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1. (20 pts.) Let p be prime, α ∈ N. We have σ(pα) = pα−1
p−1 + pα < 2pα,

hence pα is not perfect. Let q be a prime different from p, and suppose pq
is perfect. Then

2pq = σ(pq) = (p + 1)(q + 1),

hence p|(q +1) and q|(p+1). Write q +1 = pk, p+1 = ql with k, l ∈ N>0.
Then (kl)pq = (p + 1)(q + 1), hence kl = 2. Thus either k = 1, l = 2, or
k = 2, l = 1; in the first case p = q + 1, 2q = p + 1, hence q = 2, p = 3,
and in the second case p = 2, q = 3. In both cases pq = 6.

2. (20 pts.) Suppose n ∈ N>0 is perfect. Then∑
d|n

d = 2n,

hence, dividing by n on both sides of this equation:∑
d|n

1
n/d

= 2.

Now note that ∑
d|n

1
n/d

=
∑
d|n

1
d
.

3. (20 pts.) Suppose f ∗ g = 0, that is,∑
d|n

f(d)g(n/d) = 0 for all n ∈ N>0.

Assume that f, g 6= 0; we then need to show that f ∗ g 6= 0. Since f 6= 0,
there is some k ∈ N>0 with f(k) 6= 0; take k minimal with this property.
Similarly, let l ∈ N>0 be minimal with g(l) 6= 0, and put n := kl. We
claim that (f ∗ g)(n) 6= 0. To see this, we study each term in the sum

(f ∗ g)(n) =
∑
d|n

f(d)g(n/d).

If d < k then f(d)g(n/d) = 0 (by minimality of k); if d > k then n/d =
kl/d < l, hence f(d)g(n/d) = 0 (by minimality of l). Therefore (f∗g)(n) =
f(k)g(l) 6= 0. Thus f ∗ g 6= 0.



4. (20 pts.) Recall that

σ(n) =
∏
p

(1 + p + p2 + · · · + pαp),

where n =
∏

p pαp is the prime factorization of n. Suppose σ(n) is odd.
Then each of the factors 1 + p + p2 + · · ·+ pαp is odd. If p is a prime > 2,
then each of the αp + 1 summands in this sum is odd; hence there has to
be an odd number of summands, so αp is even. Thus n is a square (if α2

is even) or twice a square (if α2 is odd).

5. (5+5 pts.) Let f be a number-theoretic function.

(a) Suppose first that g is a number-theoretic function with f ∗ g = ε.
Then 1 = ε(1) = (f ∗ g)(1) = f(1)g(1), hence f(1) 6= 0. Conversely,
suppose f(1) 6= 0. We define g(n) by recursion on n. For n = 1 we
set g(1) := 1/f(1). If n > 1 and g(1), . . . , g(n− 1) have already been
defined, we put

g(n) := − 1
f(1)

∑
d|n
d>1

f(d)g(n/d).

One checks immediately that then f ∗ g = ε.

(b) Suppose g, h are number-theoretic functions with f ∗ g = ε and
f ∗ h = ε. Then

g = ε∗g = (f ∗h)∗g = f ∗(h∗g) = f ∗(g∗h) = (f ∗g)∗h = ε∗h = h.

6. (10 pts.) Let f be a multiplicative number-theoretic function with f(1) 6=
0. As shown in class, we have f(1) = 1, hence

(µf ∗ f)(1) = µ(1) · f(1)2 = 1 = ε(1).

Note also that f−1(1) = 1 since

1 = ε(1) = (f−1 ∗ f)(1) = f−1(1) · f(1).

Now suppose first that f is completely multiplicative. If p is a prime and
α ∈ N, α > 0, then

(µf ∗ f)(pα) =
α∑

i=0

µ(pi)f(pi) · f(pα−i) = f(1) · f(pα) − f(p) · f(pα−1),

and this equals 0 = ε(pα), since f(pα) = f(p)f(pα−1) by complete multi-
plicativity of f . Since both µf ∗ f and ε are multiplicative, this suffices to
show µf ∗ f = ε, hence f−1 = µf .— Next suppose f−1 = µf ; then clearly
for every prime p and every α > 1 we have f−1(pα) = µ(pα)f(pα) = 0
since µ(pα) = 0.— Finally, suppose f−1(pα) = 0 for all prime numbers p



and α ∈ N, α ≥ 2. In order to check that f is completely multiplicative, it
is enough to verify that f(pα) = f(p)f(pα−1) for every prime p and every
α > 1. (Why?) To see this we note that for those p and α we have

0 = ε(pα) = (f−1 ∗ f)(pα) =
α∑

i=0

f−1(pi)f(pα−i),

and this sum simplifies to f(pα) + f−1(p)f(pα−1). Also

0 = ε(p) = (f−1 ∗ f)(p) = f(p) + f−1(p),

hence f−1(p) = −f(p) and thus

f(pα) − f(p)f(pα−1) = f(pα) + f−1(p)f(pα−1) = 0,

so f(pα) = f(p)f(pα−1) as required.

7. (20 pts. extra credit.) Since all the functions involved are multiplicative,
it is enough to show, for every prime p and every α ∈ N, that

(τ3 ∗ 1)(pα) =
(
(τ ∗ 1)(pα)

)2
.

Now

(τ ∗ 1)(pα) =
α∑

i=0

τ(pi) =
α∑

i=0

i + 1 =
α+1∑
i=1

i.

Also

(τ3 ∗ 1)(pα) =
α∑

i=0

τ(pi)3 =
α∑

i=0

(i + 1)3 =
α+1∑
i=1

i3.

So (rewriting α + 1 as m) we have to show, for every m > 0, that

(1 + 2 + · · · + m)2 = 13 + 23 + 33 + · · · + m3.

We do this by induction on m. The base case m = 1 is trivial. Suppose
we have shown the claim for some value of m. Then(

1 + 2 + · · · + m + (m + 1)
)2 =

(1 + 2 + · · · + m)2 + (m + 1)2 + 2(1 + 2 + · · · + m)(m + 1) =

(13 + 23 + 33 + · · · + m3) + (m + 1)
(
(m + 1) + 2(1 + 2 + · · · + m)

)
=

(13 + 23 + 33 + · · · + m3) + (m + 1)
(
(m + 1) + m(m + 1)

)
=

13 + 23 + 33 + · · · + m3 + (m + 1)3,

where in the second equality we used the inductive hypothesis, and in the
third the well-known formula for 1 + 2 + · · · + m.

Total: 100 pts. + 20 pts. extra credit.


