Problem Set 5

Solutions

Foundations of Number Theory
Math 435, Fall 2006

1. $(10+10 \mathrm{pts}$.
(a) Suppose n satisfies the given divisibility conditions. Then $3 \mid n$ yields the existence of $k \in \mathbb{Z}$ with $n=3 k$. By $5 \mid(n+2)$ we get $3 k \equiv 3 \bmod 5$ and thus $k \equiv 1 \bmod 5$. Write $k=5 l+1$ with $l \in \mathbb{Z}$. Then $n=15 l+3$, and substituting into the third condition gives $l \equiv 0 \bmod 7$. Write $l=7 m$ with $m \in \mathbb{Z}$. Then $n=3+105 m$. So the smallest solution $n>3$ is $n=3+105=108$.
(b) Proceeding similarly to (a) we get $n=62$.
2. $(20$ pts.) Since $1=(-1) \cdot 5+2 \cdot 3$, hence $-5 \equiv 1 \bmod 3$, and $-2 \equiv 1 \bmod 3$, the first congruence is equivalent to $x \equiv 1 \bmod 3$. Similarly $1=(-2) \cdot 4+9$ and hence $(-2) \cdot 4 \equiv 4 \bmod 3$, and $(-2) \cdot 7 \equiv 4 \bmod 9$, so the second congruence is equivalent to $x \equiv 4 \bmod 9$. Note that if $x \equiv 4 \bmod 9$ then $x \equiv 4 \bmod 3$ and thus $x \equiv 1 \bmod 3$. So the system consisting of the first two congruences has the solutions $x=4+9 k$ where $k \in \mathbb{Z}$. The last congruence is equivalent with $x \equiv 2 \bmod 5$. Substituting $x=4+9 k$ yields $9 k \equiv 8 \bmod 5$. Now $1=(-1) \cdot 9+2 \cdot 5$ and hence $k \equiv-8 \equiv 2 \bmod 5$. Write $k=2+5 l$ where $l \in \mathbb{Z}$, hence $x=4+9(2+5 l)=22+45 l$. Therefore the common solutions to the three congruences are $22+45 l$ with $l \in \mathbb{Z}$.
3. (10 pts.) Let $d \in \mathbb{Z}$ with $d \equiv 3 \bmod 4$, and suppose for a contradiction that $(x, y) \in \mathbb{Z}^{2}$ satisfy $x^{2}-d y^{2}=-1$. The reducing $\bmod 4$ we have $-d \equiv-3 \equiv 1 \bmod 4$ and $-1 \equiv 3 \bmod 4$, hence $x^{2}+y^{2} \equiv x^{2}-d y^{2} \equiv-1 \equiv$ $3 \bmod 4$. By checking each pair $(x, y) \in \mathbb{Z}^{2}$ with $0 \leq x \leq y<4$ one sees that the congruence $x^{2}+y^{2} \equiv 3 \bmod 4$ has no solution, in contradiction to our original assumption.
4. (10 pts.) By the Euler Criterion:

$$
\left(\frac{2}{11}\right) \equiv 2^{\frac{11-1}{2}} \equiv 2^{5} \equiv 32 \equiv-1 \quad \bmod 11
$$

Hence 2 is not a quadratic residue mod 11. Thus the congruence $x^{2} \equiv$ $2 \bmod 77$ cannot have a solution.
5. (10 pts.) Let p be a prime with $p \equiv 1 \bmod 12$. By the Quadratic Reciprocity Law we have

$$
\left(\frac{3}{p}\right)=\left(\frac{p}{3}\right) \cdot(-1)^{\frac{p-1}{2}}(-1)^{\frac{3-1}{2}}=\left(\frac{p}{3}\right) \cdot(-1)^{\frac{p-1}{2}} .
$$

Now $p \equiv 1 \bmod 3$, hence p is a quadratic residue $\bmod 3$, so $\left(\frac{p}{3}\right)=1$. Also $p \equiv 1 \bmod 4$, hence $\frac{p-1}{2}$ is even, so $(-1)^{\frac{p-1}{2}}=1$. Therefore $\left(\frac{3}{p}\right)=1$, i.e., 3 is a quadratic residue $\bmod p$.
6. (10 pts.) Let $a \in \mathbb{Z}$, and let $p>3$ be a prime divisor of $a^{2}+3$. Then -3 is a quadratic residue mod p. Now

$$
1=\left(\frac{-3}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{3}{p}\right)=(-1)^{\frac{p-1}{2}}\left(\frac{3}{p}\right)
$$

and by the Quadratic Reciprocity Law:

$$
\left(\frac{3}{p}\right)=\left(\frac{p}{3}\right) \cdot(-1)^{\frac{p-1}{2}}(-1)^{\frac{3-1}{2}}=\left(\frac{p}{3}\right) \cdot(-1)^{\frac{p-1}{2}}
$$

Since p is odd we have

$$
(-1)^{\frac{p-1}{2}} \cdot(-1)^{\frac{p-1}{2}}=(-1)^{p-1}=1
$$

and hence

$$
1=(-1)^{\frac{p-1}{2}}\left(\frac{3}{p}\right)=(-1)^{p-1}\left(\frac{p}{3}\right)=\left(\frac{p}{3}\right)
$$

Thus p is a quadratic residue $\bmod 3$, hence $p \equiv 1 \bmod 3$.
7. (10 pts.) For $p=3: 7 \cdot 13 \cdot 19$. For $p=5: 5 \cdot 13 \cdot 17$. For $p=7: 7 \cdot 13 \cdot 19$.
8. (10 pts.) We have $385=5 \cdot 7 \cdot 11$. Quadratic residues $\bmod 5: 0,1,4$; quadratic residues $\bmod 7: 0,1,2,4$; quadratic residues $\bmod 11: 0,1$, $3,4,5,9$. So it is enough to choose a with $a \equiv 1 \bmod 5, a \equiv 2 \bmod 7$, $a \equiv 3 \bmod 11$, e.g., $a=366$.
9. (20 pts. extra credit.) Let $p>2$ be a prime. We have

$$
\begin{aligned}
1!2!3!\cdots(p-1)! & =1!3!5!\cdots(p-2)!\cdot 2!4!6!\cdots(p-1)! \\
& =(1!3!5!\cdots(p-2)!)^{2} \cdot 2 \cdot 4 \cdot 6 \cdots(p-1) \\
& =(1!3!5!\cdots(p-2)!)^{2} \cdot 2^{\frac{p-1}{2}} \cdot\left(\frac{p-1}{2}\right)!
\end{aligned}
$$

and hence

$$
1!2!3!\cdots(p-1)!\equiv(1!3!5!\cdots(p-2)!)^{2} \cdot(-1)^{\frac{p^{2}-1}{8}} \cdot\left(\frac{p-1}{2}\right)!\bmod p(1)
$$

since

$$
2^{\frac{p-1}{2}} \equiv\left(\frac{2}{p}\right) \equiv(-1)^{\frac{p^{2}-1}{8}} \bmod p
$$

as shown in class. For $k=1, \ldots, p-1$ we have

$$
\begin{aligned}
(p-k)! & \equiv(p-k)(p-(k+1)) \cdots(p-(p-1)) \\
& \equiv(-k)(-(k+1)) \cdots(-(p-1)) \\
& \equiv(-1)^{p-k} \cdot k \cdot(k+1) \cdots(p-1) \\
& \equiv(-1)^{p-k} \cdot \frac{(p-1)!}{(k-1)!} \quad \bmod p
\end{aligned}
$$

and hence

$$
(p-k)!\cdot k!\equiv(-1)^{p+k}(p-1)!k \equiv(-1)^{p+k+1} k \quad \bmod p
$$

where in the last congruence we used Wilson's Theorem. Grouping $(p-k)$! and k ! for $k=1, \ldots,(p-1) / 2$ together, this yields

$$
\begin{equation*}
1!2!3!\cdots(p-1)!\equiv(-1)^{e}\left(\frac{p-1}{2}\right)!\bmod p \tag{2}
\end{equation*}
$$

where

$$
e=\sum_{k=1}^{(p-1) / 2} p+k+1=\frac{p(p-1)}{2}+\frac{(p-1)(p+1)}{8}+\frac{p-1}{2}=\frac{5\left(p^{2}-1\right)}{8}
$$

Note that

$$
(-1)^{e}=\left((-1)^{5}\right)^{\frac{p^{2}-1}{8}}=(-1)^{\frac{p^{2}-1}{8}} .
$$

Hence by (1) and (2):

$$
(1!3!5!\cdots(p-2)!)^{2} \equiv 1 \quad \bmod p
$$

The claim follows.

