Problem Set 4 Due Friday, November 10.
\section*{Foundations of Number Theory

Math 435, Fall 2006}

1. $(10+10 \mathrm{pts}$.
(a) Show that $n^{2}+3 n+5 \equiv(n-4)^{2} \bmod 11$, for every integer n.
(b) Use (a) to show that there is no integer n such that $n^{2}+3 n+5$ is divisible by 121 .
2. (20 pts.) Use induction on n to show that

$$
2^{2 n+1} \equiv 9 n^{2}-3 n+2 \quad \bmod 54
$$

for every $n \in \mathbb{N}$.
3. $(10+5+10+5$ pts. $)$
(a) Show that $6 \mid\left(10^{i}-4^{i}\right)$ for every $i \in \mathbb{N}$. Use this to show that

$$
10^{10^{i}-4^{i}} \equiv 1 \quad \bmod 7
$$

(Hint: Euler-Fermat Theorem.)
(b) Use (a) to show that $10^{10^{i}} \equiv 4^{4^{i}} \bmod 7$ for every $i \in \mathbb{N}$.
(c) Show that $4^{4^{i}} \equiv 4 \bmod 7$ for every $i \in \mathbb{N}$.
(d) Use (b) and (c) to determine the remainder of

$$
\sum_{i=1}^{10} 10^{10^{i}}
$$

upon division by 7 .
4. (20 pts.) Find all primitive roots modulo 23 (up to congruence mod 23).
5. (10 pts.) Let m, n be positive integers with $m \mid n$. Show that $\varphi(m) \mid \varphi(n)$.
6. (20pts. extra credit.) Show that $2730 \mid\left(n^{13}-n\right)$ for every $n \in \mathbb{N}$.

