Problem Set 5

Due Friday, November 1.

Real Analysis

Math 131A, Fall Quarter 2013

1. Do problems $10.7,10.10,11.6,11.8,11.10$ in the textbook.
2. Let $a>0$ and $x_{0}>0$ be real numbers. Define

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right)
$$

for $n=0,1,2, \ldots$.
(a) Show that $\left(x_{n}\right)_{n \geq 1}$ is decreasing and $x_{n} \geq \sqrt{a}$ for $n=1,2,3, \ldots$
(b) Why does this imply that $\left(x_{n}\right)_{n \geq 1}$ has a limit?
(c) Let $x=\lim _{n \rightarrow \infty} x_{n}$. Show that $x=\sqrt{a}$.
3. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be bounded sequences of real numbers. Show that $\limsup a_{n}+\liminf b_{n} \leq \limsup \left(a_{n}+b_{n}\right) \leq \limsup a_{n}+\limsup b_{n}$.

Give an example of a single pair of sequences $\left(a_{n}\right),\left(b_{n}\right)$ for which both inequalities are strict.

