Problem Set 6

Due April 30.

Model Theory

Math 506, Spring 2004.

- 1. Let $\mathcal{L} = \{0, 1, +, -, \cdot\}$ be the language of rings and consider the field \mathbb{R} of real numbers as an \mathcal{L} -structure as usual. Is the \mathcal{L} -theory $\mathrm{Th}(\mathbb{R})$ model-complete? Does $\mathrm{Th}(\mathbb{R})$ admit quantifier elimination?
- 2. Let $\mathcal{L}_E = \{L, B, C, A, D\}$ be the following language: L and B are ternary relation symbols; C and A are 6-ary relation symbols, and D is a 4-ary relation symbol. We let $\mathcal{E} = (E, L^{\mathcal{E}}, B^{\mathcal{E}}, C^{\mathcal{E}}, A^{\mathcal{E}}, D^{\mathcal{E}})$ be the \mathcal{L}_E -structure with universe $E = \mathbb{R}^2$ where for all $a, b, c, a', b', c' \in E$:
 - i. $\mathcal{E} \models L^{\mathcal{E}}(a, b, c)$ if and only if a, b, c are collinear, and $\mathcal{E} \models B^{\mathcal{E}}(a, b, c)$ if and only if a, b, c are collinear and c lies between a and b;
 - ii. $\mathcal{E} \models C^{\mathcal{E}}(a, b, c, a', b', c')$ if and only if the triangles with vertices a, b, c and a', b', c', respectively, are congruent; $\mathcal{E} \models A^{\mathcal{E}}(a, b, c, a', b', c')$ if and only if the angle between the line segments $a \ b$ and $b \ c$ is the same as the angle between $a' \ b'$ and $b' \ c'$;
 - iii. $\mathcal{E} \models D^{\mathcal{E}}(a, b, a', b')$ if and only if the distance between a and b is the same as the distance between a' and b'.

Show that $Th(\mathcal{E})$ is decidable. (Decidability of plane euclidean geometry; Tarski 1948.)

- 3. Let F be an ordered field.
 - a) Show that F is real closed if and only if for every $P(X) \in F[X]$ and a < b in F such that P(a)P(b) < 0 there exists $c \in F$ with P(c) = 0 ("P has the intermediate value property").
 - b) Construe F as an \mathcal{L} -structure as usual, where $\mathcal{L} = \{0, 1, +, -, \cdot, <\}$. Use (a) to show that if $\operatorname{Th}(F)$ is o-minimal then F is real closed.
- 4. Recall that a function $f: \mathbb{R} \to \mathbb{R}$ is called **semialgebraic** if its graph

$$\Gamma(f) = \{(x, f(x)) : x \in \mathbb{R}\} \subset \mathbb{R}^2$$

is semialgebraic.

- a) We say that a function $f: \mathbb{R} \to \mathbb{R}$ is **algebraic** if there is a non-zero polynomial $P(X, Y) \in \mathbb{R}[X, Y]$ such that P(x, f(x)) = 0 for all $x \in \mathbb{R}$. Show that every semialgebraic function $\mathbb{R} \to \mathbb{R}$ is algebraic.
- b) Use (a) to show that the exponential function $x \mapsto e^x : \mathbb{R} \to \mathbb{R}$ is not semialgebraic.

1