Problem Set 3 Due Friday, October 20.

Foundations of Number Theory Math 435, Fall 2006

- 1. Show that no numbers of the form p^{α} (*p* prime, $\alpha \in \mathbb{N}$) and pq (*p*, *q* distinct prime numbers, $pq \neq 6$) are perfect.
- 2. Show that if $n \in \mathbb{N}^{>0}$ is perfect, then

$$\sum_{d|n} \frac{1}{d} = 2$$

- 3. Let 0 denote the number-theoretic function given by 0(n) = 0 for all $n \in \mathbb{N}^{>0}$. Show that if f, g are number-theoretic functions with f * g = 0, then f = 0 or g = 0.
- 4. Show: if $\sigma(n)$ is odd, then n is a square or twice a square.
- 5. Let f be a number-theoretic function.
 - (a) Show that there exists a number-theoretic function g with $f * g = \varepsilon$ if and only if $f(1) \neq 0$. (Recall that ε denotes the number-theoretic function with $\varepsilon(1) = 1$ and $\varepsilon(n) = 0$ for n > 1.)
 - (b) Show that if g, h are number-theoretic functions with $f * g = \varepsilon$ and $f * h = \varepsilon$, then g = h.
 - If $f(1) \neq 0$, then we denote the unique number-theoretic function g with $f * g = \varepsilon$ by f^{-1} .
- 6. Let f be a multiplicative number-theoretic function with $f(1) \neq 0$. Show that the following are equivalent:
 - (a) f is completely multiplicative;
 - (b) $f^{-1} = \mu f$ (pointwise multiplication);
 - (c) $f^{-1}(p^{\alpha}) = 0$ for all prime numbers p and $\alpha \in \mathbb{N}$, $\alpha \ge 2$.
- 7. (Extra credit.) Show that $\tau^3 * 1 = (\tau * 1)^2$.