Problem Set 2
Due February 20
Model Theory

1. Prove: if \mathcal{F} is a filter on a set $I \neq \emptyset$ such that $\bigcap \mathcal{F} = \emptyset$, then every ultrafilter $\mathcal{U} \supseteq \mathcal{F}$ on I is non-principal. (Hint: use problem 6. (a) on Problem Set 1.)

2. Let \mathcal{L} be a language and let T and T' be \mathcal{L}-theories. Suppose that for every model \mathcal{M} of T there exists $\sigma \in T'$ such that $\mathcal{M} \models \sigma$. Show that there exists a finite subset $\{\sigma_1, \ldots, \sigma_n\}$ of T' such that $T \models \sigma_1 \lor \cdots \lor \sigma_n$.

3. Let \mathcal{L} be a language and $\mathcal{M} \subseteq \mathcal{N}$ be \mathcal{L}-structures.
 a) Suppose that for every finite subset A of M and every $b \in N$ there exists an automorphism f of N which fixes A pointwise (i.e., $f(a) = a$ for all $a \in A$) and such that $f(b) \in M$. Show that then $\mathcal{M} \not\equiv \mathcal{N}$.
 b) Now suppose $\mathcal{L} = \{<\}$ with a binary relation symbol $<$. We consider $\mathcal{M} = (\mathbb{Q}, <)$ and $\mathcal{N} = (\mathbb{R}, <)$ as \mathcal{L}-structures in the natural way. Use (a) to show that $(\mathbb{Q}, <) \not\equiv (\mathbb{R}, <)$.
 c) Show that the converse in (a) does not hold in general. (Hint: consider $\mathcal{M} = (\mathbb{N}, <)$.)
 d) [Optional.] Let R be a commutative ring and let X and Y be infinite sets of indeterminates over R, with $X \subseteq Y$. Show that $R[X] \not\equiv R[Y]$, considered as structures in the language $\mathcal{L} = \{0, 1, +, \cdot\}$ of rings.

4. We say that an \mathcal{L}-theory T has **definable Skolem functions** if for every formula $\varphi(x_1, \ldots, x_n, y)$ there exists a formula $\psi(x_1, \ldots, x_n, y)$ such that
 a) $T \models \forall x_1 \cdots \forall x_n \exists y \psi(x_1, \ldots, x_n, y)$
 b) $T \models \forall x_1 \cdots \forall x_n \forall y \forall y' (\psi(x_1, \ldots, x_n, y) \land \psi(x_1, \ldots, x_n, y') \rightarrow y = y')$
 c) $T \models \forall x_1 \cdots \forall x_n (\exists y \varphi(x_1, \ldots, x_n, y) \rightarrow \exists y (\psi(x_1, \ldots, x_n, y) \land \varphi(x_1, \ldots, x_n, y)))$.

In other words, in every model \mathcal{N} of T, ψ defines the graph of a function $f: N^n \rightarrow N$ such that $\mathcal{N} \models \varphi(a, f(a))$ for all $a \in N^n$ for which $\mathcal{N} \models \exists y \varphi(a, y)$.

 a) Show that if T has built-in Skolem functions, then T has definable Skolem functions.
 b) Let $\mathcal{L} = \{0, +\}$ where $+$ is a binary function symbol and 0 is a constant symbol. Show that $T = \text{Th}(\mathbb{N}, 0, +)$ has definable Skolem functions.

5. An \mathcal{L}-theory T is called (absolutely) **categorical** if it is satisfiable and any two models of T are isomorphic.
 a) Show that if T is categorical, then its unique model must be finite.
 b) Let $\mathcal{L} = \{f\}$ where f is a unary function symbol. Give an example of a finite \mathcal{L}-theory T all of whose models are infinite. (Hence T is not categorical.)
 c) Suppose that \mathcal{L} is finite, and let \mathcal{M} be an \mathcal{L}-structure whose universe is finite. Show that there exists an \mathcal{L}-sentence φ with the property that $\mathcal{N} \models \varphi \iff \mathcal{M} \equiv \mathcal{N}$ for every \mathcal{L}-structure \mathcal{N}. (In particular, $\mathcal{M} \equiv \mathcal{N} \iff \mathcal{M} \equiv \mathcal{N}$; thus $\text{Th}(\mathcal{M})$ is categorical.)
 d) [Optional.] Show that if \mathcal{L} is an arbitrary language, and \mathcal{M} an \mathcal{L}-structure whose universe is finite, then for all \mathcal{L}-structures \mathcal{N} we have $\mathcal{M} \equiv \mathcal{N} \iff \mathcal{M} \equiv \mathcal{N}$.

6. Let \mathcal{M} and \mathcal{N} be \mathcal{L}-structures with $\mathcal{M} \equiv \mathcal{N}$. Show (without using the Keisler-Shelah theorem) that there exists an ultrafilter \mathcal{U} on some index set I and an elementary embedding $\mathcal{N} \rightarrow \mathcal{M}/\mathcal{U}$.