Problem Set 3

Due March 5

Model Theory

Math 506, Spring 2004.

Do 6 of the following problems!

1. Let \mathcal{M} be an \mathcal{L} -structure and A a non-empty subset of its domain. Show that the set

$$\left\{t^{\mathcal{M}}(a_1,...,a_n):t(x_1,...,x_n)\;\mathcal{L}\text{-term},\,n\in\mathbb{N},\,a_1,...,a_n\in A\right\}$$

contains A and is the domain of a substructure of \mathcal{M} , called the **substructure of \mathcal{M} generated** by A and denoted by $\langle A \rangle_{\mathcal{M}}$. Show that $\langle A \rangle_{\mathcal{M}}$ is the smallest substructure of \mathcal{M} which contains A, that is, whenever \mathcal{C} is a substructure of \mathcal{M} whose domain C contains A as a subset, then $\mathcal{C} \supseteq \langle A \rangle_{\mathcal{M}}$.

- 2. Let $\mathcal{L} = \{0, 1, +, -, \cdot, <\}$ and $\mathcal{Q} = (\mathbb{Q}, 0, 1, +, -, \cdot, <)$ (the ordered field \mathbb{Q}).
 - a) Show that for every subset S of $\mathbb Q$ definable in $\mathcal Q$ by a quantifier-free $\mathcal L$ -formula there exists $q \in \mathbb Q$ such that $(q, \infty) \subseteq S$ or $(q, \infty) \cap S = \emptyset$.
 - b) Use (a) to show that Th(Q) does not admit quantifier elimination.
- 3. Let K be a field and let K^{alg} be an algebraic closure of K. A polynomial $f \in K[X_1, ..., X_n]$ is called **absolutely irreducible** if f is irreducible when considered as an element of the polynomial ring $K^{\text{alg}}[X_1, ..., X_n]$. (For example, the polynomial $X^2 + 1 \in \mathbb{Q}[X]$ is not absolutely irreducible, since $X^2 + 1 = (X i) \ (X + i)$ in $\mathbb{Q}^{\text{alg}}[X]$, whereas $XY 1 \in \mathbb{Q}[X, Y]$ is absolutely irreducible.) For a polynomial $f \in \mathbb{Z}[X_1, ..., X_n]$ and a prime number p we denote by f_p the polynomial in $\mathbb{F}_p[X_1, ..., X_n]$ obtained by reducing the coefficients of f modulo p. Show: $f \in \mathbb{Z}[X_1, ..., X_n]$ is absolutely irreducible if and only if f_p is absolutely irreducible for all but finitely many primes p. (This fact is known as the Noether-Ostrowski Irreducibility Theorem.)
- 4. Let T be an \mathcal{L} -theory and $T_{\forall} := \{ \varphi : \varphi \text{ universal sentence}, T \models \varphi \}$. Show that an \mathcal{L} -structure \mathcal{A} is a model of T_{\forall} if and only if there exists a model \mathcal{M} of T such that $\mathcal{A} \subseteq \mathcal{M}$.
- 5. We say that an \mathcal{L} -structure \mathcal{M} is **existentially closed** in an \mathcal{L} -structure \mathcal{N} with $\mathcal{M} \subseteq \mathcal{N}$ if for every quantifier-free \mathcal{L} -formula $\varphi(x, y)$ with $x = (x_1, ..., x_n), \ y = (y_1, ..., y_m), \ \psi(y) = \exists x(\varphi(x, y)),$ and $a = (a_1, ..., a_m) \in M^m$, we have $\mathcal{N} \models \psi(a) \Rightarrow \mathcal{M} \models \psi(a)$. (It is enough that this holds for n = 1.) Let K be an infinite field and t an indeterminate over K. Show that K is existentially closed in K[t] (in the language $\mathcal{L} = \{0, 1, +, \cdot, -\}$).
- 6. Let (I, <) be a totally ordered set, $I \neq \emptyset$, and suppose that for every $i \in I$ we are given an \mathcal{L} -structure \mathcal{M}_i . We say that $(\mathcal{M}_i)_{i \in I}$ is a **chain** of \mathcal{L} -structures if $\mathcal{M}_i \subseteq \mathcal{M}_j$ for all i < j in I. Show that there exists a unique \mathcal{L} -structure $\mathcal{M} := \bigcup_{i \in I} \mathcal{M}_i$ (the **union** of the chain) with the following properties: $\mathcal{M}_i \subseteq \mathcal{M}$ for all i, and if \mathcal{N} is any \mathcal{L} -structure with $\mathcal{M}_i \subseteq \mathcal{N}$ for all i, then $\mathcal{M} \subseteq \mathcal{N}$.
- 7. An \mathcal{L} -theory T is a $\forall \exists$ -theory if T consists only of sentences of the form $\forall x_1 \cdots \forall x_n \exists y_1 \cdots \exists y_m(\varphi)$, where $\varphi(x_1, ..., x_n, y_1, ..., y_m)$ is a quantifier-free \mathcal{L} -formula. Show that the union of a chain of models of a $\forall \exists$ -theory T is again a model of T.