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Abstract

There have been many recent developments in the study of networks, familiar ex-
amples of which include the World Wide Web and social networks. The main focus
of my dissertation is community structure; this refers to the study of densely con-
nected groups within a network. More specifically, I employ two different algorithms
to optimise a quality function known as modularity which describes how well a chosen
partition divides the network. The two methods I use are a greedy algorithm pro-
posed by Blondel et al and Newman’s spectral optimisation algorithm. Using time
series data that includes the weekly number of reported cases of dengue fever in Peru
by province, I define a dynamic network using matrix representations, before using
the community detection methods to investigate naturally occurring divisions in the
network and their evolution in time. I find that there is a correlation between mod-
ularity and epidemic outbreak during the 2000 - 2001 epidemic. Finally, I discuss
possible further explorations of the data that could give us further insight into the
evolution of the community structure and its relevance to the spread of disease.
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Chapter 1

The Biological Problem

Introduction

In this chapter I elucidate the background and motivation behind the project. In the
first section, I outline the nature of the problem, before giving details of the data set.
I then give examples of methodology that has been used in the past in relation to
other epidemiological network problems and finally I introduce community detection,
giving two examples from previous studies.

1.1 Dengue Fever in Peru

Dengue fever infects an estimated 100 million people each year, with approximately
between 250,000 and 500,000 cases progressing to a more severe disease: dengue
hemorrhagic fever or dengue shock syndrome.4 It is mostly transmitted via the Aedes
aegypti species of mosquito, though only pregnant adult female mosquitoes feed on
human blood, and the time between infecting a human and the time at which symp-
toms are observed can be up to two months.

There are currently no known vaccines for dengue fever, and mosquito control is the
main epidemic prevention method used.10,12 It is thus especially important to explore
the causes of transmission in order to develop further ways of controlling the spread
of the disease. Dengue fever is a significant problem in Peru and study of the disease
is of particular significance at the moment as, at the time of writing, Peru is amid a
dengue outbreak that has already affected over 10,000 people.15

1.2 The Data

The data was collected by the Chowell group at Arizona State University in collabo-
ration with the Peruvian Ministry of Health. It includes the number of reported cases
of dengue fever and was collected on a weekly basis in 79 different provinces in Peru
over a total time period of 15 years - from the beginning of 1994 to the end of 2008.
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562793 THE BIOLOGICAL PROBLEM

Using this data, we hope to use methods from network theory to shed light on the
transmission of the disease over time, and find the factors that influence the spread
of the disease in different parts of the country.

We also have data regarding the population sizes of the provinces for different age
groups, which was collected on a yearly basis over the fifteen year period. One
would expect to find a correlation between the population size of a province and the
average size of an outbreak in that province, and we would eventually like to use this
information in the investigation of the spread of the disease. I discuss possible ways
to incorporate the population data in Chapter 5.

Figure 1.1: This geographic map of Peru illustrates the division of coastal, mountain
and jungle regions shown in yellow, orange, and green respectively.

One important characteristic of the data that should be noted is that the provinces
are divided into three different geographic regions: jungle, mountain and coast.
Mosquitoes thrive in areas of stagnant water, so one would expect to find higher
rates of infection in the coastal or jungle regions. The distribution of these regions
is very distinctive, as can be seen in Figure 1.1, and we find that the transmission
depends not only on the geographic type of regions, but also the relative location of
the province within the country.
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1.3 Epidemiological Networks

The study of networks is very applicable to epidemiology. If links between nodes
of defined in terms of the distance between them, then finding the shortest path
between nodes might help one predict the way in which a disease spreads. Calculating
centralities (roughly speaking, the relative importance of a particular node in relation
to its local or global neighbourhood) might help one identify the nodes to target with
vaccinations.

A recent example of an application of network theory in epidemiology is in work by
Meyers et al.18 Percolation theory, which is a study of the connectivity of a network,
is used to model the spread of Mycoplasma pneumoniae,17 which is spread by droplet
contact transmission and is the cause of the infectious disease mycoplasma pneumo-
nia.5 In their paper, a healthcare institution network is considered in which groups
of patients, caregivers and wards are interconnected and statistical properties of the
network structure are used to predict the scale of future outbreaks. By reorganising
the structure of the network and analysing the predicted outcome in terms of the out-
break size, the study gives an indication of the implications of restricting interactions
between those groups. This area of research is applicable to our data, although we
need to start by finding the community structure before we can try these methods.

1.4 Why Community Detection?

Many of the epidemiological models used in recent studies are based on compartmen-
tal susceptible-infected-recovered SIR models,19 but our aim is to employ ‘community
detection’ techniques. The purpose of community detection algorithms is to uncover
partitions between densely connected groups of nodes, perhaps characterised by prop-
erties specific to those groups, and is useful for recognising structural features of the
network on different spatial scales.8,23 Importantly, community detection methods do
not assume a priori the number or size of the groups. Instead these methods search
for naturally occurring communities, which can help to find structural patterns that
were previously unknown.

The Zachary Karate Club26 is frequently used as a pedagogical illustration of the
application of community detection algorithms. Zachary was studying the social
interactions of a karate club before it divided into two smaller clubs following a
conflict between its members. He found that given only the details of the interactions
between members of the former club, he would have been able to predict the allocation
of members to the two subgroups.

Traud et al. used the same community detection method as the one used in this
study.25 In contrast, however, the network under consideration was a social network
rather than epidemiological one. Using data from the online social networking site
Facebook, they constructed networks based on the online activity of students at
five American universities in order to model their offline relationships. Based upon

3



562793 THE BIOLOGICAL PROBLEM

the community structure information that they discovered, Traud et al. conclude
that undergraduate students at Caltech tend to establish friendships dependent upon
their “House affiliation”, an arrangement much like the collegiate system that we
are familiar with here in Oxford, whereas undergraduate students at the other four
universities tended to build relationships within their year group.

These examples demonstrate the way in which results from community detection
algorithms can help us understand the structure of a network. The aim of this study
is to determine whether these techniques could give us any insightful information into
the evolution of epidemics, by analysing the problem of dengue fever in Peru.
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Chapter 2

Creating a Network

Introduction

This chapter will be primarily focussed on constructing the network in a comprehen-
sible mathematical form, as an adjacency matrix. I start by giving a formal definition
of a graph and I proceed by presenting some preliminary properties of networks. After
careful consideration of characteristics of the data set, I construct a dynamic network
which I represent as a sequence of time-dependent adjacency matrices.

2.1 Formal Definition

A network is often represented as a graph, which is made up of a finite set of discrete
elements which we call nodes; pairs of nodes are connected by links, or edges. I will
give some formal definitions from graph theory, using notation by Boccaletti et al.2

Figure 2.1: An example of a network.

Definition A node is an element of the set N ∼= {1, ..., n} such that N 6= ∅.

In this essay I construct the most intuitive network from the data by allocating each
node to a Peruvian province. To aid calculations I number each of the nodes from 1
to 79 so that N = {1, ..., 79}; the corresponding provinces are given in Appendix A.
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562793 CREATING A NETWORK

Definition A link, or edge, is an element of the set L ≡ {〈i, j〉 | i ∈ N , j ∈ N}.

The edges describe some relationship between nodes. Figure 2.1 is an illustration of
a network with 5 nodes and 5 edges. No edge directions are specified, so the network
is undirected (otherwise, the network is called directed). Also note that this network
does not contain any self-edges, these are edges that connect nodes to themselves.

It is also possible to attach a weight to the edge, to indicate its strength. We usually
say that the degree of a node is the sum of the weights of the edges attached to that
node.

Definition A graph, or network, G = (N ,L) consists of both a set N and a set L.

2.2 Adjacency Matrix

An adjacency matrix is a convenient way to represent the network, and is easy to use
in computations. There are many choices for constructing an adjacency matrix for
time series. We typically denote the matrix by A, where the entries Aij are values
corresponding to the edge(s) between nodes i and j.

In this study, I denote the numbers of reported cases of dengue fever in province i at
time t by bi(t). Because the data is collected on a weekly basis, for simplicity I take
t to be number of the week in which the data was collected, so that t = 1 is the first
week of 1994 and t = 780 is the final week of 2008. I then define

〈bi(τ)bj(τ)〉 =
t+∆t∑
τ=t

bi(τ)bj(τ).

One possible way to define the entries of the adjacency matrix is thus

Aij(t) =
〈bi(τ)bj(τ)〉√
〈bi(τ)2〉〈bj(τ)2〉

− δij, (2.1)

where i, j represent two provinces in Peru and δij is the Kronecker delta.

The resulting matrix is normalised (so that Aij takes a value between 0 and 1) and
is symmetric (which represents an undirected network). We would expect epidemic
networks that model infectious diseases to be directed, and I discuss ways in which we
can take this into account in Section 5.2.2. We can see that there is at most one edge
between each pair of nodes, and that the Kronecker delta is used to remove self-edges
as we would gain no insight by including them.

This appears to be a good choice for the adjacency matrix, as the resulting weighted
edges, Aij, denote time-dependent correlations between the nodes. This type of con-
nection has been useful in previous studies, for example in a network constructed for
the purpose of modelling the foreign exchange market.7 I therefore use the definition
in (2.1) to construct a network from the epidemic data.
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2.3 Time Dependancy

Having defined the adjacency matrix as in (2.1), different values of t and ∆t can be
introduced to see how the disease evolves over the fifteen years. This should give
a sequence of adjacency matrices, with each matrix representing the network at a
different time aggregation, or time window. Figure 2.2 is an illustration of a dynamic
network like the one that I have defined. The network contains the same nodes at
each interval, but the edges connecting them can change over time.

Figure 2.2: A schematic of a dynamic network at different intervals.

In this study, I consider two different choices for the time windows. To begin with, I
take t = 1 and ∆t = 779. This results in a network that is represented by only one
adjacency matrix that is aggregated over the entire fifteen year period. I do this in
order to easily compare the community detection algorithms discussed in Chapter 3.

For the second choice, I take t = 1, 5, 9, ..., 729 and ∆t = 52 (in other words, the time
windows are a year long and are displaces by approximately one month at a time).
This seems to be the best compromise as we want to avoid not only unnecessarily
noisy data but also over-smoothing the data.7 A closer look at the epidemic data
revealed that the outbreaks typically tend to occur over a time period that varies
from between one and six months (see Figure 4.1). This suggests that these time
windows are a reasonable choice, and this also makes our life easier computationally,
as we will have only 182 adjacency matrices to work with (as opposed to, say, taking
two week time windows that move along by one weeks at a time which would result
in a total of 779 matrices).

7



Chapter 3

Community Detection

Introduction

In this chapter I introduce the quality function, modularity, which used for community
detection. I then give accounts of two different modularity optimisation methods,
which seek a partition of the network that will result in the greatest value of Q. The
first method is a greedy algorithm called the Louvain method, developed by Blondel
et al.1 and the second is a spectral optimisation method given by Newman.20 There
are potential practical issues with the optimisation of Q, as given in a discussion by
Good et al.11 (see the discussion in section 3.4).

3.1 Modularity

Having constructed a network, I will now introduce a useful diagnostic used in com-
munity detection: the modularity Q. Modularity is a function of a partition of the
network into one or more groups, or communities, and the value Q is often used to
determine how well the partition divides the network.8,23 I will use the formulation
of modularity given by

Q =
1

2m

∑
ij

(Aij − Pij) δ(ci, cj), (3.1)

where Aij is the adjacency matrix as given in (2.1). Taking Pij =
kikj
2m

as defined by
Newman and Girvan,21,22 we get

Q =
1

2m

∑
ij

(
Aij −

kikj
2m

)
δ(ci, cj), (3.2)

where ki denotes the weighted degree of node i and δ(ci, cj) is the Kronecker delta
and ci denotes the community to which node i belongs. Note that the modularity is
normalised, as we have divided through by 2m, where m is the sum of the weighted
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edges. Hence we see that Q will lie between −1 and +1, where a higher value of
Q demonstrates a stronger division and a lower value of Q demonstrates a weaker
division of the network into smaller groups. The reason for this is that the null model,
Pij =

kikj
2m

, gives the expected edge weight between nodes i and j. We know that Aij
gives the actual edge weight, so summing over the difference when we allocate the
nodes to different communities gives us an indication of how well the partition divides
them.

We can thus consider community detection as a modularity optimisation problem, as
we will want to use an algorithm that will find a partition of the network such that
the partition gives us the best approximation to the maximum global modularity.

3.2 A Greedy Algorithm

There are two main stages in the Louvain method presented by Blondel et al .1

We begin by allocating each node to its own community (in our case, we would start
with 79 communities with one node in each). At each iteration, we take a node from
one community and add it to another community to find the new set of communities
that gives the greatest increase in modularity. If ∆Q is positive, then we continue
with further iterations until no further improvements can be made simply by moving
a node from one community to another community.

In the second stage of the algorithm, we start by creating a new network. This new
network is defined by taking the nodes to be the communities that were found at the
end of the first stage, and the new weighted edges between our new nodes are the sums
of the weighted edges between nodes in the corresponding first stage communities.

We can then repeat the process, applying the first and second stages in turn until we
can find no further alterations that cause a change in modularity.

3.3 Spectral Optimisation Method

Spectral methods usually utilise the matrix formulations by considering their eigen-
vectors and eigenvalues. The basic idea is to find a matrix whose eigenvectors can be
used to find modularity (this is called a modularity matrix ).20

Suppose, for simplicity, that we begin with a single division of the network into two
separate communities. Let

si =

{
+1 if node i is in the first community,

−1 if node i is in the second community.

Then the Kronecker delta in (3.1) can be rewritten as

δ(ci, cj) =
1

2
(sisj + 1) .

9
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Define

Bij = Aij − Pij = Aij −
kikj
2m

,

so (3.1) becomes

Q =
1

4m

∑
ij

Bijsisj =
1

4m
sTBs, (3.3)

where B is the modularity matrix. Note that we can write s in terms of a basis of
the eigenvectors of B, with

s =
∑
i

aiui

where ai = uT
i s and ui (i = 1, ..., n) gives the basis of eigenvectors.

Now (3.3) can be written as

Q =
1

4m

∑
i

aiu
T
i B
∑
j

ajuj =
∑
i

a2
iβi (3.4)

where βi is the eigenvalue that corresponds to eigenvector ui. All we have to do now
is find the combination of ai and βi that gives us the largest value for Q. Finding
the associated eigenvectors allows us to find the vector s and we can divide the
network accordingly. Repeating this process recursively should finally give us a good
approximation of a division that will optimise modularity.

We should also note that the Kernighan-Lin algorithm can be used in conjunction
with either of the methods to further improve the approximation.8,23 The gist of
the method involves node-swapping, moving nodes into different communities to find
the greatest change in Q. Used on its own, the algorithm is not only very effective,
however if used alongside a divisive technique such as the spectral method, the results
can be significantly improved, even for small network sizes.21

3.4 Issues With Modularity Optimisation

There are several problems that one encounters when investigating modularity op-
timisation and when applying the methods to real-world data.9,11 The first point
to make is that modularity optimisation problems have been proven to be NP-hard.3

This tells us that computing the global maximum modularity would take significantly
longer than finding local maxima. We would therefore need to settle for finding the
best approximation by using the methods that optimise local maxima, as we have
been doing so far. However we have no way of checking how close our approximation
is to the actual global maximum value, and in many cases we will not have found the
best possible partition of the network into communities.

Having computed an adjacency matrix from the dengue fever data, I tried apply-
ing three versions of the two methods given above. The Louvain method, a spec-
tral optimisation method and finally a spectral optimisation method coupled with

10
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Kernighan-Lin node swaps (the results are given in Section 4.1.1). I found that all
three algorithms gave similar modularity values, but the distribution of communities
was very different. This degeneracy problem was recently illuminated by Good et
al. We can easily see that even if we could find a unique global maximum modular-
ity, there are often multiple partitions that would give us similar values. This is a
problem because we wanted to find naturally occurring communities; our goal was
not to find the greatest approximation to the global maximum modularity. We can,
however, look at clusters of nodes that frequently occur in the same groups across
multiple methods, as these may represent more robust groupings and thus still give
us the information that we were seeking.

11



Chapter 4

Results

Introduction

In this chapter I outline some insightful results of the study. I examine the evolution
of the communities over the fifteen year period by first representing the network as a
single adjacency matrix and then by creating a sequence of adjacency matrices that
represent the network at discrete time intervals. Applying modularity optimisation
algorithms to each matrix results in a series of partitions with associated modularities,
which I plot as a function of time. I also consider the structure of communities and
the role of individual nodes within those communities.

4.1 Modularity Optimisation

As I mentioned in Section 2.3, I considered two choices for the time aggregations. In
the first case, I chose t = 1 and ∆t = 779, which allowed me to compare the different
algorithms outlined in Chapter 3. In the second case I chose t = 1, 5, 9, ..., 729 and
∆t = 52, so that I could apply a modularity optimisation algorithm to the adjacency
matrix corresponding to each time aggregation with the aim of investigating the
evolution of community structure.

4.1.1 First Case Analysis

Having chosen to take t = 1 and ∆t = 779 in the first case, the network is represented
as a single adjacency matrix. I used this to calculate the modularity by applying the
Louvain method (LM), the spectral optimisation algorithm (SO), and the spectral
optimisation algorithm with Kernighan-Lin node swaps (KL); output values are given
in Table 4.1. These modularity values are very reasonable given the size of the
network,11 but the partition corresponding to these values differs greatly between the
algorithms.

12
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The Louvain method and the spectral optimisation algorithm with Kernighan-Lin
node swaps divided the network into five different communities, whereas the spectral
optimisation algorithm used on its own divided the network into only three communi-
ties. It is possible, however, to identify certain groups of nodes that occur in the same
community across all three algorithms. For example, nodes 1, 7 and 67 were allocated
to the same community by all three methods (see Appendix A for the corresponding
provinces and a map of their locations). Nodes 77, 78 and 79, three provinces in the
Ucayali region, were also placed in the same community and the same occurred with
the eleven nodes corresponding to the provinces in the Piura and Tumbes regions.
These patterns suggests that the geographic location of nodes might have some influ-
ence on the spread of the disease (this is a sensible result, given the nature of dengue
fever24), but we would need to perform further statistical analyses before claiming
causality.

Algorithm LM SO KL
Modularity 0.2418 0.2218 0.2202

Table 4.1. Community Detection Results

In Figure 1.1, we saw that Peru has interesting geographical characteristics, and
I speculated that dividing the network into three communities based upon those
characteristics might be an intuitive way to partition the network. Having calcu-
lated the modularity when dividing the network in this way, I found Q = 0.0568.
However, when I allocated all nodes to one single community, the modularity was
Q = −1.2217 × 10−15. This suggests that geographical characteristics have some
bearing on the community structure, but that there are also other influencing factors
involved.

As we know from Section 3.4, modularity optimisation is not an exact science. Most
community detection techniques start with some randomised or arbitrary division
that is often irrelevant to the real-world situation. We could try starting with a
division that we speculate as having some significance within the context of the data.
For instance, we could have tried starting with a division of the network into three
communities; mountain, jungle and coastal, before applying the division or node-
swapping techniques in Section 3.3.

4.1.2 Second Case Analysis

In the second case, I applied the spectral optimisation algorithm to each of the 182
adjacency matrices representing the network at each time aggregation. This resulted
in a sequence of modularity matrices, which were used to find the division of the
network that will gave the greatest value of modularity.

I have chosen to use the spectral optimisation algorithm with the Kernighan-Lin node
swaps in the second case, as it has been found, in general, to give greater modularity

13



562793 RESULTS

(a) Total Number of Reported Cases of Dengue Fever in Peru per 100,000 People

(b) Modularity of Division of the Network using a Spectral Optimisation Algorithm

Figure 4.1: Graphs showing (a) the total number of reported cases per 100,000 people
of dengue fever and (b) the maximum modularity over time.
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values than greedy algorithms, even in smaller network sizes.21 The greedy algorithm
is faster computationally and might be useful for networks with size O(106), though
this is not an issue here as we are dealing with a small network with only 79 nodes.

The plot in Figure 4.1 shows how the modularity changes over time. The most striking
result is that we can immediately see a sudden decline in modularity during the 2000 -
2001 epidemic. This suggests that there is a correlation between community structure
and epidemic outbreaks, perhaps due to a sudden shift in the structure of the network.

This correlation suggests that we should look at the structure of the network during
the time period over which the major outbreaks occur.

4.2 A Closer Inspection of Nodes During Outbreaks

Figure 4.2 shows us that there is a small number of nodes for which the number of
reported cases of dengue fever is very high. I have identified these as nodes 7, 14, 33,
45, 61, 74 and 77 (see Appendix A).

Figure 4.2: Total number of reported cases of dengue fever for each of the nodes over
the fifteen year period.

The plots in Figure 4.3 shows us that nodes 7 and 61 have such a large total number of
cases of dengue fever because large scale outbreaks occur in those provinces during the
nationwide epidemics. Closer analysis of the data during the 1996 outbreak reveals
that one node can be distinguished as having particular importance, node 7 (the
Utcubamba province). In just one week, the number of reported cases in Utcubamba
was 1334; the number of reported cases in other provinces during the epidemic was
no more than 129. Similarly, provinces corresponding to nodes 33 and 61 report a
maximum of approximately 800 cases of dengue fever in one week during the 2000 -
2001 epidemic. Of the 77 other provinces, only six report over 100 cases in one week
during this time, of which the maximum is 415 cases.

Given this information, it seems sensible to compute measures such as the local
weighted degree to find the relative importance of each node within its community.
This might help us distinguish the hubs, for example, which might have some signif-
icant influence on outbreaks in other provinces. In epidemiology this would usually

15
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help to identify the regions that could be targeted for vaccinations, or it might suggest
restricting travel between certain regions to limit the spread of the disease.24

(a) Node 7 (b) Node 61

Figure 4.3: Total number of reported cases of dengue fever in the (a) Utcubamba and
(b) Sechura provinces over the fifteen year period.

I calculated the local weighted degree of each node during three different year-long
time windows, see Figure 4.4. I took the local weighted degree of a node i to be the sum
of the edge weights between i and the nodes in the community that i belongs to. It
is difficult to infer information from these plots without carrying out other statistical
calculations, but due to time constraints these calculations were not possible.

16
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(a) 1994 (b) 1996

(c) 2000

Figure 4.4: Local degree distribution for each of the nodes during the years (a) 1994,
(b) 1996, (c) 2000.

17



Chapter 5

Discussion

5.1 Conclusions

I have used methods in network theory to try to model the spread of dengue fever
in Peru from 1994 to 2008. I defined a time-dependent network to model the data
and represented it in the form of a sequence of adjacency matrices. Constructing
the network in the form of an adjacency matrix made it easier to use modularity
optimisation techniques to find the best division of the network into communities. I
began by aggregating the data over the entire fifteen year period in order to compare
the uncovered partitions that result from applying different modularity optimisation
algorithms. Using time aggregations representing yearly windows that shift by four
weeks at a time, I also constructed a sequence of adjacency matrices and from this
I was able to calculate and observe the evolution of the communities over time by
applying a spectral optimisation algorithm at each time slice. Having plotted the
modularity function over the time period, there appeared to be a significant dip in
modularity at the time of the major 2000 - 2001 epidemic. Finally I identified nodes
that play a significant role within their communities during this time with the aim of
assessing their role within their community.

5.2 Possible Further Explorations

The techniques that I have looked at use many new ideas, and they have been applied
to very few time-dependent data sets. Even though we have found several interesting
correlations in this study, there is still plenty of work to be done. If we can find more
structural patterns and if we can find causal explanations for the results, then we
might be able to find preventative measures for a disease for which there is currently
no known vaccine. The further possible explorations that I will give merely skim the
surface of work that can be done.

18
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5.2.1 Other Applications

Having found what appears to be a correlation between community structure and
dengue outbreak, applying the same techniques to other similar high frequency time
series data could be insightful. One possible study involves analysis of the spread of
rubella in Peru.16 This data set also includes the number of reported cases collected on
a weekly basis by province, and was collected over a similar time period: from 1997 to
2009. Although we would need to account for rubella-specific characteristics, such as
different time scales relating to the disease, having information on the population and
spatial location of the provinces could make it easier to make comparisons between
the two data sets.

5.2.2 Refining the Null Model

Thus far, I have defined the adjacency matrix by assuming a weighted but undirected
network. However, given that dengue fever is a vector-borne disease, a more accurate
representation would incorporate the fact that it is a directed network. To take this
into account, one could use a version of modularity by Leicht and Newman13 that has
been developed for directed networks.

If the in-degree of node i is the number of edges entering node i, and the out-degree
of node j is the number of edges leaving node j, define14

kini =
n∑
j=1

Aij,

and

koutj =
n∑
i=1

Aij.

The null model in (3.1) is then

Pij =
kini k

out
j

m

so that

Q =
1

2

∑
ij

(
Aij −

kini k
out
j

m

)
δ(ci, cj)

where kini is the weighted in-degree of node i and koutj is the weighted out-degree of
node j.

Recent developments in the role of modularity in spatial networks by Expert et al.6

also suggests that it might be beneficial to require some dependence of the null model
on spatial factors, perhaps using

Pij = NiNjf(dij)

19



562793 DISCUSSION

where Ni is some measure of importance of the node i in terms of its location within
the network and f is a function such as

f(d) =

∑
ij|dij=dAij∑
ij|dij=dNiNj

,

where dij is the distance between nodes i and j. This allows one to find underlying
patterns in the network that do not solely depend on the spatial characteristics of the
data.
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List of Provinces

Node Province Region Description
1 Bagua Amazonas Mountains, North
2 Bongara Amazonas Jungle
3 Chachapoyas Amazonas Mountains, North
4 Condorcanqui Amazonas Jungle
5 Luya Amazonas Mountains, North
6 Rodriguez de Mendoza Amazonas Mountains, North
7 Utcubamba Amazonas Jungle
8 Corongo Ancash Coast, Central
9 Santa Ancash Coast, Central
10 Parinacochas Ayacucho Mountains, Central
11 Cajabamba Cajamarca Mountains, North
12 Chota Cajamarca Mountains, North
13 Cutervo Cajamarca Mountains, North
14 Jaen Cajamarca Jungle
15 San Ignacio Cajamarca Jungle
16 San Miguel Cajamarca Mountains, North
17 San Pablo Cajamarca Mountains, North
18 Santa Cruz Cajamarca Mountains, North
19 Callao Callao Coast, Central
20 La Convencion Cusco Mountains, South
21 Urubamba Cusco Mountains, South
22 Tayacaja Huancavelica Mountains, Central
23 Ambo Huanuco Mountains, Central
24 Huamalies Huanuco Mountains, Central
25 Huanuco Huanuco Mountains, Central
26 Lauricocha Huanuco Mountains, Central
27 Leoncio Prado Huanuco Mountains, Central
28 Marañon Huanuco Mountains, Central
29 Pachitea Huanuco Mountains, Central
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Node Province Region Description
30 Chupaca Junin Mountains, Central
31 Concepcion Junin Mountains, Central
32 Junin Junin Mountains, Central
33 Ascope La Libertad Coast, North
34 Bolivar La Libertad Coast, North
35 Gran Chimu La Libertad Coast, North
36 Pacasmayo La Libertad Coast, North
37 Santiago de Chuco La Libertad Coast, North
38 Viru La Libertad Coast, North
39 Chiclayo Lambayeque Coast, North
40 Ferreñafe Lambayeque Coast, North
41 Lambayeque Lambayeque Coast, North
42 Barranca Lima Coast, Central
43 Cajatambo Lima Coast, Central
44 Huaral Lima Coast, Central
45 Alto Amazonas Loreto Jungle
46 Datem Del Marañon Loreto Jungle
47 Loreto Loreto Jungle
48 Mariscal Ramon Castilla Loreto Jungle
49 Maynas Loreto Jungle
50 Requena Loreto Jungle
51 Ucayali Loreto Jungle
52 Manu Madre de Dios Jungle
53 Tahuamanu Madre de Dios Jungle
54 Tambopota Madre de Dios Jungle
55 Pasco Pasco Mountains, Central
56 Ayabaca de Mendoza Piura Coast, North
57 Huancabamba Piura Coast, North
58 Morropon Piura Coast, North
59 Paita Piura Coast, North
60 Piura Piura Coast, North
61 Sechura Piura Coast, North
62 Sullana Piura Coast, North
63 Talara Piura Coast, North
64 Bellavista San Martin Jungle
65 El Dorado San Martin Jungle
66 Huallaga San Martin Jungle
67 Lamas San Martin Jungle
68 Mariscal Caceres San Martin Jungle
69 Moyobamba San Martin Jungle
70 Picota San Martin Jungle
71 Rioja San Martin Jungle
72 San Martin San Martin Jungle
73 Tocache San Martin Jungle

ii
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Node Province Region Description
74 Contralmirante Villar Tumbes Coast, North
75 Tumbes Tumbes Coast, North
76 Zarumilla Tumbes Coast, North
77 Atalaya Ucayali Jungle
78 Coronel Portillo Ucayali Jungle
79 Padre Abad Ucayali Jungle

iii
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Figure A.1: Map illustrating location of provinces.
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