Problem Set 2

Solutions

Foundations of Number Theory
 Math 435, Fall 2006

1. $(10+10+10$ pts. $)$ We have $5=2 \cdot 14+7,14=2 \cdot 7$, so $\operatorname{gcd}(14,35)=7$, and $7=35-2 \cdot 14$. Furthermore,

$$
\begin{aligned}
15 & =1 \cdot 11+4 \\
11 & =2 \cdot 4+3 \\
4 & =1 \cdot 3+1 \\
3 & =1 \cdot 3
\end{aligned}
$$

so $\operatorname{gcd}(15,11)=1$, and $1=-4 \cdot 11+3 \cdot 15$. Also

$$
\begin{aligned}
4081 & =1 \cdot 2585+1496 \\
2585 & =1 \cdot 1496+1089 \\
1496 & =1 \cdot 1089+407 \\
1089 & =2 \cdot 407+275 \\
407 & =1 \cdot 275+132 \\
275 & =2 \cdot 132+11 \\
132 & =12 \cdot 11
\end{aligned}
$$

hence $\operatorname{gcd}(4081,2585)=11$. Moreover

$$
\begin{aligned}
11 & =275-2 \cdot 132 \\
& =275-2 \cdot(407-1 \cdot 275)=3 \cdot 275-2 \cdot 407 \\
& =3(1089-2 \cdot 407)-2 \cdot 407=3 \cdot 1089-8 \cdot 407 \\
& =3 \cdot 1089-8(1496-1 \cdot 1089)=11 \cdot 1089-8 \cdot 1496 \\
& =11(2585-1 \cdot 1496)-8 \cdot 1496=11 \cdot 1585-19 \cdot 1496 \\
& =11 \cdot 2585-19(4081-1 \cdot 2585)=30 \cdot 2585-19 \cdot 4081 .
\end{aligned}
$$

2. $(10+5+5$ pts. $)$ Let $a, b, c \in \mathbb{Z}$.
(a) Let $d=\operatorname{gcd}(a, b)$. So we can write $a=e d, b=f d$ for some $e, f \in \mathbb{Z}$. Thus

$$
1=s a+t b=s \cdot e d+t \cdot f d=(s e+t f) \cdot d
$$

hence $d=1$. So a and b are coprime.
(b) Suppose $\operatorname{gcd}(a, c)=\operatorname{gcd}(b, c)=1$. So we can write

$$
1=s a+t c=s^{\prime} b+t^{\prime} c \quad \text { for some } s, t, s^{\prime}, t^{\prime} \in \mathbb{Z}
$$

Now we have

$$
\begin{aligned}
1 & =(s a+t c)\left(s^{\prime} b+t^{\prime} c\right) \\
& =s s^{\prime} a b+s t^{\prime} a c+s^{\prime} t b c+t t^{\prime} c^{2} \\
& =\left(s s^{\prime}\right) \cdot a b+\left(s t^{\prime} a+s^{\prime} t b+t t^{\prime} c\right) \cdot c
\end{aligned}
$$

So $a b$ and c are coprime by part (a).
(c) We proceed by induction on n. For $n=1$ we have $F_{n}=F_{1}=1$, $F_{n+1}=F_{2}=1$, hence F_{n} and F_{n+1} are clearly coprime. Suppose that we have already shown that F_{n} and F_{n+1} are coprime; we have to show that F_{n+1} and F_{n+2} are coprime. There exist $s, t \in \mathbb{Z}$ such that $1=a F_{n}+b F_{n+1}$. Now $F_{n}=F_{n+2}-F_{n+1}$, hence

$$
1=a F_{n}+b F_{n+1}=a\left(F_{n+2}-F_{n+1}\right)+b F_{n+1}=a F_{n+2}+(b-a) F_{n+1} .
$$

By part (a), F_{n+2} and F_{n+1} are coprime.
3. (10 pts.) If $a \mid b$, then $\operatorname{gcd}(b, a)=a$; if $\operatorname{gcd}(b, x)=a$ for some x, then $a \mid b$. This shows $(\mathrm{a}) \Longleftrightarrow$ (c). If $a \mid b$, then $\operatorname{lcm}(a, b)=b$; and if $\operatorname{lcm}(a, y)=b$ for some y, then $a \mid b$. This shows $(\mathrm{b}) \Longleftrightarrow(\mathrm{c})$.
4. (20 pts.) We compute:

$$
\begin{aligned}
(2 n+1)^{2}+\left(2 n^{2}+2 n\right)^{2} & =(2 n+1)^{2}+4 n^{4}+8 n^{3}+4 n^{2} \\
& =\left(2 n^{2}\right)^{2}+2 \cdot 2 n^{2} \cdot(2 n+1)+(2 n+1)^{2} \\
& =\left(2 n^{2}+2 n+1\right)^{2}
\end{aligned}
$$

However, not every Pythagorean triple is of the form $\left(2 n+1,2 n^{2}+2 n, 2 n^{2}+\right.$ $2 n+1), n>0$; for example, $(15,8,17)$ is Pythagorean, but not of this form.
5. (20 pts.) We compute:

$$
x^{2}+y^{2}=4 s^{2} t^{2}+\left(s^{4}+t^{4}-2 s^{2} t^{2}\right)=2 s^{2} t^{2}+s^{4}+t^{4}=\left(s^{2}+t^{2}\right)^{2}=z^{2}
$$

Hence (x, y, z) is Pythagorean. Note that since s, t are of opposite parity, both y and z are odd. Hence if p is a prime number with $p \mid y$ and $p \mid z$, then $p \neq 2$, and $p|y+z, p| z-y$, so $p \mid 2 s^{2}$ and $p \mid 2 t^{2}$. By Euclid's Lemma this yields $p \mid s$ and $p \mid t$, contradicting $\operatorname{gcd}(s, t)=1$. Thus (x, y, z) is primitive. Suppose now $u, v \in \mathbb{N}$ yield the same triple (x, y, z), that is, $x=2 u v$, $y=u^{2}-v^{2}, z=u^{2}+v^{2}$. Then $2 s^{2}=y+z=2 u^{2}$, hence $s=u$, and $2 t^{2}=z-y=2 v^{2}$, hence $t=v$.
6. (20 pts. extra credit) Let $p>2$ be a prime number. Then $p=4 k+1$ or $p=4 k-1$ for some $k \in \mathbb{N}$. Now note that $p^{3}-p=(p-1) p(p+1)$. Hence if p is of the form $p=4 k+1$ then

$$
p^{3}-p=(4 k)(4 k+1)(4 k+2)=8 k\left(8 k^{2}+6 k+1\right)
$$

and one checks easily that one of $k, 8 k^{2}+6 k+1$ is divisible by 3 , so $24 \mid p^{3}-p$. The case $p=4 k-1$ is treated in a similar way.

Total: 100 pts. +20 pts. extra credit.

