Routing on spatiotemporal networks without global knowledge

Till Hoffmann

Department of Physics, University of Oxford, Oxford, United Kingdom

The formulation of most shortest-path problems makes two simplifying assumptions: (1)
the edge weights are deterministic, and (2) global knowledge of the network is available. I
develop a decentralised routing algorithm providing en-route guidance for travellers without
global knowledge on spatial networks with stochastic edge weights. The algorithm guides
travellers using an estimation function that gauges cumulative arrival probability distribu-

tions based on the distance between nodes.

The estimation function carries a notion of

proximity between nodes and enables routing without global knowledge. I develop a new
criterion to discriminate among these distributions and compare decentralised algorithms

with centralised ones.

I. INTRODUCTION

Networks are used to model complex systems
consisting of interacting entities [1]. For exam-
ple, junctions connected by roads, such as the
Chicago Sketch Network [2] in Fig. 1, can be
represented by networks. Over the last decades,
the increased availability of large data sets and
the development of computational tools that can
handle these have led to a surge of activity in
the field of complex networks. Modelling social
[3] and biological [4] networks or transportation
[5-7] and communication [8, 9] systems are some
of the applications of network theory.

A. What is a network?

A directed network Gisaset N = {i1,... i},
whose n elements are called nodes, together with
a set E = {e1,...,en}, whose m elements are
called edges. The nodes represent the entities

\
VAL
50 =]

40

30 : -

Northing (km)

10

| | | | | |
0 10 20 30 40 50
Easting (km)

FIG. 1: The Chicago Sketch Network with 542 nodes
representing junctions and 1084 edges representing
roads. A path is shown in red.

of the underlying system and are labeled by an
index ¢ € N. The edges represent the interac-
tions or connections among the entities and are
labeled by an ordered pair of indices (i,7) € E,
indicating that node j is connected to node i
via a directed edge that starts from ¢ and ter-
minates at j. Nodes connected to each other are
called neighbours. In an undirected network, the
edges are unordered pairs of indices and the cor-
responding connections are bidirectional. If real
scalars t;;, such as the length of a road, are as-
signed to each edge (i,j), the network is said to
be weighted.

B. The shortest-path problem

The shortest-path problem of finding the path
with the smallest weight from an origin to a
target node in a network has received consider-
able attention because of its great importance for
both theory and applications [4, 10-15]. For ex-
ample, measures used to characterise networks,
such as betweenness centrality [12], which is one
way to quantify the importance of individual
nodes, and the network diameter [1], require the
ability to find short paths efficiently.

A path | = {i1,...,ig+1} with k steps is a se-
quence of k+1 nodes connected to one another by
edges. The first node i is called the origin and
the last node ixy1 is said to be the destination of
the path. The origin and destination of a path
do not necessarily have to coincide with the ori-
gin and target of a routing process. The weight
of a path is given by the sum of the weights of
its constituent edges

k
= tii,- (1)
j=1

The principle that makes efficient pathfinding
possible is known as Bellman’s principle of opti-
mality [10]. It states that, whatever the initial
conditions and previous decisions of a multistage
decision process, the remaining decisions have to
be optimal with respect to the current state to
obtain a globally optimal solution. This implies
that the state resulting from previous decisions
can be treated as the initial conditions of the
same problem. Problems obeying this principle
are said to have optimal substructure and can be
broken down into smaller tasks that can be solved
efficiently. In particular, the shortest-path prob-
lem is solved by finding shortest subpaths be-
tween intermediate nodes and subsequently re-
constructing the full path by concatenating the
subpaths.

Efficient shortest-path algorithms, such as Di-
jkstra’s algorithm [11], have successfully been ap-
plied to a range of real world problems. For
example, connecting computers in peer-to-peer
(P2P) file-sharing networks [9], navigation of
autonomous robots [16], routing information in
telecommunication systems [8] and traffic on
road networks [5-7] admit natural formulations
as shortest-path problems. By employing the
same concepts, it is possible to answer questions
about the conceptual distance of pieces of infor-
mation [14], protein sequence alignment [4], or
image segmentation [15].

The remainder of this report is organised as
follows: Section II provides background about a
generalisation of the shortest-path problem using
stochastic edge weights and decentralised rout-
ing, i.e. routing without global knowledge of the
network. In Section III, I develop a new mea-
sure to discriminate among paths in the stochas-
tic case, and in Section IV, I introduce a de-
centralised routing algorithm for networks with
stochastic edge weights. I investigate the differ-
ences between centralised and decentralised al-
gorithms in Section V and consider the effect of
the choice of optimality measure on the routing
results based on numerical experiments run on
synthetic and real networks. In Section VI, I dis-
cuss these results, consider applications of the al-
gorithm developed and prospects for future work
in this area.

II. BACKGROUND
A. A stochastic shortest-path problem

It is often not sufficient to assign simple scalar
weights to edges because of uncertainties about
their values. For example, the physical length
of a road may be known, but the time it takes
to travel this distance may vary considerably de-
pending on traffic [17]. It is natural to generalise
the weights to real-valued random variables with
probability distribution functions (PDFs) p;; to
account for this uncertainty [5, 7, 18-20]. We
make the following three assumptions: (1) the
random edge weights are independent, (2) the
PDFs do not change during the routing process,
and (3) the weight incurred by traversing an edge
becomes known upon completion of the step, e.g.
the time taken to travel a road will be known
once the next junction is reached. In this re-
port, we consider the example of a transportation
network for illustrative purposes; henceforth, the
terms 'weights’ and 'travel times’ will be used in-
terchangeably.

Consider two independent random variables
x and y with PDFs f (z) and g (y), respectively.
The PDF h(z) for their sum z = x + y is given
by the convolution of the individual probability
distributions [21]:

h<z>=/0 drf(@)gz—1) (2
= (1 %9)(2). (3)

Using Eq. (1) and applying the above repeatedly,
the probability to arrive at the destination via a
path [in the time interval [t,t 4 dt] is given by

b (t) = (pi1i2 *ooox pikik+1) (t)
. (jp) (t), (1)

where the second line is shorthand notation for
k convolutions. The probability of arrival along
[with weight smaller than or equal to t is given
by the cumulative distribution function (CDF):

t
u (t) = /O dt'py (t') . (5)

Loui [20] approached the stochastic shortest-
path problem outlined above by considering ex-
pectation values of cost functions to discriminate
among paths. These functions take the weight

of a path as their argument and return the per-
ceived cost of the path. They are used to con-
struct nontrivial criteria to discriminate among
paths, e.g. quadratic cost functions are used to
judge the uncertainty associated with paths [18].
Loui showed that the efficient algorithms devel-
oped for the deterministic shortest-path prob-
lem outlined in Section I B can be applied if and
only if the cost functions are linear or exponen-
tial. This is equivalent to showing that Bellman’s
principle holds for routing algorithms using these
cost functions on networks with stochastic edge
weights [20]. In the framework developed by
Loui, it is possible to find the path with the least
expected travel time. If the probability to re-
alise a travel time much larger than the expected
travel time is considerable, the path is said to
be risky. Such paths are a poor choice for trav-
ellers who are risk-averse. The precise definition
of risk aversion depends on the requirements of
the traveller [18, 22]. For example, travellers may
favour reliability over small expected travel times
if they need to arrive for an interview on time or
are transporting perishable goods.

Thus, there is no unique way to generalise the
shortest-path problem to account for stochastic
edge weights and several criteria have been pro-
posed to differentiate among paths: Frank [19]
defined the optimal path to be the one whose ar-
rival CDF surpasses a given threshold 6 within
the shortest travel time. Fan [5] suggested choos-
ing the path with maximal arrival probability
within a given time budget 7.

In contrast to the deterministic case, rout-
ing algorithms on networks with stochastic edge
weights can be classified into two groups: (1) a
priort algorithms, which determine a route be-
fore the traveller starts its journey, and (2) adap-
tive algorithms, which re-evaluate the best rout-
ing policy at each step to incorporate the weights
of the edges that have already been traversed
into the decision-making process. Unfortunately,
Bellman’s principle does not apply to a pri-
ori shortest-path problems under the reliability-
based criteria above because considering a step
to a node 7 is not equivalent to starting the pro-
cess at i (Appendix A includes an example of a
violation of Bellman’s principle). It is thus nec-
essary to enumerate all paths, determine their
arrival distributions and compare the paths pair-
wise [7]. This process is computationally ex-
pensive, and even for a small square lattice of
one hundred nodes there are more than 10%* dis-
tinct paths connecting diagonally opposite cor-

ners [23]. More efficient algorithms have been
developed, but their worst case performance is
still exponential in the number of nodes of the
network [7].

B. An adaptive algorithm

There is a crucial difference between a pri-
ori and adaptive algorithms: a priori algorithms
consider making a sequence of steps but do not
execute any steps until the full path has been
determined. Adaptive algorithms execute a step
and then re-evaluate their options before mak-
ing the next step. Adaptive routing algorithms
alleviate the problem of the large computational
complexity. Having arrived at a node ¢, the re-
maining routing process can be formulated as an
identical problem starting at node ¢ and Bell-
man’s principle is satisfied.

Modern navigation algorithms that can incor-
porate traffic jams, accidents and construction
work into their decision-making process are ex-
amples of adaptive routing algorithms. Such al-
gorithms outperform a priori shortest-path algo-
rithms because they can respond to the observed
travel times. However, they require the traveller
to be in possession of a device that can evaluate
the different options at each stage of the process,
which can be problematic for real-world applica-
tions.

Fan [5] proposed an adaptive algorithm that
obtains a routing table. She considered the max-
imal probability to reach the target r from all
other nodes ¢ € N\{r} in time ¢, where N\{r}
denotes all elements of N excluding r. This
amounts to solving a set of nonlinear convolution
integral equations given by

u; (t) = max {/0 pij () u; (t—1t") dt'|, (6)

JjeJi
Uy (t) =1, (7)

where wu; (t) is the probability to arrive at the
target from ¢ in time t and J; is the set of neigh-
bours of node i. The node g; (t) that should be
chosen to realise the maximal arrival probability
is given by

t
gi (t) = arg max [/ pij () u; (t—1t") dt'|, (8)
JjeJ; 0

where arg max denotes the argument j € J; max-
imising the expression in brackets. Travellers can

then consult the routing table during their jour-
ney and make optimal decisions depending on
their current location and their remaining bud-
get. In particular, a traveller at node i with re-
maining budget 7 should choose ¢; (7) according
to Fan’s optimality index. A traveller that fol-
lows Frank’s measure of optimality should choose
qi (t.), where t. is the shortest travel time that
realises an arrival probability 6 and is defined by
U; (tc) = 0.

In general, analytical solutions to the convo-
lution integral equations (6) to (8) cannot be
found, but they can be solved using iterative ap-
proximation techniques [5]. In particular, the
CDF w;(t) to arrive at a target r from node
i € N\{r} can be approximated by the sequence

t
90 < [s 0 -0y]

ottt =1
with initial conditions

Vie N\{r}, (10)

The solution after k iterations v¥ (t) can intu-

itively be understood as the probability to arrive
at the target from node ¢ within time ¢ if the trav-
eller is not allowed to make more than &k steps.
Unfortunately, the number of iterations required
for the solution to converge is in principle not
bounded from above because the traveller can
step back and forth between nodes.

Fan and Nie [6] showed that v¥ (¢) is mono-
tonically increasing with the iteration index k.
The sequence is thus a lower bound for the true
CDFs. A sequence wf (t) with the same recur-
sion relation defined in Eq. (9) but different ini-
tial conditions

w? (t)=1

i Vie N (11)
is an upper bound for the true CDFs because
it is monotonically decreasing with &k [6]. Thus,
if vF (t) = wk (t), the two sequences have con-
verged and the true CDF has been obtained. In
numerical implementations, we demand that the
approximation differs by no more than a positive
number € from the true CDF, i.e. we require that

Wk (t) —wk (1) <e VieN,t.

C. Decentralised routing

Milgram [3] investigated the small-world phe-
nomenon, i.e. the phenomenon that most people
are connected by short chains of acquaintances.
He asked a group of people to forward a folder
to a target individual using only acquaintances
they knew on a first name basis as intermedi-
aries. The individuals at the origins of the paths
received basic information about the target indi-
vidual and were asked to forward the folder to
the person in their social circle whom they be-
lieved to be closest to the target. Subsequent re-
cipients followed the same prescription, and the
folders honed in on their target. Of 160 chains
that were started, 44 were completed. The aver-
age number of hops required to reach the target
was approximately six and gave rise to the pop-
ular concept of six degrees of separation.

The success of Milgram’s experiment is due
to two components: (1) short paths connecting
individuals existed in the network, and (2) in-
dividuals were able to navigate the network ef-
ficiently despite only having knowledge of their
own social circle. The first component was inves-
tigated by Watts and Strogatz [24] who devised
a network model that can account for the clus-
tering observed in social networks as well as the
existence of short paths between individuals.

Kleinberg [25] explored the second compo-
nent: decentralised algorithms that are able to
find short paths despite only having local knowl-
edge of the network. A Kleinberg lattice, a vari-
ant of the Watts-Strogatz model, is a square lat-
tice to which long-range connections of lattice
distance d have been added with probability pro-
portional to a power-law distribution d~%. The
nodes are labeled by their positions in the grid
such that ¢ — (x;,y;). The lattice distance be-
tween two nodes ¢ and j is

dij = i — x| + |yi — y;l- (12)

Slivkins [26] generalised Kleinberg’s ideas by
embedding networks in a metric space and defin-
ing a distance measure d : N x N — R between
any pair of nodes. In principle, decentralised
routing is possible by making a traveller choose
successor nodes that minimise the distance from
the target in the models developed by Kleinberg
and Slivkins.

P2P file-sharing networks contain a large
number of files. This makes it difficult to main-
tain a central index. Decentralised search algo-
rithms have been implemented in several P2P

clients to circumvent this problem [9]. Shortest-
path problems also arise in robot navigation and
decentralised routing is an effective way to pro-
vide guidance for robots in unknown environ-
ments [16].

Decentralised algorithms are inherently adap-
tive because they do not identify a path a priori
but provide en-route guidance for travellers. In
Section V, I will show that they can route trav-
ellers on networks with stochastic edge weights
given only local knowledge of the network.

III. A JOINT OPTIMALITY INDEX

Given the current node i occupied by a trav-
eller, the aim of any routing criterion is to iden-
tify the neighbour of ¢ that it deems to be an
optimal choice. If the remaining budget 7 avail-
able to a traveller is sufficiently large, arrival at
the target within the budget is almost certain re-
gardless of the choice of neighbour, and we speak
of the large-budget limit. For example, a bud-
get of one week for the journey from Oxford to
Cambridge would be in the large-budget limit.
In this regime, Fan’s criterion cannot discrim-
inate among the CDF's of neighbours effectively
because u; (1) ~ 1 for all neighbours j. However,
Frank’s measure can identify the neighbour that
should be chosen to realise the shortest travel
time once we have specified the arrival probabil-
ity threshold @, i.e. how risk-averse we are.

In contrast, if the remaining budget is suffi-
ciently small, the arrival probability is small re-
gardless of the choice of neighbour, i.e. u; (1) <
1 for all neighbours j. In this case, we speak
of the small-budget limit, and Frank’s criterion is
not applicable because none of the CDFs surpass
the probability threshold #. However, Fan’s cri-
terion can identify the neighbour that should be
chosen to have the largest arrival probability at
the target. A budget of one hour for the jour-
ney from Oxford to Cambridge would be in the
small-budget limit.

With the above in mind, we define a new op-
timality index. If any neighbours’ arrival CDFs
surpass a given threshold 6 within a time bud-
get 7, we choose the neighbour whose arrival
CDF realises the threshold in the shortest time.
Otherwise, we choose the neighbour whose ar-
rival CDF is maximal for the given time budget.
This closely resembles the decision-making pro-
cess of real travellers who emphasise reliability
when they are running late and are concerned

T T T T T

1.0 Threshold - — —.=-= —!7 7
i %
go.s—-—/—-—y—-—,-' ————————— ce -
o / Budget —*
o 0.6
o .
§ 0.4 Node 1 !
€ — Node 2,
< 0.2 Node 3 -

0.0« e | | I !

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time

FIG. 2: A set of arrival CDFs of three neighbours of
the current node. Fan’s criterion prefers 2 and 3 over
1 but cannot discriminate between the arrival CDF's
of 2 and 3. Frank’s criterion prefers 2 over 3 but is
not applicable to 1. The joint criterion is applicable
to all CDF's and chooses 2.

with short travel times when they are planning
well in advance [22]. Figure 2 illustrates the dif-
ferences between the three criteria. Algorithm
1 in Appendix C shows pseudocode for selecting
successor nodes according to different criteria.

IV. A DECENTRALISED ROUTING
ALGORITHM

A. Estimation function

We follow Slivkins [26] and consider a spatial
network [27] embedded in a metric space such
that the distance between nodes ¢ and j is given
by d;j = d (i, j). In the deterministic case, such a
distance measure is sufficient to guide travellers
without global knowledge to a target [25, 26, 28].
Having generalised the edge weights to random
variables, it is necessary to estimate the arrival
CDF's between two nodes instead of considering
the distance between them. We define an esti-
mation function f : N x N — C, where N is
the set of nodes and C is the set of all CDFs.
The function f (i, 7; 7) estimates the arrival CDF
from node j to ¢ within a time budget 7. It car-
ries a notion of proximity between the nodes and
enables routing without global knowledge. We
shall first consider the components that are nec-
essary to define the estimation function.

The network distance g;; is the shortest dis-
tance between nodes ¢ and j if travellers are re-
stricted to the edges of the network. For exam-
ple, the distance between Oxford and Cambridge
as the crow flies corresponds to the Euclidean dis-
tance (neglecting the curvature of the Earth) and
the distance travelled by a car on the shortest

route corresponds to the network distance. We
assume that the distance between nodes can be
used to estimate the network distance and that a
function h : R — R exists such that h (d;;) ~ gij.
This assumption is implicit in all decentralised
routing algorithms on spatial networks because
the distance between nodes is used to guide trav-
ellers [25, 26, 28]. We shall discuss it in more
detail in Section V B.
Let

A== S dy (13)

be the mean edge length of the network under
consideration, where m is the number of edges.
The expected number of steps k to reach i from j
is thus given by the network distance g;; divided
by the mean edge length A:

- [4]
[

where [z] denotes the smallest integer not less
than z.

Without any further knowledge about the
stochastic edge weights associated with each step
of the unknown path [from j to i, we assume that
the weight is chosen uniformly at random from
one of the edges of the network at each step. The
weight of the path is estimated to be

k
=S4 (14)
k=1

where t is the weight obtained by chosing an edge
weight uniformly at random. The PDF for ¢ is
a mixture distribution [29], which accounts for
chosing edge weights uniformly at random:

pO=— 3 w0, (19

(3,7)EE

Following equations (1) and (5), an estimate of
the CDF for the weight of [is given by

R N e
/Odt <k*1p> (t) if 1 # j,

1 if i =j.
(16)
Appendix B includes a proof that the order of
performing mixtures and convolutions is irrele-
vant if the weights associated with PDFs are in-
dependent as we have assumed here.

f(i,g;t) =

The estimation function is not unique, and
the choice used in this report indirectly makes
use of global knowledge by employing the mean
edge length in Eq. (13) and uniform mixture dis-
tribution in Eq. (15). This choice is motivated by
the requirement for characteristic length scales
and travel time distributions which are neces-
sary for f(i,7;t) to be a good estimate of the
arrival CDF. In practice, such characteristics can
be obtained by sampling the network (e.g. traffic
flow measurements) or may be known a priori, so
global knowledge is not required.

B. The algorithm

A decentralised algorithm is inherently adap-
tive because it does not identify a path a priori.
It gathers new information as travellers traverse
the graph. The nodes that have been visited Ny
and the frontier nodes Ng constitute the discov-
ered subgraph Gp. Frontier nodes are neigh-
bours of visited nodes but have not yet been vis-
ited themselves. The discovered subgraph has all
edges of G that are connected to the discovered
nodes Np = Ny U Np. Naively stepping towards
the node that appears to be the optimal choice
without incorporating the journey to date can
lead to travellers getting trapped in dead ends.
Letting the algorithm have knowledge of Gp en-
ables it to navigate out of such dead ends.

Fan’s algorithm [6] can easily be applied to
G p by changing the initial conditions of the two
sequences v¥ (1) and wf (t) defined in Section
IIB. The frontier nodes are assigned CDF's ac-
cording to the estimation function:

Vi (t) = wj (t) = f (5, 73t)

where r is the target of the routing process. The

VJ ENF,

FIG. 3: (a) A Kleinberg lattice with the origin as a
green square and the target as a red star. (b) The
data available to a decentralised routing process be-
fore the first step. The current node is shown as a
square and frontier nodes are denoted by triangles.
The discovered subgraph G p is enclosed in the dashed
blue contour. (c) and (d) show the available data be-
fore the second and third steps, respectively.

visited nodes are initialised according to equa-
tions (10) and (11) as before. The two sequences
are iterated until they converge to within a cho-
sen tolerance € and the best successor node can
be identified by one of the criteria discussed in
Sections IT A and III. The traveller subsequently
moves to the chosen successor node, and the dis-
covered subgraph is extended by adding the suc-
cessor node to the visited nodes and its neigh-
bours to the frontier nodes. The remaining bud-
get is reduced by the weight incurred by mak-
ing the step. The process is repeated until the
traveller reaches the target or the budget is ex-
hausted. Figure 3 illustrates a routing process
on a Kleinberg lattice.

The algorithm requires that the sequence
wk (t) is initialised with an upper bound for the
arrival CDF. In the centralised case, this upper
bound is necessarily 1 because the target node is
part of the network under consideration. How-
ever, the upper bound for the arrival CDF of a
node in the discovered subgraph is given by the
maximal arrival CDF among the frontier nodes

fmax (t) = max Lf (4,750)] .

Initialising the sequence w¥ () with fiax (t) in-
stead of 1 such that

w) (t) = fumax (t) Vi€ Ny
accelerates the convergence of the two sequences
because the initial difference between them is re-
duced. Note that w¥ (t) remains an upper bound
for the arrival CDFs and that fiax () = 1 if the

target is part of the frontier. Algorithm 3 in Ap-
pendix C shows pseudocode for the algorithm.

V. SIMULATIONS

I implemented the decentralised algorithm
and the algorithm developed by Fan and Nie
[6] for comparison with a centralised algorithm.
Noland et al. [17] and references therein found
the traffic flow data sets they investigated to have
lognormal travel time distributions, and I used
this class of distributions for the purpose of the
following numerical experiments.

In particular, I assigned travel time distribu-
tions to the edges of the networks under consid-
eration by generating the mean u and standard
deviation ¢ uniformly at random from the inter-
val [0.5,1.5]. The relevant mixture distribution

is thus

1.5
25(75)2//05 dpdo pi (@, 05t),

where py, (u, 03 t) denotes the lognormal distribu-
tion with mean p and standard deviation o. Note
that the normalisation of the mixture is correct
because the size of the interval from which p and
o were chosen is 1.

I ran four different configurations: the decen-
tralised algorithm and the centralised algorithm
both using Fan’s criterion and the joint criterion.
Frank’s criterion was not used in the numerical
experiments because it is difficult to determine
the size of the integration interval that is required
for the CDFs of all nodes to surpass the thresh-
old 6. If there were CDFs that did not surpass 6,
Frank’s criterion would not be applicable. The
convolutions were carried out using a trapezoidal,
discretised approximation of Eq. (2) with time
steps of width §t = 0.01. I chose the width of
time steps such that reducing them further did
not affect the results. Algorithm 2 in Appendix
C shows pseudocode for the discretised convolu-
tion.

A. Kleinberg lattice

I first tested the algorithm on a 10 x 10 node
Kleinberg lattice [25]. One long-range contact
was created for each node with a power-law ex-
ponent @ = 2. Any duplicate edges were dis-
carded. The nodes were labeled by their position
in the lattice i — (z;,y;) and I used the lattice
distance defined in Eq. (12) to measure the dis-
tance between nodes. Ilet A =1 lattice unit and
h(d) = d as an approximation to the network
distance between nodes, i.e. the presence of long-
range connections was neglected. The origin of
the routing process was (2,2) and the target was
r = (9,9) such that the distance from origin to
target was 14 lattice units. I ran each configu-
ration 103 times for a range of budgets and a
threshold probability of 80% for the joint crite-
rion. I chose a numerical tolerance € = 1072 be-
cause errors in arrival probabilities smaller than
this threshold are not of significance for most real
travellers.

The arrival fraction, i.e. the fraction of rout-
ing attempts that reached the target within a
given budget, increased monotonically with in-
creasing budget as illustrated in the upper panel
of Fig. 4. Because centralised algorithms had

global knowledge of the network, they could
make better decisions and had larger arrival frac-
tions than decentralised algorithms. For the joint
criterion, the arrival probability threshold 6 de-
termines a point of transition from arrival proba-
bility maximisation to travel time minimisation.
Interestingly, the arrival fraction of travellers fol-
lowing the joint criterion was independent of 6
as shown in the lower panel of Fig. 4. This im-
plies that travel time minimisation is sufficient
to achieve the highest possible reliability for a
given time budget on the Kleinberg lattice. Such
behaviour is unexpected but can be explained.
Because the local neighbours of any node were
located in the four cardinal directions, the dis-
tances from these neighbours to the target were
dissimilar. Hence, the associated arrival CDFs
were dissimilar and a disagreement between ar-
rival probability maximisation and travel time
minimisation was unlikely. Travellers thus chose
the same successor nodes irrespective of 6 result-
ing in the same arrival fraction.

Centralised algorithms had smaller mean ar-
rival times than decentralised ones because the

T T T T T T
1.0+ s i
508 s
S
[}
So6f .
© Y/ ®—@ Centralised Fan
2 0.4+ . . .
£ /L ++ Centralised joint
< 02 @ 6 Decentralised Fan _|
& v—v Decentralised joint
00 | | | | | |
0 5 10 15 20 25 30 35
Budget
T T T T
udget 3. udget 4.
L ¥ Budget3.0 & & Budget 4.5
c Oor 53 Budget 3.75 ¥-¥ Budget 6.0 |
o
208 v—9v V3V ¥ V9 v -
o
< o4l i
o W

0.0 0.2 0.4 0.6 0.8 1.0
Probability threshold

FIG. 4: The first panel shows the fraction of rout-
ing attempts that successfully reached the target on
the Kleinberg lattice. The second panel shows ar-
rival fractions as a function of probability threshold
for four different budgets obtained by the centralised
algorithm using the joint criterion. The error bars
correspond to three standard deviations of the mean.

N
(6]

T T T T T T
84 Centralised Fan
~ +—% Centralised joint

N
o

g [Deceintralised%Fan
= 151 ¥ Decentralised:joint 7
5 ‘ :
.E 10 [—
< Vp Yy Vg Vy
51 _
0 1 1 1 1 1 1

0 5 10 15 20 25 30 35
Budget

FIG. 5: Mean arrival times of successful routing at-
tempts. The arrival times of algorithms using Fan’s
criterion rise sharply at large budgets because the cri-
terion cannot guide walkers effectively in this regime.
Small, intermediate and large budgets are separated
by vertical lines. The error bars correspond to three
standard deviations of the mean.

former were aware of all shortcuts in the network,
as shown in Fig. 5. The arrival times showed
several interesting features. For small budgets
7 < 10, the arrival times of all algorithms in-
creased with increasing time budget. The algo-
rithms chose neighbours to maximise the arrival
probability, resulting in longer travel times be-
cause it was advantageous to exhaust the entire
time budget.

For intermediate budgets 10 < 7 < 17, the
arrival times of the Fan and joint algorithms
differed. The joint criterion minimised arrival
times once arrival CDF's surpassed the threshold.
Hence, the arrival times of algorithms using this
criterion did not increase further with increasing
time budget. Algorithms employing Fan’s crite-
rion, however, continued to maximise the arrival
probability such that the arrival times continued
to grow with increasing time budget.

For large budgets 7 2 17, Fan’s criterion
was not able to distinguish between the CDFs
of neighbouring nodes as discussed in Section III,
and algorithms using this criterion entered an un-
guided phase: the algorithms stepped to neigh-
bours virtually at random until the remaining
budget had decreased sufficiently for Fan’s cri-
terion to be able to discriminate among CDFs
again. Thus, any additional budget was con-
sumed in the unguided phase and the mean ar-
rival times increased linearly with the available
budget. Using bootstrap fitting [30], the best es-
timate of the slope of a linear function fitted to
the tail of the arrival times of the centralised al-
gorithm using Fan’s criterion was 1.02(2). For al-
gorithms using the joint algorithm, mean arrival

times approached a steady value for large bud-
gets because the joint criterion was equivalent to
Frank’s criterion in this regime and minimised
arrival times. Note that the mean arrival times
were always smaller than the corresponding bud-
get because the budget was an upper bound for
the arrival time.

The arrival times of centralised algorithms us-
ing Fan’s and the joint criterion started to differ
at smaller time budgets compared to the arrival
times of decentralised ones. In the decentralised
case, long-range connections were neglected and

A = 1 underestimated the mean edge length.
Hence, k£ = d—/{’" overestimated the number of

steps necessary to reach the target r from a fron-
tier node i. Consequently, the estimation func-
tion f(r,i;t) underestimated the arrival CDF.
The decentralised joint algorithm thus erred on
the side of caution and the transition from arrival
probability maximisation to travel time minimi-
sation occurred at a larger budget 7 ~ 12 than
in the centralised case 7 = 9.

B. Chicago Sketch Network

Having demonstrated that a decentralised al-
gorithm is able to find reliable paths on a Klein-
berg lattice, I investigated a real network. The
Chicago Sketch Network [2] models the larger
Chicago metropolitan area, and has 542 nodes
representing junctions and 1084 edges represent-
ing roads. It is shown in Fig. 1.

In Section IV A, I proposed that a function
h exists such that the network distance between
two nodes ¢ and j is well approximated by h (d;;).
We will investigate this claim more closely in this

T T T T T T
80 - -)
° 107
e
S 60 . o)
S & . B
~ 10% @©
5 40 - - -g
E o
2 20+ . p
10
1 1 1 1 1 1

10 20 30 40 50 60
Euclidean distance

FIG. 6: Logarithmic density plot of the probability
density of network distances for a range of Euclidean
distances between nodes. The Pearson correlation co-
efficient of Euclidean and network distances is 0.985,
justifying a linear fit shown in red.

section. Figure 6 shows that the Euclidean dis-
tance

dij = \/(:L"z' —) + (yi —)

is strongly correlated with the network distance.
Based on a linear bootstrap fit, the best choice
for h =~ g;; is

h(d;;) = 0.547(8) km + 1.1176(4) x d;;,

where d;; has units of km. The slope of the linear
fit was larger than 1 because the Euclidean dis-
tance between any pair of nodes is a lower bound
for the network distance between the nodes.

I obtained similar results when considering
the lattice distance defined in Eq. (12) instead.
In this case, the linear fit had a slope smaller than
1 because the lattice distance is an approximate
upper bound for the network distance. Compli-
cated paths, such as zigzag paths, may however
violate this approximate bound.

The mean edge length of the network is A =
1.89 km. The origin and target nodes were cho-
sen uniformly at random such that their Eu-
clidean distance was in the interval between

T T T T T T
1.0 |
508 -
=
(9]
S o6 -
§ Centralised Fan
£ 04r % Centralised joint
< 02k EX 6% Decentralised Fan _|
rﬂ: v—v Decentralised joint
00 i 1 1 1 1 1 1
0 5 10 15 20 25 30 35
Budget
25

T T T T T T
B8 Centralised Fan :
20 ¥F Centralised joint
%6 Decentralised Fan
151 v ¥ Decentralised joint

10

Arrival time

0 5 10 15 20 25 30 35
Budget

FIG. 7: The first panel shows the fraction of rout-
ing attempts that successfully reached the target on
the Chicago Sketch Network. The second panel shows
the mean arrival times of successful attempts. Small,
intermediate and large budgets are separated by verti-
cal lines. The error bars correspond to three standard
deviations of the mean.

13.1 km and 16.4 km. This interval corresponds
to the most likely distance range between any
pair of nodes selected uniformly at random. I ran
each configuration 10? times for a range of bud-
gets, a threshold probability of 80% for the joint
criterion and a numerical tolerance € = 1073,

The results show the same qualitative be-
haviour as on the lattice and are illustrated in
Fig. 7. The arrival fraction of algorithms us-
ing the joint criterion showed no dependence on
the probability threshold 6 in line with the re-
sults obtained for the Kleinberg lattice. How-
ever, the travel times of the centralised and de-
centralised algorithms using the Fan and joint
criteria started to differ at the same time bud-
get. This occured because A\ was the mean edge
length — an unbiased estimate of the edge lengths
— such that the estimation function neither over-
estimated nor underestimated the arrival CDF
on average.

VI. DISCUSSION

Two oversimplifying assumptions prevalent in
the formulation of most shortest path problems
have been lifted: (1) routing on networks with
stochastic edge weights goes beyond the simplis-
tic approach of treating the weights associated
with the edges of a network deterministically [5-
7,17, 19, 20, 31], and (2) decentralised routing
algorithms enable navigation on networks with-
out having global knowledge of the connections
between nodes [8, 9, 16, 25, 26, 28].

I developed a decentralised routing algorithm
that can be applied to a network with stochastic
edge weights and a new criterion to discriminate
among the CDF's of potential successor nodes for
travellers. The new criterion circumvents the
limitations of Frank’s and Fan’s optimality in-
dices, which are not applicable in the small and
large budget limits, respectively. Furthermore, it
retains the desirable properties of both: it min-
imises the travel time similar to Frank’s measure
without de facto sacrificing reliability in compari-
son to Fan’s optimality index. The joint criterion
is a more realistic model of the behaviour of real
travellers than previous measures of optimality
[22]. Future work could investigate under which
conditions the reliability of the joint criterion is
independent of the probability threshold 6.

I generalised the notion of proximity neces-
sary for decentralised routing algorithms to net-
works with stochastic edge weights by introduc-

10

ing a CDF estimation function. The estimation
function is at the core of the decentralised al-
gorithm and is likely to have significant effects
on the routing quality. The function used in
this report is simplistic because it assumes that
the traveller needs to make a well-known num-
ber of steps based on the distance between two
nodes. It ignores correlations between the edge
length and the edge weight and assumes that the
weights of edges are independent. More sophis-
ticated versions could account for the distribu-
tion of edge lengths, edge weights and their cor-
relation. Shortest-path problems that consider
the least expected travel time for correlated edge
weights have been considered [32] but a general-
isation of the approach presented in this report
to correlated edge weights remains to be investi-
gated. Given that a range of estimation functions
can be defined, it needs to be considered whether
a unique, optimal estimation function exists.

Because decentralised algorithms only have
access to part of a network, they need to process
a smaller amount of information than centralised
ones. Often the choices made at the current stage
of a multi-stage decision process are mostly de-
termined by the local neighbourhood of the cur-
rent state. For example, a person travelling from
Oxford to Cambridge needs to decide whether to
go east or west, but whether a particular short-
cut exists in London is likely to be irrelevant for
a traveller starting in Oxford. Thus, limiting the
amount of information available to an algorithm
artificially could have performance benefits with-
out jeopardising the results considerably.

In fact, even decentralised routing algorithms
on networks with deterministic edge weights
could benefit from the ideas presented in this
report. The traveller discovers the graph as it
approaches the target and is not aware of the
presence of dead ends or shortcuts. However, if
macroscopic properties or the generative model
of the network are known, characteristic length
scales and travel time distributions can be de-
rived. Deterministic decentralised routing algo-
rithms could be extended to let travellers spec-
ify whether they prefer reliability or short travel
times by treating the unknown graph in the same
way as in this report.

The results I obtained from numerical simu-
lations show that decentralised routing on net-
works with stochastic edge weights is possible,
but the requirements for such an algorithm to
succeed have not been investigated. Slivkins
[26] considered the requirements for decentralised

routing to succeed on networks embedded in a
metric space. These concepts have to be revisited
and combined with the question of whether there
is a set of edge-weight distributions that allows
for decentralised routing and a set of distribu-
tions that does not in order to put decentralised
routing on networks with stochastic edge weights
on a more solid footing.

Acknowledgments

I would like to thank my supervisor Mason A.
Porter and Renaud Lambiotte for fruitful discus-
sions.

Appendix A: An example violating Bellman’s
principle

Consider an a priori routing process using
Fan’s criterion on the network shown in Fig. 8
(a). For a budget of 7 = 2.5 time units, a trav-
eller starting at node 1 should follow the path
{1,2,3} to maximise their arrival probability at
node 3 because the arrival probability of this
path is maximal for the given budget as shown
in the left panel of Fig. 8 (b).

We assume that the travel time from node 3
to 4 is known to be 1.5 time units such that the
travel time distribution is ps4 (£) = 0 (t — 1.5).
Thus, the arrival CDFs of the paths {1, 3,4} and
{1,2, 3,4} are obtained by a shift of the CDFs of
the paths {1,3} and {1, 2,3} by 1.5 time units as
shown in the right panel of Fig. 8 (b). A traveller
starting at node 1 should follow the path {1, 3,4}
to maximise their arrival probability at node 4.
Thus, which node should be chosen in the first
step depends on the travel time distributions as-
sociated with further steps. It is not possible to
consider subpaths independently and Bellman’s
principle is violated.

Appendix B: Mixtures of convolutions

Let F = {fi(x)}, G = {g; (y)} be two finite
sets of PDF's and let the mixtures of the elements
of each set be given by

flx) = waifi () and
g(y) = ngjgj (y),

11

! 47

b T T T T
® [{13} — {134}
Zoel— {123} /4 4 F— {1234} -
o / .
3 ;o Budget — .
o . .
‘5_ 0.4 - / — _ . T
— Shift .
g 7 -
T 02} / 4 C
<) / /
O 0 | 1 1 — 7

Budget

FIG. 8: (a) A network of four nodes. The origin of an
a priori routing process is shown as a square and the
target is shown as a star. (b) The left panel shows
the arrival CDFs to reach node 3 via the paths {1, 3}
and {1,2,3}. The right panel shows the arrival CDFs
to reach node 4 via the paths {1, 3,4} and {1, 2, 3,4}.
They are obtained by a shift of the CDF's shown in the
left panel because ps4 (t) = 0 (t — 1.5) by assumption.

where wy, and wy, are the independent weights
associated with the respective elements of F' and
G. Taking the mixture after performing the con-
volution of the elements of F' and G gives

> wrwg, (fi *+ g5) (2)

]

:/OZ dx waifi (z —) wy, 95 ()
ij

:/Odez_x)g(x)
=(f=*9)(2)

Thus, provided that the assumption of indepen-
dent weights holds, mixing the result of a convo-
lution is equivalent to taking the convolution of
two mixtures.

Consider b sets of probability distributions
{F1,...,Fp}. Let each set F; have ¢; elements.
On the one hand, carrying out the convolutions
of all pairs of probability distributions in the sets
first and taking the mixture afterwards requires

(ngl cz-> convolutions and additions. On the

other hand, carrying out the mixtures first and
performing the convolutions afterwards requires

b convolutions and (2?21 ci> additions. It is

thus much more efficient to compute the mixtures
first and subsequently perform the convolutions.

Appendix C: Pseudocode

This appendix contains pseudocode for three

different optimality indices in Algorithm 1. Pseu-
docode for a discretised approximation to the

[16]

[17]

12

convolution defined in Eq. (2) is shown in Al-
gorithm 2. Algorithm 3 presents pseudocode for
the decentralised routing algorithm on networks
with stochastic edge weights introduced in Sec-
tion IV B.

M.E.J. Newman. Networks: An Introduction.
Oxford University Press, 2010.

H. Bar-Gera. Transportation network test
problems. http://www.bgu.ac.il/~bargera/
tntp/.

S. Milgram. The small world problem. Psychol-
ogy today, 2(1):60-67, 1967.

W.R. Taylor and C.A. Orengo. Protein struc-
ture alignment. Journal of Molecular Biology,
208(1):1-22, 1989.

Y.Y. Fan, R.E. Kalaba, and J.E. Moore. Arriv-
ing on time. Journal of Optimization Theory and
Applications, 127(3):497-513, 2005.

Y.Y. Fan and Y.M. Nie. Optimal routing for
maximizing the travel time reliability. Networks
and Spatial Economics, 6(3):333-344, 2006.

Y .M. Nie and X. Wu. Shortest path problem con-
sidering on-time arrival probability. Transporta-
tion Research Part B: Methodological, 43(6):597
- 613, 2009.

D. Peleg and E. Upfal. A trade-off between space
and efficiency for routing tables. Journal of the
ACM, 36(3):510-530, 1989.

E.K. Lua, J. Crowcroft, M. Pias, R. Sharma, and
S. Lim. A survey and comparison of peer-to-
peer overlay network schemes. IEEE Communi-
cations Surveys and Tutorials, 7(2):72-93, 2005.
R.E. Bellman. On a routing problem. Quarterly
of Applied Mathematics, 16(1):87-90, 1958.
E.W. Dijkstra. A note on two problems in con-
nexion with graphs. Numerische Mathematik,
1(1):269-271, 1959.

L.C. Freeman. A set of measures of centrality
based on betweenness. Sociometry, pages 35—41,
1977.

B. Brumitt. The road to better path-finding.
http://googleblog.blogspot.co.uk/2007/
11/road-to-better-path-finding.html,
2007.

J.H. Lee, M.H. Kim, and Y.J. Lee. Information
retrieval based on conceptual distance in is-a hi-
erarchies. Journal of Documentation, 49(2):188—
207, 1993.

E.N. Mortensen and W.A. Barrett. Interactive
segmentation with intelligent scissors. Graphi-
cal Models and Image Processing, 60(5):349-384,
1998.

P. Berman. On-line searching and navigation.
Online Algorithms, pages 232241, 1998.

R.B. Noland and J.W. Polak. Travel time vari-
ability: A review of theoretical and empirical is-
sues. Transport Reviews, 22(1):39-54, 2002.

[18]

[19]

[20]

[24]

[25]

[32]

A. Eiger, P.B. Mirchandani, and H. Soroush.
Path preferences and optimal paths in prob-
abilistic networks. Transportation Science,
19(1):75-84, 1985.

H. Frank. Shortest paths in probabilistic graphs.
Operations Research, 17(4):pp. 583-599, 1969.
R.P. Loui. Optimal paths in graphs with stochas-
tic or multidimensional weights. Commun.
ACM, 26:670-676, September 1983.

P.G. Hoel, S.C. Port, and C.J. Stone. Introduc-
tion to probability theory. Houghton Mifflin series
in statistics. Houghton Mifflin, 1971.

K.A. Small. The scheduling of consumer activ-
ities: Work trips. The American Economic Re-
view, 72(3):pp. 467-479, 1982.

M. Bousquet-Melou, A. J. Guttmann, and
I. Jensen. Self-avoiding walks crossing a square.
Journal of Physics A: Mathematical and Gen-
eral, 38(42):9159, 2005.

D.J. Watts and S.H. Strogatz.
dynamics of ’small-world’ networks.
393(6684):440-442, 1998.

J. Kleinberg. The small-world phenomenon: an
algorithm perspective. In Proceedings of the
thirty-second annual ACM symposium on The-
ory of computing, STOC 00, pages 163-170,
New York, NY, USA, 2000. ACM.

A. Slivkins. Distance estimation and object lo-
cation via rings of neighbors. Distributed Com-
puting, 19(4):313-333, 2007.

M. Barthélemy. Spatial networks. Physics Re-
ports, 499:1-101, February 2011.

J. Kleinberg. Complex networks and decen-
tralized search algorithms. In Proceedings of
the International Congress of Mathematicians:
Madrid, August 22-30, 2006: invited lectures,
pages 1019-1044, 2006.

C. Forbes, M. Evans, N. Hastings, and B. Pea-
cock. Statistical Distributions. John Wiley &
Sons, 2011.

B. Efron and R. Tibshirani. An introduction to
the bootstrap. Monographs on statistics and ap-
plied probability. Chapman & Hall, 1993.

C.E. Sigal, A.A.B. Pritsker, and J.J. Solberg.
The stochastic shortest route problem. Opera-
tions Research, pages 1122-1129, 1980.

Y.Y. Fan, R.E. Kalaba, and JE Moore, J.E.
Shortest paths in stochastic networks with corre-
lated link costs. Computers € Mathematics with
Applications, 49(9-10):1549-1564, 2005.

Collective
Nature,

13

Algorithm 1 Three different criteria that select a successor node based on the arrival CDF w (t),
the neighbour ¢ (t) that realises the maximal arrival probability, a budget 7 and a probability
threshold 6.

function FAN(u (¢),q (¢),,0)
return ¢ (1)
end function

function FRANK(u (t),q (t),T,0)
5: te +—u"1(0) % u~! denotes the inverse of u.
return q (t.)
end function

function JOINT(u (t),q (t),T,0)
te ¢+ u"1(0)
10: if t. < 7 then
return FRANK(u (t),q (t),7,0)
else
return FAN(u (t),q (t),T,0)
end if
15: end function

Algorithm 2 A naive convolution algorithm that takes two discrete signals of equal lengths a and b
as input parameters and computes their convolution using the trapezoidal rule.
function CONVOLVE(a, b)
n + length of a
clij«0 Vie{0,...,n}
forie€{0,...,n—1} do

5: for j €{0,...,i—1} do
cli] < cli] + & (alj]bli — 4] +alj + 1Jbli — (j + 1)])
end for
end for
return c

10: end function

14

Algorithm 3 A decentralised routing algorithm based on the iterative approximation scheme
developed by Fan and Nie [6]. The input parameters are a network G, an origin and a target, a time
budget 7, a probability threshold # and a CRITERION to identify successor nodes.
function DECENTRALISEDROUTING(G, origin, target, 7, #, CRITERION)

(current, traveltime) < (origin, 0)
steps < {(current, traveltime)}
Ny + {current}

5: while traveltime < 7 and current # target do
Np +1 V{(i,j)€e E:j€ Ny and i ¢ Ny} % Obtain frontier nodes.
V9 (1) + wf (t) + f (i, target) (t) Vie Np % Initialise frontier nodes.
Jmax (t) = max;en,. [f (i, target) (¢)] % Obtain upper bound.
W) (t) 0 VjeNy % Initialise visited nodes.
10: W () = frax () Vj € Ny
unstable <+ Ny
k<0
while current € unstable do
vF (1) = max;je, [f(f pij (') vk (t = 1) dt'} Vi € unstable % Update the sequences.
15: Wi (1) = max;e, [fg pij (') wf (t—t) dt’} Vi € unstable
kE—k+1
for i € unstable do
if [vF (t) —wk (1) < e Vt then % Check for convergence.
remove 7 from unstable
20: end if
end for
end while
(Jcurrent (t) = arg manGJc\lrrent |:f0t Pcurrent,j (tl) vj (t - t/) dt’
successor <— CRITERION(vE, . (), Geurrent (t) , T—traveltime, 6) % Obtain the successor node.
25: traveltime <— traveltime + random sample of #guccessor,current % Update the travel time.
add successor to Ny % Extend the discovered subgraph.
current <— successor % Make the step to the successor.
add (current, traveltime) to steps
end while
30: return steps

end function

