Problem Set 3

Due Friday, October 20.

Foundations of Number Theory

Math 435, Fall 2006

1. Show that no numbers of the form p^{α} (p prime, $\alpha \in \mathbb{N}$) and $p q(p, q$ distinct prime numbers, $p q \neq 6$) are perfect.
2. Show that if $n \in \mathbb{N}^{>0}$ is perfect, then

$$
\sum_{d \mid n} \frac{1}{d}=2
$$

3. Let 0 denote the number-theoretic function given by $0(n)=0$ for all $n \in \mathbb{N}^{>0}$. Show that if f, g are number-theoretic functions with $f * g=0$, then $f=0$ or $g=0$.
4. Show: if $\sigma(n)$ is odd, then n is a square or twice a square.

5 . Let f be a number-theoretic function.
(a) Show that there exists a number-theoretic function g with $f * g=\varepsilon$ if and only if $f(1) \neq 0$. (Recall that ε denotes the number-theoretic function with $\varepsilon(1)=1$ and $\varepsilon(n)=0$ for $n>1$.)
(b) Show that if g, h are number-theoretic functions with $f * g=\varepsilon$ and $f * h=\varepsilon$, then $g=h$.

If $f(1) \neq 0$, then we denote the unique number-theoretic function g with $f * g=\varepsilon$ by f^{-1}.
6. Let f be a multiplicative number-theoretic function with $f(1) \neq 0$. Show that the following are equivalent:
(a) f is completely multiplicative;
(b) $f^{-1}=\mu f$ (pointwise multiplication);
(c) $f^{-1}\left(p^{\alpha}\right)=0$ for all prime numbers p and $\alpha \in \mathbb{N}, \alpha \geq 2$.
7. (Extra credit.) Show that $\tau^{3} * 1=(\tau * 1)^{2}$.

