Problem Set 2

Due Friday, September 29.

Foundations of Number Theory

Math 435, Fall 2006

1. Compute the following gcd's using the Euclidean Algorithm and write $\operatorname{gcd}(x, y)$ in the form $s x+t y(s, t \in \mathbb{Z})$:

$$
\operatorname{gcd}(14,35) ; \quad \operatorname{gcd}(11,15) ; \quad \operatorname{gcd}(4081,2585)
$$

2. Let $a, b, c \in \mathbb{Z}$.
(a) Suppose we can write $1=s a+t b$ for some $s, t \in \mathbb{Z}$. Show that a and b are coprime.
(b) Without using facts about prime numbers, show: if a and c are coprime, and b and c are coprime, then $a b$ and c are coprime. (Hint: if $1=s a+t c=s^{\prime} b+t^{\prime} c$ with $s, t, s^{\prime}, t^{\prime} \in \mathbb{Z}$, consider $(s a+t c)\left(s^{\prime} b+t^{\prime} c\right)$ and use part (a).)
(c) Recall that the Fibonacci sequence F_{1}, F_{2}, \ldots is defined by $F_{1}=$ $F_{2}=1, F_{n}=F_{n-1}+F_{n-2}$ for all $n>2$. Show that F_{n} and F_{n+1} are coprime, for all $n>0$. (Use (a).)
3. Show that the following statements are equivalent, for $a, b \in \mathbb{N}$:
(a) $\operatorname{gcd}(b, x)=a$ for some $x \in \mathbb{N}$;
(b) $\operatorname{lcm}(a, y)=b$ for some $y \in \mathbb{N}$;
(c) $a \mid b$.
4. Show that

$$
\left(2 n+1,2 n^{2}+2 n, 2 n^{2}+2 n+1\right)
$$

is a Pythagorean triple, for every $n>0$. Is every Pythagorean triple of this form?
5. Let $s, t \in \mathbb{N}, s>t>0, \operatorname{gcd}(s, t)=1$, of distinct parity. Show that then (x, y, z) defined by

$$
x=2 s t, \quad y=s^{2}-t^{2}, \quad z=s^{2}+t^{2}
$$

is a primitive Pythagorean triple. Show that a different pair (s, t) gives rise to a different triple (x, y, z).
6. (Extra credit.) Show that if p is an odd prime number, then $24 \mid p^{3}-p$.

