Problem Set 2 Due Friday, September 29.

Foundations of Number Theory Math 435, Fall 2006

1. Compute the following gcd's using the Euclidean Algorithm and write gcd(x, y) in the form sx + ty $(s, t \in \mathbb{Z})$:

gcd(14, 35); gcd(11, 15); gcd(4081, 2585).

- 2. Let $a, b, c \in \mathbb{Z}$.
 - (a) Suppose we can write 1 = sa + tb for some $s, t \in \mathbb{Z}$. Show that a and b are coprime.
 - (b) Without using facts about prime numbers, show: if a and c are coprime, and b and c are coprime, then ab and c are coprime. (Hint: if 1 = sa + tc = s'b + t'c with $s, t, s', t' \in \mathbb{Z}$, consider (sa + tc)(s'b + t'c)and use part (a).)
 - (c) Recall that the Fibonacci sequence F_1, F_2, \ldots is defined by $F_1 = F_2 = 1$, $F_n = F_{n-1} + F_{n-2}$ for all n > 2. Show that F_n and F_{n+1} are coprime, for all n > 0. (Use (a).)
- 3. Show that the following statements are equivalent, for $a, b \in \mathbb{N}$:
 - (a) gcd(b, x) = a for some $x \in \mathbb{N}$;
 - (b) $\operatorname{lcm}(a, y) = b$ for some $y \in \mathbb{N}$;
 - (c) a|b.
- 4. Show that

$$(2n+1, 2n^2+2n, 2n^2+2n+1)$$

is a Pythagorean triple, for every n > 0. Is every Pythagorean triple of this form?

5. Let $s, t \in \mathbb{N}, s > t > 0$, gcd(s, t) = 1, of distinct parity. Show that then (x, y, z) defined by

$$x = 2st, \quad y = s^2 - t^2, \quad z = s^2 + t^2$$

is a primitive Pythagorean triple. Show that a different pair (s, t) gives rise to a different triple (x, y, z).

6. (Extra credit.) Show that if p is an odd prime number, then $24|p^3 - p$.