Problem Set 3

Solutions

Foundations of Number Theory

Math 435, Fall 2006

1. (20 pts.) Let p be prime, $\alpha \in \mathbb{N}$. We have $\sigma\left(p^{\alpha}\right)=\frac{p^{\alpha}-1}{p-1}+p^{\alpha}<2 p^{\alpha}$, hence p^{α} is not perfect. Let q be a prime different from p, and suppose $p q$ is perfect. Then

$$
2 p q=\sigma(p q)=(p+1)(q+1)
$$

hence $p \mid(q+1)$ and $q \mid(p+1)$. Write $q+1=p k, p+1=q l$ with $k, l \in \mathbb{N}^{>0}$. Then $(k l) p q=(p+1)(q+1)$, hence $k l=2$. Thus either $k=1, l=2$, or $k=2, l=1$; in the first case $p=q+1,2 q=p+1$, hence $q=2, p=3$, and in the second case $p=2, q=3$. In both cases $p q=6$.
2. (20 pts.) Suppose $n \in \mathbb{N}^{>0}$ is perfect. Then

$$
\sum_{d \mid n} d=2 n
$$

hence, dividing by n on both sides of this equation:

$$
\sum_{d \mid n} \frac{1}{n / d}=2
$$

Now note that

$$
\sum_{d \mid n} \frac{1}{n / d}=\sum_{d \mid n} \frac{1}{d}
$$

3. (20 pts.) Suppose $f * g=0$, that is,

$$
\sum_{d \mid n} f(d) g(n / d)=0 \quad \text { for all } n \in \mathbb{N}^{>0}
$$

Assume that $f, g \neq 0$; we then need to show that $f * g \neq 0$. Since $f \neq 0$, there is some $k \in \mathbb{N}^{>0}$ with $f(k) \neq 0$; take k minimal with this property. Similarly, let $l \in \mathbb{N}^{>0}$ be minimal with $g(l) \neq 0$, and put $n:=k l$. We claim that $(f * g)(n) \neq 0$. To see this, we study each term in the sum

$$
(f * g)(n)=\sum_{d \mid n} f(d) g(n / d)
$$

If $d<k$ then $f(d) g(n / d)=0$ (by minimality of k); if $d>k$ then $n / d=$ $k l / d<l$, hence $f(d) g(n / d)=0$ (by minimality of l). Therefore $(f * g)(n)=$ $f(k) g(l) \neq 0$. Thus $f * g \neq 0$.
4. (20 pts.) Recall that

$$
\sigma(n)=\prod_{p}\left(1+p+p^{2}+\cdots+p^{\alpha_{p}}\right)
$$

where $n=\prod_{p} p^{\alpha_{p}}$ is the prime factorization of n. Suppose $\sigma(n)$ is odd. Then each of the factors $1+p+p^{2}+\cdots+p^{\alpha_{p}}$ is odd. If p is a prime >2, then each of the $\alpha_{p}+1$ summands in this sum is odd; hence there has to be an odd number of summands, so α_{p} is even. Thus n is a square (if α_{2} is even) or twice a square (if α_{2} is odd).
5. ($5+5$ pts.) Let f be a number-theoretic function.
(a) Suppose first that g is a number-theoretic function with $f * g=\varepsilon$.

Then $1=\varepsilon(1)=(f * g)(1)=f(1) g(1)$, hence $f(1) \neq 0$. Conversely, suppose $f(1) \neq 0$. We define $g(n)$ by recursion on n. For $n=1$ we set $g(1):=1 / f(1)$. If $n>1$ and $g(1), \ldots, g(n-1)$ have already been defined, we put

$$
g(n):=-\frac{1}{f(1)} \sum_{\substack{d \mid n \\ d>1}} f(d) g(n / d)
$$

One checks immediately that then $f * g=\varepsilon$.
(b) Suppose g, h are number-theoretic functions with $f * g=\varepsilon$ and $f * h=\varepsilon$. Then

$$
g=\varepsilon * g=(f * h) * g=f *(h * g)=f *(g * h)=(f * g) * h=\varepsilon * h=h .
$$

6. (10 pts.) Let f be a multiplicative number-theoretic function with $f(1) \neq$ 0 . As shown in class, we have $f(1)=1$, hence

$$
(\mu f * f)(1)=\mu(1) \cdot f(1)^{2}=1=\varepsilon(1)
$$

Note also that $f^{-1}(1)=1$ since

$$
1=\varepsilon(1)=\left(f^{-1} * f\right)(1)=f^{-1}(1) \cdot f(1)
$$

Now suppose first that f is completely multiplicative. If p is a prime and $\alpha \in \mathbb{N}, \alpha>0$, then

$$
(\mu f * f)\left(p^{\alpha}\right)=\sum_{i=0}^{\alpha} \mu\left(p^{i}\right) f\left(p^{i}\right) \cdot f\left(p^{\alpha-i}\right)=f(1) \cdot f\left(p^{\alpha}\right)-f(p) \cdot f\left(p^{\alpha-1}\right)
$$

and this equals $0=\varepsilon\left(p^{\alpha}\right)$, since $f\left(p^{\alpha}\right)=f(p) f\left(p^{\alpha-1}\right)$ by complete multiplicativity of f. Since both $\mu f * f$ and ε are multiplicative, this suffices to show $\mu f * f=\varepsilon$, hence $f^{-1}=\mu f$.- Next suppose $f^{-1}=\mu f$; then clearly for every prime p and every $\alpha>1$ we have $f^{-1}\left(p^{\alpha}\right)=\mu\left(p^{\alpha}\right) f\left(p^{\alpha}\right)=0$ since $\mu\left(p^{\alpha}\right)=0$.- Finally, suppose $f^{-1}\left(p^{\alpha}\right)=0$ for all prime numbers p
and $\alpha \in \mathbb{N}, \alpha \geq 2$. In order to check that f is completely multiplicative, it is enough to verify that $f\left(p^{\alpha}\right)=f(p) f\left(p^{\alpha-1}\right)$ for every prime p and every $\alpha>1$. (Why?) To see this we note that for those p and α we have

$$
0=\varepsilon\left(p^{\alpha}\right)=\left(f^{-1} * f\right)\left(p^{\alpha}\right)=\sum_{i=0}^{\alpha} f^{-1}\left(p^{i}\right) f\left(p^{\alpha-i}\right)
$$

and this sum simplifies to $f\left(p^{\alpha}\right)+f^{-1}(p) f\left(p^{\alpha-1}\right)$. Also

$$
0=\varepsilon(p)=\left(f^{-1} * f\right)(p)=f(p)+f^{-1}(p)
$$

hence $f^{-1}(p)=-f(p)$ and thus

$$
f\left(p^{\alpha}\right)-f(p) f\left(p^{\alpha-1}\right)=f\left(p^{\alpha}\right)+f^{-1}(p) f\left(p^{\alpha-1}\right)=0
$$

so $f\left(p^{\alpha}\right)=f(p) f\left(p^{\alpha-1}\right)$ as required.
7. (20 pts. extra credit.) Since all the functions involved are multiplicative, it is enough to show, for every prime p and every $\alpha \in \mathbb{N}$, that

$$
\left(\tau^{3} * 1\right)\left(p^{\alpha}\right)=\left((\tau * 1)\left(p^{\alpha}\right)\right)^{2}
$$

Now

$$
(\tau * 1)\left(p^{\alpha}\right)=\sum_{i=0}^{\alpha} \tau\left(p^{i}\right)=\sum_{i=0}^{\alpha} i+1=\sum_{i=1}^{\alpha+1} i
$$

Also

$$
\left(\tau^{3} * 1\right)\left(p^{\alpha}\right)=\sum_{i=0}^{\alpha} \tau\left(p^{i}\right)^{3}=\sum_{i=0}^{\alpha}(i+1)^{3}=\sum_{i=1}^{\alpha+1} i^{3}
$$

So (rewriting $\alpha+1$ as m) we have to show, for every $m>0$, that

$$
(1+2+\cdots+m)^{2}=1^{3}+2^{3}+3^{3}+\cdots+m^{3}
$$

We do this by induction on m. The base case $m=1$ is trivial. Suppose we have shown the claim for some value of m. Then

$$
\begin{gathered}
(1+2+\cdots+m+(m+1))^{2}= \\
(1+2+\cdots+m)^{2}+(m+1)^{2}+2(1+2+\cdots+m)(m+1)= \\
\left(1^{3}+2^{3}+3^{3}+\cdots+m^{3}\right)+(m+1)((m+1)+2(1+2+\cdots+m))= \\
\left(1^{3}+2^{3}+3^{3}+\cdots+m^{3}\right)+(m+1)((m+1)+m(m+1))= \\
1^{3}+2^{3}+3^{3}+\cdots+m^{3}+(m+1)^{3}
\end{gathered}
$$

where in the second equality we used the inductive hypothesis, and in the third the well-known formula for $1+2+\cdots+m$.

