρnm(tm(x, b′))

)
where a is a tuple in A, b′ is a tuple in B, both

contained in d, the tk are Lb-terms, nk ∈ N, and θ∗ is an L∗aq-formula, where L∗aq =
L∗a ∪ {π0, π1, . . . }.
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By Remarks 1.12 and 1.13, it is enough to show that ϕ(x; y) cannot be of any of these forms. Below
we let i, j range over Q∞ and k over {1, . . . ,m}.

Suppose first that (1) holds. As ν is a group morphism, ψ∗
(
ν(t1(x, b′)), . . . , ν(tm(x, b′)), c

)
is equivalent

to a formula of the form ψ∗1
(
ν(x), c′

)
where c′ is a d-definable tuple of sort C and ψ∗1 is an L∗c -formula.

By choice of (bi), the sequence
(
ν(bi)

)
in C is indiscernible,

(
ν(bi)

)
i 6=0

is c′-indiscernible, and

M |= ψ∗1(ν(bi), c
′) ⇐⇒ M |= ϕ(bi, d) ⇐⇒ i 6= 0.

This contradicts distality of the structure induced on C.

Now suppose that we are in case (2). We may assume that for each k we have rk ∈ Z and a d-
definable b′k ∈ B with tk(bi, b

′) = rkbi − b′k for each i. Set Bnk = ν−1(nkC). By Case (1) applied to
the Lc-formulas defining nkC and its complement, the truth value of the condition “rkbi− b′k ∈ Bnk”
doesn’t depend on i. If rkbi − b′k /∈ Bnk for some/all i, then ρnk(rkbi − b′k) = 0 = ρnk(0b) for all i by
definition. Thus, replacing the term tk by 0b, we still have

M |= θ∗
(
a, ρn1(t1(bi, b

′)), . . . , ρnm(tm(bi, b
′))
)
⇐⇒ i 6= 0.

Hence we may assume that rkbi − b′k ∈ Bnk for all i. Repeating this argument for each k one by one,
we may reduce to the case that rkbi − b′k ∈ Bnk for all i, k. As Bnk is a subgroup of B, we have

rkbi − rkbj = (rkbi − b′k)− (rkbj − b′k) ∈ Bnk for all i, j.

Let bki := rkbi − rkb∞ ∈ Bnk and bk := b′k − rkb∞. Note that

bki − bk = rkbi − rkb∞ − (b′k − rkb∞) = rkbi − b′k ∈ Bnk
and hence bk ∈ Bnk . As ρnk restricts to a group morphism Bnk → A/nkA, we have

ρnk(rkbi − b′k) = ρnk(bki − bk) = ρnk(bki )− ρnk(bk) for all i.

Let βi := (β1
i , . . . , β

m
i ) and β := (β1, . . . , βm) where βki := ρnk(bki ), βk := ρnk(bk), and let x1, . . . , xm

be distinct variables with xk of sort A/nkA. Consider the L∗aq-formula

θ∗1(x1, . . . , xm, a, β) := θ∗(a, x1 − β1, . . . , xm − βm).

We then have:

• (βi)i∈Q is indiscernible (by construction, as (bi)i∈Q is b∞-indiscernible),
• (βi)i∈Q\{0} is aγ-indiscernible (by construction, as (bi)i∈Q\{0} is ab∞b

′
1 . . . b

′
m-indiscernible),

and, unwinding, for every i ∈ Q, in M we have

|= θ∗1(βi, a, β) ⇐⇒ |= θ∗
(
a, β1

i − β1, . . . , βmi − βm
)

⇐⇒ |= θ∗
(
a, ρn1

(b1i )− ρn1
(b1), . . . , ρnm(bmi )− ρnm(bm)

)
⇐⇒ |= θ∗

(
a, ρn1

(r1bi − b′1), . . . , ρnm(rmbi − b′m)
)

⇐⇒ i 6= 0.

This contradicts distality of the L∗aq-structure A. �

Remark. In this subsection we assumed that the L∗ac-structure (A,C,R0, R1, . . . ) expanding the Lac-
structure (A,C) is obtained by combining separate expansions of the La-structure A and of the
Lc-structure C. Let now (A,C)◦ be an arbitrary expansion of (A,C), and denote its language by L◦ac

and the corresponding L◦abcq-structure by M◦. A straightforward adaption of the proofs shows that

Lemma 4.5 and Theorem 4.6 remain true: M◦ is NIP (distal) iff (A,C)◦ is NIP (distal, respectively).
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4.3. A variant for abelian monoids. For later use, we now consider a slight variant of Corol-
lary 4.3 for abelian groups augmented by absorbing elements. Let (A, 0,+) be an abelian monoid.
An element ∞ of A is said to be absorbing if ∞+ a =∞ for all a ∈ A. (Clearly there is at most one
absorbing element.) For example, if R is a commutative ring, then (R, 1, · ) is an abelian monoid with
absorbing element 0. If A is an abelian group and ∞ /∈ A is a new element, then A∞ := A ∪ {∞}
with the group operation + of A extended to a binary operation on A∞ such that

a+∞ =∞+ a =∞ for all a ∈ A∞
is an abelian monoid with absorbing element ∞. In this case we also extend a 7→ −a : A → A to a
map A∞ → A∞ by setting −∞ :=∞. Every morphism f : A→ B of abelian groups extends uniquely
to a monoid morphism f∞ : A∞ → B∞. Here is a special case of this construction:

Notation. Given a commutative ring R and a subgroup G of the multiplicative group R× of units
of R we let R/G := (R×/G)∞. In this case we always denote the absorbing element of R/G by 0,
so the residue morphism R× → R×/G extends to a surjective monoid morphism R → R/G which
maps 0 ∈ R to 0 ∈ R/G.

Let now

0→ A
ι−−→ B

ν−−→ C → 0

be a pure short exact sequence of abelian groups. We redefine the languages introduced at the
beginning of this section as follows:

• Lac = {0a,+a,−a,∞a, 0c,+c,−c,∞c}, the language of the pair (A∞, C∞);
• Lb = {0b,+b,−b,∞b}, the language of B∞;
• Labc = Lac ∪ Lb ∪ {ι∞, ν∞}, the language of the three-sorted structure (A∞, B∞, C∞).

We denote the extension of πn : A → A/nA to a morphism A∞ → (A/nA)∞ also by πn, and now
introduce ρn : B∞ → (A/nA)∞ by defining ρn(b) ∈ A/nA for b ∈ ν−1(nC) as before and declaring
ρn(b) := ∞ for b ∈ B∞ \ ν−1(nC). Thus ρ0 : B∞ → A∞ agrees with the inverse of ι on ι(A) and is
constant ∞ on B∞ \ ι(A). We let

Labcq = Labc ∪ {ρ0, ρ1, . . . , π0, π1, . . . }, Lacq = Lac ∪ {π0, π1, . . . },

and we let T∞abcq be the theory of all Labcq-structures arising from a pure exact sequence of abelian

groups as above. The Labcq-terms of the form ρn
(
t(xb)

)
or ν

(
t(xb)

)
, for a term t(xb) in the sublan-

guage {0b,+b,−b} of Lb, are called special.

Proposition 4.7. In T∞abcq every Labc-formula φ(xa, xb, xc) is equivalent to a formula

φacq

(
xa, σ1(xb), . . . , σm(xb), xc

)
where the σi are special terms and φacq is a suitable Lacq-formula.

Mutatis mutandis, the proof of this proposition is similar to that of Theorem 4.2. (Main change: B0

is the subgroup of B generated by those entries of b which do not equal ∞, and similarly for B′0.)
Next, let L∗ac be the language of an expansion (A∞, C∞, R0, R1, . . . ) of the Lac-structure (A∞, C∞),
let L∗abc = Labc ∪L∗ac be the language of (A∞, B∞, C∞, R0, R1, . . . ), and L∗acq = Lacq ∪L∗ac. As in the
proof of Corollary 4.3, the preceding proposition implies:

Corollary 4.8. In T∞abcq every L∗abc-formula φ∗(xa, xb, xc) is equivalent to a formula

φ∗acq

(
xa, σ1(xb), . . . , σm(xb), xc

)
where the σi are special terms and φ∗acq is a suitable L∗acq-formula.
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Remark 4.9. In the previous corollary one may assume that no special terms of the form ρ1

(
t(xb)

)
appear among the σj . Since ρn(b − b′) = ρn

(
b + (n − 1)b′

)
for n ≥ 2 and b, b′ ∈ B∞, we can

also arrange that the terms ρn
(
t(xb)

)
, n ≥ 2 appearing among the σj do not involve the function

symbol −b. Moreover, since ν is a group morphism on its proper domain of definition, we can achieve
that none of the terms of the form ν

(
t(xb)

)
appearing as some σj involve −b.

4.4. Weakly pure exact sequences. Consider a sequence

(4.1) 0→ A
ι−−→ B

ν−−→ C → 0

of morphisms of abelian groups where ι is injective, ν is surjective, and ker ν ⊆ im ι, and let δ :=
ν ◦ ι : A→ C. Note that with ν denoting the composition of ν with the natural surjection

c 7→ c := c+ im δ : C → C := C/ im δ,

we obtain a short exact sequence

0→ A
ι−−→ B

ν−−→ C → 0,

which we call the short exact sequence associated to our given sequence (4.1).

Lemma 4.10. Suppose the short exact sequence associated to (4.1) as well as the short exact sequence

0→ kerA
⊆−−→ A

δ−−→ im δ → 0 both split. Then with A1 := ker δ, B1 := im δ, and C1 := coker δ = C,
we have a commutative diagram

0 // A
ι //

fA∼=
��

B
ν //

fB∼=
��

C //

fC∼=
��

0

0 // A1 ⊕B1
// A1 ⊕B1 ⊕ C1

// B1 ⊕ C1
// 0

where the second arrow on the bottom row is the natural inclusion and the third arrow the natural
projection.

Proof. Take group morphisms s : B1 → A and t : C1 → B such that δ ◦ s = idB1
and ν ◦ t = idC1

.
Since ν induces an isomorphism B/ im ι → C/ im δ, we have g(b) := b − t(ν(b)) ∈ im ι. One checks
that fA, fB , fC defined by

fA(a) =
(
a− s(δ(a))

)
+ δ(a), fB(b) = fA

(
ι−1(g(b))

)
+ ν(b), fC(c) =

(
c− ν(t(c))

)
+ c

for a ∈ A, b ∈ B, c ∈ C have the required properties. �

We say that (4.1) is weakly pure exact if im ι is a pure subgroup of B and ker ν is a pure subgroup
of im ι. Thus every pure short exact sequence is weakly pure exact; moreover, if (4.1) is weakly pure
exact, then its associated short exact sequence is pure.

Lemma 4.11. Suppose C = C/ im δ and im δ are both torsion-free; then (4.1) is weakly pure exact.

Proof. Let b ∈ B and n ≥ 1 with nb ∈ im ι. Take a ∈ A with ι(a) = nb; then nν(b) = δ(a) ∈ im δ and
hence ν(b) ∈ im δ (since C is torsion-free), so ν(b) = ν(ι(a′)) where a′ ∈ A; then b−ι(a′) ∈ ker ν ⊆ im ι
and hence b ∈ im ι. This shows that im ι is a pure subgroup of B. Next, let a ∈ A and n ≥ 1 with
nι(a) ∈ ker ν; then nδ(a) = 0 and thus δ(a) = 0 (since im δ is torsion-free), that is, ι(a) ∈ ker ν.
Therefore ker ν is a pure subgroup of im ι. �

A variant of Theorem 4.2 holds for weakly pure exact sequences. To make this precise, view each
weakly pure exact sequence (4.1) as an Labc-structure in the natural way. For each n let πn : A →
A/nA be the natural surjection, define ρn : B → A/nA according to the pure exact sequence associated
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to (4.1), and expand the Labc-structure (4.1) to a structure in the language Labcd := Labcq ∪ {δ} in
the natural way. Let Tabcd be the theory of Labcd-structures

(A,B,C, π0, π1, . . . , ρ0, ρ1, . . . , δ)

which arise from a weakly pure exact sequence (4.1) in this way. Let Lacd be the sublanguage Lacq∪{δ}
of Labcd. We then have:

Theorem 4.12. In Tabcd every Labc-formula φ(xa, xb, xc) is equivalent to a formula

φacd

(
xa, σ1(xb), . . . , σm(xb), xc

)
where the σi are special terms and φacd is a suitable Lacd-formula.

Proof. The proof is similar to the proof of Theorem 4.2 with the following modifications. Let M =
(A,B,C, . . . ) and M ′ = (A′, B′, C ′, . . . ) be models of Tabcd, and with the same notational conventions
as in the proof of Theorem 4.2, assume that we are given a, b, c in M and a′, b′, c′ in M ′ such that
the type of aσ(b)c in the Lacd-reduct Macd = (A,C, δ) of M is the same as the type of a′σ(b′)c′ in
the Lacd-reduct M ′

acd = (A′, C ′, δ′) of M ′; we need to show that then abc and a′b′c′ have the same
type in M and in M ′, respectively.

Assuming, as we may, that M , M ′ are sufficiently saturated, we first show that a given isomor-
phism Macd →M ′

acd extends to an isomorphism M →M ′. For this, by Lemma 4.10 we may assume
that B = A1 ⊕B1 ⊕C1, where A = A1 ⊕B1, C = B1 ⊕C1 and ι and ν are the natural injection and
the natural projection; then δ(a1 + b1) = b1 for a1 ∈ A1, b ∈ B1. Similarly with A′, B′, C ′, etc. in
place of A, B, C, etc. If the isomorphisms fA : A → A′ and fC : C → C ′ are compatible with δ, δ′,
then they have the form

fA(a1 + b1) = f(a1 + b1) + g(b1)

fC(b1 + c1) =
(
g(b1) + h1(c1)

)
+ h2(c1) (a1 ∈ A1, b1 ∈ B1, c1 ∈ C1)

for group morphims f : A→ A′1, g : B1 → B′1, h1 : C1 → B′1, and h2 : C1 → C ′1. Then

(a1 + b1 + c1) 7→ f(a1 + b1) +
(
g(b1) + h1(c1)

)
+ h2(c1) (a1 ∈ A1, b1 ∈ B1, c1 ∈ C1)

is a group isomorphism fB : B → B′, and (fA, fB , fC) is an isomorphism between the Labc-reducts
of M and M ′, which gives rise to an isomorphism M →M ′ of Labcd-structures as required.

Therefore, as in the proof of Theorem 4.2 we can assume M = M ′, a = a′, c = c′, σ(b) = σ(b′),
and it suffices to show that there is an automorphism of M which is the identity on A and C and
sends b to b′. Let B0, B′0 and the group isomorphism f0 : B0 → B′0 be as in the proof of Theorem 4.2.
Identifying C = coker δ with C1 in the natural way, the short exact sequence associated to our given
weakly pure exact sequence is

0→ A = A1 ⊕B1
ι−−→ B = A1 ⊕B1 ⊕ C1

ν−−→ C1 → 0

where ι is the natural inclusion and ν the natural projection. In particular A1 = ker ν, and since
ν(b0) = ν(f0(b0)), we have f0(b0)− b0 ∈ A1 for each b0 ∈ B0. Set

A0 := B0 ∩A = B′0 ∩A, C0 := ν(B0) = ν(B′0) ⊆ C1.

As in the proof of Theorem 4.2 we see that we have a morphism h0 : C0 → A1 satisfying

f0(b0) = b0 + h0

(
ν(b0)

)
for all b0 ∈ B0.

Now h0 is a partial morphism C1 → A, and thus also a partial morphism C1 → A1 since A1 is pure
in A. Extend h0 to a group morphism h : C1 → A; then b 7→ b + h(ν(b)) defines an automorphism
of B which, together with the identity on all other sorts, is an automorphism of M fixing A and C
and mapping b to b′ as desired. �



32 ASCHENBRENNER, CHERNIKOV, GEHRET, AND ZIEGLER

The theorem above yields a quantifier elimination result for arbitrary expansions of Lacd just as in
Corollary 4.3. We also have a version of Theorem 4.12 for abelian monoids, just like Proposition 4.7.
To formulate this, redefine the languages Lac, Lb, and Labc as in Section 4.3. Given a weakly pure
exact sequence (4.1), denote the extension of πn : A → A/nA to a morphism A∞ → (A/nA)∞
by πn. We define ρn : B∞ → (A/nA)∞ by defining ρn(b) ∈ A/nA for b ∈ ν−1(nC) = nB + ι(A)
as before and ρn(b) := ∞ for b ∈ B∞ \

(
nB + ι(A)

)
. With Labcd, Lacd as before, let T∞abcd be the

theory of all Labcd-structures which arise this way from a weakly pure exact sequence (4.1). Then
Theorem 4.12 goes through, with a similar proof, and implies a version with additional structure on
the Lac-structure (A,C) as in Corollary 4.8.

4.5. Connection to abelian structures. In this subsection we generalize Theorems 4.2 and 4.12
to pure exact sequences of abelian structures in the sense of Fisher [31]; for this we use a well-
known generalization of the Baur-Monk quantifier simplification for modules to the case of abelian
structures. (This is not used later in the paper.) Recall that an abelian structure is an S-sorted
structure A =

(
(As); (Ri), (fj)

)
where for each sort s ∈ S, among the primitives of A are distinguished

a constant 0s ∈ As, a unary function −s : As → As, and a binary function +s : As ×As → As, such
that the (one-sorted) structure (As; 0s,−s,+s) is an abelian group, and all other relations Ri ⊆
As1 ×· · ·×Asm are subgroups and all functions fj : As1 ×· · ·×Asn → As are group morphisms. Also
recall that given a language L, the set of positive primitive (p.p.) L-formulas is the closure of the set
of atomic L-formulas under conjunction and existential quantification. Let now L be the language of
an abelian structure A as above. For each p.p. L-formula φ(x),

φA =
{
a ∈ Ax : A |= φ(a)

}
is a subgroup of Ax. Given two p.p. L-formulas φ(x), ψ(x) where x is a single variable of sort s ∈ S,
we set

dim≥nφ,ψ := ∃x1 · · · ∃xn

 ∧
1≤i≤n

φ(xi) ∧
∧

1≤i<j≤n

¬ψ(xi − xj)

 ,

so A |= dim≥nφ,ψ iff |φA/(φ ∧ ψ)A| ≥ n; the L-sentences dim≥nφ,ψ are called dimension sentences. The

following is a version of the Baur-Monk Theorem for abelian structures [70].

Proposition 4.13. Each L-formula is equivalent, in the theory of abelian L-structures, to a boolean
combination of p.p. L-formulas and dimension sentences.

We call a family of p.p. L-formulas fundamental (for A) if every p.p. L-formula is equivalent in A to
a conjunction of formulas φ(t(x)) where φ is fundamental and t is a tuple of L-terms. For example, it
is well-known that if A is just an abelian group, then the formulas of the form n|x for n = 0, 2, 3, . . .
form a fundamental family [40, A.2.1].

Let now A, B, C be abelian L-structures. Let ι : A → B be a morphism of L-structures. Recall
that ι is said to be an embedding if ι is injective and for each relation symbol R of L we have
RA = ι−1(RB); as a consequence, φA ⊆ ι−1(φB) for each p.p. L-formula φ(x). We say that such an
embedding ι is pure if φA = ι−1(φB) for each p.p. L-formula φ(x). If A is a substructure of B and
the natural inclusion A→ B is a pure embedding, then A is said to be a pure substructure of B. A
morphism ν : B → C is said to be a projection if ν is surjective and RC = ν(RB) for every relation
symbol R of L, and such a projection ν is said to be pure if φC = ν(φB) for each p.p. L-formula φ(x).

In the following, we assume for notational simplicity that our language L is one-sorted, and we denote
the structures A, B, C by A, B, C, respectively.

Lemma 4.14. Let 0→ A
ι−−→ B

ν−−→ C → 0 be a short exact sequence of morphisms of L-structures,
where ι is an embedding and ν is a projection. Then ι is pure iff ν is pure.
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Proof. First assume that ι is pure. Consider a p.p. L-formula φ(x) = ∃x′
∧n
i=1Ri

(
ti(x, x

′)
)
, where

each ti is a tuple of L-terms and each Ri is a relation symbol of L or an equation between components
of ti, and let c ∈ Cx with C |= φ(c). Take c′ ∈ Cx′ such that C |=

∧
iRi

(
ti(c, c

′)
)
, and let b, b′ be

preimages of c, c′, respectively, under ν. Since ν is a projection, we can take appropriate tuples ai
in A such that B |=

∧
iRi

(
ti(b, b

′) + ι(ai)
)
. Since ι is pure, there are a ∈ Ax, a′ ∈ Ax′ such that

A |=
∧
iRi

(
ti(a, a

′) + ai
)
. This implies B |=

∧
iRi

(
ti(b − ι(a), b′ − ι(a′))

)
. So b − ι(a) is a preimage

of c under ν satisfying φ. This shows that ν is pure.
For the converse assume that ν is pure, and let a ∈ Ax where ι(a) satisfies a p.p.-formula φ(x) as

above. So there is b′ ∈ Bx′ such that B |=
∧
iRi

(
ti(ι(a), b′)

)
. Therefore C |=

∧
iRi

(
ti(0, ν(b′)

)
and by

assumption there is a′ ∈ Ax′ such thatB |=
∧
iRi

(
ti(0, b

′−ι(a′)
)
. This impliesB |=

∧
iRi

(
ti(ι(a, a

′))
)
.

So A |=
∧
iRi

(
ti(a, a

′)
)

since ι is an embedding, and a satisfies φ. �

A short exact sequence 0 → A
ι−−→ B

ν−−→ C → 0 of morphisms of L-structures where ι is a pure
embedding and ν is a pure projection is called pure.

Remark. If B is the direct sum of the abelian L-structures A and C (defined in the obvious way), then

the resulting sequence A
ι−→ B

ν−→ C is pure exact. All pure exact sequences where A is |L|+-saturated
are of this form.

Lemma 4.15. Let ν : B → C be a pure projection, φ(x, x′) be a p.p. L-formula, b ∈ Bx, and c′ ∈ Cx′ .
Then the following are equivalent:

(1) There is b′ ∈ Bx′ such that B |= φ(b, b′) and ν(b′) = c′;
(2) B |= ∃x′φ(b, x′) and C |= φ

(
ν(b), c′

)
.

Proof. The direction (1)⇒ (2) is clear; we only use that ν is morphism. For the converse assume (2).
Take b′0 ∈ Bx′ such that B |= φ(b, b′0). Since ν is a pure projection, there are b1 ∈ Bx and b′1 ∈ Bx′
such hat ν(b1) = ν(b), ν(b′1) = c′ and B |= φ(b1, b

′
1). So B |= φ(b − b1, b′0 − b′1). By the last lemma,

A := ker ν is (the underlying set of) a pure substructure of B. Since b−b1 ∈ A, purity gives an a′ ∈ Ax′
such that B |= φ(b − b1, a′). So we have B |= φ(b, b′) for b′ = b′1 + a′. We see now that ν(b′) = c′,
and (1) holds. �

We now consider a sequence

(4.2) 0→ A
ι−−→ B

ν−−→ C → 0

of morphisms of abelian L-structures. We let La, Lb, Lc be pairwise disjoint copies of L (for A, B, C,
respectively), introduce a three-sorted language Labc = La ∪ Lb ∪ Lc ∪ {ι, ν}, and view (A,B,C) as
an Labc-structure in the natural way. This Labc-structure (A,B,C) is also abelian, hence Proposi-
tion 4.13 applies to (A,B,C). (As a consequence, (A,B,C) is stable [40, A.1.13].) Let the multivari-
ables xa, xb, xc be of sort A, B and C, respectively, and similarly with y in place of x.

4.5.1. Pure exact sequences. In this subsection we assume that the sequence (4.2) is pure exact.
Furthermore we consider an arbitrary expansion (A,C)∗ of the reduct (A,C) of (A,B,C) with lan-
guage L∗ac, and we let L∗abc := L∗ac ∪ Lb. Unless mentioned otherwise, in the following, “equivalent”
means “equivalent in the L∗abc-structure (A,B,C)”. By an ac-existential quantification of an
L∗abc-formula ψ we mean a formula of the form ∃xa∃xc ψ, for some multivariables xa, xc.

Lemma 4.16. Every p.p. L∗abc-formula φ∗abc(xa, xb, xc) is equivalent to an ac-existential quantification
of a formula

φb

(
ι(xa), xb

)
∧ φ∗ac

(
xa, ν(xb), xc

)
,

where φb is a p.p. Lb-formula and φ∗ac is a p.p. L∗ac-formula.
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Proof. Recall that each p.p. formula is equivalent to an existential quantification of a basic formula,
i.e., a conjunction of atomic formulas. Since ν is a morphism of L-structures and ν ◦ ι = 0, every
term ν(t) can be replaced by a sum of terms ν(xb). So every basic formula is equivalent to a formula
ψb

(
ι(t), xb

)
∧ψ∗ac

(
xa, ν(xb), xc

)
, where ψb is a basic Lb-formula, ψ∗ac is a basic L∗ac-formula, and t is a

tuple of L∗ac-terms in xa, ν(xb), and xc. We can replace t by existentially quantified multivariables x′a
of sort A and add the equations x′a = t. Thus we may assume that our p.p. formula has the form

∃yb

(
ψb(ι(xa), xb, yb) ∧ ψ∗ac(xa, ν(xb), ν(yb), xc)

)
.

This formula in turn is equivalent to

∃yc

(
θ(xa, xb, yc) ∧ ψ∗ac(xa, ν(xb), yc, xc)

)
where θ := ∃yb

(
ψb(ι(xa), xb, yb) ∧ ν(yb) = yc

)
,

and by Lemma 4.15, θ is equivalent to

∃ybψb

(
ι(xa), xb, yb

)
∧ ψc

(
0, ν(xb), yc

)
,

where ψc is the Lc-copy of ψb. �

For a p.p. L-formula φ(x) let Aφ be the quotient group Ax/φ
A and πφ : Ax → Aφ be the natural

surjection. Define the map ρφ : Bx → Aφ on ν−1(φC) as the composition of the maps

ν−1(φC) = φB + ι(Ax)→
(
φB + ι(Ax)

)
/φB

∼−−→ ι(Ax)/
(
φB ∩ ι(Ax)

) ∼−−→ Aφ,

and identically zero outside ν−1(φC). The following lemma is clear from the definitions.

Lemma 4.17. Let a ∈ Ax, b ∈ Bx. Then ι(a) + b ∈ φB iff πφ(a) + ρφ(b) = 0 and ν(b) ∈ φC .

We now fix a family of p.p. L-formulas which is fundamental for B. We expand (A,C)∗ by a new
sort Aφ together with the corresponding projection map πφ, for every fundamental L-formula φ. Let

L∗acq := L∗ac ∪ {πφ : φ fundamental}

be the language of this expansion. We call terms of the form ρφ
(
t(xb)

)
or ν(xb) for a fundamental φ

and a tuple t of Lb-terms special.

Lemma 4.18. Every p.p. L∗abc-formula φ∗abc(xa, xb, xc) is equivalent to a formula

φ∗acq

(
xa, σ1(xb), . . . , σm(xb), xc

)
where the σi are special terms and φ∗acq is a suitable p.p. L∗acq-formula.

Proof. By Lemma 4.16 it suffices to prove this for formulas φ∗abc(xa, xb) = φb

(
tb(ι(xa), xb)

)
where φb

is fundamental and tb is a tuple of Lb-terms. We may arrange that tb
(
ι(xa), xb

)
= ι

(
ra(xa)

)
+

sb(xb) for a tuple ra of La-terms and a tuple sb of Lb-terms. Let φc and sc be the Lc-copies of φb

and sb, respectively; then by Lemma 4.17, φ∗abc(xa, xb) is equivalent to πφ
(
ra(xa)

)
+ ρφ

(
sb(xb)

)
=

0 ∧ φc

(
sc(ν(xb))

)
. �

We now obtain versions of Theorem 4.2 and Corollary 4.3 for our pure exact sequence (4.2):

Theorem 4.19. Every Labc-formula φ(xa, xb, xc) is equivalent to a formula

φacq

(
xa, σ1(xb), . . . , σm(xb), xc

)
where the σi are special terms and φacq is a suitable Lacq-formula.

Proof. By Proposition 4.13, every Labc-formula is equivalent to a boolean combination of p.p. Labc-
formulas. Now apply Lemma 4.18 to the trivial expansion of (A,C). �
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Corollary 4.20. Every L∗abc-formula φ∗(xa, xb, xc) is equivalent to a formula

φ∗acq

(
xa, σ1(xb), . . . , σm(xb), xc

)
where the σi are special terms and φ∗acq a suitable L∗acq-formula.

Proof. This follows from the theorem like Corollary 4.3 follows from Theorem 4.2. �

4.5.2. Weakly pure exact sequences. In this subsection we assume that (4.2) is weakly pure exact,
i.e., ι a pure embedding, ν a pure projection, and im ι ⊆ ker ν. As in Section 4.4 let δ := ν ◦ ι. The
pair (A,C) is then an abelian Lacd-structure, where Lacd = Lac ∪ {δ}. Let (A,C)∗ be an expansion
of (A,C) with language L∗acd, let L∗abcd := L∗acd ∪ Lb. “Equivalent” now means “equivalent in the
L∗abcd-structure (A,B,C)”, and we define ac-existential quantifications as in the previous subsection.
We have then the following generalization of Lemma 4.16:

Lemma 4.21. Every p.p. L∗abcd-formula φ∗abcd(xa, xb, xc) is equivalent to an ac-existential quantifi-
cation of a formula

φb

(
ι(xa), xb

)
∧ φ∗acd

(
xa, ν(xb), xc

)
,

where φb is a p.p. Lb-formula and φ∗acd is a p.p. L∗acd-formula.

Proof. The proof is the same as the proof of Lemma 4.16, except that terms ν(ι(t)) are not replaced
by 0 but by δ(t). Note that we use here, in Lemma 4.15, that ν is a pure projection. �

Let C := coker δ = C/ im δ equipped with its induced structure under the natural surjection c 7→
c : C → C. This surjection c 7→ c is a pure projection; composition with ν yields a pure projec-
tion ν : B → C as in Section 4.4. The natural inclusion ker δ → A is a pure embedding. Moreover,
ker ν = A, and the short exact sequence

0→ A
ι−−→ B

ν−−→ ν → 0

of morphisms of L-structures associated to (4.2) is pure exact. We define for every p.p. L-formula φ(x)
the map ρφ : Bx → Aφ = Ax/φ

A as in the last subsection but according to the pure exact sequence
associated to (4.2) displayed above. Lemma 4.17 then becomes:

Lemma 4.22. Let a ∈ Ax, b ∈ Bx; then ι(a) + b ∈ φB iff πφ(a) + ρφ(b) = 0 and δ(a) + ν(b) ∈ φC .

Proof. The direction from left to right is clear since ι(a) + b ∈ φB implies ν(ι(a) + b) ∈ φC . The

converse follows from Lemma 4.17 since δ(a) + ν(b) ∈ φC implies ν(b) ∈ φC . �

As in the last subsection we fix now a family of p.p. L-formulas which is fundamental for B and
expand (A,C)∗ by the new sorts Aφ for every fundamental φ together with the projection map πφ.
Let L∗acdq be the language of the resulting expansion. Lemma 4.18 is now:

Lemma 4.23. Every p.p. L∗abcd-formula φ∗abcd(xa, xb, xc) is equivalent to a formula

φ∗acdq

(
xa, σ1(xb), . . . , σm(xb), xc

)
where the σi are special terms and φ∗acdq is a suitable p.p. L∗acdq-formula.

Proof. As the proof Lemma 4.18, except that φb(tb(ι(xa), xb)) is equivalent to

πφ
(
ra(xa)

)
+ ρφ

(
sb(xb)

)
= 0 ∧ φc

(
δ(ra(xa)) + sc(ν(xb))

)
�.

As in the last subsection we can conclude:

Corollary 4.24. Every L∗abcd-formula φ∗(xa, xb, xc) is equivalent to a formula

φ∗acdq

(
xa, σ1(xb), . . . , σm(xb), xc

)
where the σi are special terms and φ∗acdq a suitable L∗acdq-formula.
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Remarks.

(1) There is always a fundamental family of p.p. L-formulas, namely the set of all p.p. L-formulas.
So, by the previous corollary and following the proofs of Lemma 4.5 and Theorem 4.6, we
see that a weakly pure exact sequence (A,B,C) of abelian L-structures with an expansion
(A,C)∗ of (A,C, δ) is NIP (or distal) if and only if (A,C)∗ is NIP (or distal).

(2) If (A,C, δ) comes from a weakly pure exact sequence, then δ : A → im δ is a pure projection
and the natural inclusion im δ → C a pure embedding. The converse is may be true, but we
know it only if ker δ is a direct summand of A or im δ is a direct summand of C.

5. Eliminating Field Quantifiers in Henselian Valued Fields

In this section we discuss two frameworks for elimination of field quantifiers in henselian valued fields
of characteristic zero construed as multi-sorted structures. The first one is the familiar RV (leading
term) setting, for which we use [32] as our reference. Here the additional sorts are quotients of
the multiplicative group of the underlying field by groups of higher 1-units. (See Sections 5.1–5.3.)
In our second context we instead use, besides the value group, certain imaginary sorts obtained
from quotient rings of the valuation ring, and employ the results of Section 4 to prove the relevant
elimination theorems. In the equicharacteristic zero case, which we treat first, this setting simplifies
even more, to quotients of the multiplicative group of the residue field; see Section 5.4 below. Each of
these various settings has advantages that make it more convenient for some tasks rather than others;
in this spirit, the elimination theorems from the present section are applied in combination to prove
our main theorem in the next section.

5.1. Quantifier elimination in henselian valued fields. Throughout this section we fix a valued
field K of characteristic zero. We let v : K× → Γ = v(K×) be the valuation of K, and O its valuation
ring. As in Section 4.3 we consider the abelian monoid Γ∞ := Γ∪{∞} with absorbing element∞ /∈ Γ,
and extend the ordering of Γ to a total ordering on Γ∞ with γ <∞ for all γ ∈ Γ; as usual we denote
the extension of v to a monoid morphism K → Γ∞ also by v. Let γ, δ range over Γ≥0. Let

mδ := {x ∈ K : vx > δ},

so mδ is an ideal of O with mγ ⊆ mδ if γ ≥ δ. The maximal ideal of O is m := m0, and its residue
field is k := O/m. Let also

RVδ := K/(1 + mδ), RV×δ := RVδ \{0},

with residue morphism rvδ : K → RVδ. Thus for a ∈ K× we have rvδ(a) = a(1 +mδ) ∈ RV×δ , and rvδ
sends 0 ∈ K to the absorbing element 0 of RVδ. We write

RV := RV0 = K/(1 + m), rv := rv0 .

For a ∈ O \m, the element a(1 + m) of RV× only depends on the coset a+ m, and we hence obtain a
group embedding k× → RV× which sends the element a+m of k× to a(1+m) ∈ RV×. Together with
the group morphism vrv : RV× → Γ induced by the valuation v : K× → Γ, this group embedding fits
into a pure short exact sequence

1→ k× → RV×
vrv−−−→ Γ→ 0.

We denote the extension of vrv to a morphism RV→ Γ∞ of monoids by the same symbol. Besides the
induced multiplication, RVδ also inherits a partially defined addition from K via the ternary relation

(5.1) ⊕δ (r, s, t) ⇐⇒ ∃x, y, z ∈ K
(
r = rvδ(x) ∧ s = rvδ(y) ∧ t = rvδ(z) ∧ x+ y = z

)
.

For γ ≥ δ we also have a natural surjective monoid morphism rvγ→δ : RVγ → RVδ.
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It turns out that for what follows, not all of RVδ will be needed. Therefore, from now on we let γ and δ
(possibly with decorations) range over {0} if chark = 0, and over the set v(pN) :=

{
v(pn) : n ≥ 0

}
if chark = p > 0. We introduce a many-sorted structure K whose sorts are K and the sets RVδ,
equipped with the following primitives:

(K1) the ring primitives on K;
(K2) on each sort RVδ, the monoid primitives and the partial addition relation ⊕δ defined above;
(K3) for each δ, the map rvδ : K → RVδ; and
(K4) for each γ ≥ δ, the maps rvγ→δ : RVγ → RVδ.

We also denote by RV∗ the structure with underlying sorts RVδ and primitives listed under (K2)
and (K4) above, with associated language LRV∗ .

Remark 5.1. The relation vrv(x) ≤ vrv(y) on RV is definable in RV∗ [32, Proposition 2.8(1)]. Namely,

vrv(x) ≤ 0 ⇐⇒ ¬⊕0 (x, 1, 1), vrv(x) = 0 ⇐⇒ vrv(x) ≤ 0 ∧ ∃y
(
x · y = 1 ∧ vrv(y) ≤ 0

)
and hence

vrv(x) = vrv(y) ⇐⇒ ∃z
(
vrv(z) = 0 ∧ x = y · z

)
, vrv(x) < vrv(y) ⇐⇒ x 6= 0 ∧ ⊕0(x, y, x).

Hence the multiplicative group ker vrv
∼= k× is definable in RV∗. As a consequence the ordered abelian

group Γ = v(K×) is interpretable in RV∗, and using ⊕0 it follows that the field k is also interpretable
in RV∗.

Remark 5.2. Our valued field viewed as a structure (K,O) in the language of rings expanded by a
unary predicate for the valuation ring O of K is bi-interpretable with K (regardless of the character-
istic of k). Hence (K,O) is distal, respectively has a distal expansion, iff K has the corresponding
property, by Fact 1.14(1).

Fact 5.3 (Flenner [32, Propositions 4.3 and 5.1]). Suppose K is henselian.

(1) Let S ⊆ K be A-definable in K, for some parameter set A in K. Then there are a1, . . . , am ∈
K ∩ acl(A) and an acl(A)-definable D ⊆ RVδ1 × · · · × RVδm , for some δ1, . . . , δm, such that

S =
{
x ∈ K :

(
rvδ1(x− a1), . . . , rvδm(x− am)

)
∈ D

}
;

(2) RV∗ is fully stably embedded (i.e., the structure on RV∗ induced from K, with parameters, is
precisely the one described above).

Fact 5.3 is uniform in K; moreover, it continues to hold if we add arbitrary additional structure
on RV∗; see the discussion before [32, Proposition 4.3].

Remarks 5.4.

(1) Among the primitives of RV∗ we have the projections rvγ→δ (γ ≥ δ); thus in Fact 5.3 we may
assume that δ1 = · · · = δm = δ, after possibly modifying D and taking δ := max{δ1, . . . , δm}.

(2) Note that for any x ∈ K, y ∈ K×, we have rvδ(x) = rvδ(y) iff v(x − y) > vy + δ; hence for
any z ∈ K and x, y ∈ K \ {z}, rvδ(x− z) = rvδ(y − z) iff v(x− y) > v(y − z) + δ.

5.2. The finitely ramified case. For later use we analyze the kernels of the group morphisms

rvγ→δ : RV×γ → RV×δ (γ ≥ δ).
In the following well-known lemma and its corollary we assume that we have a generator π for the
maximal ideal: πO = m.

Lemma 5.5. Suppose n ≥ 1. Then the map

ϕ : 1 + πnO → O/πO = k, ϕ(1 + πna) := a+ πO for a ∈ O
is a surjective group morphism from the multiplicative abelian group 1 + πnO to the additive abelian
group k with kernel 1 + πn+1O. Thus, as abelian groups, (1 + πnO)/(1 + πn+1O) ∼= k.
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We leave the proof of Lemma 5.5 to the reader; an easy induction on r based on this lemma yields:

Corollary 5.6. Suppose k is finite. Then |(1 +πnO)/(1 +πn+rO)| = |k|r for each n ≥ 1 and r ∈ N.

We now obtain our desired result:

Lemma 5.7. Suppose K is finitely ramified with finite residue field k = O/m of characteristic p.
Then for each n, the kernel of the group morphism

rvv(pn+1)→v(pn) : RV×v(pn+1) → RV×v(pn)

is finite.

Proof. Take π ∈ O with m = πO; then p = πeu where e ∈ N, e ≥ 1, u ∈ O×. By Corollary 5.6,

(1 + pnm)/(1 + pn+1m) = (1 + πen+1O)/(1 + π(en+1)+eO)

is finite, as required. �

We also need additive versions of the results above. In the following lemma and its corollary, we again
assume that π satisfies πO = m:

Lemma 5.8. The map
πna 7→ a+ πO : πnO → O/πO = k

is a surjective group morphism from the additive abelian group πnO to the additive abelian group k
with kernel πn+1O. Thus πnO/πn+1O ∼= k.

Corollary 5.9. Suppose k is finite. Then |πnO/πn+rO| = |k|r for each r ∈ N.

Now given a prime p and some n we let Rpn := O/pnm (so Rp0 = k). In the same way as Corollary 5.6
gave rise to Lemma 5.7, from the previous corollary we obtain:

Lemma 5.10. Suppose K is finitely ramified with finite residue field of characteristic p. Then for
each n, the kernel of the natural surjective group morphism Rpn+1 → Rpn is finite. (Hence Rpn is
finite for each n.)

5.3. NIP for RV∗. In this subsection K is henselian, and the structure K and its reduct RV∗ are
as introduced in Section 5.1. We allow RV∗ to be equipped with additional structure, and equip its
expansion K with the corresponding additional structure. Recall that then, by part (2) of Fact 5.3
and the remark following it, RV∗ is fully stably embedded in K. As a warm-up to the proof of
Proposition 6.1 below, we show a version of Fact 2.17:

Proposition 5.11. Suppose k is finite or of characteristic zero. Then K is NIP if and only if K is
finitely ramified and RV∗ is NIP.

Here the forward direction is obvious by Remark 5.2, Fact 2.18, and the fact that NIP is preserved
under reducts. The proof of the converse relies on an analysis of indiscernible sequences in valued
fields, with the distinction of cases similar to [15] or [10, Section 7.2]. (A similar case distinction is
at the heart of the proof of Proposition 6.1.) Given a linearly ordered set I we let I∞ := I ∪ {∞}
where ∞ is a new element, equipped with the extension of the ordering ≤ of I to the linear ordering
on I∞, also denoted by ≤, such that i < ∞ for all i ∈ I. Recall that I∗ denotes the set I equipped
with the reversed ordering ≥. In the two lemmas and their corollary below we let (ai)i∈I be an
indiscernible sequence of singletons of the field sort in K where I does not have a largest or smallest
element. For the first lemma see [9]. (Also compare with Lemma 2.11 above.)

Lemma 5.12. Exactly one of the following cases occurs:

(1) v(ai − aj) < v(aj − ak) for all i < j < k in I (we say that (ai) is pseudocauchy);
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(2) v(ai − aj) > v(aj − ak) for all i < j < k in I (so the sequence (ai)i∈I∗ is pseudocauchy); or
(3) v(ai − aj) = v(aj − ak) for all i < j < k in I (we refer to such a sequence (ai) as a fan).

Note that if (ai)i∈I is pseudocauchy and a∞ ∈ K is such that (ai)i∈I∞ is indiscernible, then (ai)i∈I∞
is also pseudocauchy, and similarly with “fan” in place of “pseudocauchy”.

Lemma 5.13. Suppose (ai)i∈I is pseudocauchy, and let a∞ ∈ K such that (ai)i∈I∞ is indiscernible.
Then the sequence i 7→ v(a∞ − ai) is strictly increasing.

Proof. Since (ai)i∈I∞ remains pseudocauchy, if i < j are in I, then v(aj − ai) < v(a∞ − aj) and so
v(a∞ − ai) = v

(
a∞ − aj + (aj − ai)

)
= v(aj − ai) < v(a∞ − aj). �

Corollary 5.14. Suppose K is finitely ramified. Then with (ai)i∈I and a∞ as in Lemma 5.13,

(5.2) v(a∞ − ai) > v(a∞ − aj) + δ for all δ and i > j in I.

Proof. Assume that we have some δ such that

v(a∞ − ai) ≤ v(a∞ − aj) + δ for some i > j in I;

then by δ-indiscernibility (as δ ∈ dcl(∅)),
v(a∞ − ai) ≤ v(a∞ − aj) + δ for all i > j in I,

so for each j the interval
[
v(a∞−aj), v(a∞−aj)+ δ

]
in Γ is infinite, contradicting finite ramification.

�

Now suppose k is finite or of characteristic zero, K is finitely ramified, and RV∗ is NIP. To show that K
is NIP we may assume that K is a monster model of its theory. Suppose K is not NIP. Then there is an
indiscernible sequence (ai)i∈Z of elements of the field sort of K and a definable S ⊆ K such that i ∈ Z
is even iff ai ∈ S. By Fact 5.3 and the remark following it we may choose b = (b1, . . . , bm) ∈ Km,
some δ, as well as a definable subset D of RVm

δ , such that for a ∈ K:

a ∈ S ⇐⇒
(
rvδ(a− b1), . . . , rvδ(a− bm)

)
∈ D.

By Lemma 5.12, one of the following three cases occurs.

Case 1: (ai)i∈Z is pseudocauchy. Using saturation take some a∞ ∈ K such that (ai)i∈Z∞ is indis-
cernible. Let i, j range over Z, and let k ∈ {1, . . . ,m}. Suppose first that v(bk−a∞) > v(a∞−aj) for
all j. Using (5.2) we then obtain v(bk−a∞) > v(a∞−aj) + δ and hence rvδ(bk−aj) = rvδ(a∞−aj),
for all j. Now suppose v(bk − a∞) ≤ v(a∞ − aj) for some j; then v(bk − a∞) + δ < v(a∞ − ai) for
all i > j, and hence rvδ(bk − ai) = rvδ(bk − a∞) for i > j. Permuting the components of b, we can
thus arrange that we have some l ∈ {1, . . . ,m + 1} and some j such that for i > j and k = 1, . . . ,m
we have

rvδ(bk − ai) =

{
rvδ(a∞ − ai) if k < l

rvδ(bk − a∞) otherwise.

Put ri := rvδ(ai − a∞) for i > j and sk := rvδ(a∞ − bk) for k = l, . . . ,m. The sequence (ri)i>j is
indiscernible, and for i > j we have

(ri, . . . , ri, sl, . . . , sm) ∈ D ⇐⇒ i is even,

in contradiction with RV∗ being NIP.

Case 2: (ai)i∈Z∗ is pseudocauchy. Then we apply Case 1 to the sequence (a−i)i∈Z in place of (ai)i∈Z.

Case 3: (ai)i∈Z is a fan. Note that then k necessarily is infinite, hence chark = 0 by hypothesis,
so δ = 0. Let i, j range over Z and k over {1, . . . ,m}, and let γ be the common value of v(ai − aj)
for all i 6= j. Let c ∈ K and j be given; if γ < v(c − aj), then γ = v(c − ai) for all i 6= j, whereas
if γ > v(c − aj) then v(c − ai) = v(c − aj) < γ for each i 6= j. Hence we can choose an even j
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such that for each k we either have γ > v(bk − ai) for all i ≥ j or γ = v(bk − ai) for all i ≥ j.
Now if γ > v(bk − aj), then rv(bk − ai) = rv(bk − aj) for i > j, whereas if γ = v(bk − aj), then
rv(bk − ai) = rv(bk − aj) ⊕ rv(aj − ai) for i > j. Hence by reindexing the components of b we
can arrange that we have some l ∈ {1, . . . ,m + 1} such that with ri := rv(ai − aj) for i > 0 and
sk := rv(aj − bk) for k = 1, . . . ,m, for i > j and k = 1, . . . ,m:

rv(ai − bk) =

{
ri ⊕ sk if k < l

sk otherwise.

The sequence (ri)i>j is indiscernible, and for i > j we have

(ri ⊕ s1, . . . , ri ⊕ sl−1, sl, . . . , sm) ∈ D ⇐⇒ i is even,

in contradiction with RV∗ being NIP. �

5.4. A quantifier elimination in equicharacteristic zero. We use the quantifier elimination
result for pure short exact sequences from Section 4 to prove a variant of the QE result of Flenner,
already used earlier, in the equicharacteristic zero case. As above we extend the valuation v : K× → Γ
to a monoid morphism K → Γ∞, also denoted by v, with v(0) = ∞. Recall that Γ∞ = Γ ∪ {∞}
where γ < ∞ for all γ ∈ Γ and γ +∞ = ∞ + γ = ∞ for all γ ∈ Γ∞. We also extend the residue
morphism

a 7→ res(a) := a+ m : O → k = O/m
to K by setting res(a) := 0 for a ∈ K \ O. In the rest of this subsection k has characteristic zero.

We consider K as a three-sorted structure with sorts k, K, Γ∞ in the language

Lrkg = Lr ∪ Lk ∪ Lg ∪ {v, res}
where

Lr = {0r, 1r,+r,−r, ·r}, Lk = {0k, 1k,+k,−k, ·k}, Lg = {0g,+g, <,∞}.
For our quantifier elimination result we expand (k,Γ∞) by a new sort k/(k×)n for every n ≥ 2,
together with the natural surjections πn : k→ k/(k×)n. Let

Lrgq = Lr ∪ Lg ∪ {π2, π3, . . . }
be the language of this expansion.

Define, for every n, a map resn : K → k/(k×)n in the following way: If v(a) /∈ nΓ, set resn(a) := 0.
Otherwise, let b be any element of K with nv(b) = v(a) and set resn(a) := πn res(a · b−n). This does
not depend on the choice of b since nv(c) = v(a) implies that b · c−1 has value 0, so is a unit in O and
res(a · c−n) = res(a · b−n) · res(b · c−1)n. One verifies easily that the restriction of resn to v−1(nΓ) is a
group morphism v−1(nΓ)→ k×/(k×)n. We identify k with k/(k×)0 in the natural way, so res = res0.
We also extend the multiplicative inverse function a 7→ a−1 : K× → K× to a function K → K by
setting 0−1 := 0, and let

Lrkgq := Lrkg ∪ {−1, π2, π3, . . . , res2, res3, . . . }.
Let the multivariables xr, xk, xg be of sort k, K, and Γ∞, respectively. We call Lrkgq-terms of the
form v

(
p(xk)

)
, res

(
p(xk)q(xk)−1

)
or resn

(
p(xk)

)
(where n ≥ 2), for polynomials p, q with integer

coefficients, special. We have the following analogue of Theorem 4.2:

Theorem 5.15. In the theory of henselian valued fields with residue field of characteristic zero, viewed
as Lrkgq-structures in the natural way, every Lrkg-formula φ(xr, xk, xg) is equivalent to a formula

φrgq

(
xr, σ1(xk), . . . , σm(xk), xg

)
where the σi are special terms and φrgq is a suitable Lrgq-formula.
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In the proof we make use of Flenner’s quantifier elimination theorem, already stated in Section 5.1
above. For convenience let us slightly paraphrase this result, in the case of equicharacteristic zero.
Recall that in this case the structure RV∗ has a single new (interpretable) sort

RV = K/(1 + m),

which comes equipped with the binary operation ·rv which gives RV the structure of an abelian monoid
and makes the natural projection rv : K → RV a monoid morphism. Note that 0RV := rv(0) is an
absorbing element of RV and RV× := RV \ {0RV} = K×/(1 + m) is a group. The projection rv and
the valuation v : K → Γ∞ also induce morphisms ι : k → RV and ν : RV → Γ∞ of abelian monoids,
which give rise to a pure short exact sequence

(5.3) 1→ k× → RV× → Γ→ 0

of abelian groups. Let

Lrv = Lr ∪ Lg ∪ {·rv, ι, ν}

be the language of the structure (k,RV,Γ∞), and let

Lrkg,rv := Lrkg ∪ {rv, ·rv, ι, ν} = Lr ∪ Lk ∪ Lg ∪ {v, res, rv, ·rv, ι, ν}.

Now Flenner’s result [32, Proposition 4.3] is:

Fact 5.16. In the theory of henselian valued fields with residue field of characteristic zero, formulated
in the language Lrkg,rv, every Lrkg-formula φ(xr, xk, xg) is equivalent to a formula

φrv

(
xr, rv(q1(xk)), . . . , rv(qk(xk)), xg

)
where the qi are polynomials with integer coefficients and φrv is a suitable Lrv-formula.

Actually, Flenner’s result is a bit stronger, allowing variables ranging over the RV-sort; moreover,
Fact 5.16 also works for arbitrary expansions of the Lrv-structure (k,RV,Γ∞). (See the discussion
preceding [32, Proposition 4.3].)

We now apply the material of Section 4.3 to the short exact sequence (5.3). Let φ(xr, xk, xg) be an
Lrkg-formula and take q1, . . . , qk and φrv as in Fact 5.16. Corollary 4.8 and Remark 4.9 applied to φrv

show that φ(xr, xk, xg) is equivalent to a formula

φrgq

(
xr, σ1(xk), . . . , σm(xk), xg

)
where the σj are terms of the form

ρ0

(
rv(q1(xk))e1 · · · rv(qk(xk))ek

)
(e1, . . . , ek ∈ Z)

or

ρn
(
rv(q1(xk))e1 · · · rv(qk(xk))ek

)
(e1, . . . , ek ∈ N, n ≥ 2)

or

ν
(
rv(q1(xk))e1 · · · rv(qk(xk))ek

)
(e1, . . . , ek ∈ N),

and φrgq is a suitable Lrgq-formula. Here the maps ρn : RV→ k/(k×)n are as defined in Section 4.3.
Since rv is a monoid morphism, for each appropriate tuple a of the field sort and e1, . . . , ek ∈ Z we
have

rv(q1(a))e1 · · · rv(qk(a))ek = rv
(
p(a)q(a)−1

)
where p =

∏
ej≥0

q
ej
j and q =

∏
ej<0

q
−ej
j .
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We have ν ◦ rv = v. Recall that ρn is identically zero outside ν−1(nΓ), hence ρn ◦ rv = resn. Thus
each term σj is special. This finishes the proof of Theorem 5.15. �

Remarks.

(1) Suppose Krgq is equipped with additional structure, and we equip its expansion to an Lrkgq-
structure with the corresponding additional structure. The theorem above then remains true
in this setting; this is shown just as in Corollary 4.8. As a consequence, Krgq is fully stably
embedded in the Lrkgq-structure K, and the induced structure on Krgq is the given one.

(2) Suppose now that k and Γ∞ come equipped with additional structure, and the Lrkgq-struc-
ture K is expanded by these structures on its sorts k and Γ∞; then the sorts k, Γ∞ are fully
stably embedded in K, with the induced structure on these sorts just the given ones.

We finish this subsection with observing that the structure RV∗ introduced in Section 5.1 is only
ostensibly richer than the structure (k,RV,Γ∞) of RV viewed as pure short exact sequence:

Lemma 5.17. The Lrv-structure (k,RV,Γ∞) and the LRV∗-structure RV∗ are bi-interpretable.

To see this note that the relation ⊕ = ⊕0 on RV introduced in (5.1) is definable in (k,RV,Γ∞):
for a, b, c ∈ RV× we have

⊕(a, b, c) ⇐⇒
[
ν(a) = ν(b) & ∃y ∈ k

(
ι(y) ·rv a = b & ι(1 + y) ·rv a = c

)]
∨[

ν(a) > ν(b) & b = c
]
∨
[
ν(b) > ν(a) & a = c

]
.

Conversely, Remark 5.1 shows that k, Γ∞ and the morphisms ι, ν are interpretable in RV∗. Note that
in this lemma we may allow k and Γ∞ to be equipped with additional structure, and RV∗ with the
corresponding structure, that is, by all relations S ⊆ RVm where S ⊆ (ker vrv)m = (k×)m is definable
in k or S = v−1

rv (vrv(S)) where vrv(S) ⊆ Γm is definable in Γ∞.

Corollary 5.18. Suppose that k and Γ∞ are equipped with additional structure; then K is NIP iff
both k and Γ∞ are NIP.

Proof. By Proposition 5.11 and the remark preceding the corollary, K is NIP iff (k,RV,Γ∞) is NIP,
and by Lemma 4.5, (k,RV,Γ∞) is NIP iff k and Γ∞ are NIP. �

5.5. A generalization. In this subsection we put the QE result for weakly pure exact sequences from
Section 4.4 to work by proving a version of Theorem 5.15 for henselian valued fields of characteristic
zero with arbitrary residue field. Only Corollary 5.23 from this subsection is used later. Throughout
this subsection we assume that K is henselian, and we let M , N range over N≥1.

Let RN be the ring O/Nm, and extend the residue morphism

x 7→ resN (x) := x+Nm : O → RN

to a map K → RN , also denoted by resN , by setting resN (x) := 0 for x ∈ K \ O. The valuation
v : K → Γ∞ induces a map vN : RN → Γ∞ with

vN (r) =

{
v(x) if r = resN (x) 6= 0,

∞ if r = 0.

Note that 0 ≤ vN (r) ≤ v(N) for r ∈ RN , r 6= 0. We have R1 = k. If chark = 0, then RN = k and
vN (RN ) = {0,∞} for all N . If chark = p > 0, then RM = RN if M and N are divisible by the same
powers of p. If M is a multiple of N , let resMN : RM → RN be the natural surjection; its kernel is

resM (Nm) =
{
r ∈ RM : vN (r) > v(N)

}
,
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and vN
(
resMN (r)

)
= vM (r) for r ∈ RM with resMN (r) 6= 0. Let

Lrng =
{

+N , ·N , vN , resMN : N divides M
}
∪ Lg

be the language of the multi-sorted structure Krng = (R1, R2, . . . ,Γ∞). The pair consisting of the
family of rings (RN ) and the family of morphisms (resMN )N |M forms an inverse system; let lim

←−
RN

denote its inverse limit. The morphisms resN : O → RN induce a ring morphism O → lim
←−

RN whose

kernel is

ṁ :=
⋂
N

Nm =
{
x ∈ K : v(x) > v(N) for every N

}
,

and hence induces an embedding ϕ : O/ṁ→ lim
←−

RN . Clearly we have:

Lemma 5.19. Suppose Krng is ℵ1-saturated; then ϕ is an isomorphism.

We now consider K as a many-sorted structure (K,R1, R2, . . . ,Γ∞) in the language

Lrkng = Lk ∪ Lrng ∪ {v, res1, res2, . . . }.

Lemma 5.20. Suppose n2 divides N , and for i = 1, 2 let xi ∈ K with v(xi) + 2v(n) ≤ v(N). Then
with ri = resN (xi), the following are equivalent:

(1) x1 · x−1
2 ∈ (K×)n;

(2) r1r
n = r2 or r1 = r2r

n for some r ∈ RN .

Proof. Suppose x1 ·x−1
2 ∈ (K×)n, and say v(x1) ≤ v(x2); then x1z

n = x2 for some z ∈ O, so r1r
n = r2

for r = resN (z). Conversely, suppose r1r
n = r2 where r ∈ RN . Take y ∈ O with v(x1y

n−x2) > v(N);
then

v(x1x
−1
2 yn − 1) > v(N)− v(x2) ≥ 2v(n).

Hensel’s Lemma (in the Newton formulation) applied to the polynomial x1x
−1
2 yn−Xn ∈ O[X] yields

an x ∈ K such that x1x
−1
2 yn − xn = 0, so x1x

−1
2 ∈ (K×)n. �

From Lemma 5.20 we see that for N , n as in the lemma,

r1 ∼nN r2 :⇐⇒ ∃s (r1s
n = r2 ∨ r1 = r2s

n)

defines an equivalence relation on the subset

RnN =
{
r ∈ RN : vN (r) + 2v(n) ≤ v(N)

}
of RN . For such N , n we introduce a new sort

SnN := (RnN/∼nN ) ∪ {0}
together with the map πnN : RN → SnN which agrees with the quotient map RnN → RnN/∼nN on RnN
and is 0 on RN \RnN . Let

Lrngq = Lrng ∪ {πnN : n2 divides N}
be the language of the expansion (Krng, S

n
N ) of Krng. Note that (Krng, S

n
N ) is interpretable in Krng.

Finally, we define, for every n such that n2 divides N , the following map resnN : K → SnN : If there is
some γ ∈ Γ such that 0 ≤ v(x)− nγ ≤ v(N)− 2v(n), choose y ∈ K with v(y) = γ and set

resnN (x) = πnN
(

resN (x · y−n)
)
;

one verifies easily that this does not depend on the choice of γ and y. If there is no such γ,
set resnN (x) := 0. We view each henselian valued field of characteristic zero in the natural way
as an Lkrngq-structure where

Lrkngq := Lrkng ∪ {resnN : n2 divides N}.
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Let the multivariables xr, xk, xg be of sort R1, R2, . . ., K, and Γ∞, respectively. We call Lrkngq-terms
of the form v

(
p(xk)

)
, res0

N

(
p(xk)q(xk)−1

)
or resnN

(
p(xk)

)
(where n ≥ 1), for polynomials p, q with

integer coefficients, special. We then have the following theorem.

Theorem 5.21. In the Lrkngq-theory of characteristic zero henselian valued fields, every Lrkng-for-
mula φ(xr, xk, xg) is equivalent to a formula

φrngq

(
xr, σ1(xk), . . . , σm(xk), xg

)
where the σi are special terms and φrngq is a suitable Lrngq-formula.

For the proof of this theorem, suppose our valued field K (as always, of characteristic zero) is henselian.
Let r, a, γ be finite tuples in K of the same sort as xr, xk, xg, respectively. Let σ0, σ1, . . . list all special
terms, and let σ(a) denote the tuple σ0(a), σ1(a), . . . . We have to show that the type of

(
r, σ(a), γ

)
in Krng determines the type of (r, a, γ) in the Lrkngq-structure K. For this we may assume that K is
special of some suitable cardinality κ, e.g., κ = iω(ω) (see [40, Theorem 10.4.2(c)]). The following
claim is then clear (see [40, Theorems 10.4.4 and 10.4.5 (a)]:

Claim 1. The type of
(
r, σ(a), γ

)
in Krng determines the isomorphism type of

(
Krng, r, σ(a), γ

)
.

In the following we use the notation and terminology of [2, Section 3.4]. Let ∆ be the smallest convex

subgroup of Γ containing all v(N). Let v̇ : K× → Γ̇ := Γ/∆ be the coarsening of v by ∆, with residue

field K̇ of characteristic zero, and let v : K̇× → ∆ be the corresponding specialization of v. The
valuation ring of the valuation v on K̇ is OK̇ := O/ṁ, where

ṁ :=
{
x ∈ K : v(x) > v(N) for all N

}
is the maximal ideal of the valuation ring

Ȯ :=
{
x ∈ K : v(x) > −v(N) for some N

}
of v̇, and the maximal ideal of OK̇ is mK̇ := m/ṁ. The valued field K̇ is henselian [2, Lemma 3.4.2].

(In fact, even better: K̇ is complete with archimedean value group; cf. the proof of Claim 2 below.)

We view K̇ as the two-sorted structure
(
K̇,Γ∞, v

)
, with the ring structure on K̇ and the ordered

group structure on Γ, and the valuation v : K̇× → ∆ ⊆ Γ extended to a map K̇ → Γ̇∞ as usual. The
natural surjection O → OK̇ induces an isomorphism

RN = O/Nm→ OK̇/NmK̇ = (O/ṁ)/(Nm/ṁ),

and we identify RN with its image; note that then RN is interpretable in K̇, and we may view r as a
tuple of elements in K̇eq. The maps ˙resn : K → K̇/(K̇×)n are defined as before Theorem 5.15, for the
valuation v̇ in place of v. Now let θ(a) be a sequence enumerating all terms of the form ˙resn

(
q(a)

)
or v

(
q(a)

)
for polynomials q with integer coefficients.

Claim 2. The isomorphism type of
(
Krng, r, σ(a), γ

)
determines that of

(
K̇, r, θ(a), γ

)
.

Proof. By Lemma 5.19, since Krng is ℵ1-saturated, we have an isomorphism OK̇ = O/ṁ
∼=−→ lim
←−

RN ,

and K̇ is the fraction field of OK̇ . It remains to show that σ(a) determines each value ˙resn(b) where

b = q(a) for some polynomial q with integer coefficients. For this we may assume v̇(b) ∈ nΓ̇. Take

c ∈ K with nv̇(c) = v̇(b), so bc−n ∈ Ȯ; then with y := ˙res(bc−n) ∈ K̇× we have

˙resn(b) = y · (K̇×)n ∈ (K̇×)/(K̇×)n,

where ˙res : Ȯ → K̇ is the natural surjection. If necessary replacing b, c, y by their respective inverses,
we can arrange that 0 ≤ v(b) − nv(c) ≤ v(M) for some M . Set N := n2M ; then resnN (b) ∈ SnN
is the equivalence class of ˙resN (y) ∈ RN ; here ˙resN : OK̇ → RN is the natural surjection. Now
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suppose σ(a) = σ(a′) where a′ is a tuple in K of the same sort as a, and let b′ := q(a′). Then
v(b) = v(b′), so nv̇(c) = v̇(b′) and 0 ≤ v(b′)− nv(c) ≤ v(M). Thus setting y′ := ˙res(b′c−n), we have

˙resn(b′) = y′ · (K̇×)n ∈ (K̇×)/(K̇×)n.

By hypothesis we have resnN (b) = resnN (b′) and hence ˙resN (y) ∼nN ˙resN (y′). By Lemma 5.20 applied

to K̇ in place of K we therefore obtain y/y′ ∈ (K̇×)n and thus ˙resn(b) = ˙resn(b′) as required. �

Let ṘV := K/(1 + ṁ) be the abelian monoid introduced in Section 5.4, with v̇ in place of v, and

let ṙv : K → ṘV be the natural surjection. Note that since ṁ ⊆ m, we have a natural surjective
monoid morphism ṘV→ RV = K/(1 + m), and we hence obtain a sequence

(5.4) 1→ K̇×
ι−−→ ṘV×

ν−−→ Γ→ 0

of morphisms of abelian groups where ι is injective, ν is surjective, and ker ν ⊆ im ι; since ∆ = im(ν◦ι)
and Γ/∆ are both torsion-free, this sequence is weakly pure exact, by Lemma 4.11. We consider now

the structure (K̇, ṘV,Γ∞) in the three-sorted language Lrv (see Section 5.4), which comprises of the

field K̇, the abelian monoid structures on Γ∞ and ṘV, and the maps ι, ν. Let τ(a) be an enumeration
of all terms ṙv

(
q(a)

)
, where q ranges over polynomials with integer coefficients.

Claim 3. The type of
(
r, θ(a), γ

)
in K̇ determines the type of

(
r, τ(a), γ

)
in (K̇, ṘV,Γ∞).

Proof. This follows from Theorem 4.12 applied to the weakly pure exact sequence (5.4) as in the proof
of Theorem 5.15. �

Claim 4. The type of
(
r, τ(a), γ

)
in (K̇, ṘV,Γ∞) determines the type of (r, a, γ) in the Lrkngq-struc-

ture K.

Proof. This follows from Flenner’s QE (Fact 5.16). To see this, let (K̇, ṘV, Γ̇∞) be the Lrv-structure

associated to the ∆-coarsening of the valued field K, as in Section 5.4: that is, (K̇, ṘV, Γ̇∞) consists

of the field K̇, the abelian monoids Γ̇∞, ṘV, the map ι : K̇ → ṘV from above, and the compo-
sition ν̇ : ṘV → Γ̇∞ of ν with the natural surjection π : Γ∞ → Γ̇∞. Expand this structure by a
sort for Γ∞ as well as the primitives ν, π. Note that Γ̇ = Γ/ν(ι(K̇×)) and ν̇ = π ◦ ν. Hence

the type of
(
r, τ(a), γ

)
in (K̇, ṘV,Γ∞) determines the type of

(
r, τ(a), γ

)
in this expanded struc-

ture (K̇, ṘV, Γ̇∞). Now by Fact 5.16 and the remark following it, the type of
(
r, τ(a), γ

)
in (K̇, ṘV, Γ̇∞)

implies the type of (r, a, γ) in the ∆-coarsening of K, viewed as Lrkg,rv-structure in the natural way,
and expanded by a sort for Γ∞ and the primitives ν, π. This Lrkg,rv-structure defines the valuation v
on K (as v = ν ◦ ṙv), and hence interprets K viewed as Lrkngq-structure. This yields the claim. �

The combinations of the four claims above completes the proof of Theorem 5.21.

Remark 5.22. Theorem 5.21 implies a quantifier elimination result for arbitrary expansions of Lrngq

just as in Corollary 4.8.

In the following corollary we assume that Γ∞ comes equipped with additional structure, and the
Lkrng-structure K is expanded by this structure on its sort Γ∞; by Remark 5.22, Γ∞ is then stably
embedded in K, and the structure induced on Γ∞ is the given one.

Corollary 5.23. Suppose k is finite. Then K is NIP iff K is finitely ramified and Γ∞ is NIP.

Proof. The forward direction is clear by earlier results. For the converse, suppose K is finitely ramified
but not NIP. We may assume that K is a monster model of its theory. Then there is an indiscernible
sequence (ai)i∈N of elements of the field sort and a definable subset S ⊆ K such that for all i, we



46 ASCHENBRENNER, CHERNIKOV, GEHRET, AND ZIEGLER

have ai ∈ S iff i is even. By Theorem 5.21 there are special terms σ1(xk), . . . , σm(xk) and a suitable
Lrngq-formula ψ (possibly involving parameters) such that for a ∈ K:

a ∈ S ⇐⇒ K |= ψ
(
σ1(a), . . . , σm(a)

)
.

In particular,

K |= ψ
(
σ1(ai), . . . , σm(ai)

)
⇐⇒ i is even.

Since k is finite, so are RN and hence all SnN , by Lemma 5.10. Hence after modifying ψ and the σj
suitably, we can assume that each σj has the form σj(xk) = v

(
qj(xk)

)
for some polynomial qj(xk)

with integer coefficients. From [63, Lemma A.18] we obtain γ1, . . . , γm ∈ Γ, r1, . . . , rm ∈ N, and an
indiscernible sequence (αi) of elements of Γ such that

v
(
qj(ai)

)
= γj + rjαi for sufficiently large i.

With xg a variable of sort Γ∞ and

ψg(xg) := ψ
(
γ1 + r1xg, . . . , γm + rmxg

)
,

for sufficiently large i we then have

K |= ψg(αi) ⇐⇒ i is even,

showing that Γ∞ has IP. �

6. Distality in Henselian Valued Fields

The main aim of this section is to prove the theorem stated in the introduction. In Section 6.3 we
consider when naming a henselian valuation on a distal field preserves distality. After some valuation-
theoretic preliminaries in Section 6.4, we investigate the structure of fields with a distal expansions
in Section 6.5. Using work of Johnson [46], we obtain some consequences in the dp-minimal case
in Section 6.6.

6.1. Reduction to RV∗. In this subsection K is a henselian valued field of characteristic zero, and
the structure K and its reduct RV∗ are as introduced in Section 5.1, where RV∗ may carry additional
structure. The aim of the present subsection is to prove the following:

Proposition 6.1. K is distal if and only if K is finitely ramified and RV∗ is distal.

The “only if” part is straightforward by Lemma 1.15, full stable embeddedness of RV∗ in K (see
Fact 5.3(2)), and Corollary 2.19. In the rest of this subsection we assume that K is finitely ramified
and RV∗ is distal, and show that then K is also distal. We may assume that K is a monster model
of Th(K). Note that K is automatically NIP by Fact 2.1 and Proposition 5.11. Suppose towards
a contradiction that K is not distal. By Corollary 1.11 there are an indiscernible sequence (ai)i∈Q
with ai ∈ K and finite tuples b = (b1, . . . , bn) in K and c in RV∗, as well as a formula φ(x, b, c), such
that (ai)i∈Q6= is bc-indiscernible, where Q 6= := Q \ {0}, but |= φ(ai, b, c) iff i 6= 0. By Fact 5.3 and
Remark 5.4(1), φ(x, b, c) is equivalent to a formula of the form

(6.1) ψ
(
rvδ(x− b′1), . . . , rvδ(x− b′m), c′

)
for some δ, some m and b′ = (b′1, . . . , b

′
m) ∈ Km, some tuple c′ from RV∗, and an LRV∗ -formula ψ,

where in addition b′1, . . . , b
′
m, c

′ ∈ acl(bc). In particular, (ai)i∈Q6= is b′c′-indiscernible, hence after
replacing our original formula with this new one, we can assume that φ(x, b, c) itself is of the form (6.1)
with b = b′. So for i ∈ Q:

(6.2) |= ψ
(
rvδ(ai − b1), . . . , rvδ(ai − bn), c

)
⇐⇒ i 6= 0.
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As the structure induced on RV∗ is distal by Fact 5.3 and KKK is NIP, Proposition 1.17 implies
that (ai)i∈Q is c-indiscernible. By Lemma 5.12, the following three cases exhaust all the possibil-
ities.

Case 1: (ai)i∈Q is pseudocauchy. Take a∞ ∈ K such that (ai)i∈Q6=∞ is bc-indiscernible and (ai)i∈Q∞ is

c-indiscernible. (Such an a∞ exists by assumption and saturation.) Then the sequence
(
v(a∞−ai)

)
i∈Q

is strictly increasing. Now for each k ∈ {1, . . . , n}, one of the following must occur.

(a) v(bk − a∞) > v(a∞− ai) for all i ∈ Q. As the sequence (ai)i∈Q is endless, in view of (5.2) we
then have v(bk − a∞) > v(a∞ − ai) + δ and hence rvδ(bk − ai) = rvδ(a∞ − ai), for all i ∈ Q.

(b) v(bk−a∞) < v(a∞−ai) for all i ∈ Q. As in (a), this implies that v(bk−a∞)+δ < v(a∞−ai)
and hence rvδ(bk − ai) = rvδ(bk − a∞), for all i ∈ Q.

(c) There are i > j in Q such that v(a∞ − ai) ≥ v(bk − a∞) ≥ v(a∞ − aj). After increasing
i or decreasing j if necessary we can assume that i, j 6= 0. As the relation v(x) ≤ v(y) is
∅-definable, we obtain a contradiction with br-indiscernibility of (ai)i∈Q6=∞ .

Permuting the components of b, we can thus assume that we have some l ∈ {1, . . . , n+ 1} such that
for each i ∈ Q and k = 1, . . . , n we have

rvδ(ai − bk) =

{
rvδ(ai − a∞) if k < l

rvδ(a∞ − bk) otherwise.

Set ri := rvδ(ai−a∞) for i ∈ Q as well as sk := rvδ(a∞−bk) for k = l, . . . , n, and r := (rl, . . . , rn). Now
the sequence (ri)i∈Q is indiscernible, and (ri)i∈Q6= is sc-indiscernible (as (ai)i∈Q6=∞ is bc-indiscernible).

As RV∗ is distal, by Proposition 1.10 this implies that (ri)i∈Q is also sc-indiscernible. But then

|= ψ
(

rvδ (a1 − b1) , . . . , rvδ (a1 − bn) , c
)

⇐⇒ |= ψ(r1, . . . , r1, s, c)

⇐⇒ |= ψ(r0, . . . , r0, s, c)

⇐⇒ |= ψ
(

rvδ(a0 − b1), . . . , rvδ(a0 − bn), c
)
,

contradicting (6.2).

Case 2: (ai)i∈Q∗ is pseudocauchy. Then we apply Case 1 to the sequence (a−i)i∈Q in place of (ai)i∈Q.

Case 3: (ai)i∈Q is a fan. Note again that then k is infinite, hence chark = 0 by Fact 2.1, and
thus δ = 0. Take some a∞ as in Case 1, and let γ be the common value of v(ai − aj) for all i 6= j
in Q∞. Let k ∈ {1, . . . , n}; then one of the following must occur.

(a) v(bk − a∞) < γ. Then rv(bk − ai) = rv(bk − a∞) for all i ∈ Q.
(b) v(bk − ai) > γ for some i ∈ Q 6=. Then v(bk − ai) > v(a∞ − ai) and v(bk − aj) ≤ v(a∞ − aj)

for each j ∈ Q \ {0, i}, contradicting bk-indiscernibility of (ai)i∈Q6=∞ .

(c) v(bk − a0) > γ. Then rv(a0 − a∞) = rv(bk − a∞). Note that the sequence
(
rv(ai − a∞)

)
i∈Q

is indiscernible, and hence not totally indiscernible, by distality and stable embeddedness of
RV∗. So

(
rv(ai−a∞)

)
i∈Q6= is not indiscernible over rv(a0−a∞) = rv(bk−a∞) by Corollary 1.6.

But this again contradicts the bk-indiscernibility of (ai)i∈Q6=∞ .

(d) v(bk − ai) = γ for all i ∈ Q. Then rv(bk − a∞) = γ and thus rv(bk − ai) = rv(bk − a∞) ⊕
rv(a∞ − ai) for all i ∈ Q.

Reindexing the components of b, we can thus assume that we have some l ∈ {1, . . . , n+ 1} such that
for i ∈ Q and k = 1, . . . , n, with ri := rv(ai − a∞) and sk := rv(a∞ − bk):

rv(ai − bk) =

{
ri ⊕ sk if k < l

sk otherwise.
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Let s := (s1, . . . , sn). Then (ri)i∈Q is indiscernible and (ri)i∈Q6= is sc-indiscernible, since (ai)i∈Q∞ is
indiscernible and (ai)i∈Q6=∞ is bc-indiscernible. Hence (ri)i∈Q is sc-indiscernible by Proposition 1.10,

as RV∗ is distal. But then

|= ψ
(
rv(a1 − b1), . . . , rv(a1 − bn), c

)
⇐⇒ |= ψ(r1 ⊕ s1, . . . , r1 ⊕ sl−1, sl, . . . , sn, c)

⇐⇒ |= ψ(r0 ⊕ s1, . . . , r0 ⊕ sl−1, sl, . . . , sn, c)

⇐⇒ |= ψ
(
rv(a0 − b1), . . . , rv(a0 − bn), c

)
,

contradicting (6.2). This finishes the proof of Proposition 6.1. �

6.2. Reduction of distality from RV∗ to k and Γ. In this subsection we assume that the structure
on RV∗ is obtained from structures on k, Γ∞ by expanding RV∗ by all relations S ⊆ RVm where
S ⊆ (ker vrv)m = (k×)m is definable in k or S = v−1

rv (vrv(S)) and vrv(S) ⊆ Γm is definable in Γ. We
then have:

Proposition 6.2. Suppose K is finitely ramified. Then RV∗ is distal if and only if both k and Γ are.

For the proof, it is natural to distinguish two cases.

6.2.1. chark > 0. Here we may assume that k is finite, by Fact 2.1. The structure induced on Γ is
the given one; see the remarks preceding Corollaries 5.23. The forward direction now follows from
Lemma 1.15. For the converse, suppose Γ is distal; then Γ is NIP and hence so is the structure RV∗
interpretable in K, by Corollary 5.23. By Lemma 5.7, the group morphisms rvγ→0 : RV×γ → RV×0 =

RV× have finite fibers; moreover, since vrv : RV× → Γ has kernel k×, this group morphism also has
finite fibers. Hence each element of RV∗ is algebraic over Γ. As Γ is distal, applying Corollary 1.26
we conclude that RV∗ is distal.

6.2.2. chark = 0. In this case, we note that RV∗ is bi-interpretable with the pure short exact sequence
1→ k× → RV× → Γ→ 0, in the sense of Section 4.1, where k, Γ carry the given additional structure.
But then the conclusion holds by Theorem 4.6. �

Combining Propositions 6.1 and 6.2 with Remark 5.2 finishes the proof of the main theorem.

6.3. When naming a henselian valuation preserves distality. Let (K,O) be a henselian valued
field with residue field k and value group Γ. The following is [42, Theorem A]:

Fact 6.3. If k is not separably closed, then O is definable in the Shelah expansion KSh of the field K.

Together with Lemma 1.30 this immediately implies:

Corollary 6.4. If the field K has a distal expansion and k is not separably closed, then the valued
field (K,O) has a distal expansion.

Our main theorem allows us to treat the case of separably closed residue field:

Corollary 6.5. Suppose k is separably closed. Then the valued field (K,O) has a distal expansion if
and only if Γ has a distal expansion and k has characteristic zero.

Proof. Note that k is necessarily infinite, and if k has characteristic zero, then k is algebraically
closed, hence has distal expansion: just add a predicate for a maximal proper subfield of k. Now the
claim follows from our main theorem. �

In view of Conjecture 3.16 we expect that in order for (K,O) to have a distal expansion, we only need
to require that k has a distal expansion. Before we turn to discussing our conjectural classification of
fields with distal expansion, we recall some definitions and basic facts about canonical valuations.
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6.4. Canonical valuations. In this subsection we let K be a field. We collect some notions and
basic facts used in the next subsection. Let O1, O2 be valuation rings K. One says that O2 is coarser
than O1, and that O1 is finer than O2, if O1 ⊆ O2, that is, if O2 is the valuation ring of a coarsening
of (K,O1).

Let now H be the set of henselian valuation rings of K, and let Hc be the subset of H consisting of
those valuation rings with separably closed residue field. Then H \Hc is linearly ordered by inclusion.
If Hc 6= ∅, then Hc contains a coarsest valuation ring Oc of K; this valuation ring is (strictly) finer
than every valuation ring in H \Hc. If Hc = ∅, then there is a finest henselian valuation ring of K,
which we also denote by Oc. We refer to [28, Theorem 4.4.2] for these facts. The valuation ring Oc

is called the canonical henselian valuation ring of the field K.

Let now p be a prime. We denote by K(p) the compositum of all finite normal field extensions L|K
of p-power degree. If K(p) = K, then K is called p-closed.

Lemma 6.6. Suppose K is separably closed and p 6= charK; then K is p-closed.

Proof. If charK = 0, then K is algebraically closed, and if charK = q > 0 then the degree of each
finite field extension of K is a power of q. �

Following [47, Section 9.5] we say that K is p-corrupted if no finite extension of K is p-closed; as a
consequence of a theorem of Becker [4], one has (see [47, Lemma 9.5.2]):

Lemma 6.7 (Johnson). Every perfect field which is neither algebraically closed nor real closed has a
finite p-corrupted extension.

A valuation ring O of K is said to be p-henselian if only one valuation ring of K(p) lies over O.
Let Hp be the set of p-henselian valuation rings of K, and let Hp

c be the subset of Hp consisting of
those valuation rings with p-closed residue field. As before, Hp \Hp

c is linearly ordered by inclusion.
If Hp

c 6= ∅, then Hp
c contains a coarsest valuation ring Opc of K, which is then finer than every valuation

ring in Hp \Hp
c . If Hp

c = ∅, then there is a finest p-henselian valuation ring of K, also denoted by Opc .
One calls Opc the canonical p-henselian valuation ring of K. See [44], which also contains a proof of
the following fact:

Proposition 6.8 (Jahnke-Koenigsmann). If K is not orderable and contains all pth roots of unity,
then Opc is ∅-definable in K.

Here we recall that K is said to be orderable if there is an ordering on K making K an ordered field.

6.5. Distal fields. In this subsection K is a field. The following is commonly attributed to Shelah:

Conjecture 6.9. If K is NIP, then K is finite, separably closed, real closed, or admits a non-trivial
henselian valuation.

This conjecture has numerous consequences; for example, by [38, Proposition 6.3], it implies that every
NIP valued field is henselian. In [42, Theorem B] it is shown that if K is NIP and O is a henselian
valuation ring of K, then the valued field (K,O) is also NIP. Hence if Conjecture 6.9 holds, then every
valuation ring on a NIP field is henselian, and its residue field is NIP. Moreover, under Conjecture 6.9,
any two (externally) definable valuation rings on a NIP field are comparable [38, Corollary 5.4]. In
Theorem 6.12 below we show that Conjecture 6.9 also gives rise to a classification of all fields admitting
a distal expansion. We first note that the non-trivial henselian valuation stipulated in Conjecture 6.9
may be taken to be ∅-definable, by results in [42, 43] (see also [38, Corollary 7.6]):

Lemma 6.10. Suppose Conjecture 6.9 holds, and suppose K is infinite and NIP; then K is separably
closed or real closed, or K has an ∅-definable non-trivial henselian valuation ring.
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Proof. Suppose K is neither separably closed nor real closed; so according to Conjecture 6.9, K has a
non-trivial henselian valuation. If K has such a valuation with residue field which is separably closed
or real closed, then by [43, Theorem 3.10 and Corollary 3.11, respectively], there is an ∅-definable non-
trivial henselian valuation ring of K. Hence we may assume that the residue field of each henselian
valuation on K is not separably closed and not real closed. In particular, the residue field k of O := Oc

is neither separably closed nor real closed. Hence O is the finest henselian valuation ring of K; in
particular, k does not have a non-trivial henselian valuation. Now k is NIP, and so by Conjecture 6.9
applied to k, this field is finite. Its absolute Galois group is non-universal, so O is ∅-definable by [43,
Theorem 3.15 and Observation 3.16]. �

We also recall that every infinite field with a distal expansion has characteristic zero.

Corollary 6.11. Suppose Conjecture 6.9 holds, and K is infinite and has a distal expansion. Then K
is algebraically closed or real closed, or K has an ∅-definable non-trivial henselian valuation ring O
whose residue field

(1) is finite, or
(2) is a field of characteristic zero with a distal expansion.

Proof. Suppose K is neither algebraically closed nor real closed; then by Lemma 6.10 we can take
an ∅-definable non-trivial henselian valuation ring O of K. Let k be the residue field of O; then k
also has a distal expansion by the forward direction in our main theorem; in particular, if chark > 0,
then k is finite. �

In connection with option (1) in Corollary 6.11 recall that if (K,O) is an infinite NIP henselian
valued field of characteristic zero with finite residue field, then (K,O) has a specialization which
is p-adically closed of finite p-rank, for some prime p. (Remark 2.20.) We do not know whether
we can upgrade (2) in this corollary to “is algebraically closed of characteristic zero, or real closed”
(even while simultaneously weakening the condition that O be ∅-definable in K to O being externally
definable, say). Instead we show:

Theorem 6.12. Suppose Conjecture 6.9 holds, and K is NIP and does not define a valuation ring
whose residue field is infinite of positive characteristic; then K has a henselian valuation ring, type-
definable over the empty set, whose residue field is algebraically closed of characteristic zero, real
closed, or finite.

Before we give the proof of Theorem 6.12, we establish analogues of two results from [47] (9.5.4
and 9.5.7, respectively):

Lemma 6.13. Suppose Conjecture 6.9 holds and K is NIP, non-orderable, and contains all p-th roots
of unity, where p is a prime. Let O = Opc be the canonical p-henselian valuation ring of K; then O is
∅-definable, and its residue field is finite, has characteristic p, or is p-closed.

Proof. Proposition 6.8 yields the ∅-definability of O. Suppose the residue field k of O is infinite,
has characteristic 6= p, and is not p-closed. Then by Lemma 6.6, k cannot be separably closed;
since K is non-orderable, k is also not real closed. Hence by Conjecture 6.9 we may equip k with
a non-trivial henselian valuation ring; let k → k1 be the corresponding place. Composition of the
places K → k → k1 then gives rise to a henselian valuation ring O1 of K with residue field k1 such
that k is a specialization of (K,O1), and then O1 is a strictly finer p-henselian valuation ring than O,
a contradiction. �

Lemma 6.14. Suppose Conjecture 6.9 holds, and suppose K is infinite NIP, and the residue field
of each ∅-definable valuation ring of K has characteristic zero. Let O∞ be the intersection of all ∅-
definable valuation rings of K. Then O∞ is a valuation ring of K whose residue field is algebraically
closed of characteristic zero or real closed.
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Proof. The hypothesis and the remarks following Conjecture 6.9 yield that the set of all valuation
rings of K is linearly ordered by inclusion; in particular, O∞ is a valuation ring of K. As in the proof
of [47, Theorem 9.5.7(2)] one also sees that O∞ equals the intersection of all definable valuation rings
of K. Let k∞ be the residue field of O∞. We have chark∞ = 0, since otherwise some ∅-definable
valuation ring O ⊇ O∞ of K would have residue field k with chark = chark∞ > 0 [47, Remark 9.5.6].
Towards a contradiction suppose that k∞ is neither algebraically closed nor real closed. By Lemma 6.7
we then obtain a prime p and a finite p-corrupted extension l of k∞. Let v∞ : K× → Γ∞ denote the
valuation associated to O∞. Choose a finite field extension L of K which contains all 4p-th roots
of unity and such that the residue field of the unique valuation w∞ on L extending v∞ contains l,
and hence is not p-closed. Lemma 6.13 yields a valuation w on L which is ∅-definable (that is, its
valuation ring is ∅-definable in the field L) and not a coarsening of w∞. Let v be the restriction of
w to a valuation on K; then v is definable, hence a coarsening of v∞, say v = (v∞)∆ where ∆ is a
convex subgroup of Γ∞. Let ∆L be the convex hull of ∆ in the value group of w∞. The restriction
of the ∆L-coarsening (w∞)∆L

of w∞ to K is v. But v is henselian, so w = (w∞)∆L
is a coarsening

of w∞, a contradiction. �

Now Theorem 6.12 follows easily: If K has an ∅-definable valuation ring with residue field of positive
characteristic, then this residue field is finite by hypothesis, and we are done. Thus we may assume
that the residue field of every ∅-definable valuation ring of K has characteristic zero. Then Lemma 6.14
yields a henselian valuation ring O∞, type-definable over ∅, whose residue field is algebraically closed
of characteristic zero, or real closed. �

Corollary 6.15. Suppose Conjectures 3.16 and 6.9 hold, and K is NIP; then the following are
equivalent:

(1) K has a distal expansion;
(2) K does not interpret an infinite field of positive characteristic;
(3) K does not define a valuation ring whose residue field is infinite of positive characteristic;
(4) K has a henselian valuation ring whose residue field is algebraically closed of characteristic

zero, real closed, or finite.

Proof. The implications (1) ⇒ (2) ⇒ (3) are clear (using Fact 2.1), and (3) ⇒ (4) follows from
Theorem 6.12. To show (4) ⇒ (1), suppose K has characteristic zero. If O is a henselian valuation
ring of K whose residue field k is algebraically closed of characteristic zero, real closed, or finite,
then k has a distal expansion, and after choosing a distal expansion of the value group of O, our main
theorem yields that (K,O) has a distal expansion, which is also a distal expansion of K. �

We also note a consequence of Theorem 6.12 for ordered fields. In [23], a field is defined to be almost
real closed if it has a henselian valuation ring with real closed residue field.

Corollary 6.16. Suppose Conjecture 6.9 holds, and K is orderable and has a distal expansion; then K
is almost real closed.

Proof. Equip K with an ordering making it an ordered field; it is well-known that then every henselian
valuation ring of K is convex, and hence its residue field is orderable. Now use Theorem 6.12. �

Based on Theorem 6.12 we conjecture:

Conjecture 6.17. Suppose K has a distal expansion; then K has a henselian valuation ring whose
residue field is algebraically closed of characteristic zero, real closed, or finite.

6.6. Distality in the dp-minimal case. In this subsection we show that for dp-minimal K, the
conclusion of Corollary 6.15 holds even without assuming Conjectures 3.16 and 6.9; this relies again
on work of Johnson [47]. We first recall a few facts about dp-minimal fields and related structures.
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Fact 6.18.

(1) Every dp-minimal expansion of an ordered abelian group is distal (by Fact 1.5).
(2) Every dp-minimal valued field is henselian [46, 45].

Combining Fact 6.18 and the main theorem of this paper, we get:

Corollary 6.19. A dp-minimal valued field is distal (has a distal expansion) if and only if its residue
field is distal (respectively, has a distal expansion).

A dp-minimal (pure) field can fail to admit a distal expansion only in the most obvious way:

Corollary 6.20. Let K be an infinite dp-minimal field; then the following are equivalent:

(1) K has a distal expansion;
(2) K does not interpret an infinite field of positive characteristic;
(3) K does not define a valuation ring whose residue field is infinite of positive characteristic;
(4) K has a henselian valuation ring whose residue field is algebraically closed of characteristic

zero, real closed, or finite.

Proof. As in the proof of Corollary 6.15, the implications (1) ⇒ (2) ⇒ (3) are clear. For (3) ⇒ (4),
we argue as in the proof of the corresponding implication in Theorem 6.12: If K has an ∅-definable
valuation ring with residue field of positive characteristic, then (4) holds. Otherwise, let O∞ be the
intersection of all ∅-definable valuation rings of K; by [47, Theorem 9.1.4], O∞ is a henselian valuation
ring of K (with O∞ = K if K admits no ∅-definable non-trivial valuations) whose residue field k∞
is algebraically closed, real closed, or finite. Moreover, chark∞ = 0 by [47, Theorem 9.4.18(3),
Remark 9.5.6]. Finally, (4) ⇒ (1) is shown as in the proof of (4) ⇒ (1) in Corollary 6.15, using
Facts 3.1 and 6.18 in place of Conjecture 3.16. �

Note that there are indeed dp-minimal fields of characteristic zero without distal expansions.

Example. Let Qunr
p be the maximal unramified extension of the valued field Qp. Its value group

is Z and its residue field is the algebraic closure Fa
p of Fp. Let OK be the unique valuation ring of

K = Qunr
p

(
p1/p, p1/p2 , . . .

)
lying over that of Qunr

p . Its value group
⋃
n

1
pnZ is archimedean (hence

regular) but non-divisible, and (K,OK) is henselian; so it follows from [41, Theorem 5] that OK
is ∅-definable in the field K. Hence K is a field of characteristic zero which is dp-minimal by [47,
Theorem 9.1.5, 1(c)] but has no distal expansion since it interprets an infinite field of characteristic p.

7. Distality in Expansions of Fields by Operators

In this section we use a “forgetful functor” approach to show that various expansions of distal fields
by operators remain distal. Most of the results of this section were obtained and circulated in 2014.
We have learned that recently some of them were observed independently in [21].

7.1. An abstract distality criterion. We fix a language L and a complete L-theory T = Th(M).
As usual all variables here are assumed to be (finite) multivariables. Recall that by Fact 1.8, T is
distal if and only if every partitioned L-formula ϕ(x; y) has a strong honest definition in T , i.e., there
is a formula ψ(x; y1, . . . , yN ), where y1, . . . , yN are disjoint multivariables (for some N ∈ N), each of
the same sort as y, such that for all a ∈ Mx and finite subsets B of My with |B| ≥ 2, there are
b1, . . . , bN ∈ B such that ψ(x; b1, . . . , bn) isolates tpϕ(a|B):

(1) a ∈ ψ(Mx; b1, . . . , bN ); and
(2) for all b ∈ B, either

ψ(Mx; b1, . . . , bN ) ⊆ ϕ(Mx; b) or ψ(Mx; b1, . . . , bN ) ∩ ϕ(Mx; b) = ∅.
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We also consider an extension L(F) of the language L by a set F of new function symbols. We assume
that L(F) has the same sorts as L, and we consider F itself as a language by declaring the sorts of F
to be those of L. Finally, we let T (F) be a complete L(F)-theory extending T .

Proposition 7.1. Suppose T is distal and the following conditions hold:

(1) T (F) has quantifier elimination;
(2) all function symbols in F are unary; and
(3) for every L(F)-term t(x) there are an L-term s in n variables of the appropriate sorts and

F-terms t1(x), . . . , tn(x) such that T ` t(x) = s
(
t1(x), . . . , tn(x)

)
.

Then T (F) is distal.

Proof. Fix a model M of T (F), and let ϕ(x; y) be a partitioned L(F)-formula; we show that ϕ(x; y) has
a strong honest definition in T (F). By assumption (1), we may assume that ϕ(x; y) is quantifier-free.
Then by assumptions (2) and (3) there are an L-formula ϕ′(x′; y′) as well as F-terms s1(x), . . . , sm(x)
and t1(y), . . . , tn(y), such that for all a ∈Mx, b ∈My we have

M |= ϕ(a, b) ⇐⇒ M |= ϕ′
(
s(a), t(b)

)
,

where

s(a) :=
(
s1(a), . . . , sm(a)

)
and t(b) :=

(
t1(b), . . . , tn(b)

)
.

Suppose y = (y1, . . . , yk) where k = |y|; we can assume that the terms t1, . . . , tn contain the
terms y1, . . . , yk; thus b 7→ t(b) : My → My′ is injectve. By distality of T , take a strong honest
definition ψ′(x′; y′1, . . . , y

′
N ) for ϕ′(x′; y′) in T , where y′1, . . . , y

′
N are disjoint new multivariables of

the same sort as y′; thus for all a′ ∈ Mx′ and any finite subset B′ of My′ with |B′| ≥ 2, there are
b′1, . . . , b

′
N ∈ B′ such that

(1) M |= ψ′(a′; b′1, . . . , b
′
N ); and

(2) for all b′ ∈ B′, either

ψ′(Mx′ ; b
′
1, . . . , b

′
N ) ⊆ ϕ′(Mx′ ; b

′) or ψ′(Mx′ ; b
′
1, . . . , b

′
N ) ∩ ϕ′(Mx′ ; b

′) = ∅.

We claim that

ψ(x; y1, . . . , yN ) := ψ′
(
s(x); t(y1), . . . , t(yN )

)
where y1, . . . , yN are disjoint new multivariables of the same sort as y, is a strong honest definition
for ϕ(x; y) in T (F). Let a ∈Mx, and let B ⊆My be finite with |B| ≥ 2. Set a′ := s(a), B′ := t(B) ⊆
My′ (so |B′| = |B| ≥ 2), and take b1, . . . , bN ∈ B such that (1) and (2) above hold with b′i := t(bi),
for i = 1, . . . , N . Then M |= ψ(a; b1, . . . , bN ), and ψ(x; b1, . . . , bN ) isolates tpϕ(a|B), as required. �

In a similar way as the preceding proposition, one shows:

Lemma 7.2. Suppose T is distal and for every partitioned L(F)-formula ϕ(x; y), where |x| = 1, there
is a partitioned L-formula ϕ′(x; z) and a tuple of L(F)-terms t(y) of length |z| such that

T ` ϕ(x; y)↔ ϕ′
(
x; t(y)

)
.

Then T (F) is distal.

Proof. Let ϕ(x; y) be a partitioned L(F)-formula, where |x| = 1; by Proposition 1.9 it is enough to
show that ϕ(x; y) has a strong honest definition in T (F). By our hypothesis we can assume ϕ(x; y) =
ϕ′
(
x; t(y)

)
where ϕ′(x; y′) is an L-formula and t(y) =

(
t1(y), . . . , tn(y)

)
is an appropriate tuple of L(F)-

terms whose components contain the terms y1, . . . , yk for y = (y1, . . . , yk). Distality of T yields a strong
honest definition ψ′(x; y′1, . . . , y

′
N ) for ϕ′(x; y′) in T , where y′1, . . . , y

′
N are disjoint new multivariables

of the same sort as y′. Then ψ(x; y1, . . . , yN ) := ψ′
(
x; t(y1), . . . , t(yN )

)
is a strong honest definition

for ϕ(x; y) in T (F). �



54 ASCHENBRENNER, CHERNIKOV, GEHRET, AND ZIEGLER

In practice, condition (3) in Proposition 7.1 is easily verified whenever T is a relational expansion of
the theory of fields, and the functions symbols in F are interpreted as derivations in models of T (F).
We now give several applications of these criteria.

7.2. Transseries. In this subsection we assume that the reader is familiar with [2, Chapter 16].
Consider the language

LΛΩ = {0, 1, +, −, · , ∂, ι, ≤, 4, Λ, Ω}
introduced there. The LΛΩ-theory T nl of ω-free newtonian Liouville closed H-fields eliminates quan-
tifiers [2, Theorem 16.0.1] and has two completions: T nl

small, of which the differential field T of
logarithmic-exponential transseries is a model, and T nl

large. Both completions are distal:

Corollary 7.3. The LΛΩ-theories T nl
small and T nl

large are distal.

Proof. Let L := LΛΩ \ {∂} (so L(∂) = LΛΩ), let T (∂) = T nl
small, and let T be the L-theory of T. Each

model of T is a real closed ordered field K, viewed as a structure in the language {0, 1,+,−, · , ι,≤}
in the natural way, equipped with a convex dominance relation 4 and interpretations of the unary
relation symbols Λ and Ω as certain convex subsets of K. By Baisalov-Poizat [3], the theory of each
expansion of an o-minimal structure by convex subsets of its domain is weakly o-minimal, hence distal;
in particular, T is distal. (Alternatively, we could use Fact 1.29.) Proposition 7.1 (and the quotient
rule for derivations) implies that T nl

small = T (∂) is distal. The argument for T nl
large is similar. �

Combining Fact 2.1 with the preceding corollary shows that no infinite field of positive characteristic
is interpretable in T. We venture the following:

Conjecture 7.4. The only infinite fields interpretable in T are T, R, and their respective algebraic
closures T[i], C = R[i].

7.3. Other distal differential fields. Proposition 7.1 can be used to show that many other theories
of interest are distal as well. In general, whenever T is the theory of an expansion of a differential
field (perhaps with several derivations) by relations and constants, and we know that

(1) T has QE, and
(2) the reduct of T to the language without derivations is distal,

then Proposition 7.1 implies that T itself is distal. In the literature, one finds many theories which
satisfy these conditions. For instance:

Corollary 7.5. The following theories are distal:

(1) CODF, the model completion of the theory of ordered differential fields from [65];
(2) CODFm, the model completion of the theory of ordered differential fields with m commuting

derivations from [58, 67];
(3) pCDFd,m, the model completion of the theory of p-valued fields of p-rank d with m commuting

derivations from [67].

The fact that CODF is NIP was first shown (also using the “forgetful functor”) in [53], and generalized
to CODFm in [36]. The paper [33] considers a generalization of CODFm: Given a complete, model
complete o-minimal theory T expanding the theory of real closed ordered fields, the theory whose
models are models of T equipped with m commuting derivations which satisfy the Chain Rule with
respect to the continuously differentiable definable functions in T has a model completion Tm, and
if T has quantifier elimination and a universal axiomatization, then Tm has quantifier elimination [33,
Theorem 6.8]. (Note that the latter hypothesis on T can always be achieved by expanding the language
by function symbols for all ∅-definable functions and expanding T accordingly.) Our criterion implies
that then Tm is distal; this has also been observed in [33, Proposition 6.10].
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The topological fields with generic valuations considered in [36] are also distal. For example, let
L = {0, 1,+,−, · ,≤,4} and let OVF be the L-theory of ordered fields equipped with a non-trivial
convex dominance relation; its model completion is RCVF, the theory of real closed valued fields
(see [2, Section 3.6]). By [36, Corollary 6.4], the L(∂)-theory whose models are the expansions of
models of OVF by a derivation ∂, has a model completion; this model completion is distal because
RCVF is weakly o-minimal. In [56] it is shown that the L-theory of pre-H-fields with gap 0 has
a model completion. Here, a pre-H-field is a model of the universal part of the theory T nl from
Section 7.2, and such a pre-H-field has gap 0 if it satisfies the L-sentence ∀y(y′ 4 y → y 4 1). This
model completion has quantifier elimination [56, Theorem 7.2, Corollary 7.4], and its distality follows
in the same way as above from distality of RCVF. (In [56, Theorem 7.6] it is already shown that this
model completion is NIP.)

As pointed out in the introduction, definable relations in a theory which has a distal expansion satisfy
strong combinatorial bounds [11, 17]. This is often used in incidence combinatorics in a more explicit
form, e.g., the proof of the Szemerédi-Trotter Theorem over the field of complex numbers (which is a
stable structure) relies on interpreting the field C in the distal field of reals in the usual way [66, 72].
Corollary 7.5 implies a qualitative analog for the stable theories DCF0,m of differentially closed fields
of characteristic 0 with m commuting derivations. For this we need the following facts [64, 68]:

Fact 7.6. If K |= CODF, then the differential field extension K[i] of K (where i2 = −1) is a
differentially closed field of characteristic 0, i.e., K[i] |= DCF0. More generally, if K |= CODFm,
then K[i] |= DCF0,m.

This immediately yields (see Lemma 1.28):

Corollary 7.7. The theory DCF0,m has a distal expansion.

Problem 7.8. By [8, Lemma 4.5.9], the theory CODF is not strongly dependent. Does DCF0 admit
a strongly dependent distal expansion?

7.4. Henselian valued fields with analytic structure. We finish by showing that the forgetful
functor argument (in the form of Lemma 7.2) also allows us to extend the main theorem from the
introduction to the analytic expansions of henselian valued fields introduced in [20]; for this we rely
on some arguments from [57, Section 5]. We need to recall the relevant definitions from [20].

We fix a noetherian commutative ring A and an ideal I 6= A of A such that A is separated and
complete for its I-adic topology. Let A〈X〉 = A〈X1, . . . , Xm〉 be the ring of power series in the distinct
indeterminates X1, . . . , Xm with coefficients in A whose coefficients I-adically converge to 0, and set
Am,n := A〈X〉[[Y ]] where X = (X1, . . . , Xm) and Y = (Y1, . . . , Yn) are disjoint tuples of distinct
indeterminates over A. We expand the (one-sorted) language of valued fields to a language LA by
introducing a unary function symbol ι as well as an (m + n)-ary function symbol for each element
of Am,n (which we denote by the same symbol). We let TA be the LA-theory whose models are the
LA-structures expanding a valued field (K,O) of characteristic zero, such that with m = maximal
ideal of O:

(A1) ι is interpreted by the map K → K with a 7→ 1/a if a 6= 0 and 0 7→ 0;
(A2) each function symbol f ∈ Am,n is interpreted by a function fK : Km × Kn → K which is

identically zero outside of Om ×mn and such that fK(Om ×mn) ⊆ O;
(A3) the map f 7→ fK is a ring morphism from Am+n to the ring of functions Km ×Kn → K;
(A4) each f ∈ Am,n, viewed as an element of Am,n+1 under the natural inclusion Am,n ⊆ Am,n+1,

is interpreted as a function Km ×Kn+1 → K which does not depend on the last coordinate,
and similarly for the inclusion Am,n ⊆ Am+1,n;

(A5) each a ∈ I ⊆ A = A0,0 is interpreted by a constant function with value in m;
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(A6) for a = (a1, . . . , am) ∈ Om and b = (b1, . . . , bn) ∈ mn we have XK
i (a, b) = ai (i = 1, . . . ,m)

and Y Kj (a, b) = bj (j = 1, . . . , n).

The valued field underlying each model of TA is automatically henselian; see [57, Proposition 3.5].

Let now K |= TA, and as in Section 5.1 expand K to a multi-sorted structure K whose sorts are K
(called the field sort below) and the sets RVδ (called the RV-sorts below), with the primitives specified
in (K1)–(K4). Let K∗ be an expansion of K obtained by imposing additional structure on the
reduct RV∗ of K, including,

(A7) for each u ∈ Am+n, the function uKδ : RVm+n
δ → RVδ satisfying uKδ

(
rvδ(a)

)
= rvδ

(
uK(a)

)
for

a ∈ Km+n.

(See [57, Corollary 3.9].) Let also L be the reduct of the language L∗ of K∗ obtained by removing
all symbols listed under (A1)–(A7) above. The following is a consequence of [57, Corollary 5.5] (a
generalization of a theorem in [26]):

Proposition 7.9. Let ϕ(x, y, r) be an L∗-formula where the multivariables x, y, are of the field sort
with |x| = 1, and r is of the RV-sort. Then there exists an L-formula ϕ′(x, z, r) and an appropriate
tuple of LA-terms t(y) such that K∗ |= ϕ(x, y, r)↔ ϕ′

(
x, t(y), r

)
.

We now use this result to show a variant of our main theorem:

Corollary 7.10. Let K |= TA; if the valued field underlying K is distal (has a distal expansion),
then the LA-structure K is distal (has a distal expansion, respectively).

Proof. Suppose first that the valued field underlying K has a distal expansion; by the forward direction
of our main theorem, this valued field is finitely ramified, and its value group Γ and residue field k
have a distal expansion. Consider now the structure K∗ introduced before Proposition 7.9, where we
equip RV∗ with the functions (A7) as well as the structure coming from the distal expansions of Γ
and k as explained at the beginning of Section 6.2. By Propositions 6.1 and 6.2, the L-reduct K
of K∗ is distal. Now Lemma 7.2 and Proposition 7.9 yield that the expansion K∗ of K is distal. This
shows that if the valued field underlying K has a distal expansion, then so does K. Note that if we
follow this argument when the valued field underlying K itself is distal, then the distal structure K∗
we obtain in this way is bi-interpretable with the LA-structure K. �

Example. Let k be a distal field of characteristic zero and A = Z[[t]], I = tA. Then the valued
field K = k((t)) of Laurent series with coefficients in k can be expanded to a model of TA in a unique
way such that t ∈ A is interpreted by t ∈ K; by the previous corollary, this LA-structure K is distal.
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72. J. Zahl, A Szemerédi-Trotter type theorem in R4, Discrete Comput. Geom. 54 (2015), no. 3, 513–572.
73. E. Zakon, Generalized archimedean groups, Trans. Amer. Math. Soc. 99 (1961), 21–40.

74. M. Ziegler, Model theory of modules, Ann. Pure Appl. Logic 26 (1984), 149–213.

Email address: matthias@math.ucla.edu

Email address: chernikov@math.ucla.edu

Email address: allen@math.ucla.edu

Email address: ziegler@uni-freiburg.de

Department of Mathematics, University of California, Los Angeles, Los Angeles, CA 90095, USA

Department of Mathematics, University of California, Los Angeles, Los Angeles, CA 90095, USA

Department of Mathematics, University of California, Los Angeles, Los Angeles, CA 90095, USA

Albert-Ludwigs-Universität Freiburg, Mathematisches Institut, Abteilung für Mathematische Logik,
79104 Freiburg, Germany


	Introduction
	1. Preliminaries on Distality
	2. Distal Fields and Rings
	3. Distality in Ordered Abelian Groups
	4. Distality and Short Exact Sequences of Abelian Groups
	5. Eliminating Field Quantifiers in Henselian Valued Fields
	6. Distality in Henselian Valued Fields
	7. Distality in Expansions of Fields by Operators
	Acknowledgements
	References

