Problem Set 4
Due March 29
Model Theory

1. [Optional] We say that an \mathcal{L}-structure $\mathcal{M} \vDash T$ is an **existentially closed** model of T if \mathcal{M} is existentially closed in every $\mathcal{N} \vDash T$ with $\mathcal{M} \subseteq \mathcal{N}$.

 a) Suppose that T is a $\forall \exists$-theory. Show that for every model \mathcal{M} of T there exists a model $\mathcal{M}^* \vDash T$ with $\mathcal{M} \subseteq \mathcal{M}^*$, having the following property: for every quantifier-free \mathcal{L}-formula $\varphi(x, y_1, \ldots, y_m)$ and $a_1, \ldots, a_m \in M$, if there exists some $\mathcal{N} \vDash T$ with $\mathcal{M}^* \subseteq \mathcal{N}$ and $b \in N$ such that $\mathcal{N} \models \varphi(b, a_1, \ldots, a_m)$, then there exists $c \in M^*$ such that $\mathcal{M}^* \models \varphi(c, a_1, \ldots, a_m)$.

 b) Use (a) to show that for any model \mathcal{M} of a $\forall \exists$-theory T there is some existentially closed $\mathcal{N} \vDash T$ with $\mathcal{M} \subseteq \mathcal{N}$ and $|N| = \max \{|M|, |\mathcal{L}|, |\mathcal{N}_0\}$.

2. Let T be an \mathcal{L}-theory.

 a) Show that if $\mathcal{M} \subseteq \mathcal{N}$ are models of T and \mathcal{M} is an existentially closed model of T, then there is $\mathcal{M}_1 \vDash T$ such that $\mathcal{M} \subseteq \mathcal{N} \subseteq \mathcal{M}_1$ with $\mathcal{M} \preceq \mathcal{M}_1$. (Hint: Diagram Lemma.)

 b) Show that T is model-complete if and only if every model of T is existentially closed. (Hint for \Leftarrow: suppose that $\mathcal{M}_0 \subseteq \mathcal{N}_0$ are models of T; use (a) to build a chain $\mathcal{M}_0 \subseteq \mathcal{N}_0 \subseteq \mathcal{M}_1 \subseteq \mathcal{N}_1 \subseteq \mathcal{M}_2 \subseteq \cdots$ of models of T such that $\mathcal{M}_i \preceq \mathcal{M}_{i+1}$ and $\mathcal{N}_i \preceq \mathcal{N}_{i+1}$.)

3. Let T be an \mathcal{L}-theory.

 a) Show that T admits quantifier-elimination if and only if for all $\mathcal{M} \vDash T$ the $\mathcal{L}(\mathcal{M})$-theory $T \cup \text{Diag}(\mathcal{M})$ is complete.

 b) Show that T is model-complete if and only if for all $\mathcal{M} \vDash T$, the $\mathcal{L}(\mathcal{M})$-theory $T \cup \text{Diag}(\mathcal{M})$ is complete. (This explains the origin of the term “model-complete.”)

4. An \mathcal{L}-structure \mathcal{M} is called **ultra-homogeneous** if every isomorphism between finitely generated substructures of \mathcal{M} can be extended to an automorphism of \mathcal{M}.

 a) Let \mathcal{M} be a finite \mathcal{L}-structure. Show that $\text{Th}(\mathcal{M})$ admits quantifier-elimination if and only if \mathcal{M} is ultra-homogeneous.

 b) Show that the finite abelian group $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$ (construed as a structure in the language $\mathcal{L} = \{0, +, -\}$) is not ultra-homogeneous.

5. Let K be a field and let \mathcal{L} be the language of vector spaces over K, consisting of the binary function symbol $+$, the unary function symbol $-$, a constant symbol 0, and for each $a \in K$ a unary function symbol μ_a. We construe each K-vector space V as an \mathcal{L}-structure by interpreting $+$, $-$ and 0 as usual and μ_a by scalar multiplication $v \mapsto a \cdot v$ by a. Let T be the theory of infinite K-vector spaces in this language. Show that T admits quantifier elimination, and use this to show that T is complete.

6. Let $\mathcal{L} = \{<\}$ and let T be a satisfiable theory containing the axioms for linearly ordered sets which contain at least two elements. Show that if T admits quantifier-elimination, then $\text{Mod}(T) = \text{Mod}(\text{DLO})$.

1