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1. (20 pts.) Put an := n3 + 2n and bn := 52n − 1 for every n ∈ N, n ≥ 1. We
show 3|an and 24|bn for every n ≥ 1, by induction on n. Base step: We
have a1 = 3 and b1 = 24, so the claims hold trivially for n = 1. Inductive
step: Suppose we have shown 3|an and 24|bn for a certain n ≥ 1. We
compute

an+1 = (n + 1)3 + 2(n + 1) = n3 + 3n2 + 5n + 3

and thus
an+1 = an + 3(n2 + n + 1).

Since 3|an, this yields 3|an+1. Similarly

bn+1 = 52(n+1) − 1 = 52n · 25− 1 = (52n − 1) · 25 + 25− 1 = bn + 24

and 24|bn yields 24|bn+1.

2. (10 pts.) We proceed by induction on n = 1, 2, . . . . Base step: If n = 1,
then (1 + x)1 ≥ 1 + 1 · x for all x ∈ R. Inductive step: Suppose the claim
holds for n, and we want to show it for n + 1 in place of n. That is, we
want to show (1 + x)n+1 ≥ 1 + (n + 1)x if 1 + x > 0. Now by inductive
hypothesis and since 1 + x > 0, we have

(1 + x)n+1 = (1 + x)n(1 + x) ≥ (1 + nx)(1 + x).

But

(1 + nx)(1 + x) = 1 + nx + x + nx2 = 1 + (n + 1)x + nx2 ≥ 1 + (n + 1)x,

since nx2 ≥ 0.

3. (20 pts.) For n ∈ N we have (2n+1)2 = 4n(n+1)+1 and 2|n(n+1); hence
(2n + 1)2 has remainder 1 upon division by 8. Now suppose m,n ∈ Z
are odd; then m2 = 8a + 1 and n2 = 8b + 1 for some a, b ∈ Z, hence
(m + n)(m− n) = m2 − n2 = 8(a− b) is divisible by 8.

4. (10 pts.) The mistake is simply that in the inductive step, after taking
out the two cats, there might not be any cats left: if n = 1, then we are
left with no cats at all, so it is meaningless to say that this “rest of the set
has n− 1 cats of color x.” So we cannot conclude that the first cat must
have color x as well. The moral of the story is: in proving the inductive
step n → n+1, we have to be careful and make sure that the proof applies
to all n ≥ 1. (Or n ≥ k, if we start the induction at k, say.)



5. (20 pts.) We proceed by induction on n = 1, 2, . . . . Base step: If n = 1,
then

12 = 1 =
1
6
1(1 + 1)(2 · 1 + 1).

Inductive step: Suppose the statement holds for n:

12 + 22 + · · ·+ n2 =
1
6
n(n + 1)(2n + 1),

and we we want to show that it holds for n+1. That is, we want to show:

12 + 22 + · · ·+ (n + 1)2 =
1
6
(n + 1)(n + 2)(2(n + 1) + 1).

We compute that

1
6
n(n + 1)(2n + 1) =

1
3
n3 +

1
2
n2 +

1
6
n

and
1
6
(n + 1)(n + 2)(2(n + 1) + 1) =

1
3
n3 +

3
2
n2 +

13
6

n + 1.

By inductive hypothesis and using these equalities, we get:

12 + 22 + · · ·+ (n + 1)2 = (12 + 22 + · · ·+ n2) + (n + 1)2

=
1
3
n3 +

1
2
n2 +

1
6
n + (n + 1)2

=
1
3
n3 +

1
2
n2 +

1
6
n + n2 + 2n + 1

=
1
3
n3 +

3
2
n2 +

13
6

n + 1

=
1
6
(n + 1)(n + 2)(2(n + 1) + 1).

6. (20 pts.) There are 1
2n(n+1)+1 many regions. We prove this by induction

on n. For n = 1 lines, there are 2 = 1
21(1+1)+1 regions. If we have n lines,

and we add another one, then we obtain n+1 new regions. (Draw a picture
for n = 1, 2, 3, 4!) So we have 1

2n(n+1)+1+(n+1) = 1
2 (n+1)(n+2)+1

regions.

7. (20 pts. extra credit.) Let n ≥ 1 be a natural number. For every k ≥ 1 let
fk be the remainder of Fk upon division by n, so 0 ≤ fk < n. Among the
n2 + 1 pairs (f1, f2), (f2, f3), . . . , (fm, fm+1), where m = n2 + 1, there are
two identical pairs (since only n2 distinct pairs both of whose components
come from {0, . . . , n − 1} exist). Suppose (fk, fk+1) = (fl, fl+1) with
1 ≤ k < l ≤ m; choose k minimal. One shows easily (check!) that
k > 1, since otherwise (fk−1, fk) = (fl−1, fl), contradicting minimality of
k. Hence (fl, fl+1) = (f1, f2) = (1, 1), so Fl−1 = Fl+1 − Fl is divisible by
n, and 1 ≤ l − 1 ≤ n2.

Total: 100 pts. + 20 pts. extra credit


