Problem Set 2

Due Friday, October 11.

Real Analysis

Math 131A, Fall Quarter 2013

1. Let F be a field, i.e., a set equipped with two maps

$$
(a, b) \mapsto a+b: F \times F \rightarrow F, \quad(a, b) \mapsto a \cdot b: K \times K \rightarrow K
$$

satisfying the axioms (A1)-(A4), (M1)-(M4) and (DL) stated in class.
(a) Show that the element 0 postulated to exist in (A3) is unique.
(b) Show that the element 1 postulated to exist in (M3) is unique.
2. Do problems 3.3 and 3.4 in the textbook.
3. Do problems 4.1-4.4 in the textbook for (a), (b), (k), (u), (v).
4. Do problem 4.14 in the textbook.
5. Recall that the complex numbers \mathbb{C} is the set of all numbers of the form $a+b i$ where $a, b \in \mathbb{R}$ and i is a number satisfying $i^{2}=-1$. We add and multiply complex numbers in the natural way:

$$
\begin{aligned}
(a+b i)+\left(a^{\prime}+b^{\prime} i\right) & =\left(a+a^{\prime}\right)+\left(b+b^{\prime}\right) i \\
(a+b i) \cdot\left(a^{\prime}+b^{\prime} i\right) & =\left(a a^{\prime}-b b^{\prime}\right)+\left(a b^{\prime}+b a^{\prime}\right) i
\end{aligned}
$$

(a) Verify that using these operations, \mathbb{C} becomes a field.
(b) Show that there does not exist a binary relation \leq on \mathbb{C} so that \mathbb{C} becomes an ordered field.

