Problem Set 5

Due Friday, December 1.

Foundations of Number Theory

Math 435, Fall 2006

1. $(10+10 \mathrm{pts}$.
(a) Find the smallest integer $n>3$ such that

$$
3|n, \quad 5|(n+2), \quad \text { and } \quad 7 \mid(n+4)
$$

(b) Find the smallest integer $n>2$ such that

$$
2|n, \quad 3|(n+1), \quad 4|(n+2), \quad 5|(n+3), \quad \text { and } \quad 6 \mid(n+4)
$$

2. (20 pts.) Find all solutions $x \in \mathbb{Z}$ to the following system of congruences:

$$
\begin{array}{ll}
5 x \equiv 2 & \bmod 3 \\
4 x \equiv 7 & \bmod 9 \\
2 x \equiv 4 & \bmod 10 .
\end{array}
$$

3. (10 pts.) Show that if $d \in \mathbb{Z}$ with $d \equiv 3 \bmod 4$, then the diophantine equation $x^{2}-d y^{2}=-1$ has no solution.
4. (10 pts.) Determine whether the congruence $x^{2} \equiv 2 \bmod 77$ has a solution.
5. (10 pts.) Let p be a prime with $p \equiv 1 \bmod 12$. Show that 3 is a quadratic residue $\bmod p$.
6. (10 pts.) Let $a \in \mathbb{Z}$, and let $p>3$ be a prime divisor of $a^{2}+3$. Show that $p \equiv 1 \bmod 3$.
7. (10 pts.) For $p \in\{3,5,7\}$ find a Carmichael number of the form $q_{1} q_{2} q_{3}$, where each q_{i} is a prime number with $q_{i} \equiv 1 \bmod p-1$ for $i=1,2,3$.
8. (10 pts.) Find an integer a such that $x^{2} \equiv a \bmod 385$ has exactly 8 solutions up to congruence mod 385 .
9. (20 pts. extra credit.) Show that

$$
1!3!5!\cdots(p-2)!\equiv \pm 1 \quad \bmod p
$$

for every odd prime p.

