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1. (30 pt.) By using the Induction Principle for wifs we show that every wif
has length 1, 4, 5, or length > 7. This clearly holds for sentence symbols
(they have length 1). Suppose «, 8 are wifs whose length is 1, 4, 5, or
> 7. Let a, b denote the length of «, 3, respectively. Then o/ = (—«) has
length @ = a+3,s0ad =4,ad =7, 0orad > 7, and v = (ad3) (where
O e {A,V,—,<}) has length g = a+b+ 3,80 g =5 or g > 7. This
shows that there are no wifs of length 2, 3 or 6. To show that every other
positive length is possible, we first verify the cases of length 1, 4, 5, 7, and
8 by hand: the wifs

Al, o= ("Al), ﬂ = (Al AN Al)

have lengths 1, 4 and 5, respectively. For n = 7 and n = 8 we consider
(—«) and (=), where «, § are as above. It remains to prove that for every
n > 9 there is a wif of length n, which we do by induction on n. The case
n =9 is witnessed by ((A1 A A1) A A1). Suppose n > 9; then n — 3 > 6.
If n —3 > 9 then by induction hypothesis there is a wif « of length n — 3,
and if n — 3 < 9, then n — 3 € {7,8}, and as we’ve seen above, in both
cases there is a wif v of length n — 3. Applying the negation operation we
get a formula (=) of length n.

2. (30 pt.) Let S be the set of all wifs « for which s(«) = ¢(a)+1, where s(a),
¢(a) denotes the number of occurrences of sentence symbols respectively
binary connective symbols in . This set clearly contains every « of the
form o = Ay, for some sentence symbol Ay, since then we have s(a) = 1,
c(a) = 0. Suppose « € S; then for o/ = (—a)) we obtain the same values
s(a’) = s(a) and c(a’) = ¢(a) as for «, hence o/ € S. If o, € S and
O e {A,V,—, <}, then for v = (aJf) we compute

s(v) = s(@) +s(f) = c(@) + 1+ () + 1 =c(y) +1,

hence v € S. Thus S consists of all wifs, by the Induction Principle.

3. (20 pt.) An expression is a finite sequence of elements of a certain set of
symbols, consisting of the finitely many logical symbols and the infinitely
many sentence symbols Aj, As,.... The disjoint union S = FF'U A of a
finite set F" and a countable set A is countable: to see this, let #: A — N be
one-to-one, and suppose F' = {f1,..., fn} has n elements; then U(f;) =i
and ¥(a) = ®(a)+ (n+1) for a € A defines a one-to-one map ¥: S — N.
Therefore, the set of symbols is countable. Theorem 0B says that if S is



a countable set, then the set of all finite sequences of elements of S is also
countable. Hence the set of expressions is countable.

. (20 pt.) Suppose S is a countable set, and let S” C S. Let ®: S — N be
one-to-one. Then the restriction of ® to S’ is a one-to-one map S’ — N,
showing that S’ is countable. By the previous problem, we know that
the set of all expressions is countable. The set of wifs is a subset thereof,
whence countable by the above.

. (30 pt. extra credit.) The following sequence of applications of (P1)—(P4)
produces MUUIU from MI:

MI — MII
(P2)

— MIIIT
(P2)

— MIITIU
(P1)

— MIITIUIIIIU
(P2)

— MIUUIIIIU
(P3)

— MIIITIU
(P4)

— MUIIU
(P3)

— MUIIUUIIU
(P2)

— MUIIIIU
(P4)

— MUUIU.
(P3)

I only sketch the solutions of the second part of the problem. We first
define (similarly to what we did for wfls) a construction sequence to be
a finite sequence (sq,...,s,) of strings s; consisting of the letters M, U,
I with the property that each s; either equals M Ior is obtained from a
string s; with j € {1,...,7 — 1} by applying one of the rules (P1)-(P4).
So a string s is in P if and only if there is a construction sequence as
above with s, = s. Next one proves, by induction on n, that for every
construction sequence (s1,. .., S,) the number of I's in any of the strings
S1,--.,8p is always congruent to 1 or 2 modulo 3, i.e., of the form 3k + 1
or 3k + 2 for some k € N. The number of I’s in MU is 0, and not of this
form. Hence MU ¢ P.



