Problem Set 1 Solutions

Foundations of Number Theory Math 435, Fall 2006

1. (20 pts.) Put $a_n := n^3 + 2n$ and $b_n := 5^{2n} - 1$ for every $n \in \mathbb{N}$, $n \ge 1$. We show $3|a_n$ and $24|b_n$ for every $n \ge 1$, by induction on n. Base step: We have $a_1 = 3$ and $b_1 = 24$, so the claims hold trivially for n = 1. Inductive step: Suppose we have shown $3|a_n$ and $24|b_n$ for a certain $n \ge 1$. We compute

$$a_{n+1} = (n+1)^3 + 2(n+1) = n^3 + 3n^2 + 5n + 3n^3$$

and thus

$$_{n+1} = a_n + 3(n^2 + n + 1).$$

Since $3|a_n$, this yields $3|a_{n+1}$. Similarly

a

$$b_{n+1} = 5^{2(n+1)} - 1 = 5^{2n} \cdot 25 - 1 = (5^{2n} - 1) \cdot 25 + 25 - 1 = b_n + 24$$

and $24|b_n$ yields $24|b_{n+1}$.

2. (10 pts.) We proceed by induction on $n = 1, 2, \ldots$ Base step: If n = 1, then $(1 + x)^1 \ge 1 + 1 \cdot x$ for all $x \in \mathbb{R}$. Inductive step: Suppose the claim holds for n, and we want to show it for n + 1 in place of n. That is, we want to show $(1 + x)^{n+1} \ge 1 + (n + 1)x$ if 1 + x > 0. Now by inductive hypothesis and since 1 + x > 0, we have

$$(1+x)^{n+1} = (1+x)^n (1+x) \ge (1+nx)(1+x).$$

But

$$(1+nx)(1+x) = 1 + nx + x + nx^2 = 1 + (n+1)x + nx^2 \ge 1 + (n+1)x,$$

since $nx^2 \ge 0$.

- 3. (20 pts.) For $n \in \mathbb{N}$ we have $(2n+1)^2 = 4n(n+1)+1$ and 2|n(n+1); hence $(2n+1)^2$ has remainder 1 upon division by 8. Now suppose $m, n \in \mathbb{Z}$ are odd; then $m^2 = 8a + 1$ and $n^2 = 8b + 1$ for some $a, b \in \mathbb{Z}$, hence $(m+n)(m-n) = m^2 n^2 = 8(a-b)$ is divisible by 8.
- 4. (10 pts.) The mistake is simply that in the inductive step, after taking out the two cats, there might not be any cats left: if n = 1, then we are left with no cats at all, so it is meaningless to say that this "rest of the set has n 1 cats of color x." So we cannot conclude that the first cat must have color x as well. The moral of the story is: in proving the inductive step $n \rightarrow n+1$, we have to be careful and make sure that the proof applies to all $n \ge 1$. (Or $n \ge k$, if we start the induction at k, say.)

5. (20 pts.) We proceed by induction on $n = 1, 2, \ldots$ Base step: If n = 1, then

$$1^{2} = 1 = \frac{1}{6}1(1+1)(2 \cdot 1 + 1).$$

Inductive step: Suppose the statement holds for n:

$$1^{2} + 2^{2} + \dots + n^{2} = \frac{1}{6}n(n+1)(2n+1),$$

and we we want to show that it holds for n+1. That is, we want to show:

$$1^{2} + 2^{2} + \dots + (n+1)^{2} = \frac{1}{6}(n+1)(n+2)(2(n+1)+1).$$

We compute that

$$\frac{1}{6}n(n+1)(2n+1) = \frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n$$

and

$$\frac{1}{6}(n+1)(n+2)(2(n+1)+1) = \frac{1}{3}n^3 + \frac{3}{2}n^2 + \frac{13}{6}n + 1$$

By inductive hypothesis and using these equalities, we get:

$$1^{2} + 2^{2} + \dots + (n+1)^{2} = (1^{2} + 2^{2} + \dots + n^{2}) + (n+1)^{2}$$

$$= \frac{1}{3}n^{3} + \frac{1}{2}n^{2} + \frac{1}{6}n + (n+1)^{2}$$

$$= \frac{1}{3}n^{3} + \frac{1}{2}n^{2} + \frac{1}{6}n + n^{2} + 2n + 1$$

$$= \frac{1}{3}n^{3} + \frac{3}{2}n^{2} + \frac{13}{6}n + 1$$

$$= \frac{1}{6}(n+1)(n+2)(2(n+1)+1).$$

- 6. (20 pts.) There are $\frac{1}{2}n(n+1)+1$ many regions. We prove this by induction on n. For n = 1 lines, there are $2 = \frac{1}{2}1(1+1)+1$ regions. If we have n lines, and we add another one, then we obtain n+1 new regions. (Draw a picture for n = 1, 2, 3, 4!) So we have $\frac{1}{2}n(n+1)+1+(n+1) = \frac{1}{2}(n+1)(n+2)+1$ regions.
- 7. (20 pts. extra credit.) Let $n \ge 1$ be a natural number. For every $k \ge 1$ let f_k be the remainder of F_k upon division by n, so $0 \le f_k < n$. Among the $n^2 + 1$ pairs $(f_1, f_2), (f_2, f_3), \ldots, (f_m, f_{m+1})$, where $m = n^2 + 1$, there are two identical pairs (since only n^2 distinct pairs both of whose components come from $\{0, \ldots, n-1\}$ exist). Suppose $(f_k, f_{k+1}) = (f_l, f_{l+1})$ with $1 \le k < l \le m$; choose k minimal. One shows easily (check!) that k > 1, since otherwise $(f_{k-1}, f_k) = (f_{l-1}, f_l)$, contradicting minimality of k. Hence $(f_l, f_{l+1}) = (f_1, f_2) = (1, 1)$, so $F_{l-1} = F_{l+1} F_l$ is divisible by n, and $1 \le l-1 \le n^2$.

Total: 100 pts. + 20 pts. extra credit