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Abstract

In this thesis we propose some new approaches to the study of complex
networks, and apply them to multiple domains, focusing in particular on
protein-protein interaction networks. We begin by examining the roles of
individual proteins; specifically, the influential idea of ‘date’ and ‘party’
hubs. It was proposed that party hubs are local coordinators whereas date
hubs are global connectors. We show that the observations underlying this
proposal appear to have been largely illusory, and that topological proper-
ties of hubs do not in general correlate with interactor co-expression, thus
undermining the primary basis for the categorisation. However, we find
significant correlations between interaction centrality and the functional
similarity of the interacting proteins, indicating that it might be useful to
conceive of roles for protein-protein interactions, as opposed to individual
proteins.

The observation that examining just one or a few network properties can
be misleading motivates us to attempt to develop a more holistic method-
ology for network investigation. A wide variety of diagnostics of network
structure exist, but studies typically employ only small, largely arbitrarily
selected subsets of these. Here we simultaneously investigate many net-
works using many diagnostics in a data-driven fashion, and demonstrate
how this approach serves to organise both networks and diagnostics, as
well as to relate network structure to functionally relevant characteris-
tics in a variety of settings. These include finding fast estimators for
the solution of hard graph problems, discovering evolutionarily significant
aspects of metabolic networks, detecting structural constraints on par-
ticular network types, and constructing summary statistics for efficient
model-fitting to networks. We use the last mentioned to suggest that
duplication-divergence is a feasible mechanism for protein-protein inter-
action evolution, and that interactions may rewire faster in yeast than in
larger genomes like human and fruit fly.

Our results help to illuminate protein-protein interaction networks in mul-
tiple ways, as well as providing some insight into structure-function rela-
tionships in other types of networks. We believe the methodology outlined
here can serve as a general-purpose, data-driven approach to aid in the
understanding of networked systems.
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Chapter 1

Introduction

1.1 Networks

Some citizens of Königsberg

Were walking on the strand

Beside the river Pregel

With its seven bridges spanned.

“O Euler, come and walk with us,”

Those burghers did beseech.

“We’ll roam the seven bridges o’er,

And pass but once by each.”

“It can’t be done,” thus Euler cried.

“Here comes the Q.E.D.

Your islands are but vertices

And four have odd degree.”

William T. Tutte1

1.1.1 A brief history

A graph or network (we use the two terms interchangeably here, though in certain

contexts more general non-graph networks may be defined) consists of a set of elements

(called nodes or vertices) and a set of pairwise connections between those elements

(called links or edges or ties). The mathematical study of graphs (graph theory) is

1As cited in C. Moore and S. Mertens, The Nature of Computation. Oxford University Press,
2011.

1



(a) Euler’s original drawing [81] (b) Graph representation

Figure 1.1: The Seven Bridges of Königsberg problem.

Euler proved that in order for a path that passed through each link (bridge)
precisely once (not necessarily returning to its starting point) to exist, there could
be no more than two nodes with an odd number of links, whereas here all four
nodes have an odd number of links.

thought to have originated in the 17th century, when Euler famously proved that

the Seven Bridges of Königsberg problem was unsolvable [81] (Figure 1.1). Pure

mathematicians and computer scientists have continued to study graph theory and

related topics such as combinatorics, and the idea of representing real-world systems

of various kinds as graphs or networks and studying their properties has become

widespread in several different domains [196], such as engineering [217], sociology

[272], physics, and biology [143].

To some extent, practitioners studying networks within different fields have devel-

oped their own hermetic methodology and terminology, and the fundamental unity of

the mathematical abstractions being used to represent connections between machines

or people or molecules or organisms has not always been fully appreciated. This has

often led to repetition of work and reinvention of ideas: for instance, the preferential

attachment model for network growth (Section 1.1.6.3), published by Barabási and

2



Albert in 1999 [28], which led to a surge of interest in network science within the sta-

tistical physics community, is closely related to growth mechanisms proposed several

times previously.2 Given a network representing an unexplored system, it may be

difficult to decide what parts of the literature to draw on for ways of analysing it. In

this thesis we will present an attempt to take a data-driven approach to comparing

and organising both different kinds of networks and different ways of characterising

networks.

In this introduction, we aim to provide an overview of the relevant literature

and how it feeds into our work, including some technical details of concepts and

methods that we will use later. This chapter is organised into four major parts:

in the remainder of Section 1.1, we describe a selection of concepts and techniques

related to networks; in Section 1.2, we focus on proteins and the networks formed by

their interactions, which will be a running theme throughout this thesis; in Section

1.3, we provide a brief exposition of some topics in machine learning and introduce

terms and tools that will be of use to us; and in Section 1.4, we give an overview of

the thesis, outlining what we seek to do and attempting to situate it in the context

of the existing literature.

1.1.2 Basic concepts and terminology

Here we provide definitions for some basic terms associated with networks that will

be used throughout this thesis. The reader familiar with this terminology may wish

to skip straight to Section 1.1.2.1.

• Directed and Undirected: The links in a network can in some cases be directed,

i.e., going from one node to another (typically, such links will represent flows of

2Starting with Yule in 1925, who suggested a similar process to explain the number of species per
genus of flowering plants [282]. Subsequently, Simon in 1955 devised a master equation method for
preferential attachment, and used it to model distributions of the sizes of cities and other phenomena
[243]. Price in 1976 was the first to apply preferential attachment to network growth [70].
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some kind, for instance physical or informational ones). In this thesis, we deal

largely with undirected networks, which comprise links that represent binary

associations between nodes, without any directionality. In cases where we are

dealing with data sets where there is a directionality to the links, we gener-

ally ignore that directionality in order to allow for comparison with undirected

networks.

• Weighted and Unweighted: The links in a network can have weights associated

with them, representing strength of association or some measure of distance; this

is known as a weighted network. The protein interaction networks we examine

in Chapter 2 are all unweighted, i.e., there are no weights assigned to the links;

but subsequently we look at both weighted and unweighted networks. Because

unweighted networks can be treated as a special case of weighted networks in

which the only weights used are 0 (link absent) and 1 (link present), in general

techniques and diagnostics applicable to weighted networks can also be applied

to unweighted ones.

• Degree and Strength: The degree of a node in an undirected network is the

number of links incident upon it. For weighted networks, we can extend this

to define the strength of a node, which is the sum of the weights of all links

incident upon it (in the unweighted case, degree and strength are equivalent).

• Degree/Strength distribution: This is the entire distribution of node de-

grees/strengths in the network.

• Path: In an undirected network, a path between any pair of nodes is a sequence

of distinct nodes v1, v2, ..., vk (where v1 and vk are the nodes being connected)

that can be followed to get from one node to the other, i.e., such that there is

a link between vi and vi+1, for i ∈ [1, k − 1]. The number of links on a path is

known as its length.

4



• Walk: A walk is a sequence of linked nodes; unlike a path, it can contain multiple

occurrences of the same node.

• Geodesic distance: In an undirected network, the geodesic distance between

a pair of nodes is the length of the shortest path(s)—i.e., the one(s) with the

fewest links—connecting those two nodes. If there is no path between two nodes

in a network, the distance between them is defined to be infinite.

• Weighted distance: For a weighted network, the weight of a path is defined as

the sum of the individual link weights along that path. The minimum total

weight over all paths between a pair of nodes is their weighted distance. For

unweighted networks, this is the same as the geodesic distance. For a general

undirected network, we will call this the distance between pairs of nodes.

• Connected component: This is a set of nodes in a network such that there is

a path between any two of them and to which no further nodes can be added

whilst maintaining this property. The connected component with the most

nodes is known as the largest connected component (LCC); if this is equivalent

to the entire network, then the network is said to be connected.

• Clique: A set of nodes where every node is linked to every other node. A k-clique

is a clique containing k nodes.

• Adjacency matrix: A standard way of representing a network. An n×n matrix,

where n is the number of nodes; if nodes i and j are linked, then Aij = 1 for an

unweighted link (also Aji = 1, for an undirected link), or Aij = wij, where wij

is the weight of the link. If i and j are not linked, then Aij = 0.
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1.1.2.1 Hubs

In Chapter 2, we will focus primarily on the properties of certain network nodes called

hubs. In general, a hub is a node with a large degree, relative to the degrees of other

nodes in the network. In some cases an absolute degree threshold may be used to

define hubs, but such a threshold is usually chosen so that the proportion of nodes

that are hubs is not too large. In several real-world networks, it has been found that

there are a small number of nodes with very high degrees; such a network is said to

have a heavy-tailed degree distribution. This has sometimes been construed, often

controversially, as evidence for power laws [28, 62], i.e., degree distributions where

the probability of observing a given degree k scales as p(k) ∝ k−γ. Irrespective of

this, the observation of a such a heavy tail is frequently thought to correspond to

the existence of hubs as nodes of particular importance to a network [136, 266, 286].

There is, however, no standardised criterion for identifying hubs; in the context of

protein-protein interaction networks (Section 1.2.3), they have been variously defined

as nodes with degree greater than 5 [121], the top 20% of nodes by degree [41], and via

other measures based on topological or functional properties of proteins [266]. Here

we will largely stick to previously defined hubs for the protein interaction networks

we study in Chapter 2, as our objective will be to scrutinise previous claims made

regarding the roles played by such hubs.

1.1.3 Communities in networks

Many real-world networks display some sort of modular organisation, as they can be

partitioned into cohesive groups of nodes such that there is a relatively high ratio

of internal (within-group) to external (between-group) link density (the number of

links as a fraction of the number of possible links). Such sub-networks, known as

communities, are often construed to correspond to distinct functional units [90, 107,

213].
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From an intuitive standpoint, communities should consist of groups of nodes such

that there are many links between nodes in the same group but few links between

nodes in different groups. To detect communities algorithmically, this notion must be

formalised. A myriad of algorithms have been developed for detecting communities

in networks [90,213]. We describe in some detail two of the most popular approaches,

both of which are used in the work presented in this thesis.

1.1.3.1 Modularity

Perhaps the most widely used method for identifying community structure in networks

is based on optimising a quality function known as Newman-Girvan modularity [194,

197]. Suppose that an undirected network with n nodes and m (weighted) links, with

total weight S, is divided into N communities C1, C2, · · · , CN . Let si denote the

strength of node i, ci the community to which it belongs, and let A be the adjacency

matrix. The Newman-Girvan modularity Q is then given by [194]

Q =
1

2S

n∑
i=1

n∑
j=1

(
Aij −

sisj
2S

)
δ(ci, cj) , (1.1)

where sisj/(2S) is the expected weight of the link between nodes i and j in a network

with the same expected sequence of node strengths but with link weights assigned at

random; and δ(ci, cj) = 1 if ci = cj and 0 otherwise. This modularity measure thus

captures how much more link weight there is within the specified communities than

one would expect to see by chance in a network with no modular structure. Note,

however, that (1.1) assumes a particular null model,
sisj
2S

, that explicitly preserves the

expected node strength distribution in the random setting. It is possible to employ

other null models [213], though this is the most common choice.
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1.1.3.2 Multi-resolution community detection

In general, a network can have community structure at multiple scales of organisa-

tion; there can be smaller communities nested inside bigger ones, for instance. The

Newman-Girvan method only allows one to find communities at a single scale, but

there are several methods that incorporate the concept of a resolution parameter,

which allows one to probe structure at different scales; varying the value of the reso-

lution parameter leads to communities of different sizes. Here we will use an extension

of the Newman-Girvan method that is based on an analogy to the Potts model in

statistical mechanics [220]. This incorporates a resolution parameter (denoted by γ)

into the equation for modularity, leading to the quality function

H =
1

2S

n∑
i=1

n∑
j=1

(
Aij − γ

sisj
2S

)
δ(ci, cj) . (1.2)

Setting γ = 1 leads to the standard modularity function (1.1). Values of γ greater

than 1 in effect further reduce the strength or ‘attractive force’ associated with links

in the network, i.e., they reduce the reward (in terms of increasing the value of the

modularity H) obtained by making any given link an intra-community link rather

than inter-community. Thus higher values of γ lead to smaller communities. In the

limit, when γ > 2SAij/(sisj) for every pair of nodes (i, j), then maximising H just

puts every node into its own community (giving H = 0), as any paired nodes will

only make a negative contribution to the quality function. However, γ < 1 leads to

larger communities, with the limit being reached at γ = 0, when the contribution of

every node pair to H becomes non-negative, and thus the maximum is achieved by

putting the entire network into a single community.
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1.1.3.3 Optimisation

One can detect communities by maximising a quality function, such as Equation

(1.1) or Equation (1.2), over all possible network partitions. Because this problem

is known to be NP-hard [52], roughly meaning that the time taken to solve it scales

very fast with the problem (network) size3, reliably finding the global maximum is

computationally intractable except for very small networks. Thankfully, there exist

several good computational heuristics that can be used to obtain good local maxima

[67, 90, 213]. Here we employ two different algorithms4 to maximise Newman-Girvan

modularity: recursive spectral bisection [193] (accompanied by the Kernighan-Lin

algorithm [144] for fine-tuning), and a locally greedy algorithm known as the Louvain

method [48]. The first method defines a modularity matrix B, whose elements are

given byBij = Aij−sisj/(2S), and relies on the fact that the modularity maximisation

process can be formulated in terms of the spectrum of this matrix. The Kernighan-

Lin fine-tuning step involves finding pairs of nodes that can be interchanged between

communities, so as to lower the total weight of inter-community links. The Louvain

method involves an iteration between local adjustments of communities and global

aggregation of the obtained communities, and these two steps are repeated until

modularity has converged to a maximum. The Louvain method also allows community

detection at multiple settings of the resolution parameter γ in the Potts method

[Equation (1.2)].

1.1.3.4 Infomap

Another well-known algorithm for community detection is the information-theoretic

approach of Rosvall and Bergstrom (called Infomap) [226]. This is based on the

3If the network has n nodes, then there is no known algorithm whose runtime scales as a poly-
nomial function of n. A typical algorithm might scale exponentially, e.g., the runtime might be
proportional to 2n.

4We obtained MATLAB code for the algorithms from Stephen Reid and Dan Fenn.
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idea that a good network partition is one that allows a network to be compressed

most effectively; one can think of this as finding communities where the nodes within

them can be combined into a single node with minimal loss of information about

global network structure. Let A be the adjacency matrix for a given (undirected,

unweighted) network with n nodes, and suppose the assignment of nodes to one of N

communities is represented by the vector a = (a1, a2, ..., an), where ai ∈ {1, 2, ..., N}.

Also, an N × N module matrix M is defined such that entry Mij is the number

of links between communities i and j. Then, the tuple Y = {a,M} represents the

compressed version of the network. Infomap seeks to find an assignment a of nodes

to N communities such that the mutual information between Y and the full network

represented by A is maximised, and thus the information lost due to the compression is

minimised. In one comparative study of a range of popular algorithms for community

detection, Infomap was found to be one of the best performing methods [157].

1.1.3.5 Other methods

There are numerous other types of community detection algorithms we do not use in

this thesis; two of the major approaches are briefly described here. Local community

detection methods involve starting from individual nodes and finding communities

around them, rather than attempting to partition the network globally. Examples in-

clude the CFinder method based on k-clique percolation [13,72] and the Lancichinetti

et al. local method [158], which optimises a fitness function defined using the nodes

within a given community plus immediate neighbours (rather than the entire net-

work). Another possibility is to attempt to find cohesive groups of links, rather than

nodes; this has been explored only quite recently [19, 82, 83]. Both these approaches

have the feature of allowing for a node to belong to multiple communities, which is

useful in some contexts.
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1.1.4 Network diagnostics and summary statistics

As noted in Section 1.1.1, a variety of methods have been developed for characterising

networks across various domains. One of the goals of this thesis is to attempt to

consolidate a substantial number of these methods (the outputs of which we refer

to as network diagnostics) and explore the connections between them, as well as

to examine how they can collectively aid in comparing and highlighting interesting

aspects of different sorts of networks.

Here we briefly review the main diagnostics we have used to study network struc-

ture. Many of these diagnostics are defined for unweighted networks; in these cases,

we will ignore link weights when applying them to a weighted network (though the

bulk of the networks examined in this thesis are unweighted to begin with). A com-

plete list, along with references to original sources, can be found in Appendix A.

1.1.4.1 Connectivity measures

• Density: The number of links in the network as a fraction of the total number

of possible links, which for an unweighted network is
(
n
2

)
, where n is the number

of nodes.

• Degree assortativity: This is a measure of the extent to which nodes tend to

connect to other nodes of similar degree. It is defined by the Pearson correlation

coefficient (over all links in the network) of the degrees at either end of a link

[191]. If m is the total number of links in a network, and the degrees of the nodes

at the two ends of link i are denoted by ji and ki, then the degree assortativity

r can be written as:

r =
1
m

∑m
i=1 jiki − [ 1

m

∑m
i=1

1
2
(ji + ki)]

2

1
m

∑m
i=1

1
2
(j2
i + k2

i )− [ 1
m

∑m
i=1

1
2
(ji + ki)]2

. (1.3)

• k-cores: The k-core of a network is obtained by removing all nodes of degree less
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than k, iteratively (since after each round of removals the degrees of remaining

nodes may be reduced), until no such nodes remain [239]. Thus, it is the

maximal connected subnetwork such that all nodes have degree k or more. The

fraction of the network contained in the k-core, for various values of k, can be

seen as an indicator of cohesiveness in the network.

• Rich-club coefficient: The ‘rich-club’ phenomenon refers to the tendency of high-

degree nodes to be well-connected to each other [64, 285]. The rich-club coeffi-

cient can be defined as a function of a node threshold by degree. In the standard

notation, we let n>k denote the number of nodes with degree greater than k, and

let e>k, be the number links amongst these nodes, then the rich club coefficient

φ is defined as a function of k:

φ(k) =
2e>k

n>k(n>k − 1)
. (1.4)

For our purposes, we would like to re-write φ as a function of a node rank, rather

than a degree threshold. Let mi be the total number of links amongst the top

i nodes by degree (i ≥ 2). Then the rich-club coefficient φ can be written as:

φ(i) =
2mi

i(i− 1)
. (1.5)

In order to obtain a single number to estimate the amount of ‘rich-clubness’ in a

given network, we compute i50, the value of i for which φ(i) comes closest to 0.5;

given that φ(i) is in practice nearly always observed to be a decreasing function

with increasing i [64], this generally amounts to finding the largest value of i for

which the rich-club coefficient is at least 0.5. We use the ratio i50/n (n being

the total number of nodes in the network) as a measure of the fraction of the

network constituting the rich-club.
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1.1.4.2 Node or link centrality

• Degree centrality5: This is defined for a node i in an unweighted network as the

ratio of the node’s degree ki to the maximum possible degree, which (assuming

no self-links) is n−1, where n is the number of nodes. Computing this measure

for each node in a network gives us a distribution of degree centrality values. We

use multiple summary statistics (such as mean and variance; see Appendix A

for list) of this and other distributions as ways of characterising a given network.

Group degree centrality is a measure of the dispersion or variation in degree

centrality values [272]. This is defined as:

cgroupd =

∑
i(kmax − ki)

(n− 1)(n− 2)
, (1.6)

where kmax is the maximum degree in the given network.

• Geodesic betweenness centrality: There are two versions of this, for nodes [96]

and links [107]. In either case, it is defined for an unweighted network as the

number of pairwise shortest paths between (other) nodes in the network that

pass through a given node/link, normalised by the total number of such pairs.

A shortest path between a pair of nodes is one such that no other path has

fewer links; if there are multiple shortest paths between a given node pair, then

in adding them up for betweenness they are weighted down so that the total

weight for the pair is 1 (e.g., if there are 3 shortest paths between a given pair,

then each one of them will be counted as 1/3 of a path). Thus, the betweenness

centrality cb of a node v is given by:

cb(v) =
∑

s,t:s 6=t,s 6=v,t6=v

2σst(v)

(n− 1)(n− 2)σst
, (1.7)

5In some contexts, the degree centrality may just refer to the degree. Here we use it to refer to
the normalised degree as described.
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where σst is the total number of shortest paths between nodes s and t and σst(v)

is the number of these paths that pass through the node v.

Group node betweenness centrality, which quantifies variation in the node be-

tweenness values, is defined as [272]:

cgroupb =
2
∑n

i=1(cb(vmax)− cb(vi))
(n− 1)2(n− 2)

, (1.8)

where vi is the ith node and vmax denotes the node with the highest betweenness

centrality.

• Closeness centrality: This is proportional to the inverse of the sum of geodesic

distances from a node to all other nodes [233,272]:

cc(vi) =
n∑n

j=1 d(vi, vj)
, (1.9)

where d(vi, vj) is the geodesic distance between nodes vi and vj.

Group closeness centrality is defined as [272]:

cgroupc =
(2n− 3)

∑n
i=1(cc(vmax)− cc(vi))

(n− 2)(n− 3)
, (1.10)

with vmax denoting the node with the highest closeness centrality.

• Eigenvector centrality: Unlike the degree centrality, which weights all links

equally, the eigenvector centrality seeks to weight links based on the impor-

tance of the node being connected to; the idea being that links to nodes that

are more influential or central will contribute more to one’s own centrality.

Thus, the eigenvector centrality of a node is defined as being proportional to

the average of the eigenvector centralities of its neighbours; this leads to an

eigenvalue problem, and the value of the centrality measure for a given node
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turns out to be its weight in the leading eigenvector (the one corresponding

to the largest eigenvalue) of the network’s adjacency matrix. If the adjacency

matrix is denoted by A and the largest magnitude eigenvalue by λ1, then:

ce(vi) = xi;Ax = λ1x,x = (x1, x2, ..., xn)T . (1.11)

• Information centrality: This measure is designed to capture the information

(defined just as the inverse of path length) contained in all paths originating

at a given node [250, 272]. In essence, it computes the harmonic mean of the

lengths of all these paths. Let lp(vi, vj) be the length of path p between nodes

vi and vj. If there are a total of P paths between the two nodes, the total

information between them is defined as

I(vi, vj) =
P∑
p=1

1

lp(vi, vj)
. (1.12)

The information centrality of a given node vi is then defined as

cinf (vi) =
n∑n

j=1 I(vi, vj)
. (1.13)

The summary measure of group information centrality was proposed by Stephen-

son and Zelen [250] to be defined as simply the mean of the values for the

individual nodes:

cgroupinf =
1

n

n∑
i=1

cinf (vi). (1.14)

• Subgraph centrality: This defines a node’s importance by the number of sub-

graphs of the network that constitute a closed walk starting and ending at that

node, with higher weights given to smaller subgraphs [65,80]. It can be defined
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in terms of the diagonal elements of the powers of the adjacency matrix A:

sc(v) =
∞∑
k=0

(Ak)vv
k!

, (1.15)

where (Ak)vv denotes the entry in row v and column v of the matrix obtained

by raising A to the power k.

• Bipartivity: A bipartite graph is one in which there are two subsets of nodes

such that all links are across the subsets and none within either subset. The

definition of subgraph centrality can be used to define a measure of bipartivity

(how close a network is to being bipartite), based on the observation that a

bipartite graph will have no closed walks of odd length [79]. Thus, for each

node, the fraction of its subgraph centrality contributed by even-length closed

walks is a measure of how much it contributes to bipartivity; averaging over all

nodes gives a bipartivity measure for the whole network. If λ1, λ2, ..., λn are the

n eigenvalues of the adjacency matrix for a given network, then the bipartivity

measure β can be computed as [79]:

β =

∑n
i=1 cosh(λi)∑n

i=1 e
λi

. (1.16)

1.1.4.3 Paths and distances

• Characteristic path length: This is the average of the lengths of all finite pairwise

shortest paths in a given network.

• Diameter: The maximum geodesic distance between any pair of nodes in a

network.

• Radius: The minimum eccentricity of any node in the network, where eccentric-

ity of a node is the maximum distance to any other node.
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• Szeged index: This measure was initially defined for the study of molecular

graphs in chemistry [145]. For each link l, it defines a symmetry measure in

terms of distances of other nodes from the two endpoints of the link. If n1(l) is

the number of nodes whose distances from the first endpoint are less than that

from the second endpoint, and n2(l) is the number of nodes for which it is vice

versa, then the product of these two numbers is a measure of how similar the

two endpoints are in terms of connectivity to other nodes. The overall Szeged

index Sz is the sum of this quantity over all links in a network G:

Sz(G) =
∑
l∈G

n1(l)n2(l). (1.17)

• Cyclic coefficient: This measure was introduced by Kim and Kim [148] as a

means of characterising cyclic topology in a graph. For node vi, the cyclic coef-

ficient cyc is defined as the mean inverse length of the smallest loops connecting

vi to all pairs of its neighbours:

cyc(vi) =
2

ki(ki − 1)

∑
{j,k}:Aij=1,Aik=1,j 6=k

1

Lc(vi, vj, vk)
, (1.18)

where Lc(vi, vj, vk) denotes the length of the shortest closed or circular path

that passes through all three nodes, and is defined to be infinity if no such path

exists.

1.1.4.4 Clustering

• Clustering coefficient: Also known as the local clustering coefficient, this is

defined for each node in an unweighted network as the number of links between

its neighbours divided by the total number of such links possible (which is
(
k
2

)
,

for a node with k neighbours) [273]. Another way to state this: if the number
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of triangles in which a node v participates is denoted NTri(v), and the number

of connected triples (three-node sets) in which that node is the central node is

denoted N3(v), then the clustering coefficient C is given by:

C(v) =
NTri(v)

N3(v)
. (1.19)

• Transitivity: Also sometimes known as the global clustering coefficient, though

the latter term may also be used to denote the mean of the previous measure

over the whole network. If NTri is the total number of triangles in a network,

and N3 is the number of connected triples, then transitivity T is defined as [272]:

T =
3NTri

N3

. (1.20)

1.1.4.5 Motifs

Motifs are small subgraphs, in practice typically of 3 or 4 nodes; it has been suggested

that counting the number of different occurrences of these in a larger network can

serve as a kind of signature of network structure [186]. For instance, in an undirected

network, if one focuses on 3-node subgraphs, there are 4 possibilities: no links, a single

link, two links, or all three links (i.e., a triangle). Examining the relative frequencies

of these provides some characterisation of a given network. If one were to focus only

on connected 3-node graphs, then the only two possibilities would be a triangle and

a V (i.e., a triangle with one missing link); so in this case their relative frequencies

would capture exactly the same information as the transitivity.

1.1.4.6 Graph complexity

• Spanning trees: A spanning tree of a connected n-node network is a subset of n−

1 links such that they connect all the nodes into a tree (i.e., an acyclic connected
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graph). The number of different spanning trees contained by a network is one

possible way of trying to measure its complexity [149].

• Off-diagonal complexity: This is related to the degree assortativity of the net-

work; the idea being that a network’s links can be grouped into different types,

based on the difference in the degrees of the two nodes being linked. Greater

heterogeneity in the types of links occurring in a network is taken as a sign of

greater complexity [149]. More precisely, one defines a matrix C, where Cij is

the total number of links between nodes with degree i and nodes with degree

j. One then sums the diagonals of the upper triangle of this matrix (since it is

symmetric, for an undirected network); if the number of unique degrees is M ,

then we have, for i = 0, 1, ...,M − 1:

Li =
M−i∑
j=1

Cj(j+i), (1.21)

where Li is the sum of entries in the ith diagonal. The entries in the principal

(0th) diagonal represent links between nodes with the same degree; the first

diagonal above it counts links between nodes whose degrees differ by one; and

so on. Thus, if there is no preference for nodes of certain types to attach to

each other, then the sums of all the diagonals should be about the same. The

entropy of the distribution of links (with m denoting the total number of links)

across these sums gives the off-diagonal complexity O:

O = −
M−1∑
i=0

Li
m

log

(
Li
m

)
. (1.22)

• Efficiency: This is a measure of how well nodes can communicate with each

other [160]; it is defined as the mean of the inverses of the geodesic distances

between all pairs of nodes. If the distance between nodes i and j is denoted
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d(vi, vj), then efficiency E is given as:

E =
1

n(n− 1)

∑
i,j:i 6=j

1

d(vi, vj)
. (1.23)

• Efficiency complexity: This measures the increase in efficiency relative to the

least efficient network with the same number of nodes, which is the linear chain

[149]. The efficiency of a chain of n nodes is:

Echain =
2

n(n− 1)

n−1∑
i=1

n− i
i

. (1.24)

In order to normalise the efficiency complexity Ecomp to the range [0, 1], it is

defined for a network with efficiency E as:

Ecomp = 4

(
E − Echain
1− Echain

)(
1− E − Echain

1− Echain

)
. (1.25)

• Chromatic number: Related to the graph colouring problem, which involves as-

signing a colour or category to each node in a graph such that no two linked

nodes have the same colour. The problem is to find the minimum number of

colours needed to do this for a given graph; this number is called the chromatic

number. Finding the actual number is an instance of an NP-hard problem,

and is generally intractable except for very small networks. However, heuristic

algorithms can be used to obtain an estimate; here we make use of the Sage im-

plementation (http://www.sagemath.org), which employs the Dancing Links

algorithm [126,152].

• Travelling Salesman Problem: Given a set of nodes with pairwise distances

between them, this problem involves finding the optimal sequence in which to

visit them so as to minimise the total distance travelled. Given a network, we
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can convert it into an instance of this problem by using graph distances between

node pairs. This is also intractable to solve for large instances; we use heuristics

(including a cross-entropy method, a genetic algorithm and simulated annealing;

details in Section 3.4.1) to solve it approximately and for a given network, use

the time taken to get the solution and the total distance to be travelled for that

solution as diagnostics.

1.1.4.7 Spectral diagnostics

• Eigenvalues: The eigendecomposition of an adjacency matrix provides infor-

mation about the network’s structural properties. As noted in Section 1.1.4.2,

the components of the principal eigenvector can be interpreted as a set of mea-

sures of node centrality. The corresponding (largest) eigenvalue quantifies the

importance of this eigenvector.

• Spectral scaling: This notion was introduced by Estrada [78] as a way of charac-

terising unweighted network topologies. One examines how odd subgraph cen-

trality (the subgraph centrality due to just odd-length closed walks) of nodes

scales with their eigenvector centrality. It has been shown that there is a ‘perfect

scaling’ that corresponds to the lack of topological bottlenecks, or to networks

that are both sparsely populated and highly connected [77]; this is given by

[γ1(v)]2 sinh(λ1) ≈ scodd(v) (1.26)

for each node v, where γ1(v) is its eigenvector centrality, λ1 is the largest eigen-

value, and scodd is the odd subgraph centrality. By examining how the actual

γ1(v) values deviate from those predicted by this scaling relationship, one can

place the network into a given topological category. Positive deviations (i.e.,

γ1(v) higher than perfect scaling) correspond to the presence of ‘quasibipartites’,
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groups of nodes partitioned into disjoint subsets, whereas negative deviations

correspond to ‘quasicliques’ or densely connected subgroups (i.e., communi-

ties) [78].

• Laplacian: The Laplacian matrix L of a graph is given by L = D−A, where A

is the adjacency matrix, and D is a diagonal matrix with node degrees along the

diagonal, i.e., Dij = degree(vi) if i = j and Dij = 0 otherwise (vi denotes the ith

node). The spectrum of this matrix can be used to compute several interesting

graph properties; for instance, the second smallest eigenvalue gives the algebraic

connectivity, a measure of how well connected the graph is (it is equal to 0 if the

graph is not connected). The smallest non-zero eigenvalue is called the spectral

gap or the Fiedler value, which is also a measure of connectivity (it is equal

to the algebraic connectivity for connected graphs); it determines the rate of

convergence of a random walker6 on the network.

1.1.4.8 Community-based

• Partition entropy: This is the entropy of the community size distribution of a

network partition into communities [203]. If one has a partition P with com-

munities C1, C2, · · · , CN , and |Ci| denotes the number of nodes in community

i, then the entropy of this partition is given by

entropy(P) = −
N∑
i=1

|Ci|
n

log
|Ci|
n
. (1.27)

• Functional cartography: Guimerà and Amaral [114] devised a way of assigning

functional roles to nodes in a network, given a partition into communities. Their

classification of nodes used two diagnostics:

6A random walk on a graph is a stochastic process which starts at a particular node and then at
each step jumps to a uniformly randomly chosen neighbour of the current node. It is said to have
converged when the probability distribution of the walker over the graph’s nodes becomes stable.
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1. The within-community degree gives the number of connections a node has

within its own community. It is normalised to a z-score, which for the ith

node is given by the formula

zi =
κi − κ̄si
σκsi

, (1.28)

where si denotes the community label of node i, κi is the number of links

of node i to other nodes in the same community si, the quantity κ̄si is

the mean of κi over all nodes in community si, and σκsi is the standard

deviation of κi in community si.

2. The participation coefficient of node i measures how its links are dis-

tributed amongst different communities. It is defined as

Pi = 1−
N∑
s=1

(
κis
ki

)2

, (1.29)

where N is the number of communities, κis is the number of links of node

i to nodes in community s, and ki is the total degree of node i. The

participation coefficient approaches 1 if the links of node i are uniformly

distributed amongst all communities (including its own) and is 0 if they

are all within its own community.

Based on these quantities, the Guimerà-Amaral role classification first distin-

guishes between ‘community hubs’ and ‘non-hubs’; the former are defined as

those nodes with within-community degree z ≥ 2.5. 7 In this context, the term

‘hub’ is applied to nodes with high within-community degree, so ‘non-hubs’

might have high total degree. One can further partition both ‘community hubs’

and ‘non-hubs’ on the basis of the participation coefficient P as follows [114]:

7The precise thresholds used by them are arbitrary, but provide a means of obtaining some
indication of how nodes are distributed across different roles.
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1. Non-hubs can be divided into ‘ultra-peripheral nodes’ (P ≤ 0.05—virtually

all links within their own community), ‘peripheral nodes’ (0.05 < P ≤

0.62—most links within their own community), ‘non-hub connector nodes’

(0.62 < P ≤ 0.80—links to many other communities), and ‘non-hub kinless

nodes’ (P > 0.80—links distributed roughly homogeneously amongst all

communities).

2. Community hubs can be divided into ‘provincial hubs’ (P ≤ 0.30—vast

majority of links within own community), ‘connector hubs’ (0.30 < P ≤

0.75—many links to most other communities), and ‘kinless hubs’ (P >

0.75—links distributed roughly homogeneously amongst all communities).

• Mesoscopic response functions: These were defined by Onnela et al. [203] as a

way of capturing a network’s middle-level (community) structure across a range

of resolutions. They use the Potts method (Section 1.1.3.2) to find communities,

varying the resolution parameter γ such that it ranges from the whole network

being in a single community to every node being in a separate community.

Across this range of resolutions, they track three different properties of the

network partition: the number of communities, the partition entropy, and the

partition quality, as given by H in Equation (1.2). In this thesis, we will use

this approach with community detection methods other than the Potts method

as well. H cannot be defined in the same way for those, since the resolution

parameter γ is specific to the Potts method; so here we will track only the

number of communities and the partition entropy. We will also compute the

first- and second- derivatives of these quantities (with respect to the resolution

parameter) using finite-difference approximations (see Appendix A for details).
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1.1.4.9 Network energy and entropy

In the statistical physics literature, networks have been studied with respect to various

ensembles, such as that of all networks with a given degree distribution. Using such

an ensemble, Bianconi [42] defined the energy of a given network as the logarithm

of the number of indistinguishable networks that can be constructed with the same

degree distribution. The expression for computing the energy (denoted E) is:

E = log

(∏
k

k!nk

)
, (1.30)

where nk denotes the number of nodes with degree k. Network entropy with respect

to the given ensemble may be defined as the logarithm of the number of ways the total

number of links in the network (denoted by m) can be distributed into any degree

sequence corresponding to the given distribution, with the nodes being regarded as

unlabeled [42]. This entropy (denoted S) is computed as follows:

S = log

(
(2m)!∏
k(knk)!

)
. (1.31)

We will discuss more general notions of network ensembles and entropy in Chapter 4.

1.1.4.10 Sampling

For many large networks, some of the diagnostics discussed are difficult to evaluate

due to computational (time or memory) constraints. To attempt to partly address this

issue, in this thesis we also compute several of the diagnostics on network subsamples.

In particular, we will use two sampling methods: snowball sampling [110], a well-

known method for obtaining network samples, and forest fire sampling [163], which

can be thought of as a generalisation of snowball sampling.
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Snowball sampling involves starting the sample from a random node, adding all of

its neighbours to the sample, then adding all of their neighbours, and so on until a

desired size has been reached. We use samples of 50 or 100 nodes, as these are sizes

for which all our diagnostics can generally be computed quickly and easily.

Forest fire sampling adds a further stochastic element to snowball sampling, by

randomly including at each step some fraction of the neighbours of the current nodes,

as opposed to all of them. This model includes an additional parameter p ∈ [0, 1],

known as the forward burning probability. Starting the ‘fire’ from a random node v,

one first generates a random number x that is geometrically distributed with mean

p/(1−p). Then x of the neighbours of v (or all of them, if there are fewer than x) are

added to the sample (‘burnt’). This process is then repeated recursively for all the

newly added nodes, with only unburnt nodes being considered for addition at each

step, until a desired sample size has been reached. If the fire ‘dies out’ before sufficient

nodes have been sampled, then it is re-started at a new randomly chosen node. Note

that setting p = 1 is equivalent to snowball sampling. At the other extreme, p = 0

corresponds to sampling the nodes uniformly at random, as each fire will die out at

the very node it starts at.

We will make use of sampling in two ways. Firstly, whilst attempting to compute

our full set of network diagnostics for large real-world networks (in Chapter 3), we

will also compute ‘sampled versions’ of many of these diagnostics, i.e., we will take

a single snowball sample of 100 nodes from the network and compute the diagnostic

on that. We note that there is no presumption that these subsamples will in any way

preserve the structural characteristics of the entire network; indeed it has been shown

that this is not true for at least some, and perhaps most, types of networks [252].

However the sampled versions of the diagnostics are just added on in an experimental

fashion to our list of several hundred network properties, and since they do not turn

out to be of interest for the case studies we present, we choose not to examine them
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in detail (see the discussion in Section 3.2).

Secondly, in Chapter 5 we will attempt to fit evolutionary models to protein

interaction networks. We will do this by comparing ensembles of subsamples from the

real networks and model-generated networks, in order to be able to feasibly compute

the various network diagnostics used. In this case, we will look at the effect of

different sample sizes (50 versus 100 nodes) and the two different sampling procedures

described, to obtain an indication of the extent to which our results are robust to

changes in these choices.

1.1.5 Types of real-world networks

One of our goals in this work is to examine relationships between different sorts of

networks, and highlight both commonalities as well as structural aspects that typify

particular classes of networks. We thus sought to obtain from various sources8 a

fairly diverse set of real-world network data sets (more details in Section 3.2). The

various kinds of networks we study can be broadly classed into two types: interaction

networks and similarity or correlation networks.

• Interaction networks: These capture interactions and information flows between

the elements of a real-world system. Examples of such networks we look at in-

clude social networks of various kinds (including Facebook data), biological net-

works such as protein interaction and metabolic pathways, neuronal networks,

and networks of fungal growth. In most cases, the networks we study in this

category are treated as undirected and unweighted.

• Similarity: These networks represent similarities or correlations between dif-

ferent components of a system. Examples include networks of political co-

sponsorship amongst members of the US Congress, networks of stock price

8In particular, the major data set we use for comparing different types of real-world networks
was obtained from Dan Fenn [203].
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correlations in financial markets, and networks of co-expression of genes in a

biological cell. Such networks are usually treated as undirected (including all of

those used here) and weighted, with weights (representing magnitudes of corre-

lation/similarity) typically in the range [0, 1]. They also tend to be nearly fully

connected (i.e., almost every pair of nodes is linked), as it is rare for any two

entities to be entirely uncorrelated.

1.1.6 Generative models for networks

In addition to studying properties of real-world networks, we also generate synthetic

networks using multiple sorts of models, which take as inputs some parameter settings

and output a randomly generated network (these are known as generative models).

We use these in two ways: Firstly, by comparing synthetic and real-world networks

one can hypothesise possible mechanisms for the emergence of certain kinds of empir-

ically observed network structures (see Chapter 5). Secondly, synthetic networks can

provide a controlled benchmark where one can constrain certain aspects of network

structure and then examine the variations in, or relations between, other aspects (see

Sections 3.4, 4.5, and 5.5.1). Here we describe briefly the different sorts of network

models used in this thesis.

1.1.6.1 Erdős-Rényi

The most widely used models for generating random graphs are the Erdős-Rényi

model, also known as the G(n, p) model [106], and its closely related counterpart the

G(n,m) model [76]. The latter randomly generates a graph with n nodes and m links;

all possible such graphs have equal probability of being generated. The G(n, p) model

generates a graph with n nodes where each possible link is independently present with

probability p. The expected number of links is then p
(
n
2

)
; if one uses this value for

m, then in the limit as n→∞ the two models become equivalent.
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1.1.6.2 Random geometric graphs

The model of random geometric graphs [208] has been proposed as a means of gener-

ating spatially-embedded random graphs. It has two parameters: n, the number of

nodes, and r, a distance threshold. A bounded geometric region is defined, typically

the unit square, and n points are placed in it, independently uniformly at random.

Subsequently, only pairs of points that are separated by a distance less than the

threshold r are joined by (undirected, unweighted) links to obtain the graph struc-

ture.

1.1.6.3 Preferential attachment and ‘scale-free’ structure

It has been proposed that several real-world network growth processes proceed ac-

cording to some form of (linear) preferential attachment, whereby the probability of

a node acquiring new links is proportional to the number of links it already has (i.e.,

its current degree) [28,70,243,282]. This results in the node degrees being distributed

according to a power law, such that the probability of a node having degree k is given

by p(k) ∝ k−γ for some exponent γ (which is determined by the precise preferential

attachment mechanism chosen; for the widely-used Barabási-Albert version, by de-

fault γ = 3 [28]). It has been claimed that several real-world data sets show such a

distribution (the corresponding networks have often been referred to as ‘scale-free’);

however these claims have often not stood up to scrutiny. For instance, Clauset et

al. [62] used a principled statistical framework to show that a number of data sets

claimed to follow power-law distributions were in fact better explained by other dis-

tributions such as the log-normal. Recently, Stumpf and Porter [251] have also argued

against the claimed ubiquity and scientific utility of power laws.

In practice, variants of the configuration model [36,241] are often used to generate

random networks that have a fixed (expected) degree distribution, such as a power

law. Roughly, this approach proceeds by assigning to each node a number of ‘stubs’
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or half-links, with the number being drawn from the specified distribution and the

constraint that the total number of stubs should be even. The stubs are then paired

up randomly to form links between nodes.

1.1.6.4 Watts-Strogatz networks

Stanley Milgram’s experiments [184,264] established the idea that human social net-

works might be characterised by having a surprisingly small diameter: this resulted

in the famous phrase ‘six degrees of separation’. The term small-world networks

was coined to refer to such structures, denoting the existence of a relatively short

path between any pair of nodes, compared to the total number of nodes. More pre-

cisely, a small-world network family is defined as one where the typical distance d

between a randomly chosen pair of nodes scales as the logarithm of the number of

nodes: d ∝ log n. Watts and Strogatz [273] proposed a widely-used mechanism for

generating such small-world families, which starts with nodes arranged on a circular

lattice, where each node is linked to its k nearest neighbours (k/2 on either side).

They showed that by then randomly rewiring a relatively small fraction of the links

(i.e., detaching them from one endpoint and re-attaching to a random node in the

network), networks with the small-world property were obtained. This model has

three parameters: the number of nodes n, the mean degree k, and the probability

with which any given link will be rewired p.

1.1.6.5 Community detection benchmark networks

These are networks that have a relatively clear-cut community structure, i.e. they

contain densely connected subnetworks. One way of generating such networks is to use

a block model, which involves dividing nodes into groups (or blocks) such that there

are distinct link-formation probabilities for within-group and between-group links.

This sort of approach is used by Lancichinetti et al. [159] to generate benchmark sets
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of networks for testing community detection algorithms. Their model assumes that

both node degrees (denoted by k) and community sizes (denoted by nc) follow power-

law distributions: p(k) ∝ k−γ and p(nc) ∝ n−βc . The exponents γ and β are model

parameters. The model proceeds by assigning degrees to n nodes from the degree

distribution, fixing the minimum and maximum degrees such that the mean degree

is 〈k〉 (another parameter). The nodes are connected similarly to the configuration

model, and placed into communities such that a fraction 1 − µ of links are within

communities and a fraction µ (the mixing parameter) are between communities.

1.1.6.6 Exponential random graph models

These have been used largely in the study of social networks, as a way of generating

random networks with certain structural features (typically to match those of some

empirical network) [94, 223]. The idea behind exponential random graph models

(ERGMs) is to define the maximum entropy probability distribution over networks

that satisfy desired constraints. This distribution is of the following form:

P (A) =
1

κ
exp

{
−

l∑
i=1

βisi(A)

}
, (1.32)

where P (A) is the probability of generating network A, κ is a normalising constant,

there are l network statistics to be constrained (those specified by the si functions),

and the βi values give the corresponding weights, which are the model parameters

(to be fitted to maximise the probability of observing a given network or set of

networks). The simplest possible kind of model is given by choosing just one network

statistic to constrain; this is typically the density of links; in this case, it becomes

equivalent to the G(n, p) model. In practice, these models have proven difficult to

use for even remotely large networks (e.g., those with more than a couple of thousand

nodes), especially when constraining less simple structural features like motif counts,
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in particular because of the computational cost of evaluating the constant κ [111,260].

1.1.6.7 Duplication-divergence for gene/protein evolution

In the domain of subcellular biological networks, gene duplication and subsequent

functional divergence has been proposed as one of the underlying evolutionary mech-

anisms [113, 201, 257, 284]. It is believed that new genes are often formed by du-

plication of existing ones and that such duplicates subsequently can take on novel

functionality by rewiring their interactions. Statistical network growth models based

on this idea have been formulated—particularly for protein-protein interaction net-

works [218, 219]— and we will make use of some of these in this thesis (see Sections

3.3.1 and 5.5).

1.2 Interactomics

One of the specific focus areas of this thesis is the study of networks of protein-

protein interactions (also known as the interactome). Indeed, we begin in Chapter 2

with an examination of the possible biological roles played by hubs in these networks.

Subsequently, our observations of certain shortcomings in the ways these networks

have been previously studied motivates the development of a more general approach

to the study of networks of various kinds, which is what we outline in Chapter 3. Then

in Chapter 5 we return to looking at how our approach might assist in providing

insights into the mechanisms of the interactome evolution. In this subsection we

provide an introduction to proteins, their relevance in biology, and in particular to

protein-protein interaction networks and why they are worth studying.
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1.2.1 Proteins in biology

Proteins are one of the fundamental building blocks of living organisms, and are the

major components of the machinery inside cells. In general, basic biological functions

and processes at the subcellular level are carried out by groups of proteins acting in

concert. This is why an understanding of how they work and interact with each other

is so important.

Proteins consist of chains of amino acids (also known as polypeptides). The recipes

for constructing proteins are contained in our genes, encoded in a language with a

four-letter alphabet: A,C,G,T, corresponding to Adenine, Cytosine, Guanine, and

Thymine, the four different nucleotides comprising DNA. Thus, one can think of a

gene as a string that uses this alphabet. The flow of information from genes to proteins

involves two steps: transcription and translation. (This is sometimes referred to as the

‘central dogma’ of molecular biology.) Transcription is essentially a copying process:

the nucleotide sequence of the gene is copied to an RNA string, known as messenger

RNA (mRNA). RNA also uses four nucleotides, though Thymine is replaced by Uracil.

The mRNA, carrying the genetic sequence, is then transported to a ribosome, one of

the protein-manufacturing factories of the cell. The second step of translation occurs

here; this involves going from the four-letter alphabet of RNA to the twenty-letter

alphabet of amino acids. This happens via the genetic code, which specifies a mapping

from three-letter RNA strings (known as codons) to amino acids. The ribosome reads

in the mRNA sequence and manufactures the corresponding amino acid chain; this

chain then folds into a three-dimensional structure to form a protein.

Different cells have different requirements for proteins, and these also vary over

time for any given cell. Thus, whilst every cell contains the entire genome (the

complete recipe book for all proteins), it is critical to manufacture only the necessary

proteins and to do so in appropriate quantities. The number of copies of a given

protein present in a cell is known as its expression level; whilst this is controlled at
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multiple stages, a key step is via regulating the number of copies of mRNA produced

from the corresponding gene (generally known as the gene’s expression level). Hence,

it is easy to see why there is so much interest in studying gene expression across

different types of cells and for different physiological conditions [75,100,142,236,253];

such expression levels are typically measured using the technology of microarrays. A

microarray consists of a number of microscopic DNA/RNA spots, each one containing

a small quantity of a given nucleic acid sequence (known as a probe), which can

bind to its complementary sequence (the target); such binding is typically detected

and quantified via labelling with fluorophores, chemicals which re-emit light upon

excitation. The amount of fluorescence detected from a given spot serves as a measure

of the relative expression level of the corresponding gene sequence.

Proteins have a wide range of functions, including metabolism, transport, sig-

nalling, etc.; they are also involved in the transcription and translation processes

themselves, which are carried out by protein complexes. The cellular circuitry essen-

tially consists of proteins and their interactions. Some proteins form large complexes

with a specific function; for instance, the ribosomes comprise over 50 different pro-

teins [21]. Other proteins such as kinases are part of sequential signalling cascades,

which can serve to trigger events such as cell division. Mapping this circuitry is an

important step in understanding not only how cells work but also the roles of differ-

ent proteins within them [29]. It is also one stage in the broader biological project

of understanding life at its many different scales of organisation. One can think of

organisms as comprising complex interacting systems at several levels: organ systems,

organs, tissues, cells, etc. Each level builds on the one below, and cells can be seen

as the most fundamental biological building blocks, the lowest level at which we see

a degree of autonomous ‘life’. Understanding subcellular networks of control thus

appears to be particularly important to unravelling life’s mysteries.
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1.2.2 Data sources

1.2.2.1 Protein-protein interaction data

Several experimental methods can be used to gather protein interaction data. These

include high-throughput yeast two-hybrid (Y2H) screening [97, 98, 133, 265]; affinity

purification of tagged proteins followed by mass spectrometry (AP/MS) to identify

associated proteins [102,127]; curation of individual protein complexes reported in the

literature [181]; and in silico predictions based on multiple kinds of gene data [270]. A

more recent technique, known as the protein-fragment complementation assay [254],

is even able to detect protein-protein interactions in their natural environment within

the cell. However, to our knowledge only one large-scale study has used this technique

thus far [254]. Each of these methods gives an incomplete picture of the interactome;

for instance, a recent aggregation of high-quality Y2H data sets for Saccharomyces

cerevisiae (yeast; the best-studied organism) was estimated to represent only about

20% of the whole yeast binary protein interaction network [280].

Each technique also suffers from particular biases. It has been suggested that Y2H

is likely to report binary interactions more accurately, and (due to the multiple wash-

ing steps involved in affinity purification) it is also expected to be better at detecting

weak or transient interactions [280]. Converting protein complex data into interaction

data is an issue with AP/MS. This method entails using a ‘bait’ protein to ‘capture’

other proteins that subsequently bind to it to form complexes. Once one has obtained

these complexes and identified their proteins using mass spectrometry, one generally

assigns protein-protein interactions using either the spoke or the matrix model [120].

The spoke model only counts interactions between the bait and each of the proteins

captured by it, whereas the matrix model counts all possible pairwise interactions in

the complex. Unsurprisingly, the actual topology of the complex is generally differ-

ent from either of these representations. As opposed to Y2H, AP/MS is expected
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to be more reliable at finding permanent associations. Two-hybrid approaches also

do not seem to be particularly suitable for characterising protein complexes, giving

rise to the view that formation of complexes is not merely a summation of binary

interactions [102]. Thus, the two major techniques appear to be disjoint and to cover

different aspects of the interactome, and there is some evidence to suggest that the

differences between data sets from these sources correspond largely to false negatives

rather than false positives [280].

1.2.2.2 Gene expression data

Gene expression is generally measured at the transcript level—i.e., in terms of the

number of mRNA copies produced from a given gene. DNA microarrays are a high-

throughput technology that allow the measurement of the expression of thousands

of genes simultaneously [21]. A large number of such expression profiles have been

produced, which allow one to track how levels vary across a range of conditions or

over time—for instance, when the yeast cell is subject to various sorts of stresses such

as temperature shocks or chemical exposure [100] or as it goes through the different

stages of the cell cycle [247]. Such data is generally recorded in the form of log

ratios—i.e., the logarithm of the ratio of the expression level in a given condition to

the expression level in some background condition. However, because different genes

display different levels of variability in expression and there is also variation across

experiments, there is a need to normalise microarray data to make it comparable

across genes and conditions. There are multiple ways of doing this and no consensus

on which one works best [167]. Two widely used methods that were applied to

expression data used in Chapter 2 are the Affymetrix MAS5 algorithm [129] and the

GCRMA algorithm [276].

As noted earlier, transcription to mRNA is only the first step of protein expres-

sion; subsequently there are also mechanisms of regulation at the post-transcriptional
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level—e.g., RNA silencing carried out by microRNA [30,31], which can alter the num-

ber of mRNA copies that actually get translated by the ribosomes. Thus, even though

mRNA levels have been widely used as proxies for protein expression (due to the diffi-

culty of quantifying protein levels themselves on a large scale), there is not necessarily

a strong correlation between the two. In fact, one recent study has suggested that

the link might be very weak [91], indicating the need for a great deal of caution in

interpreting the results of protein co-expression analyses based on microarray data

(e.g., Han et al. [121], as discussed in Chapter 2).

1.2.2.3 The Gene Ontology

In order to obtain information on the functions of proteins, we use annotations from

the Gene Ontology [25]. This provides a controlled and hierarchically structured

vocabulary of terms that describe functionality of genes and gene products at different

levels of specificity. These terms are linked into a tree structure, where each term has

a parent that represents a supercategory of it. Within the ontology, there are three

subontologies, which represent different sorts of annotations: Biological Process,

Cellular Component, and Molecular Function. For each subontology, the top-level

term or root of the corresponding tree is the name of the subontology itself, which

serves as a catch-all description. As one goes further down the tree, the terms become

more specific; for instance, in the Biological Process tree, a high-level term (a direct

child of the root) is biological regulation; a lot of genes/proteins can be annotated

with something this generic. An example of a lower-level term is regulation of

carbohydrate utilisation; this is two levels down from (i.e., a ‘grandchild’ of)

biological regulation, and only 5 genes or proteins are annotated with it.9 The

functional similarity of two proteins can be assessed based on the overlap in their

annotations; we discuss how to do this in Chapter 2.

9http://www.geneontology.org/, accessed 20-11-2011
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1.2.3 Protein interaction networks

With increasing availability of data on protein-protein interactions [97, 102, 133,

229, 254, 265, 280], there has recently been a focus on studying these networks and

attempting to relate their structure to their functionality, for instance by study-

ing how network topology might serve to identify the roles of particular pro-

teins [141, 176, 187, 240, 278] or examining the nature of modules in the interac-

tome [101, 222, 248]. It has been reported that these networks generally show sub-

stantial community structure, with many communities being much more functionally

homogeneous than might be expected by chance [13,58,74,165,171]. Thus the organi-

sation of the interactome appears to be partly modular, with modules often seemingly

corresponding to protein complexes. It has also been noted that interactome hubs

tend to include essential proteins (i.e., those critical to the organism’s survival under

standard lab conditions) [136,266,286], although there is not a clear correspondence

between high degree and essentiality; it has been suggested that many hubs might be

important only locally (i.e., within their own modules) [119,121,176].

An issue that has perhaps received insufficient consideration is that protein in-

teraction networks, as constructed from data obtained via the standard techniques

(see Section 2.2.1), are unable to capture the dependence upon prevailing physio-

logical conditions of the actual interactions occurring in vivo. For instance, actively

expressed proteins vary amongst the tissues in an organism and also change over

time. Thus, the specific parts of the interactome that are active, as well as their

organisational form, might depend a great deal on where and when one examines the

network [121,125,256,275]. One way to attempt to incorporate such information is to

use gene expression data. Han et al. [121] examined the extent to which hubs (defined

by them as proteins with degree at least 5) in the yeast interactome are co-expressed

with their interaction partners. They did this by defining a quantity referred to as the

averaged Pearson correlation coefficient (avPCC). Suppose the expression profile of
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protein a is denoted by the vector [x1
a, x

2
a, ..., x

T
a ], where the values are dimensionless

log ratios (see Section 1.2.2.2), and T denotes the number of different conditions or

time points for which measurements have been made; let the mean of the values in

this vector be denoted by x̄a. Let this protein have degree k, i.e., it has k interaction

partners which we denote a1, a2, ..., ak; let xtai denote the expression level of the ith

partner at time point t, and x̄ai the average expression level of the partner across all

time points. Then the avPCC can be computed as follows:

avPCC(a) =
1

k

k∑
i=1

∑T
t=1(xta − x̄a)(xtai − x̄ai)√∑T

t=1(xta − x̄a)2

√∑T
t=1(xtai − x̄ai)2

. (1.33)

Based on the observed avPCC distributions, Han et al. concluded that hubs fall

into two distinct classes: those with a low avPCC (which they called date hubs) and

those with a high avPCC (so-called party hubs; see Figure 1.2). They inferred that

these two types of hubs play different roles in the modular organisation of the yeast

protein interaction network: Party hubs were construed to coordinate single functions

performed by a group of proteins that are all expressed at the same time, whereas date

hubs were described as higher-level connectors between groups that perform varying

functions and are active at different times or under different conditions.

The validity of such a date/party hub distinction has since been debated in a

sequence of papers [33,34,41,275], and there appears to be no consensus on the issue.

Despite the controversy, essentially the same idea was also posited for human protein

interaction data, with the names intermodular and intramodular hubs being used in

place of date and party hubs [256]; despite the terminology, these too were defined

purely in terms of partner co-expression, without taking topological properties into

account. Extensions of the idea, such as a three-way categorisation also including

family hubs (i.e., hubs that show little variation in their expression across conditions

and invariably interact with their partners), have also been proposed [153]. In Chapter
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Figure 1.2: Date and party hubs.

Different nodes represent proteins that are expressed under different conditions
(time and/or space). Here nodes 7 and 20 would be described by Han et al. [121] as
party hubs, as they are expressed under the same conditions as their interaction
partners. Node 25 would be described as a date hub, because its interaction
partners are not all co-expressed but show up under a variety of different conditions.
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2, we will focus on revisiting this categorisation and discuss it at length.

It should also be noted that interactome data is widely believed to be highly noisy.

Several papers have discussed concerns about the completeness and reliability (or lack

thereof) of existing protein interaction data sets and their implications for how much

biological understanding these networks can really provide [26,27,53,119,234,237,267].

We will look at this issue in Chapter 2 as well; in particular, we seek to examine how

much any conclusions about the existence of date and party hubs might be weakened

by data uncertainty.

1.3 Machine learning

Machine learning [47] is concerned with algorithmically finding patterns and relation-

ships in data, and using these to perform tasks such as classification and prediction

in various domains. In this thesis, we are interested in using machine learning tech-

niques to categorise different sorts of networks and to find relationships between

network structure and function (see Chapters 3–5). We now introduce some rele-

vant terminology and provide an overview of the different sorts of machine learning

approaches employed by us.

1.3.1 Basics

• Feature vector: A typical setting for machine learning is to be given a collection

of objects (or data points), each of which is characterised by several different

features. Features can be of different sorts: e.g., they might be continuous (say,

real- or integer-valued) or categorical (for instance, a feature for colour can

have values like green,blue,red). We will be concerned only with continuous

features, in particular, features of network structure. These features correspond

to the outputs of the various sorts of diagnostics listed in Section 1.1.4 (and
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Table 1.1: Example design matrix.
Object Weight (g) Colour (0=Green, 1=Red)

Red Apple 1 147 0.90
Red Apple 2 159 0.70
Red Apple 3 170 0.77

Green Apple 1 163 0.17
Green Apple 2 151 0.13

Banana 1 104 0.10
Banana 2 119 0.15
Banana 3 113 0.34
Banana 4 122 0.23
Banana 5 125 0.30

Design matrix for 10 objects and 2 numerical features. The colour spectrum from
green to red is mapped to a 0–1 scale (see also Figure 1.3).

additional ones in Appendix A). A vector containing all of the feature values

for a given data point is called the feature vector; if this is a vector of length

d, then one can think of each data point as being mapped to a d-dimensional

vector space (in the case of real-valued features, this is Rd), called the feature

space.

• Design matrix: A collection of feature vectors for different data points consti-

tutes a design matrix. Each row of the matrix is one data point (i.e., one feature

vector), and each column represents the values of a given feature across all of

the data points (Table 1.1). The design matrix is the basic data object on which

machine learning algorithms operate.

1.3.2 Supervised learning

The task of supervised learning is to learn an association between features and exter-

nal labels of some kind. A label is typically either one of a finite set of categories (in

which case it becomes a classification problem), or continuous-valued (in which case
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one has a regression problem). We discuss both of these settings next.

1.3.2.1 Classification

Given a set of objects represented as feature vectors and an associated class label for

each object, one would like to learn a model (known as a classifier) that can predict

the class given the features. The model itself can take on many different forms:

linear classifiers, decision trees, neural networks, and support vector machines are a

few popular examples [47]. Here we will briefly discuss the first two, as they will be

useful later.

A linear classifier uses some linear combination of the features as its criterion for

distinguishing between classes [47, 124]. This corresponds to drawing a separating

hyperplane in the feature space; in two dimensions, this is a line, as in Figure 1.3(a).

Thus, linear classifiers by default are defined for binary classification problems—i.e.,

those in which there are only two classes. When there are more than two classes, it

is typical to use multiple linear classifiers; two possible approaches are all-vs-all, in

which a binary classifier is learnt for every pair of classes, and one-vs-all, in which a

binary classifier is learnt to discriminate each class from the combination of all of the

other classes.

Decision trees consist of a set of rules based on feature values [54]; they are

arranged in the form of a binary tree, as in Figure 1.3(b). Following these rules down

the tree specifies increasingly restricted regions of feature space until at some point

a leaf node is reached and all points in the corresponding region get assigned to a

single class.

Having chosen a particular form of model, one then needs to use the data to

learn a specific classifier—typically one that optimises some performance measure.

An obvious choice for this measure might be what fraction of the given data points

the classifier is able to place in the correct class (known as classification accuracy).
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(a)

(b)

Figure 1.3: Example classifiers.

(a) Data points from Table 1.1 in feature space (colour represented both visually
and numerically on the y-axis): one can split them into two classes, bananas
(circles) and apples (squares). The black line is a linear classifier separating the
data. The apples can be further split into red and green varieties; the dashed lines
show the partitions imposed by a decision-tree classifier for the three-class problem.
(b) The decision tree. 44



However, this suffers from the problem of overfitting, in that one would like to use

the classifier to make predictions on novel data points, and the data set at hand

will in general not be representative of the full underlying distribution of points in

feature space [47, 124]. Thus, the learnt classifier might tend to fit peculiarities of

the data set, thereby worsening its performance on unseen examples. In order to

avoid this, it is usual to evaluate a classifier not on the data set used to learn it

(called the training set), but rather on a separate set (the test set); this is known as

out-of-sample evaluation [47, 124]. Some fraction of the available data (10% or 20%

are typical choices) would be designated as the test set and would not be used to

train the classifier (but instead to evaluate it). One popular variant of this approach,

which allows the use of all data for training, is known as cross-validation [189]. In

this approach, the data is split into k equal parts, known as folds (a common choice is

k = 10, in which case it is called 10-fold cross-validation).10 Subsequently, k different

classifiers are trained—each time with one of the k parts used as the test set and the

rest used as the training set. Thus, the combined test results of these k classifiers

allow one to estimate out-of-sample accuracy on the entire data set. This can then be

used as a criterion for classifier choice—for instance, via setting model parameters.

1.3.2.2 Regression

When the dependent variable—i.e., the one we would like to predict, given the features

we have for the data points—is not a categorical class label but instead a continuous

(typically real-valued) quantity, then learning a predictive model for this can be seen

as a regression problem. One is required to find a function f that maps from a feature

vector x to an output y: ideally, y = f(x). The simplest form is linear regression,

10Larger values of k lead to more robust error estimates, as a larger number of classifiers are
averaged over and each classifier is trained on a larger number of data points. Thus in this sense the
optimal value for k is equal to the size of the data set, which corresponds to having just one point
in the test set each time; this is known as leave-one-out cross-validation. However, larger values of
k also mean greater computational cost in re-running the training algorithm for each fold; thus in
practice relatively small values of k are preferred, with k = 5 or k = 10 being widely used choices.
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analogous to linear classification, in which f is a linear combination of the features

(plus a possible constant term or offset): f(x) = w.x + b [47,124]. Here w is a weight

vector that represents the coefficients of the different features in f . Thus, w and b

are the parameters in a linear regression model that are to be learnt from the data.

The concepts of training, testing, and cross-validation can be extended to regres-

sion once one has defined an appropriate accuracy measure. Suppose one is given a

data set (x1, y1), (x2, y2), ..., (xr, yr), where r is the number of data points. We use

this to learn a regression function f , such that ŷi = f(xi). Thus, ŷi would be the

predicted value of the dependent variable for the ith data point. The difference yi− ŷi
is known as the residual for the ith point; this is a measure of the error the learnt

function makes in predicting for this instance. In general, lower residuals correspond

to higher accuracy; the most common way of evaluating accuracy over a set of points

is to take the sum of the squares of the residuals:
∑r

i=1(yi − ŷi)2. This is sometimes

known as the deviance [175] or the squared error [47, 124].

1.3.3 Unsupervised learning

The task of unsupervised learning is to find patterns in data without any external

labelling; most commonly, the patterns of interest are clusters, in which case it is also

described as clustering. Community detection (Section 1.1.3) is a specific example

of clustering in the context of networks. There are a large number of approaches for

unsupervised learning [47, 124]; we will now discuss a few that we use in subsequent

chapters.

Single-linkage clustering is a distance-based method that involves initially defining

a distance measure between pairs of points [242]. If the points lie in a vector space, as

in Figure 1.3(a), then this can be a standard measure like Euclidean distance. Having

computed the distance between every pair of points, this method then proceeds by

initially assigning each point to a separate cluster, and then iteratively finding and
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merging the closest pair of clusters until all of the points have been lumped into a

single cluster. The distance between a pair of clusters is defined as the minimum

of all pairwise distances between points across the two clusters.11 This leads to a

hierarchical clustering: at each iteration of the process, one moves up the hierarchy

(or decreases the resolution, as in community detection). One can use a threshold

to specify the minimum distance between clusters to terminate the iteration at a

particular point and obtain a single set of clusters.

In order to detect patterns in data, it is often useful to map it to a low-dimensional

space, where the number of dimensions is typically chosen to be as low as possible

whilst capturing the bulk of the variability in the given data set. The canonical way

of doing this is via principal component analysis (PCA) [207]. The essential idea is

to find directions in feature space along which the spread of the data is the greatest;

each direction is given by some linear combination of the features. This can be done

via singular value decomposition (SVD), which is, for non-square matrices, the analog

of eigendecomposition [47, 214]. Suppose we denote the r × d design matrix by X.

According to the SVD theorem, this can then be factorised as X = V ΣW T , where V

is an r× r orthogonal matrix of eigenvectors of XXT , W is a d×d orthogonal matrix

of eigenvectors of XTX, and Σ is an r × d matrix with nonnegative numbers along

the diagonal (with all other entries equal to 0). The PCA transformation is given by

Y = XW ; the matrix Y is also an r × d matrix; it represents the design matrix in

the transformed feature space (the features of which are the principal components).

These features will be in decreasing order of the amount of data variance they capture.

11Other common choices for this distance measure include the average of all pairwise distances,
which leads to average-linkage clustering, and the maximum of all pairwise distances, which leads to
complete-linkage clustering. One drawback of using single-linkage clustering is that it may lead to
clusters where some elements are very far apart, as clusters are merged based only on the distance
between the closest elements. More generally, this sort of agglomerative clustering is a standard,
simple method but the results may not always be easy to interpret, as it gives a hierarchy of clusters
at different levels, rather than a single partition. However, we will use it here just to obtain a
meaningful ordering of data points for visualisation purposes, rather than attempting an actual
partitioning.
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In order to obtain a reduced representation (say, in l-dimensional space), one can take

the first l columns of W . If we denote this by Wl, then the design matrix in the l

dimensions is given by Yl = XWl. In practice, it is often useful to choose l = 2 in

order to produce a two-dimensional plot of the data; this allows for visual inspection

and can aid in the detection of intuitive clusters or patterns (we make use of this in

Chapter 3). However such dimensionality reduction of course also involves throwing

away information, and one has to be cautious in interpreting the results, particularly

if the reduced dimensions leave a substantial proportion of the variance in the data

uncaptured.

One limitation of PCA is that the reduced dimensions must be linear combinations

of the given features. It can sometimes be useful to select “directions” that are

not straight lines in feature space; for instance, if all of the data points lie along

a circle, then one actually needs only a single dimension to capture the variation

between them, but PCA will not be able to detect this. To account for this, several

methods have been developed in recent years for non-linear dimensionality reduction

[161, 162, 227, 258]; the one we will use is known as Isomap [258]. The idea behind

Isomap is to capture the local geometry of the surface on which the points sit in

feature space. A weighted network using these points as nodes is defined as follows:

each data point is connected to its k nearest Euclidean neighbours in the space with

links of weight equal to the Euclidean distance, with the parameter k to be specified

by the user.12 A distance matrix D between points is then defined by using weighted

distances (see Section 1.1.2) in this network. One obtains the eigendecomposition

of D (which is analogous to XTX above), and the top l eigenvectors (analogous to

Wl) then define the coordinates for an l-dimensional embedding. The amount of data

variability captured in the reduced space can be quantified via the residual variance,

12One would like k to be relatively small, as the objective is to approximate local geometry.
However, if k is too small then it might lead to a sparse or disconnected graph. In our usage we
choose k to be the smallest number which leads to a connected graph containing all the data points
in the set under consideration.
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which can be computed as 1 − R2(D,Dl), where R denotes the linear correlation

coefficient, and Dl is the matrix of pairwise Euclidean distances between points in

the l-dimensional embedding.

1.4 Overview

The work in this thesis begins with an examination of a specific issue concerning the

study of protein interaction networks: the classification of hubs into date and party

types (see Section 1.2.3). In Chapter 2, we re-examine protein interaction data from

multiple angles. In particular, we attempt to obtain a network-based categorisation of

hubs (via their relationship to community structure) into the sorts of roles proposed

for date/party hubs, and we investigate how such categorisations match up to defini-

tions based on gene-expression dynamics. We find a lack of correspondence between

the two definitions, indicating that date and party hubs do not have the network

characteristics that were originally attributed to them. We also try an alternative

link-centric (as opposed to node-centric) approach to thinking about roles in protein

interaction networks, finding that geodesic link betweenness centrality (see Section

1.1.4.2) appears to have a strong negative correlation with the functional similarity

of the proteins being linked. This provides one path to associating network structure

with function, and it is also reminiscent of the weak/strong tie distinction observed

in social networks [112,216], whereby social links between people with relatively low

levels of interaction (‘weak’ links) tend to be the most important for global net-

work connectivity and information flow, given certain assumptions about information

transfer [204].

In general, one purpose of modelling real-world systems—for instance as

networks—is to understand better how their structure relates to their functional-

ity. Whilst people have attempted to address this issue in many different ways across
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many different domains, the example of date and party hubs highlights how appear-

ances of simplistic correlations between the two can be misleading. Networks can be

characterised in many different ways, and a priori it is hard to know what aspects

of network structure are of interest in a specific context. Accordingly, subsequent

to Chapter 2 we expand the scope of this thesis towards an attempt to develop a

more comprehensive approach to the analysis of networks than has traditionally been

adopted. We call this a high-throughput approach, as it involves simultaneously exam-

ining and comparing both a large variety of networks and a large variety of network

diagnostics or features. This also represents a step towards consolidating the many

different strands of existing literature and techniques developed in different disciplines,

thereby potentially helping to establish cross-disciplinary links. The observation that

a phenomenon first observed in social networks can also be relevant to understand-

ing protein interaction networks provides additional motivation for expanding our

horizons in this fashion.

In Chapter 3, we describe our high-throughput methodology. We start with a

large and diverse data set of networks and compute a large number of properties—i.e.,

features—of these networks (thus creating a design matrix). The objective of our work

is to attempt to leverage this data to help improve understanding of the systems and

diagnostics being studied. Due to the scale involved, some automation is necessary to

highlight directions which may be worth pursuing in greater detail. We thus take a

machine learning approach to finding relationships and patterns of interest, motivated

by specific scientific questions. We demonstrate how our approach can be used to

organise and classify networks, as well as to obtain insights into how network structure

relates to functionally relevant characteristics in a variety of settings. These include

finding fast estimators for the solution of hard graph problems (we use Travelling

Salesman as an example) and detecting structural features of metabolic pathway

networks that correlate with biological evolution. With the sort of large-scale data-
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driven approach we employ, caution is certainly necessary in interpreting the results,

as we are dealing with simplified, abstracted representations of real-world systems

where significant detail has been discarded. Thus the results and hypotheses thrown

up should not be seen as definitive in any sense, but rather as pointers to guide more

detailed investigation; pointers which would have been hard to obtain via conventional

small-scale studies (we discuss this further in subsequent chapters).

Chapters 4 and 5 build on the approach of Chapter 3. They are motivated pri-

marily by the broad questions: how can one uncover the structural peculiarities or

constraints that characterise particular types of networks, and how do these arise?

Chapter 4 examines how correlations between different network features arise within

specific network families and what these features might indicate about structural con-

straints that those networks have to satisfy. This is related to the notion of network

entropy, and we explore the connection between the two. The key idea is that con-

straints can be seen as entropy-lowering rules, in the sense that a constraint on what

structures a particular type of network can have reduces the amount of uncertainty

associated with possible observations of that type, because it reduces the size of the

statistical ensemble from which those observations are drawn. In practice, we would

like to be able to use structural constraints to make inferences about the generative

mechanisms responsible for a particular class of networks. In Chapter 5, we examine

this by developing a statistical procedure (making use of our feature vector represen-

tations) that attempts to match mechanisms to ensembles of networks. We focus in

particular on the evolution of protein interaction networks, showing how our method-

ology can provide pointers to possible evolutionary models and also to differences

between species.

Finally, Chapter 6 summarises the outcomes of this research and identifies direc-

tions for improvements and future work.
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Chapter 2

Roles in Protein Interaction

Networks

The bulk of the work presented in this chapter has been published in reference [15].

2.1 Background and motivation

A key challenge in biology is to understand how complex functionality emerges from

systems composed of many relatively simple interacting components. At the cellular

level, proteins are the major building blocks and functional units of life. Protein

interaction networks have been widely studied in recent years (see Section 1.2.3);

one prominent observation has been that hubs, nodes with high degree (see Section

1.1.2.1), appear to play key roles in network organisation, though the precise nature

of these roles has been subject to some controversy. Jeong et al. suggested that

hubs tended to be essential nodes, proteins whose removal would be lethal to the

organism [136]. Han et al. proposed that hubs actually fall into two classes, date and

party, with only the latter being critical for global network connectivity; this claim

has proved controversial [33,34,41,121,256]. It has also been suggested that there may

exist hubs with different numbers of binding interfaces: single- versus multi-interface
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hubs, with this distinction mirroring the date/party one, and putatively being relevant

to understanding the roles of protein-protein interactions in cancer [141, 150]. There

has also been discussion and debate about the nature of the relationship between the

topological properties of hubs and their functional roles [116], the reason why hubs

are essential [286], and what defines a hub in the first place [266].

In particular, we focus on the debate over date and party hubs. Two points of

contention are: (1) Is the distribution of hubs truly bimodal (as opposed to exhibiting

a continual variation without clear-cut groupings) and (2) is the date/party distinction

that was originally observed a general property of the interactome or an artefact of the

data set employed and choices in analysis? Different statistical tests have suggested

seemingly different answers. However, despite (or in some cases due to) this ongoing

debate, the hypothesis has been highly prominent in the literature [116,141,150,153,

187,256,266,277,280,281].

Here (and in Ref. [15]), following up on the work of Batada et al. [33, 34], we re-

visit the initial data and suggest additional problems with the statistical methodology

that was employed in originally proposing date and party hubs [121]. In accordance

with the results of Refs. [33, 34], we find in Section 2.3 that the differing behaviour

observed on the deletion of date and party hubs, which seemed to suggest that date

hubs were more essential to global connectivity, was largely due to a very small num-

ber of key hubs rather than being a generic property of the entire set of date hubs.

More generally, we use a complementary perspective to Batada et al. to define struc-

tural roles for hubs in the context of the modular organisation of protein interaction

networks. Our results indicate that there is little correspondence between average ex-

pression correlation with partners (as measured by avPCC, defined in Section 1.2.3)

and structural roles. In light of this, the more refined categorisation of date, party,

and family hubs [153] (see Section 1.2.3) also appears inappropriate.

A recent study by Taylor et al. [256] argued for the existence of intermodular and
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intramodular hubs—a categorisation essentially identical to date and party hubs—in

the human interactome. We show that their observation of a binary hub classification

is susceptible to changes in the algorithm used to normalise microarray expression

data or in the procedure used to smooth the histogram of the avPCC distribution. The

data does not in fact display any statistically significant deviation from unimodality

as per the DIP test [122, 123], as has already been observed by Batada et al. [33, 34]

for yeast data. We seek to revisit the bimodality question because it was a key part of

the original paper [121], and in particular because it made a reappearance in Taylor et

al. [256] for human data. However, it is possible that a continuum between date and

party hubs (i.e., a relationship between hub expression correlation with partners and

the hub’s topological role) might exist even in the absence of a bimodal distribution,

and this is why we will also attempt to examine the more general question of whether

the network roles of hub proteins really are related to their co-expression properties

with interaction partners.

Several studies in recent years have considered the existence of community struc-

ture in protein-protein interaction networks (see Section 1.2.3) [13, 58, 74, 101, 165,

171,222,248,278]. In Section 2.4, we will use the idea of community structure to take

a new approach to the problem of hub classification by attempting to assign roles to

hubs purely on the basis of network topology rather than on the basis of expression

data. Our rationale is that the biological roles of date and party hubs, as hypoth-

esised by Han et al. [121], are essentially topological in nature and should thus be

identifiable from the network alone (rather than having to be inferred from additional

information). Once we have partitioned the network into a set of meaningful com-

munities, it is possible to compute statistics to measure the connectivity of each hub

both within its own community and to other communities. One method for assigning

relevant roles to nodes is the “functional cartography” of Guimerà and Amaral [114]

(see Section 1.1.4.8), and here we follow an analogous procedure for hubs in protein

54



interaction networks.

One might also wonder about the extent to which observed interactome properties

are dependent on the particular instantiation of the network being analysed. In a re-

cent paper, Yu et al. [280] examined the properties of interaction networks that were

derived from different sources such as Y2H and AP/MS (see Section 1.2.2.1), suggest-

ing that experimental bias might play a key role in determining which properties are

observed in a given data set. In particular, their findings suggest that Y2H tends to

detect key interactions between protein complexes—so Y2H data sets might contain

a high proportion of date hubs (i.e., hubs with low partner co-expression)—whereas

AP/MS tends to detect interactions within complexes, so hubs in AP/MS-derived

networks are predominantly highly co-expressed with their partners (i.e., these net-

works will contain party hubs). This indicates that a possible reason for observing

the bimodal hub avPCC distribution [121] is that the interaction data sets used in-

formation that was combined from both of these sources. In Section 2.5, we compare

several yeast interaction data sets and find both widely differing structural properties

and a low level of overlap.

Finally, as an alternative to the node-based date/party categorisation, we suggest

thinking about topological roles in networks by defining measures on links rather than

on nodes. In other words, one can attempt to categorise interactions between proteins

rather than the proteins themselves. In Section 2.6, we use geodesic betweenness

centrality as a measure of link significance and examine its relation to phenomena

such as protein co-expression and functional overlap.

To summarise, in this chapter, we examine the proposed division of hubs in a pro-

tein interaction network into date and party categories from several different angles,

demonstrating that prior arguments in favour of a date/party dichotomy appear to

be susceptible to various kinds of changes in data and methods. Observed differences

in network vulnerability to attacks on the two hub types seem to arise from only a
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small number of particularly important hubs. These results strengthen the existing

evidence against the existence of date and party hubs. Furthermore, a detailed inves-

tigation of network topology, employing the perspective of community structure and

the roles of hubs within this context, suggests that the picture is more complicated

than a simple dichotomy. Proteins in the interactome exhibit a variety of topological

characteristics that appear to lie along a continuum—and there does not exist a clear

correlation between their location on this continuum and the avPCC of expression

of their interaction partners. However, investigating link (interaction) betweenness

centralities reveals an interesting relation to the functional linkage of proteins, sug-

gesting that a framework incorporating a more nuanced notion of roles for both nodes

and links might provide a better framework for understanding the organisation of the

interactome.

2.2 Materials and methods

2.2.1 Protein interaction data sets

Given the factors discussed in Section 1.2.2.1, choosing which data sets to use for

building and investigating a network is itself a significant issue (see also the discus-

sion in Section 2.5). For our investigation, we chose to work predominantly with

networks consisting of multiply-verified interactions, which are constructed from ev-

idence attained using at least two distinct sources. Such data sets are unlikely to

contain many false positives, but might include many false negatives (i.e., missing

interactions). Table 2.1 summarises the data sets that we employed, and additional

details about how they were compiled are provided below:

• Online Predicted Human Interaction Database (OPHID): This data was sent

to us by Ian Taylor; it is an updated version of the interaction data used in

Ref. [256]. It is based on their curation of the online OPHID repository [56];
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Table 2.1: Protein interaction data sets.
Data set name Species Nodes Links Source

Total LCC Total LCC
Online Predicted Human H. sapiens 8,199 7,984 37,968 37,900 Brown & Jurisica [56]
Interaction Database (OPHID) (curated by Taylor et al. [256])
Filtered yeast S. cerevisiae 1,379 778 2,493 1,798 Han et al. [121]
interactome (FYI)
Filtered high- S. cerevisiae 2,559 2,233 5,991 5,750 Bertin et al. [41]
confidence (FHC)
Database of Interacting S. cerevisiae 2,808 2,587 6,212 6,094 DIP website [6]
Proteins core (DIPc) (October 2007 version)
Center for Cancer Systems H. sapiens 1,549 1,307 2,611 2,483 Rual et al. [229]
Biology Human Interactome
version 1 (CCSB-HI1)
Protein-fragment S. cerevisiae 1,124 889 2,770 2,407 Tarassov et al. [254]
complementation assay (PCA)

Protein interaction data sets used in this chapter. LCC refers to the largest connected component.

they have mapped proteins to their corresponding NCBI (National Center for

Biotechnology Information) gene IDs. Additionally, we removed genes that did

not have expression data in GeneAtlas [253] (comparable avPCC values cannot

be calculated for these, as GeneAtlas is the only expression data set used by

Taylor et al. [256]), leaving a network with 8,199 human gene IDs and 37,968

interactions between them.

• Filtered Yeast Interactome (FYI): Compiled by Han et al. [121]. This was

created from the intersecting data generated by several methods, includ-

ing Y2H, AP/MS, literature curation, in silico predictions, and the MIPS

(http://mips.gsf.de/) physical interactions list. It contains 1,379 proteins

and 2,493 interactions that were observed by at least two different methods.

• Filtered High-Confidence (FHC): This data set was generated by Bertin et

al. [41]. They filtered the high-confidence (HC) data set compiled by Batada et

al. [34]. HC consists of 9,258 interactions between 2,998 proteins, taken from

(published) literature-curated and high-throughput data sets, and they were

supposed to be multi-validated. However, Bertin et al. [41] claimed that many

interactions in HC had in fact been derived from a single experiment that was re-
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ported in multiple publications. To conduct the filtration, Bertin et al. applied

criteria similar to those used for FYI and obtained 5,991 independently-verified

interactions between 2,559 proteins.

• Database of Interacting Proteins core (DIPc): We obtained this data set from

the DIP website [6]. DIP is a large database of protein interactions compiled

from several sources. The ‘core’ subset of DIP consists of only the “most reli-

able” interactions, as judged manually by expert curators and also automatically

using computational approaches [71]. We used the version dated 7 October 2007

that contains 2,808 proteins and 6,212 interactions.

• Protein-fragment Complementation Assay (PCA): This experimental technique

was used by Tarassov et al. [254] to obtain an in vivo map of the yeast inter-

actome that consists of 1,124 proteins and 2,770 interactions. An attractive

feature of this data set is that it measures interactions between proteins in their

natural cellular context, in contrast to other prominent methods, such as Y2H

(which requires transportation to the cell nucleus) and AP/MS (which requires

multiple rounds of in vitro purification).

• Center for Cancer Systems Biology Human Interactome version 1 (CCSB-HI1):

This data set was constructed by Rual et al. [229] using a high-throughput Y2H

system, which they employed to test pairwise interactions amongst the products

of about 8100 human open reading frames. The data set, which contains 2611

interactions amongst 1549 proteins, achieved a verification rate of 78% in an

independent co-affinity purification assay (that is, from a representative sam-

ple of interactions in the data set, 78% could be detected in the independent

experiment).
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2.2.2 Functional homogeneity of communities

To assess how well the obtained topological communities reflect functional organisa-

tion, we used annotations from the Gene Ontology (GO) database [25] (see Section

1.2.2.3) to define their Information Content (IC). For each community, we computed

the p-value of the most enriched GO annotation term, i.e., the term with the highest

frequency within that community relative to its background frequency in the entire

network. To do this, we used the hypergeometric distribution, which corresponds

to random sampling without replacement. The extent of enrichment can then be

gauged using IC [221], which is the negative logarithm of the p-value; higher IC

reflects greater enrichment:

IC = − log10(p) , (2.1)

where p denotes the p-value.

2.2.3 Jaccard distance

If one has two partitions of a given set of nodes, and a node i is part of subset (or

community) C1
i of nodes in one partition and part of subset C2

i in the other partition,

then the Jaccard distance [134] for node i across the two partitions is defined as

J(i) = 1− |C1
i ∩ C2

i |/|C1
i ∪ C2

i | . (2.2)

The symbols ∩ and ∪ correspond, respectively, to set intersection and union, and

|C| denotes the number of elements in set C. A Jaccard distance of 0 corresponds

to identical partitions, whereas the distance approaches 1 for very different ones. By

averaging J(i) over all nodes in the set, we can get an estimate of the similarity of the

two partitions. Here we will use this measure to compare node partitions obtained

via community detection on networks that contain the same proteins as nodes but
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not necessarily the same links between them.

2.2.4 Functional similarity

In order to compute the functional similarity of two interacting proteins, we first

define the set information content (SIC) [221] of each term in our ontology for a

given data set. Suppose the complete set of proteins is denoted by S, and the subset

annotated by term i is denoted by Si. The SIC of the term i is then defined as

SIC(i) = − log10

( |Si|
|S|

)
. (2.3)

Now suppose that we have two interacting proteins called P and Q. Let SP and SQ,

respectively, denote their complete sets of annotations (consisting of not only their

leaf terms but also all of their ancestors) from the ontology. The functional similarity

of the proteins is then given by

f(P,Q) =

∑
i∈(SP∩SQ)

SIC(i)

∑
i∈(SP∪SQ)

SIC(i)
. (2.4)

2.3 Revisiting date and party hubs

The notions of date and party hubs (see Section 1.2.3) are based on the expression

correlations of hubs with their interactors in a protein interaction network. Specifi-

cally, Han et al. [121] computed the avPCC for each hub (defined by them as a protein

with at least 5 interactions), and observed that the avPCC distribution was bimodal

in some cases. A date/party threshold value of avPCC (for a given expression data

set) was defined to separate the two types of hubs; for bimodal distributions, this was

the estimated value at the minimum of the distribution between the two modes [121].

We have re-examined the data sets and computations that were used to propose
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the existence and dichotomy of date versus party hubs. In the original studies on

yeast data [41, 121], any hub that exhibited a sufficiently high avPCC (i.e., any hub

lying above the date/party threshold) on any one expression data set was identified

as a party hub. Batada et al. [33] noted that this definition causes the date/party

assignment to be overly conservative, in that a hub’s status is unlikely to change as

a result of additional expression data. In fact, some of the original expression data

sets were quite small, containing fewer than 10 data points per gene. This suggests

that classification of proteins as ‘party’ hubs was based on high co-expression with

partners for just a small number of conditions in a single microarray experiment,

even though such co-expression need not have been observed in other conditions and

experiments. For instance, Han et al. found 108 party hubs in their initial study [121].

However, calculating avPCC across their entire expression compendium (rather than

separately for the five constituent microarray data sets) and using the date/party

threshold specified by the authors for this compendium avPCC distribution yields

just 59 party hubs. Using only the “stress response” data set [100], which comprises

over half of the data points in their compendium and is substantially larger than

the other 4 sets, yields 74 party hubs. Thus, the results of applying this method to

categorise hubs depend heavily on the expression data sets that one employs and is

vulnerable to variability in smaller microarray experiments.

Recent support for the idea of date and party hubs appeared in a paper by Tay-

lor et al. [256] that considered data relating to the human interactome; the authors

found multimodal distributions of avPCC values, seemingly supporting a binary hub

classification. We used an interaction data set provided by them (an updated version

of the one used in their paper, sourced from the Online Predicted Human Interac-

tion Database (OPHID) [56]), and found that the form of the distribution of hub

avPCC that they observed is not robust to methodological changes. For instance,

raw intensity data from microarray probes has to be processed and normalised in

61



order to obtain comparable expression values for each gene (see Section 1.2.2.2). The

expression data used by Taylor et al. [256] (taken from the human GeneAtlas [253])

was normalised using the MAS5 algorithm [129]; when we repeated the analysis using

the same data normalised by the GCRMA algorithm [276] instead of by MAS5, we

obtained significantly different results.1 Additionally, in order to smooth the discrete

sequence of avPCC values into a continuous distribution, a Gaussian smoothing ker-

nel is generally used. This in effect blurs each data point into a Gaussian spread;

all points are summed to give the aggregate probability density. The width of the

Gaussian used is a parameter that determines the amount of smoothing; we see that

the observed bimodal nature of the avPCC distributions is very sensitive to the value

of this parameter.

Figure 2.1 depicts the avPCC distributions for hubs (defined as the top 15% of

nodes by degree [256], corresponding in this case to degree 15 or greater) in the two

cases. We obtained probability density plots for varying smoothing kernel widths.

The GCRMA-processed data does not appear to lead to a substantially bimodal

distribution at any kernel width, whereas the MAS5-processed data appears to give

bimodality for only a relatively narrow range of widths and could just as easily be

regarded as trimodal. We used Hartigan’s DIP test [5, 122, 123] to check whether

either of the two versions of the expression data gives a distribution of avPCC values

that exhibit significant evidence of bimodality; the results suggest that the apparent

bimodal or trimodal nature of some of the curves in Figure 2.1 is illusory and not

statistically robust. The DIP value is a measure of how far an observed distribution

deviates from the best-fit unimodal distribution, with a value of 0 corresponding to

no deviation. We used a bootstrap sample of 10,000 to obtain p-values for the DIP

1It has been noted that GCRMA tends to produce higher correlations than MAS5 between gene
expression profiles obtained via replicated experiments; however, GCRMA also leads to significant
correlations between random expression profiles, indicating that it produces some spurious correla-
tion [167]. It was thus suggested that MAS5 is the more reliable method for inferring interactions
between genes; but GCRMA has been argued to be better at detecting differentially expressed
genes [276].
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Figure 2.1: Variation in hub avPCC distribution.

Probability density plots of the distribution of hub avPCC values for human
interaction data from OPHID (provided by Taylor et al. [256]). Gene expression
data from GeneAtlas [253], normalised using (a) MAS5 and (b) GCRMA [167]. We
obtain the curves using a normal smoothing kernel function at varying window
widths. Hartigan’s DIP test for unimodality [122,123] returns values of 0.0087
(p-value ≈ 0.821) for (a) and 0.0062 (p-value ≈ 0.998) for (b), indicating that there
is no significant deviation from unimodality in either case.

statistic. We found no significant deviation from unimodality: for MAS5, the DIP

value is 0.0087 (p-value ≈ 0.821), and for GCRMA the DIP value is 0.0062 (p-value

≈ 0.998).

We also find variability across different interaction data sets. For instance, we

analysed the recent protein-fragment complementation assay (PCA) data set [254] and

found no clear evidence of a bimodal distribution of hubs along date/party lines. Even

in cases in which multimodality is observed, it might have arisen as a consequence,

or artefact, of combining different types of interaction data; there are believed to be

significant and systematic biases in what types of interactions each data-gathering

method is able to obtain [165,254,280] (See Section 1.2.2.1). For instance, analysing

avPCC values on the stress-response expression data set [100] for hubs in networks

obtained from Y2H or AP/MS alone [280], we find that 100% (259/259) are date

63



hubs in the former but that only about 30% (56/186) are date hubs in the latter. At

the moment, it is reasonable to entertain the possibility that new kinds of interaction

tests might smear the observed bimodality; this appears to be the case with the PCA

data set.

One of the key pieces of evidence used to argue that date and party hubs have

distinct topological properties was the apparent observation of different effects when

they are deleted from a network [41, 121]. Removing date hubs seemed to lead to

very rapid disintegration into multiple components, whereas removal of party hubs

had much less effect on global connectivity. However, it has been observed that

removing just the top 2% of hubs by degree from the comparison of deletion effects

obviates this difference, suggesting that the observation is actually due to just a few

extreme date hubs [33]. To study this in greater detail and to isolate the extreme

hubs, we used geodesic node betweenness centrality (defined in Section 1.1.4.2), a

standard diagnostic of a node’s importance to network connectivity (which need not

be strongly correlated with degree; the correlation coefficient between the two is just

0.28 for the FYI network). We found that in the original FYI data set [121], date

hubs have on average somewhat higher node betweenness centralities (1.79 × 104

for 91 date hubs versus 1.07 × 104 for 108 party hubs; a two-sample t-test gives p-

value ≈ 0.08). However, there is one date hub (SPC24/UniProtKB:Q04477, a highly

connected protein involved in chromosome segregation [259]) that has an exceptionally

high node betweenness (2.45×105) in this network. When the set of date hubs except

for this one hub is targeted for deletion, we find that the observed difference between

date and party hubs is greatly reduced [Figure 2.2(a)].

It was subsequently shown that the FYI network was particularly incomplete; as

more data became available, the updated FHC data set was similarly analysed [41]

(we also looked at the Y2H-only and AP/MS-only networks [280]; see Figure 2.3).

In the case of FHC, the network did not break down on removing date hubs but
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Figure 2.2: Effects of hub deletion on network connectivity.

(a) FYI network [121]. ‘Date (− SPC24)’ refers to the set of date hubs except for
the protein SPC24. In each case, we used the complete network consisting of 1379
nodes as the starting point and then deleted all hubs in the given set from the
network in order of decreasing degree. The characteristic path length is the mean of
the lengths of all finite-length paths between two nodes in the network. (b) FHC
network [41]. ‘Date (− high BC)’ refers to the set of date hubs except for the 10
hubs with the highest node betweenness centrality (BC) values (listed in Table 2.2).
We used the upper bound on the BC for party hubs as a threshold to define these
10 ‘high BC’ date hubs. (Note: Results similar to those presented here are obtained
if the hubs are divided into bottleneck/non-bottleneck categories [281] instead of
date/party categories.)
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Figure 2.3: Hub deletion effects for AP/MS-only, Y2H-only, and bottlenecks
data sets.

Change in characteristic path length (CPL, the mean length of all finite pairwise
shortest paths) on removal of hubs in decreasing order of degree from the (a)
‘Combined-AP/MS’ and (b) ‘Y2H-union’ data sets [280], and (c) the ‘bottlenecks’
data set [281]. The ‘top X%’ labels refer to deletion of all hubs except the X% with
the highest geodesic node betweenness centrality values. Note that when deleting
the full sets of hubs, the Y2H network exhibits a much more dramatic increase in
CPL, which might suggest that date hubs are more crucial to network connectivity
than party hubs (the Y2H hubs are predominantly date hubs, whereas the AP/MS
hubs are mostly party hubs [280]). However, only a very tiny fraction of Y2H-union
hubs seem to be responsible for the huge CPL increase on deletion, and protecting
these few high-betweenness hubs greatly reduces the impact of hub deletion on
network connectivity. Similarly, only about 0.5% of the bottlenecks are responsible
for the vast majority of the CPL increase in that case. These results show that the
vast majority of so-called ‘date hubs’ are on average no more critical to global
connectivity than party hubs.
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nevertheless displayed a substantially greater increase in characteristic path length

(see Section 1.1.4.3) than seen for party hub deletion, suggesting that deletion of the

date hubs has a larger impact on network connectivity. For FHC too, date hubs have,

on average, higher betweenness values than party hubs (3.7 × 104 for 306 date hubs

versus 2.15× 104 for 240 party hubs, p-value ≈ 0.06). However, the larger average is

due almost entirely to a small number of hubs with unusually high betweennesses, as

removing the top 10 date hubs by betweenness (which all had values higher than any

party hub) greatly reduced the difference between the distributions (p-value ≈ 0.29).

Furthermore, the removal of just these 10 hubs from the set of targeted date hubs

is sufficient to virtually obviate the difference with party hubs, as shown in Figure

2.2(b). Notably, the set of 10 high-betweenness hubs includes prominent proteins such

as Actin (ACT1/UniProtKB:P60010), Calmodulin (CMD1/UniProtKB:P06787), and

the TATA binding protein (SPT15/UniProtKB:P13393), which are known to be key

to important cellular processes (see Table 2.2).

Thus, we can account for the critical nodes for network connectivity using just a

few major hubs, and most of the proteins that are classified as date hubs appear to be

no more important in this respect than the party hubs. High betweenness centrality

nodes have previously been called bottlenecks [281], and it has been suggested that

these tend to correspond to date hubs. However, the same sort of analysis on the

bottlenecks data set [281] once again reveals that only the top 0.5% or so of nodes

by betweenness are truly critical for connectivity [see Figure 2.3(c)]. Additionally,

the 10 key hubs in the FHC network exhibit a wide range of avPCC values (see

Table 2.2): high betweenness does not necessitate low avPCC. Similarly, we found

that there is not a strong correspondence between bottleneck/non-bottleneck and

date/party distinctions across multiple data sets. These observations further weaken

the claim that there is an inverse relation between a hub’s avPCC and its importance

in connecting different parts of a network.
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Table 2.2: High-betweenness hubs in the FHC network.
Protein UniProtKB Degree AvPCC BC(/105) Functions
CDC28 P00546 202 0.06 19.99 Essential for the completion of the start, the

controlling event, in the cell cycle
RPO21 P04050 58 0.05 3.56 Catalyses the transcription of DNA into RNA
SMT3 Q12306 42 0.08 3.07 Not known; suppressor of MIF2

(UniProtKB:P35201) mutations
ACT1 P60010 35 0.13 2.83 Cell motility
HSP82 P02829 37 0.19 2.51 Maturation, maintenance, and regulation

of proteins involved in cell-cycle
control and signal transduction

SPT15 P13393 50 0.12 2.45 Regulation of gene expression
by RNA polymerase II

CMD1 P06787 46 0.05 2.11 Mediates the control of a large number of
enzymes and other proteins

PAB1 P04147 25 0.28 1.92 Important mediator of the roles of the
poly(A) tail in mRNA biogenesis,
stability, and translation

PSE1 P32337 24 0.28 1.73 Nuclear import of ribosomal
proteins and protein secretion

GLC7 P32598 35 −0.01 1.55 Glycogen metabolism, meiosis, translation,
chromosome segregation, cell polarity,
and cell cycle progression

List of the 10 hubs with highest node betweenness in the FHC network [41], with UniProtKB
accessions [259], degrees, avPCC values (as computed using the ‘Compendium’ expression data
set [121,142]), betweenness centrality (BC) values, and selected functional annotations from
UniProtKB.

2.4 Topological properties and node roles

If the hypothesised categorisation of hubs into a date/party dichotomy is correct,

then one should be able to observe this directly in the network structure, as the

two kinds of hubs were inferred to have different neighbourhood topologies. We thus

leave gene expression data to one side for the moment and focus on what can be

inferred about node roles purely from network topology. Guimerà and Amaral [114]

have introduced a scheme for classifying nodes into topological roles in a modular

network according to the pattern of intramodule and intermodule connections. To

study our networks in this fashion, we first seek to partition them into modules or

communities. We optimise the standard Newman-Girvan modularity function (see

Section 1.1.3.1) using recursive spectral bisection [193] to obtain the communities

used for the results in Figure 2.5. Maximising graph modularity [Equation (1.1)] is

expected to give a partition in which the density of links within each community is

significantly higher than the density of links between communities. In Figure 2.4,
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Figure 2.4: Community structure in the largest connected component of the
FYI network.

Data from Han et al. [121]. The different colours correspond to different
communities (25 in all). The graph modularity value for this partition is 0.8784. We
generated this visualisation using the Kamada-Kawai algorithm [139] (MATLAB
code obtained from Amanda Traud [262]).

we show the network partition (with nodes coloured according to community) that

results from applying such an optimisation to the largest connected component of the

filtered yeast interactome (FYI) data set [121].

We wish to assess how well the network communities obtained in this way corre-

spond to groupings of functionally similar proteins, as per Gene Ontology [25] anno-

tations. We do this using the Information Content (IC) measure [Equation (2.1)].

In Table 2.3, we summarise the results of calculating this measure for communities

detected (for resolution parameter value γ = 1) on two of the yeast interaction data
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sets: FYI and the more recent filtered high-confidence (FHC [41]). Although the IC

value itself is a measure of the unlikelihood of a given event occurring by chance,

for additional comparison we also examine a uniformly random partition of FYI into

communities with the same size distribution as the actual ones. It is clear that on

average the detected communities are far more functionally homogeneous than could

be expected by chance. This is in accordance with previous studies on communities

in protein interaction networks [13, 58, 74, 165, 171]. It is also evident that IC varies

widely over communities and that not all of them are equally enriched. There are

some relatively heterogeneous communities (which are not aptly described by a single,

specific GO term) and others that show a very high functional coherence. In partic-

ular, a more detailed inspection of the community composition reveals that proteins

that are part of the large and small ribosomal subunit complexes are almost perfectly

grouped together, and several other communities consist exclusively of proteins that

are known to be part of a given complex.

Thus, the topology of the interaction network provides a great deal of information

about the functional organisation of the proteome. Our particular partitioning is of

course not unique; it is only a means to an end, as our aim is to examine the impli-

cations of community structure for individual protein roles, with particular reference

to the notion of date and party hubs. We have also used the locally greedy algorithm

described by Blondel et al. [48] (see Section 1.1.3.3) as an alternative method for opti-

mising modularity, and this makes no difference to the salient observations presented

below.

Having obtained meaningful network partitions, we can proceed to categorise

nodes into roles, such as suggested by Guimerà and Amaral [114]. Their classifica-

tion uses two diagnostics for each node—within-community degree and participation

coefficient—and divides the plane that they define into regions encompassing seven

possible roles (see Section 1.1.4.8). In Figures 2.5 and 2.6, we plot all nodes in the
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Table 2.3: Evaluating community partitions.

Data Commu- MF IC CC IC BP IC Best IC
set nities Min Max Avg Min Max Avg Min Max Avg Min Max Avg
FYI 25 2.05 43.09 14.36 4.28 51.60 17.18 2.99 35.74 15.72 4.81 51.60 20.15
FYI 25 (random) 1.28 2.78 1.88 1.25 3.00 2.07 1.46 3.04 2.13 1.46 3.04 2.36
FHC 63 1.47 51.37 11.22 0.11 68.18 16.40 1.73 98.51 17.08 1.97 98.51 20.08

Information Content (IC) of the most enriched term for each of the three GO ontologies (MF –
Molecular Function; CC – Cellular Component; and BP – Biological Process) and over all three
ontologies combined (‘Best IC’). We give the minimum, maximum, and average IC over all of the
communities (at the default resolution value γ = 1) that we detected in two data sets: FYI [121] and
FHC [41]. We generated the random communities for FYI using the size distribution of the actual
ones. In other words, we remove the actual community labels of all proteins and then randomly
re-assign them (using one label per protein).

network in a two-dimensional space using coordinates determined by the two statis-

tics, and we divide the space into regions that correspond to different node roles. The

boundaries between regions are of course arbitrary, so for simplicity we have used the

demarcations employed by Guimerà and Amaral [114]. We depict the 7 roles defined

by them as demarcated regions in the plots in Figures 2.5 and 2.6.

Figure 2.5 shows the node roles for yeast (FHC [41]) and human (Center for Cancer

Systems Biology Human Interactome version 1 (CCSB-HI1) [229]) data sets, based on

communities obtained via modularity maximisation at default resolution. We also use

the Potts model [Equation (1.2)] (Section 1.1.3.2) as an alternative way of partitioning

the network; this allows one to adjust the resolution parameter γ to get more or fewer

communities [220]. We present results for two alternative settings of the resolution

parameter (γ = 0.5 and γ = 2) in Figure 2.6, indicating that whilst the number

of communities changes substantially as we decrease or increase the resolution, the

pattern of role assignments to the nodes remains similar to that shown in Figure 2.5

(using the default choice of γ = 1), and the conclusions below are valid across the

multiple resolutions examined.

Some of the topological roles defined by this method appear to correspond to those

ascribed to date/party hubs. For instance, one might argue that party hubs ought

to be ‘provincial hubs’, which have many links within their community but few or
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Figure 2.5: Topological node role assignments and relation with avPCC.

Plots for (a) yeast network (FHC [41]—2,233 nodes, 63 communities) and (b) human
network (CCSB-HI1 [229]—1,307 nodes, 38 communities). Following Guimerà and
Amaral [114], we designate the roles as follows: R1 – Ultra-peripheral; R2 –
Peripheral; R3 – Non-hub connector; R4 – Non-hub kinless; R5 – Provincial hub; R6
– Connector hub; and R7 – Kinless hub. We colour proteins according to the avPCC
of expression with their interaction partners. We computed expression avPCC using
the stress response data set [100] (which was the largest, by a considerable margin,
of the expression data sets used in the original study [121]) for FHC and
COXPRESdb [200] for CCSB-HI1. No partner expression data was available for a
few proteins (25 in FHC, 1 in CCSB-HI1), so these are not shown on the plots.
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(b) CCSB-HI1 (γ = 0.5, 32 communities)
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(c) FHC (γ = 2, 81 communities)
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(d) CCSB-HI1 (γ = 2, 71 communities)

Figure 2.6: Topological node role assignments and relation with avPCC.

Plots for (a),(c) yeast network (FHC [41]—2,233 nodes) and (b),(d) human network
(CCSB-HI1 [229]—1,307 nodes). As in Figure 2.5, but with different resolution
parameter (γ) values used for community detection.
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Figure 2.7: Rolewise hub avPCC distributions.

Plots show node role versus average expression correlation with partners for hubs in
yeast (FHC [41]—553 hubs with a minimum degree of 7) and human
(CCSB-HI1 [229]—326 hubs with a minimum degree of 4) networks. Larger circles
represent means over all nodes in a given role. Note that ‘hub’ as used in the role
names refers only to within-community hubs, but all of the depicted nodes are hubs
in the sense that they have high degree. In each case, we determined the degree
threshold so that approximately the top 20% highest-degree nodes are considered to
be hubs. We also fixed the date/party avPCC threshold at 0.5, in accordance with
Bertin et al. [41].

none outside. Date hubs might be construed as ‘non-hub connectors’ or ‘connector

hubs’, both of which have links to several different modules; they could also fall

into the ‘kinless’ roles (though very few nodes are actually classified as such). We

thus sought to examine the relationship between the date/party classification and

this topological role classification. In Figure 2.5, we colour proteins according to

their avPCC. In Figure 2.7, we only show the hubs (defined as the top 20% of nodes

ranked by degree [41]) in the two interaction networks and plot them according to

node role and avPCC. The horizontal lines correspond to an avPCC of 0.5, which was

the threshold used to distinguish date and party hubs in the yeast interactome [41].

One immediate observation from these results is that the avPCC threshold clearly

does not carry over to the human data. In fact, all of the hubs in the latter have
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an avPCC of well below 0.5. Even if we utilise a different threshold in the human

network, we find that there is little difference in the avPCC distribution across the

topological roles, suggesting that no meaningful date/party categorisation can be

made (at least for this data set). This might be the case because the human data set

represents only a small fraction of the actual interactome. Additionally, it is derived

from only one technique (Y2H) and is thus not multiply-verified like the yeast data

set.

For yeast, we see that hubs below the threshold line (i.e., the supposed date hubs)

include not only virtually all of those that fall into the ‘connector’ roles but also

many of the ‘provincial hubs’. Those that lie above the line (i.e., the supposed party

hubs) include mainly the provincial hub and peripheral categories. Although one can

discern a difference in role distributions above and below the threshold, it is not clear-

cut and the so-called date hubs fall into all 7 roles. It would thus appear that even

for yeast, the distribution of hubs does not clearly fall into two types (the original

statistical analysis was already disputed by Batada et al. [33,34]), and the properties

attributed to date and party hubs [121] do not seem to correspond very well with the

actual topological roles that we estimate. Indeed, these roles are more diverse than

what can be explained using a simple dichotomy.

2.5 Data incompleteness and experimental limita-

tions

It has been proposed that date and party hubs play different roles with respect to the

modular structure of protein interaction data [121,256]. As there are diverse examples

of such data, one might ask to what extent entities like date and party hubs can be

consistently defined across them. It has been noted previously that many of the exist-

ing large-scale data sets show little overlap and are highly inconsistent [119, 270]. In
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Table 2.4: Comparisons of yeast data sets.
Data sets Common Links in Between-community Role(c)

(number of nodes) nodes(a) overlap(b) Jaccard distance(c) overlap(d)

FYI (778) vs. FHC (2233) 714 FYI–1444; FHC–2027; Both–1195 0.76 332 (47%)
FYI (778) vs. DIPc (2587) 660 FYI–1310; DIPc–1698; Both–956 0.77 265 (40%)
FHC (2233) vs. DIPc (2587) 1661 FHC–4395; DIPc–4141; Both–2665 0.85 854 (51%)
FYI (778) vs. PCA (889) 165 FYI–154; PCA–180; Both–65 0.74 109 (66%)
FHC (2233) vs. PCA (889) 460 FHC–512; PCA–667; Both–187 0.86 214 (47%)
DIPc (2587) vs. PCA (889) 492 DIPc–568; PCA–782; Both–183 0.86 206 (42%)

Pairwise comparisons of the largest connected components of different yeast protein interaction data
sets. Notes: (a) Proteins occurring in both networks. (b) Links amongst the common nodes as
counted in the previous column: individually in either network and common to both networks. (c)
Communities and node roles computed over entire data sets; for pairwise comparison, we then
narrow down communities in each case to only those nodes also present in the data set to which the
comparison is being made. (d) The number of nodes with the same role classification (as per
Guimerà and Amaral [114]) in both networks and their percentage as a share of the entire set of
common nodes.

order to further investigate the extent of network overlap and in particular the preser-

vation of the interactome’s structural properties (such as community structure and

node roles) for different data sets and data-gathering techniques, we compared statis-

tics and results for four different yeast interaction data sets: FYI, FHC, Database of

Interacting Proteins core (DIPc), and PCA (see Table 2.1 and Section 2.2.1 for details

of these). Our motivation for these choices of data sets (aside from PCA) was that

they all encompass multiply-verified or high-confidence interactions. We also used

PCA data because it is from the first large-scale screen with a new technique that

records interactions in their natural cellular environment [254]. For each data set, we

counted the number of nodes and links in common using pairwise comparisons in the

largest connected component of the network. For the overlapping portions, we then

computed the extent of overlap in node roles and communities. For the latter, we

employed the Jaccard distance [134], which ranges from 0 for identical partitions to 1

for entirely distinct ones (see Section 2.2.3). Whilst there exist a number of measures

for comparing partitions [130], for our purposes it is sufficient to get some indication

of whether communities in different networks have substantial overlap or not; thus

we choose to apply just the simple Jaccard measure. In Table 2.4, we present the

results of our binary comparisons of the yeast data sets.
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Table 2.4 reveals that there are large variations amongst the different networks

reported in the literature. FYI, FHC, and DIPc are all regarded as high-quality data

sets, yet they contain numerous disparate interactions. PCA has a very low overlap

with both FYI and DIPc (considered separately), suggesting that it provides data

that is not captured by either Y2H or AP/MS screens. Such differences unsurprisingly

lead to nodes belonging to highly varying communities across data sets. We compare

the networks pairwise; for comparison purposes, communities are computed over the

complete network in each case, and then we prune each community to retain only

those nodes also present in the other network. The Jaccard distance for each pairwise

comparison amongst the 4 networks is about 0.8, so on average the intersection of

communities for the same node covers only about a fifth of their union. As we

compute topological node roles relative to assignment of nodes to communities, it is

not surprising that the role overlap is also not very high in any of the cases.

Given the above, it is difficult to make any general inferences regarding proteome

organisation from results on existing protein interaction networks. They depend a

great deal on the explored data set, which in each case represents only part of the

total interactome and likely also contains substantial noise (as discussed in Sections

1.2.2.1 and 1.2.3).

2.6 The roles of interactions

Most research on interactome properties has focused on node-centric diagnostics,

which draws on the perspective of individual proteins (e.g., [121,136,153,286]). Here

we try an alternative approach that instead uses link-centric diagnostics in order to

examine how the topological properties of interactions in a network relate to their

function. In order to quantify the importance of a given link to global network con-

nectivity, we use geodesic link betweenness centrality [107] (see Section 1.1.4.2). We
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investigate the relationship between link betweenness and the expression correlation

for a given interaction. If date and party hubs genuinely exist, then one might expect

a similar sort of dichotomy for interactions, with interactions that are more impor-

tant for global network connectivity having lower expression correlations and vice

versa. That is, given the hypothesised functional roles of date and party hubs, most

intermodular interactions would connect to a date hub, whereas most intramodular

interactions would connect to a party hub. In Figure 2.8, we depict all of the interac-

tions in two yeast data sets (FYI and FHC), which we position on a plane based on

the values of their link betweenness and interactor expression PCC (calculated using

the stress response data set, as before). Additionally, we colour each point according

to the level of functional similarity between the interacting proteins, as determined

by overlap in the three types of GO annotations (see Section 2.2.4).

For the FHC data set, we find no substantial relation between expression PCC and

the logarithm of link betweenness (linear Pearson correlation coefficient ρ ≈ −0.04,

z-score ≈ −3.1, and p-value ≈ 0.0022). For the FYI data set, there is a larger

correlation (ρ ≈ −0.31, z-score ≈ −13.6, and p-value ≈ 4.5 × 10−42). Correspond-

ingly, we observe a dense cluster of interactions in the top left (i.e., they have low

betweennesses and high expression correlations), but most of these are interactions

within ribosomal complexes. If one removes such interactions from the data set,

then here too one finds only a small correlation (ρ ≈ −0.12, z-score ≈ −4.5, and

p-value ≈ 5.8× 10−6) between expression PCC and (log of) link betweenness. (Note

that ribosomal proteins were already removed from FHC [41].) However, we find a

fairly strong correlation between link betweenness (on a log-scale) and similarity in

cellular component annotations (which can be used as a measure of co-localisation):

the PCC values are ρ ≈ −0.51 (z-score ≈ −23.9, p-value ≈ 1.4 × 10−126) for FYI

and ρ ≈ −0.46 (z-score ≈ −37.2, p-value ≈ 1.6 × 10−303) for FHC (we obtain very

similar values for the Spearman rank correlation coefficient: ρ ≈ −0.52 for FYI and
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(a) Cellular Component

Figure 2.8: Relating interaction betweenness, co-expression, and functional
similarity.

The plots show link betweenness centralities versus expression correlations, with
points coloured according to mean similarity of interactors’ GO (Cellular
Component) annotations, for two protein interaction data sets: FYI [121] (778
nodes, 1,798 links) and FHC [41] (2,233 nodes, 5,750 links). The PCC values of
log(link betweenness) with functional similarity are −0.51 (z-score ≈ −23.9, p-value
≈ 1.4× 10−126) for FYI and −0.46 (z-score ≈ −37.2, p-value ≈ 1.6× 10−303) for
FHC.
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(c) Molecular Function

Figure 2.8 (continued): The plots show link betweenness centralities versus
expression correlations, with points coloured according to mean similarity of
interactors’ (b) GO (Biological Process) and (c) GO (Molecular Function)
annotations for two protein interaction data sets: FYI [121] (778 nodes, 1,798 links)
and FHC [41] (2,233 nodes, 5,750 links). The PCC values of log(link betweenness)
with functional similarity are (b) −0.41 (z-score ≈ −18.6, p-value ≈ 3.9× 10−77) for
FYI and −0.42 (z-score ≈ −33.9, p-value ≈ 4.7× 10−252) for FHC; and (c) −0.39
(z-score ≈ −17.3, p-value ≈ 4.5× 10−67) for FYI and −0.31 (z-score ≈ −24.7,
p-value ≈ 1.6× 10−134) for FHC.
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ρ ≈ −0.47 for FHC). In particular, there appears to be a natural threshold at the

modal value of betweenness; this is a finite-size effect.2 This is somewhat reminiscent

of the weak/strong tie distinction in social networks [112, 216], as the ‘weak’ (high-

betweenness) interactions serve to connect and transmit information between distinct

cellular modules, which are composed predominantly of ‘strong’ (low-betweenness) in-

teractions. For instance, we found that interactions involving kinases fall largely into

the ‘weak’ category. Additionally, GO terms such as intracellular protein transport,

GTP binding, and nucleotide binding were significantly overrepresented in proteins

involved in high-betweenness interactions.

2.7 Discussion

In this chapter, we have analysed modular organisation and the roles of hubs in

protein interaction networks. We revisited the proposed date/party hub dichotomy

and found substantial areas of concern. In particular, claims of bimodality in hub

avPCC distributions do not appear to be robust across available interaction and

expression data sets, and tests for the differences observed on deletion of the two hub

types have not considered important outlier effects. Moreover, there is considerable

evidence to suggest that the observed date/party distinction is at least partly an

artefact, or even a consequence, of the different properties of the Y2H and AP/MS

data sets.

In order to study the topological properties of hub nodes in greater detail, we

partitioned protein interaction networks into communities and examined the statistics

2For finite, relatively sparse, unweighted networks such as the ones we study, the distribution
of link betweenness centrality is almost normal, with the exception of a large spike at a value well
above the mean (see the long vertical bar of points in the plots in Figure 2.8). This results from the
large number of nodes with degree 1. The link that connects such a node to the rest of the network
must have a betweenness of n − 1, where n is the total number of nodes in the network. This link
must lie on the n − 1 shortest paths that connect the degree-1 node to all of the other nodes, and
it cannot lie on any other shortest paths. Thus, for our networks, the link betweenness centrality
distribution shows a strong spike at a value of precisely n− 1.

81



of the distributions of hub links. Our results show that hubs can exhibit an entire

spectrum of structural roles and that, from this perspective, there is little evidence

to suggest a definitive date/party classification. We find, moreover, that expression

avPCC of a hub with its partners is not a strong predictor of its topological role,

and that the extent of interacting protein co-expression varies considerably across the

data sets that we examined.

Additionally, a key issue with existing interaction networks is that they are in-

complete. We have compared some of the available ‘high-quality’ yeast data sets and

shown that they overlap very little with each other. One can obtain protein interac-

tion data using several different experimental techniques, and each method appears

to preferentially pick up different types of interactions [165,280]. The only published

interactome map of which we are aware that examines proteins in their natural cellu-

lar environment [254] is largely disjoint with other data sets and shows little evidence

of a date/party dichotomy. We find similar issues in human interaction data sets. A

general conclusion about interactome properties is thus difficult to reach, as it would

require robust results for several different species. This is unattainable at present due

to the limited quantity and questionable quality of protein interaction and expression

data.

As an alternative way of defining roles in the interactome, we have also investi-

gated a link-centric approach, in which we study the topological properties of links

(interactions) as opposed to nodes (proteins). In particular, we examined link be-

tweenness centrality as an indicator of a link’s importance to network connectivity.

We found that this too does not correlate significantly with expression PCC of the

interacting proteins. For certain data sets, however, it does appear to correlate fairly

strongly with the functional similarity of the proteins. Additionally, there appears

to be a threshold value of link betweenness centrality beyond which one observes a

sudden drop in functional similarity. We also found that kinase bindings and other
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kinds of interactions involved in signalling and transportation functions are signif-

icantly overrepresented in the high-betweenness interactions. This suggests that a

notion of intramodular versus intermodular interactions, somewhat analogous to the

weak/strong tie dichotomy in social networks, might be more useful. However, fur-

ther work would be required to establish such a framework of elementary biological

roles in protein interaction networks. As the quantity, quality, and diversity of pro-

tein interaction and expression data sets increases, we hope that this perspective will

enhance understanding of the organisational principles of the interactome.

More broadly, the story of date and party hubs shows that simplistic attempts to

relate structural properties of networks to their functionality can be very misleading,

and that examining network structure from multiple perspectives can yield a wider

range of insights. Motivated by this observation, we now seek a holistic approach

by attempting to consolidate many different ways of diagnosing and characterising

networks extant in the literature and seeking the data-driven discovery of patterns of

relationships between structure and function. This is what we describe in the next

chapter.
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Chapter 3

High-Throughput Analysis of

Networks

The main ideas presented in this chapter have appeared as extended abstracts in

two workshop proceedings [18, 268], and the work is also included in a manuscript

currently in preparation [17].

3.1 Motivation

Our study of date and party hubs demonstrated that it is important to take into

account multiple measures of network structure in order to attempt to understand how

structure correlates with functionality. We also saw that ideas from the study of social

networks, such as betweenness [96] and weak and strong ties [112], can be insightful

when analysing biological networks. Motivated by these observations, we sought

to develop a more comprehensive methodology for studying networks, that might

help consolidate different strands of the literature and highlight cross-disciplinary

connections.

A large number of approaches for the study and analysis of networks have been

developed across multiple disciplines (see Section 1.1); however, for a given task or
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question on a network, it is often hard to determine appropriate methods of character-

isation, as networks are intrinsically high-dimensional objects and there need not be

any universally useful set of diagnostics. Studies focused on a particular network tend

to employ a small subset of existing diagnostics, and choices are typically motivated

by intuition and familiarity (often influenced by one’s disciplinary background). Par-

ticularly when studying new, unfamiliar kinds of networks, we would like to examine

them from as many different perspectives as possible to get a handle on how they

relate to other networks we have already observed and studied. Additionally, when a

new diagnostic meant to capture some aspect of network structure is introduced, it

is generally compared and contextualised with only a few of the existing ones, which

tend to be the ones prevalent in the authors’ discipline(s). This can lead to rein-

vention of the wheel, as the relations between diagnostics originating from different

academic communities are often left unexplored.

Here we seek to address these issues empirically by carrying out a large-scale

collation and investigation of both different types of networks and different ways of

characterising networks. Limited efforts of this sort have recently been made [88] and

applied, for instance, to the comparison of metabolic networks from different species

[228] and the evaluation of models for protein-protein interaction networks [155,183].

However, there is still no “systematic program for characterising network structure”

(a phrase from Newman [192]) that can be used to compare both networks themselves

as well as network diagnostics. We attempt to move in this direction by setting up a

large, diverse database of networks, along with a library of algorithms (drawn from

a variety of disciplinary literatures) for computing different characteristics of these

networks. The end result can be represented as a matrix whose rows correspond

to networks and whose columns correspond to features—i.e., a design matrix (see

Section 1.3.1). Each entry in the design matrix represents the value of one feature for

one network—if we denote the matrix by D, then we have Dij = fj(Gi), where Gi is
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the ith network and fj denotes a function which computes the jth feature. We refer to

this approach as high-throughput analysis of networks, in analogy to high-throughput

experimental methods in biology that involve simultaneously making a large number

of measurements on a large number of objects [e.g., gene expression microarrays (see

Section 1.2.2.2)]; here the design matrix is analogous to the microarray. Once this

matrix has been computed, it becomes possible to use machine learning techniques

(see Section 1.3) to discover interesting patterns and relationships in the data; indeed,

it is difficult to deal with data on scale we seek to look at here (hundreds of network

and hundreds of features) without the use of such statistical techniques.

In this and subsequent chapters, we explore how this high-throughput approach

can be leveraged to aid the understanding of networks. We first describe the differ-

ent network data sets and diagnostics that we collected (in Section 3.2). We then

show how our feature-based representation of networks enables a data-driven com-

parison and organisation of both networks and network diagnostics (in Section 3.3).

Subsequently, via two types of case studies, we demonstrate its utility for inferring

connections between network structure and functionality, i.e., what processes are or

could be carried out via that network, and/or how efficiently; the precise specifica-

tion depends on the context and will be determined in our discussion of particular

examples. Our methodology involves regressing functional properties of interest on

network features: for instance, we show that certain features can serve as fast esti-

mates for the solution and runtime of hard graph-theoretic computational problems,

such as the Travelling Salesman Problem (in Section 3.4). In biological networks, we

show how regression of evolutionary distances on network features allows us to detect

phylogenetic signals, thereby suggesting which aspects of network structure correlate

with biological evolution (in Section 3.5). Finally, we summarise our conclusions from

this chapter and how they lead into the subsequent ones (in Section 3.6). We suggest

that the approach described here allows one to unearth structure-function relation-
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Table 3.1: Sets of networks used.

Network type No. of networks No. of features(a) Source Section

Varied; real (see Appendix 192 real, 338(b)/347(c) Real: Onnela et al. [203]; Synthetic: 3.3
B) and synthetic 120 synthetic From models (see Section 3.3.1)
Preferential Attachment 500 438 From PAP model [218] 3.4
Poisson (PAP)
Community detection 250 436 Generated from 3.4
benchmark Lancichinetti et al. model [159]
Metabolic networks of 620 222 Mazurie et al. [178] 3.5
interacting pathways

Pseudomonas metabolic 17× 6(d) 804(d) Mithani et al. [188] 3.5
pathways

Notes: (a) These numbers vary because not all features are defined or feasibly computable for all
networks. The numbers listed are the total features used in each case. (b) This was the number of
features retained after removing those for which values could be obtained for fewer than 80% of the
312 networks. We also tried variations of the 80% threshold, which led to different numbers of
features being retained (see Section 3.3.2). (c) When using the 80% threshold as above but examining
only the 192 real networks, as in Section 3.3.4. (d) There were networks representing 6 different
pathways for each species; thus for each species we computed 6 versions of each network feature, one
per pathway. Out of all of these, 804 was the total number of features retained after removing those
with missing or ill-defined values.

ships for networks in a more comprehensive fashion than has been possible when

relying on intuitive network diagnostics alone; and it can thus serve as a powerful

tool to aid scientific discovery on networks.

3.2 Data sets and algorithms

We used several hundred real and synthetic networks for our different case studies;

we drew them from a variety of sources (see the summary in Table 3.1). The real

networks include several kinds of biological networks (such as brain connectivity, pro-

tein interaction, and metabolic networks), social networks, and miscellaneous others

(such as word adjacency, fungal growth, and financial correlation networks; details in

Appendix B). The networks ranged in size from a few tens of nodes up to tens of

thousands of nodes.

In addition to the real networks, we generated synthetic networks using several

different kinds of models, including the community-detection benchmark of Lanci-

chinetti et al. [159], Erdős-Rényi, preferential attachment, and duplication-divergence
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(see Section 1.1.6 for descriptions of these). We used these network families for com-

parison to various sorts of real networks and for studies of hardness scaling (see

Sections 3.3 and 3.4).

We used approximately 70 different network algorithms or diagnostics (listed in

Appendix A) taken from the literature (see Section 1.1.4). Each of them takes a net-

work as input and computes some property(s) of it.1 For each network to correspond

to one row and each feature to correspond to one column in our design matrix, we

would ideally like each diagnostic to return only one real number when applied to a

network. Whilst some of our diagnostics, such as the diameter (see Section 1.1.4.3),

are of this sort, many others return a vector of real numbers: for example, the de-

gree distribution (see Section 1.1.4.1) returns a sequence of node degrees. In order

to obtain features from diagnostics that return distributions, we computed several

summary statistics of these distributions—e.g., mean, variance, and other measures

of central tendency and spread. We give the full list of summary statistics used in

Appendix A.

Our collection of diagnostics also includes some community-detection algorithms,

which return a partition of the network into subnetworks (see Section 1.1.3). We

then compute several summary statistics of these partitions, such as the number

of communities, partition entropy, and the fractions of nodes falling into different

functional cartography roles (see Section 1.1.4.8), to serve as network features (a

full list of these summaries is also in Appendix A). Certain community-detection

methods contain a resolution parameter (Section 1.1.3.2), which allows one to examine

community structure in a network at different scales; in particular, we use the Potts

method [220] to compute discretised versions of mesoscopic response functions [203]

(see Section 1.1.4.8), which also become features in our design matrix.

1In some cases, the code for these was publicly available (sources listed in Appendix A), but in
other cases it had to be written. MATLAB code for some diagnostics was obtained from Gabriel
Villar.
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We attempted to apply all of the diagnostics to all of the networks, though given

that many of them are computationally intensive, it is not always feasible to compute

their values on larger networks. In order to partly compensate for this problem, we

also compute sub-sampled versions of many of our diagnostics: we use a snowball

sampling procedure [110] to draw 100-node samples from larger networks and then

compute the given diagnostic on these. As noted in Section 1.1.4.10, these samples

are not expected to preserve the characteristics of the full network; we thus add these

features to our design matrix on a purely experimental basis, in keeping with the

philosophy of attempting to probe network structure in as many different ways as

possible. Since the sampled versions of the diagnostics do not show up in any of the

specific results we present here, we have not studied them in depth. While no reliable

conclusions about a full network could be drawn based on a single sample using a

single sampling procedure, we do not attempt to make any such inferences here and

indeed the actual results presented in this chapter are essentially unaffected by the

presence of these sample-based features. A proper investigation of the differences be-

tween samples and the full network, and also of the effects of using different sampling

strategies, remains a topic for future investigation. In Chapter 5, where we will use

subsampling to fit generative models to protein interaction networks, we will examine

the effects of changing the sampling procedure and sample sizes.

In addition to computational constraints, some diagnostics are also undefined for

certain networks, for instance those which are not connected. Thus, when using the

full set of features, our design matrix usually has some missing entries. We handle this

either by removing certain columns (features) if they have too many missing entries or

by imputing missing values in some way; details are provided along with each data set

that we consider. In order to compare meaningfully the values of different features, we

would generally like to put them on a common scale. We do this by normalising the

design matrix as follows: for each feature, its values for all networks are standardised
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to have zero mean and unit standard deviation; these are then mapped to the [0, 1]

interval via the logistic function f(z) = 1/(1 + exp(−z)), which is a commonly used

normalisation procedure [47].

Alongside the values of the features themselves, we also record the time taken to

compute each feature for each network to which it is applied. This computation time

itself can be used as a network feature—e.g., as a measure of the hardness of solving

certain network problems (as demonstrated in Section 3.4).

3.3 Organisation of networks and features

As an illustration of our high-throughput approach, we show here how we can gain an

overview of the relationships between different kinds of networks, as well as between

different kinds of features. We map high-dimensional feature-space representations

(see Section 1.3.1) of networks to lower-dimensional spaces and show that just a few

(2–4) dimensions are sufficient to capture the bulk of variation between commonly

studied types of empirical and model-generated networks. For this purpose, we com-

puted the design matrix for a set of 312 networks (192 real, 120 synthetic) from a wide

range of disciplines and models. We attempted to compute a total of 438 features

for each of these networks, drawn from about 70 different diagnostics covering many

kinds of structural properties: measures of the degree distribution, clustering of links,

different notions of node centralities, frequencies of small motifs, mesoscopic structure

via partitioning into communities, spectral properties of the adjacency matrix, and

several others; a full list of diagnostics and features is in Appendix A.

3.3.1 Network data

Our set of 312 networks includes 192 real-world ones, obtained from Onnela et al.

[203], which they classified into 12 different categories (these are listed in Appendix
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B). In addition to these, we include 20 networks2 for each of 6 different generative

models (the networks in the last 3 categories were generated using code written by

Samuel Johnson):

• Duplication-Divergence-Attachment and Preferential Attachment (DDA+PA):

This model was proposed in the context of the biological evolution of protein

interaction networks [219] (the study of which is a particular theme of this the-

sis); it incorporates both duplication-divergence (Section 1.1.6.7) and preferen-

tial attachment (Section 1.1.6.3) mechanisms. At each step, with probability α a

new node is linearly preferentially attached to one node of the existing network.

With probability 1 − α, an existing node is chosen uniformly at random (the

parent) and all of its links are duplicated for the new node. However, for each

parental link, both it and its duplicate link from the child then have (indepen-

dently) a probability δDiv of being lost, but at least one of the links is retained;

and also neither parent nor child is allowed to lose all of its links (this is the

divergence step). Finally, the parent is attached to its child with probability

δAtt. We generate a set of 20 networks, of 50 nodes each, drawing parameters

uniformly at randomly from the ranges α ∈ [0, 1]; δDiv ∈ [0, 0.3]; δAtt ∈ [0, 1].

(These are as per the settings used when generating networks for model-fitting;

see the discussion in Section 5.5. A random subset of the ensemble generated

for that purpose was used here.)

• Preferential Attachment Poisson (PAP): This version of preferential attachment

was also proposed in the context of protein interaction evolution [218]. At each

step of this model, one new node is added to the network via linear preferential

attachment (see Section 1.1.6.3). The number of attachments formed by the

2The number 20 was chosen as it is close to the numbers of networks in the 12 real-world cate-
gories. Since we are including many different sorts of networks in this data set and our objective is
primarily to examine the structural variations between categories, we chose to use a relatively small
number of networks per category for ease of computation and visualisation.

91



new node being added is chosen from a Poisson distribution with mean m (the

number drawn is incremented by 1, to ensure that at least one attachment is

formed). Thus, m and the number of nodes n are the sole parameters for this

model. We generate 20 networks, 50 nodes each, drawing the parameter m

uniformly at random from [0, 30] (as per Ref. [218]).

• Erdős-Rényi: 20 networks chosen uniformly at random from all possible net-

works with 50 nodes and 100 links, i.e., the G(n = 50,m = 100) model (see

Section 1.1.6.1).

• Modular: 20 networks of 100 nodes each, generated as follows: we start with

10 modules of 10 nodes each. Initially each module is a fully connected net-

work (i.e., a clique), and there are no links between modules. Then, we iterate

through all of the links in the network and for each one, with probability 0.5,

we disconnect it from one of its nodes and rewire it to a new randomly chosen

node.

• Power-law degree distribution: 20 networks of 100 nodes each, generated using

the configuration model (see Section 1.1.6.3), which imposes a fixed degree

sequence (k1, k2, ..., k100) and then the expected value of nodes i and j being

connected is kikj/(100〈k〉), where 〈k〉 is the mean degree. We set 〈k〉 = 4 and

choose the degrees from a power-law distribution with exponent γ = 3.1—i.e.,

p(k) ∝ k−3.1. (These parameter settings were initially used to generate part

of an ensemble of networks we intended to use for the entropy comparisons

discussed in Section 4.5. A random subset of that ensemble was included here.

We chose γ = 3.1 as that is nearly in the middle of the range of exponent values

observed for real-world networks [28].)

• Small world: 20 networks of 100 nodes each, generated from the Watts-Strogatz

model (see Section 1.1.6.4), with 〈k〉 = 4 and p = 0.5. (This is a random subset
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of the ensemble used in Section 4.5; we chose p = 0.5 as it is in the middle of

the [0, 1] range for that parameter.)

3.3.2 Isomap and network clustering

For each of the 312 networks, we compute the full set of features, which amounts to

438. This yields a 312 × 438 design matrix. To deal with missing values (features

that are undefined or intractable for some networks), we filter out columns (features)

that are less than 80% full—i.e., the corresponding features could only be computed

for less than 80% of the networks.3 This leaves 338 columns. Computing pairwise

network/feature correlation distances (the correlation distance between two vectors is

1−|ρ|, where ρ is their linear correlation coefficient) and reordering the design matrix

using single-linkage clustering (see Section 1.3.3), such that similar rows or columns

are adjacent, allows similarities to be seen. See Figure 3.1.

To examine in more detail the nature of these similarities between these networks

as mapped to our feature space and to see if they correspond to meaningful divisions

or categories, we carried out a non-linear dimensionality reduction using the Isomap

algorithm [258] (see Section 1.3.3). This allows us to map the high-dimensional feature

space onto a low-dimensional projection, with dimensions chosen so as to maximise

the variance captured. We run Isomap on our 312 × 338 design matrix (setting the

parameter k = 11, i.e., each data point is connected to its 11 nearest neighbours,

this being the lowest that gives a connected network for our data), having replaced

missing values (which amount to 6.5% of all entries in the matrix) with the average

3We repeated the procedure with this threshold set at 70% and 90%, and this did not significantly
change the results. In either case, the first reduced dimension correlated very strongly with density
(ρ ≈ 0.94 for the 70% threshold and ρ ≈ 0.96 for the 90% threshold), whilst the second correlated
quite strongly with energy (ρ ≈ 0.73 and ρ ≈ 0.61, respectively) and with the number of nodes
(ρ ≈ 0.66 and ρ ≈ 0.79, respectively). Whilst these two dimensions captured over 95% of the
variance, we additionally observed that in both cases 2 of the next 3 reduced dimensions were ones
with strong correlations to group degree centrality (see Section 1.1.4.2) and the fraction of the
network covered by the 2-core (see Section 1.1.4.1). Thus, the groupings of networks obtained in
the results presented here (see Figure 3.2) are essentially preserved in these two settings.
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Figure 3.1: Network-feature matrices.

(Top left) Design matrix, with networks along the rows and features along the
columns, ordered using single-linkage clustering (see Section 1.3.3). Green entries
denote features that were undefined or were not computed for the given network due
to time constraints. (Top right) Matrix of pairwise correlation distances (1− |ρ|,
where ρ is the linear correlation coefficient) between networks. The roughly
block-diagonal structure indicates the presence of sets of closely related networks.
(Bottom) Matrix of pairwise correlation distances between features.
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of all entries in that column.4 We show the resultant low-dimensional embeddings in

Figure 3.2. Each data point represents a network’s position along the top 4 reduced

dimensions and different symbols depict the different domains from which the net-

works are drawn. We see that even in these 2-dimensional mappings, certain kinds of

networks form highly cohesive groupings, including financial, fungal, and metabolic

networks. Other network types, such as protein interaction, collaboration, and so-

cial networks, are less clear-cut, though still confined to relatively restricted regions

of the space. (This likely indicates that these latter categories are less well-defined

and include networks from a wider range of sources. Similar clustering patterns were

observed by Onnela et al. [203], who constructed a taxonomy of these networks using

a distance measure based on the mesoscopic response functions discussed in Section

1.1.4.8.)

4We also tried adding zero-mean Gaussian noise to these imputed missing values, with the spread
(variance) of the Gaussian being set to the empirical variance of the values in the column. Repeating
the computations with the noise added did not significantly change the results. The first reduced
dimension was still found to have a high correlation with network density (ρ ≈ 0.95), and the second
with energy (ρ ≈ 0.72) and the number of nodes (ρ ≈ 0.73). Whilst these two dimensions captured
96% of the variance, we additionally found that the third reduced dimension was substantially
correlated with group degree centrality (ρ ≈ 0.63) and the fifth one with the fraction of the network
covered by the 2-core (ρ ≈ 0.55), thus recapitulating the axes of structural variability depicted in
Figure 3.2.
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The first four Isomap dimensions combined capture nearly 99% of the total vari-

ance, with the first one alone accounting for over 91%. In Figure 3.3 we depict the

residual variance, i.e., the proportion of the variance in the data not captured in

a low-dimensional embedding (see Section 1.3.3), on the set of 312 networks as we

increase the dimensionality of the Isomap. These numbers indicate that differences

between several of the types of real-world and model-generated networks commonly

studied can be captured substantively by a very small number of quantities. This

would appear to be at odds with our earlier statement that networks are ‘intrinsically

high-dimensional objects’. There are at least two factors which are likely to be part

of the explanation for this. One is that we consider only a selected set of network

types, and they are of many very differing sorts; so the differences between these may

predominantly be accounted for by just a few structural features, as a large part of the

space of possible network structures is probably not covered by our data. However,

it may also be that it is not just an issue of limited data, but that the types of net-

work structures that are observed at all in the real world or obtained via commonly

used generative models are substantially constrained, such that they occupy only a

restricted part or parts of network structure space. The second factor is that by

mapping networks to a space of features we are clearly discarding some information;

and whilst the dimensionality of our feature space is several hundreds, it is also the

case that there are many correlations between these features (as discussed further in

Section 3.3.4) and the number of effectively independent structural properties they

can capture may be far fewer. We will explore further the issue of constraints on

particular network structures and how they might relate to correlations between our

network features, in Chapter 4.

To examine which network features these reduced dimensions are capturing, we

computed linear correlation coefficients of the dimensions with the original set of

features. The first reduced dimension is maximally correlated with the density of
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Figure 3.3: Residual variance as the number of Isomap dimensions is in-
creased.

links in the network (ρ ≈ −0.91). The second is most correlated (ρ ≈ 0.87) with

network energy (a measure of the number of indistinguishable networks with the

same degree distribution; see Section 1.1.4.9). This dimension also shows a substantial

association with the number of nodes in the network (ρ ≈ 0.73). Thus, unsurprisingly

(given the wide variety of networks examined), the two basic measures of network size

and density are sufficient to capture a large amount of the variability between the

different types of networks. The third and fourth reduced dimensions are not strongly

correlated with any such basic features; however, the features that show relatively

large correlations with the third dimension include group degree centrality (ρ ≈ 0.60)

and group closeness centrality (ρ ≈ 0.55) (see Section 1.1.4.2 for definitions), whereas

the fourth dimension correlates substantially with the fraction of the network’s nodes

covered by the 2-core (see Section 1.1.4.1) (ρ ≈ 0.67) and the network diameter (see

Section 1.1.4.3) (ρ ≈ −0.64). Thus, roughly speaking the third dimension is providing

an indication of how much variability there is in the centralities (which can be defined

in multiple ways) of nodes in the network; whilst the fourth dimension is associated

with how cohesively the network is connected up (a bigger 2-core is indicative of

99



greater cohesion, as is a smaller diameter, other things being equal). These two

lower dimensions allow us to see that certain kinds of networks, such as fungal and

metabolic, form tight clusters even with regard to these more complicated structural

characteristics.

3.3.3 Network classification

We also attempted to learn a supervised classification tree (see Section 1.3.2.1) for

the same set of networks, using MATLAB’s classregtree() function, to examine

how accurately different sets of network features can categorise the 312 networks into

the 18 classes (12 real, 6 model-generated) we specified. Because the low-dimensional

mapping of Figure 3.2(a) suggests that network size and density alone seem to account

for a lot of the differences between the network categories in our data set, we first

did the classification using these two features alone. This achieves a 10-fold cross-

validation accuracy (see Section 1.3.2.1 of 71.15 ± 2.10% (mean and standard error

over 10 folds). We then constructed trees using a third feature in addition to size

and density, iterating through all other features and picking one at at time. In

each case, we evaluated the classification accuracy in the same way. The highest

average accuracy obtained was 79.49±1.84%, for the feature pottsModelnumComm auc,

which represents the mean number of communities obtained when a given network is

partitioned at 10 different resolutions (equally spaced between the limits in which the

whole network is in one community and in which every node is a separate community)

via the Potts model [220], using the Louvain optimisation algorithm [48] (see Section

1.1.3). We show a three-dimensional scatter plot of all 312 networks in the space of

these three features in Figure 3.4. The next best features in terms of classification

performance are szegedIndex (see Section 1.1.4.3), with an accuracy of 78.85±1.96%,

and geodesicDistanceMean (see Section 1.1.2) with 78.85±1.95%. It is notable that

both these are measures of how well or uniformly pairs of nodes in the graph are
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connected. The Szeged index was in fact originally proposed for characterising graphs

of molecular structure [145]; it was suggested as an alternative to the Wiener index,

which is directly proportional to geodesicDistanceMean.
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We also built a classification tree allowing for the use of all of the features; the

optimal tree obtained used a subset of 16 features and achieved an average 10-fold

cross-validation accuracy of 80.45 ± 1.90%. These results suggest that adding fur-

ther features beyond 3 does not lead to any significant improvement in classification

accuracy for this varied set of networks; thus whilst some information about struc-

tural characteristics (in addition to the basic measures of size and density) is useful

for distinguishing between these network types, it is possible to essentially capture

this in just a single feature that our scan of a large feature space allows us to pick

out. In particular, the usefulness of the Potts model feature is in agreement with the

observations of Onnela et al. [203], who found that community structure at multiple

resolutions is informative in organising different kinds of networks. As noted there,

this suggests that the community-level or mesoscopic organisation exhibited by a

network is functionally relevant, and thus networks of a certain kind tend to display

certain specified or constrained kinds of community structures. However, as noted we

find that the Szeged index and the mean geodesic distance, measures of global con-

nectivity, are also nearly equally useful in distinguishing between the different sorts

of networks considered here. This suggests that whilst mesoscopic structure may be

relevant to the functionality of a particular network type, this correspondence may

to a large extent be captured by a simpler measure of global connectivity. Clearly

these aspects of network structure are not independent; indeed, in general the net-

work features we use display substantial correlations, which we seek to examine in

more detail in the next section as well as in Chapter 4.

3.3.4 Communities of features

Figure 3.1 suggests that the features also show substantial clustering. To examine this

further, we computed linear correlation coefficients (over the set of 192 real networks)

between pairs of features and represented this as a weighted network of features, where
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the weight of the link joining two features is their absolute linear correlation. This

network contains the 347 features that remain after having accounted for missing

values by filtering out columns that are less than 80% full and then replacing by

column averages (see the discussion in Section 3.3.2). We show this in Figure 3.5(a),

with node symbols representing a crude categorisation of features. We also carried out

community detection on this network to detect clusters of highly correlated features.

For this we used the C++ implementation of the Louvain optimisation algorithm

by Blondel et al. [48] to detect communities via the Potts method [220] (see Section

1.1.3). We tried 10 different evenly-spaced values for the resolution parameter (as

described in Section 3.3.3), after Onnela et al. [203]; for visualisation purposes, we

chose the resolution where the average community size is nearest to the square root

of the total number of nodes, yielding 21 communities with an average of about 16.5

nodes per community.

We depict one of these 21 communities in Figure 3.5(b) as an example of how

our approach can uncover interesting feature associations. This shows, for instance,

that summary statistics of the distribution of spectral scaling deviations, which were

proposed as a way of classifying network topologies [78] (see Section 1.1.4.7), are (for

the data considered) substantially captured by more directly interpretable measures

like bipartivity (see Section 1.1.4.2) and Newman-Girvan modularity (maximised here

via the Louvain method [48]; see Section 1.1.3), which are also quicker to compute.5

This is sensible in light of the fact that the spectral scaling deviations were proposed

to provide a measure of how close a network is to being bipartite or being composed

of cliques [78].

Here we have examined a single community from a single network constructed

on the basis of linear correlation coefficients between features on our particular data

5Even though exactly maximising the Newman-Girvan modularity is NP-hard [52] and thus not
tractable except for very small networks, the value from the Louvain heuristic used here (denoted
modularityFast) is nearly twice as fast to compute on average as features based on spectral scaling
deviations (see Figure 3.5(b)).
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(a)

(b)

Figure 3.5: Feature correlations on a set of 192 real-world networks.

(a) Network of features grouped by broad categories (see Appendix A for details).
Darker links represent stronger correlations; absolute correlations of at least 0.9 are
depicted by solid lines, and those in the range [0.8, 0.9) we depict by dashed lines.
(b) Magnified view of one community from the above network, showing feature
names and the average time taken to compute each one (on an Intel Core 2 Quad
Q9550 2.83GHz CPU). 105



set. To assess the robustness of the associations suggested one would like to look

at the effects of varying these particular choices—i.e., using other distance measures

between features or other network data sets. Whilst we have not done so due to

time constraints, the results presented here provide an example of how the sort of

large-scale comparison we carry out can be useful in identifying the most direct and

computationally tractable ways of capturing relevant aspects of network structure.

As an extension of classifying networks or features into discrete groupings, we can

attempt continuous regression of network features against functional properties. This

will help us to understand better how structural characteristics are correlated with

functionality, and might assist in enabling appropriate design choices in situations

where we are seeking to construct/modify a networked system towards a specific

end. In the remainder of this chapter, we demonstrate the potential utility of this

approach via two case studies. We first look at how structural features can be used

to estimate the hardness (i.e., computational difficulty) of a graph-theoretic problem

and thus provide insight into what kinds of networks are amenable to the performance

of useful computations. We then return to the domain of biology and seek to ask in

what ways evolution has constrained the structure of metabolic networks and what

this might tell us about the biological significance of the way these networks are

organised. Thus, by means of the following examples, we show how our methodology

can help provide insights into the functional relevance of different aspects of network

structure.

3.4 Hardness regression

Many problems defined on graphs are motivated by real-world tasks: a classic ex-

ample is the Travelling Salesman Problem (TSP), which involves finding the shortest

tour that traverses a given set of cities, visiting each exactly once [117]. Like many
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interesting graph problems, this is known to be NP-hard in general [99] (meaning

that there is no known algorithm that can solve it in time that grows no faster than

a polynomial function of the graph size), though there exist various heuristic and

approximate approaches to solving it. Here we show via regression against network

features how it is possible to identify informative predictors of quantities like the TSP

solution length and computation time for a given graph instance; in general, such pre-

dictors can be computed much more quickly than actually solving the problem itself.

In recent years, work in the area of parameterized complexity [73, 89, 198] has

sought to discover algorithms that can solve such NP-hard problems in polynomial

time for certain kinds of graphs: graphs that in some sense have a sufficiently ‘simple’

structure so as to make the problem easier than on arbitrary structures. However,

the major difficulty with this approach is often finding an appropriate structural

parameter of the graph that can capture this notion of ‘simplicity’ in the context of a

given problem and which is itself easy to compute. Because our framework allows the

computation and comparison of a large number of graph or network characteristics,

this might help filter out specific features that correlate in some way with the hardness

of solving the problem at hand. Hardness classification of TSP instances based on

a small predetermined set of features specific to the problem has been attempted

recently [245]; here we are able to utilise a much larger and more wide-ranging set

of network characteristics and automate the selection of the most informative ones.

Network features can also be regressed against some measures of the problem solution

(e.g., length of the optimal TSP tour) for known instances (i.e., a training set). This

allows identification of features that can be used as predictors of the measures of

interest for novel instances (i.e., test sets) and are significantly faster to compute

than solving the problem itself. To demonstrate this, we take the specific example of

solving TSP on the distance matrix of pairwise shortest-paths between nodes for a

given graph, using the heuristics described in the next section.

107



3.4.1 TSP solvers

We examine the relation of network structure to the TSP solving performance of

three different types of randomised heuristic methods, all of which have been widely

used for combinatorial optimisation in general: cross-entropy, genetic algorithms, and

simulated annealing. The cross-entropy method [68,232] was originally proposed as a

way of doing rare-event simulation [231] and was later extended to optimisation [230].

It is an iterative Monte Carlo method that explores the search space of possible

solutions by random sampling but uses a technique known as importance sampling

to improve efficiency: this involves sampling from a distribution that increases the

probability of the occurrence of a rare event (here, finding the optimal solution). The

basic nature of the iteration is as follows:

1. Generate a random sample of possible solutions (i.e., for TSP, possible node

sequences) using some specified mechanism (probability distribution over in-

stances).

2. Use the sample to update the parameters of the mechanism for the next iteration

to improve efficiency (get closer to the optimal solution).

The key feature of the cross-entropy method is that it provides a precise way to

carry out step 2 based on minimising the Kullback-Leibler (K-L) divergence (or cross-

entropy) between the current sampling distribution and the theoretically most efficient

one for importance sampling. The K-L divergence [denoted DKL(p||q)] is a standard

measure of the distance between two probability distributions (p and q, defined over

domain D) and is defined as

DKL(p||q) =

∫
D
p(x) log

p(x)

q(x)
dx. (3.1)
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The cross-entropy method has been applied to a range of combinatorial optimisa-

tion problems; we used the MATLAB TSP solver implemented as part of the Cross-

Entropy Toolbox [3].

In order to compare the results obtained using cross-entropy with other popular

optimisation methods for solving TSP, we also utilised a genetic algorithm [128] im-

plemented by Joseph Kirk [2]6, and a simulated annealing [57] implementation by

Aravind Seshadri [1]7.

3.4.2 Network feature correlations

We generate a set of 500 synthetic networks of 50 nodes each, using the Preferential

Attachment Poisson (PAP) model (as described in Section 3.3.1); the model parame-

ter m is chosen uniformly at randomly from the range [0, 30], following Ref. [218]. We

chose to use this model as an example for this purpose because it generates networks

with heavy-tailed degree distributions (see Section 1.1.6.3), a property that has been

observed in several kinds of real-world networks [28]. For each of these networks, we

compute a feature vector, along with the length of the best TSP solution returned

by the cross-entropy algorithm (which we denote tspl). This solution length is equal

to the sum of lengths of all of the pairwise shortest-paths included in the solution,

normalised by the shortest possible length for the given graph, which is equal to the

number of nodes since the graphs are unweighted. We also record the time taken

to compute each best solution, allowing us to rank the different properties based on

their correlation with either TSP length or runtime. We show scatter plots of three

of the most correlated features found in each case in Figure 3.6.

Several types of features show strong correlations to the solution length: in partic-

ular, modularity (which we optimise via the spectral method; see Section 1.1.3) and

6We used the default settings of a population size of 100 and 10, 000 iterations.
7Following example suggestions, we set the initial temperature to 30, and the cooling rate to 0.5

(the initial temperature was multiplied by this factor every 10 iterations). The number of iterations
used was 1, 000 and a maximum of 4 node pairs were swapped in each iteration.
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Figure 3.6: Network features correlate significantly with outputs from a
cross-entropy TSP solver.

(a) Example features with high correlation (denoted by ρ) to solution length from
the cross-entropy TSP solver, over a set of 500 networks from the PAP model (see
Section 3.3.1). The p-values are for the null hypothesis of zero correlation and are
Bonferroni-corrected to account for the multiple tests (i.e., they are multiplied by
the number of features tested). (b) Time gain ratio: TSP solver runtime divided by
diagnostic runtime. This indicates the putative gain in computational time by using
these features to estimate solution length on novel TSP instances, as opposed to
actually solving them.
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Figure 3.6 (continued): (c) Example features highly correlated to TSP runtime. The
algebraicConnectivity and degreemin features indicate that this solver is faster for
networks with more uniform connectivity (see the discussion in the main text). See
Appendix A for feature details.

the maximum of geodesic node betweenness centrality (see Section 1.1.4.2). Networks

that are more modular or have very high-betweenness nodes tend to have longer TSP

solutions. This appears to be reasonable because of the need to take long paths to get

between sparsely connected modules or to cycle back frequently to a high-betweenness

node in order to get from one part of the network to another. It also suggests that

these features, which can in general be computed much more quickly than actually

solving TSP8, are useful in obtaining quick estimates of TSP solution length for a

given graph. Figure 3.6(b) shows that the maximum betweenness centrality, for in-

stance, is on average about 10, 000 times faster to compute than running the TSP

solver on the corresponding graph. In general, the time required for computing this

feature scales as a polynomial function of n, the number of nodes in the network

(it is proportional to n3 using a version of the standard Floyd-Warshall algorithm),

8This is based on the algorithms that we actually employ. For instance, maximising modularity
exactly is also NP-hard [52]. However, a comparison of the time taken to solve TSP via the cross-
entropy heuristic versus the time taken to maximise modularity via the spectral heuristic (both
heuristics implemented in MATLAB) shows that the latter is 100 to 300 times faster for the data
considered here (see Figure 3.6(b)).
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whereas solving TSP as noted earlier is NP-hard.

There are also significant feature correlations with the runtime of the cross-entropy

TSP solver (examples depicted in Figure 3.6(c)): algebraic connectivity [60] (see

Section 1.1.4.7) and minimum degree appear to be amongst the best predictors in

this case. This also seems sensible: networks that are more uniformly connected

(something also likely to co-occur with a relatively high minimum degree) should

be ones in which finding a good TSP solution is faster, as a randomly chosen node

sequence will tend to be not too far off the optimal path. It is worth noting that the

features highlighted by this computation depend not just on the particular problem

being solved, but also on the algorithm used to solve it.

For the two other TSP solvers we tried, based on a genetic algorithm and simulated

annealing, we found that the correlations of their solution lengths (denoted by tsplga

and tsplsa respectively) with these network parameters are quite similar, but the

correlations of runtimes are substantially different, as depicted in Figures 3.7 and

3.8. This indicates that when observing correlations with runtime, we are in large

part picking out aspects of network structure specifically relevant to the performance

of each algorithm (in fact, for these two algorithms, there is not much variation in

runtime across the set of networks employed here).

The detection of features like modularity and maximum node betweenness central-

ity, which show very high correlations with TSP solution length across our 3 solvers,

suggests that directly constraining these features when constructing synthetic net-

works (at least for the class of preferential attachment networks considered here) can

be a means of obtaining networks with a specified property such as a relatively short

TSP solution. Also, correlations with runtime (like the observation that the cross-

entropy solver is faster for more uniformly connected networks) can be used to choose

an appropriate solver for a network with particular structural characteristics, and can

also motivate a deeper investigation of whether the sorts of features identified here can
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Figure 3.7: Network feature correlations with genetic algorithm TSP solver.

(a),(b) Correlations of network features (as in Figure 3.6) with solution length over a
data set of 500 networks from the PAP model. (c),(d) Correlations to TSP runtime.
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Figure 3.8: Network feature correlations with simulated annealing TSP
solver.

(a),(b) Correlations of network features (as in Figure 3.6) with solution length over a
data set of 500 networks from the PAP model. (c),(d) Correlations to TSP runtime.
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serve as markers of ‘simplicity’ with respect to a particular TSP heuristic, for graphs

in general as opposed to the particular class considered here. Whilst our observations

here are contingent upon the particular choices made, such as the graphs considered

and the solvers used, and further work is needed to obtain more robust conclusions,

the examples presented demonstrate how our approach can help to highlight specific

diagnostics and aspects of network structure which are relevant to a particular task

and are worth examining in greater detail.

3.4.3 Effect of network density

We also generated another set of 250 synthetic networks using the Lancichinetti et

al. community detection benchmark model [159] (see Section 1.1.6.5). For these net-

works, we fixed the number of nodes and mean degree but varied the other model

parameters. On this more restricted set, in which all networks have about the same

density of links, the correlations between TSP solution length or runtime (using the

cross-entropy algorithm) and other network features become weaker (see Figure 3.9),

suggesting that density variation is a significant factor in producing graph structures

with varying complexity9, with respect to this algorithm (the linear correlation of

network density for the PAP data set is 0.78 with solution length and 0.83 with run-

time). However, density is not the only relevant factor; for instance, Figure 3.9(a)

shows that the mean geodesic distance between node pairs is still a substantial pre-

dictor of TSP solution length, even with density held fixed: networks that are better

connected (have lower mean geodesic distance) tend to have shorter TSP solutions.

9This is probably because constraining the density also limits the scope for variation in many other
aspects of graph structure. This is why many network features are found to co-vary substantially
with density, as can be seen from its very strong correlation with the Isomap dimension capturing
over 90% of the total variance in the low-dimensional mapping shown in Figure 3.2(a).
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Figure 3.9: Network feature correlations with cross-entropy TSP solver,
when density is fixed.

(a) Examples of features that display high correlation with solution length over a
data set of 250 networks randomly generated using the Lancichinetti et al.
benchmark [159]. (b) Example features highly correlated to TSP runtime. See
Appendix A for descriptions of the feature names.
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3.5 Phylogeny regression

We now consider some biological networks and demonstrate how regression against

network features can also be used to find structural diagnostics that are potentially

functionally relevant. Networks are often used to model aspects of biological organ-

isms, such as their metabolic pathways (sequences of biochemical reactions involved

in metabolism); in this context, it is natural for a comparative study of such net-

works to use, as a benchmark, evolutionary relationships between the corresponding

species, which can be represented by means of a phylogenetic tree. We would like

to ask the following question: are there aspects of network structure that appear

to have been constrained by biological evolution, such that they show a pattern of

correlated evolution with the phylogeny (also known as a phylogenetic signal)? An

observation of such characteristics might help to motivate more realistic models for

network evolution in a given context by placing constraints on the conservation and

drift rates of different sorts of network properties.

Here we examine this using ideas from the area of the phylogenetic comparative

method [86, 169, 175]: one can make the very strong (but common in evolutionary

studies) assumption of a certain stochastic process (e.g., Brownian motion) underly-

ing the variation in network characteristics along the branches of a phylogeny and

then estimate the extent to which different characteristics have been evolutionarily

conserved and are constrained by the structure of the phylogeny. We depict this in

Figure 3.10) which shows the simulation of a random drift or Brownian motion pro-

cess on a toy phylogeny created by us. We suppose that there is some time-varying

characteristic or trait (let z(t) denote its value at time t), which has a value of 0 at

the root of the phylogeny (i.e., z(0) = 0). Subsequently, we allow the trait to evolve

in discrete time along the tree according to a one-dimensional Brownian motion pro-

cess with drift parameter β; this means that we have z(t + 1) = z(t) + ω, where

ω ∼ N (0, β), the normal distribution with mean 0 and variance β. At each branching
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point in the tree, the process splits into two processes which then begin to evolve

independently. The final trait values at the leaves are depicted via the colour bar in

Figure 3.10. The utility of this model is that leaves (species) which split more recently

are likely to exhibit closer trait values; thus it simulates a trait that co-evolves with

the phylogeny, i.e., a phylogenetic signal.

3.5.1 Data

We obtained a set of nearly 1, 000 metabolic networks (a total of 620 of which are

used here), represented as networks of interacting pathways (NIPs), from Aurélien

Mazurie [178]. These are networks in which each node represents an entire metabolic

pathway, and two nodes are linked if the corresponding pathways have shared metabo-

lites10, with link weight equal to the number of metabolites shared.11 Obtaining an

independent high-quality phylogeny for this range of species is difficult, so we chose

to use the Tree of Life [170], which provides an unweighted evolutionary tree for a

large number of organisms. For a subset of these, a weighted Tree of Life is also avail-

able [61,164], with the weights or lengths of the branches corresponding to estimated

evolution times between species (as in Figure 3.10). In the unweighted tree, there is

no information about evolution times; in effect all branches are taken to be the same

length, clearly an incorrect and very simplistic assumption. Thus, we will use the

unweighted tree only for purposes of comparison, as a sort of negative control.

In the unweighted Tree of Life, we found matches for 158 of the genuses for which

we had at least one NIP; the total number of networks matched was 450 (networks

were grouped at the genus level in order to have multiple samples for each instance

and make the model fit less susceptible to noise in the data). In the weighted Tree of

10Only water was excluded; other widely-occurring metabolites, such as adenosine triphosphate
(ATP), were included by Mazurie et al. [178] as these were found to provide useful structural in-
formation [177]. None of the metabolites was overly ubiquitous; all the networks used had a link
density of below 60%.

11As mentioned in Section 1.1.4, many of our network diagnostics are defined for unweighted
networks and thus link weights are ignored when computing these.
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Figure 3.10: Example of Brownian motion process on a toy phylogeny.

The upper plot depicts how the trait value evolves with time (with drift parameter
β = 1); red dots depict branching points. The lower plot shows the underlying tree
structure, with the colours at the leaves depicting the final trait values. The
relevant property of this model is that species that branched off from each other
more recently have had less time to diverge and are thus more likely to exhibit
similar trait values.
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Life, we found 145 matching species to our set of metabolic NIPs, with a total of 341

networks being matched (for this tree, we do not group networks at the genus level,

because there are fewer species and also because the weighted branching structures

below genus level are more informative).

3.5.2 Model fitting

In order to fit the data to the standard random drift or Brownian motion model of

trait evolution to try and detect phylogenetic signals in network features, we do need

the branch lengths on the tree—i.e., the lengths of time between different speciation

events. We used the unweighted tree for purposes of comparison, assigning equal

lengths to all branches (and thus discarding all information about actual branching

times). Comparing how well the model fits the data on this unrealistic tree with the

fit on an actual weighted tree with meaningful branch lengths will help provide an

indication of the strength of the phylogenetic signal in the observed network traits.

To fit the model we would first like to compute the differences in the value of

a particular feature or trait between pairs of species in the phylogeny. However,

if we just take the differences between the observed species (i.e., the leaves of the

phylogeny), then these are not all independent; for instance, in Figure 3.10, the

difference between the trait values for species 1 and species 2 is not independent of

the difference between species 1 and species 3, because the paths between these pairs

of species in the tree are common between species 1 and species 16. Thus, we use the

method of independent contrasts [86], which instead considers pairs including both

current and ancestral species, such that all pairwise differences (contrasts) in trait

values are independent of each other. For the tree in Figure 3.10 this proceeds as

follows: we start from the root (species 29), and the first contrast computed is between

its two children, i.e., species 21 and species 15 (of course, we have not observed the

trait value at internal nodes like 21; these have to be estimated, as described below).
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The next contrast taken is that between the two children of species 21: species 19

and species 22. This is followed by the pair of children of species 19: species 18 and

species 20. We proceed in this way, at each step choosing the children of a node from

a previous step, until we are down to all of the leaf nodes. Because the number of

internal nodes is one less than the number of leaf nodes, we obtain precisely l − 1

independent contrasts for a phylogeny with l leaves.

We then fit a linear regression model to these contrasts and the corresponding

divergence times [175]:

V = βt + ε. (3.2)

This is a random drift model: V is the vector of contrasts for a given feature/trait, t is

the vector of mean times for which the respective species pairs have evolved mutually

independently, β is the model parameter representing the rate of evolutionary drift,

and ε is the vector of noise terms or residuals. Thus, for each feature, we independently

obtain a fitted estimate of β, and ε gives a measure of how far the observed trait values

deviate from model predictions. We can take the sum of squares of these residuals to

get the deviance, a standard measure of goodness-of-fit (see Section 1.3.2.2). Lower

deviances can be taken to indicate stronger phylogenetic signals.

In practice, computing the independent contrasts requires knowing the β parame-

ter (which is what one wants to estimate), as this has to be used to estimate the trait

values at the internal nodes (i.e., the unobserved ancestral species). Thus, we use

an iterative procedure described by Martins [175]. The essential idea behind it is to

obtain initial estimates of the ancestral trait values by taking an unweighted average

of the two daughter species:

za =
zi + zj

2
. (3.3)

Here za denotes the trait value at an ancestral species a, and i and j are the daughter

species of species a. For instance, for the phylogeny in Figure 3.10, we would have
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z16 = (z2 + z3)/2 (where z2 and z3 are the measured trait values for species 2 and

3). We can then propagate this value of z16 to obtain estimates further up the tree:

z17 = (z1 + z16)/2, and so on. Having thus obtained an initial value for all nodes in

the phylogeny, we compute the independent contrasts and fit the regression model of

Equation (3.2) to obtain an initial estimate of β. This is then used to obtain updated

estimates of internal node values using an equation of the following form [86,175]:

za =
zi/(βti) + zj/(βtj)

1/(βti) + 1/(βtj)
. (3.4)

Here ti is one half of the time interval between species i and species a. Having

obtained these updated estimates for the ancestral trait values, the whole process is

then iterated, with the values for β and the trait being alternately re-estimated. This

is continued until the values have converged to a steady state.12 The algorithm is

not guaranteed to converge, but we did not face convergence problems in any of our

computations, and in general convergence is usually quite rapid, occurring within 20

iterations [175].

To assess the extent to which our simplistic model is able to explain the variation

in the individual network features across species, we create two additional models to

compare against. One is what we refer to as the positive null model (i.e., it represents

a situation that should be observed if the features have indeed co-evolved with the

phylogeny): we run a Brownian motion process forwards on the tree starting from

the root (and having chosen a particular value of β). This gives a set of values at the

leaves, which we then normalise (using a logistic function, so that they are comparable

with our actual features, which have been normalised in the same way) and fit to the

model using the procedure described above. By doing this many times for a range

of β values (we chose 10 different values of β, evenly spaced on a logarithmic scale

12We use a convergence criterion of change in the deviance being less than 0.001% from one
iteration to the next.
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running from 20 × 10−3 to 29 × 10−3, and ran 100 simulations for each value), we

obtain an estimate of the range in which our fitted β and deviance values lie when

the data has actually been generated via the process we are assuming in the model.13

The other model is what we call the negative null model (i.e., it represents a

situation in which there is no phylogenetic signal in the feature values): we shuffle

our actual values for any given network feature, so that each value is re-assigned to a

randomly chosen species, and then fit the model to this shuffled version of the data.

If there is any phylogenetic signal in the actual features that we are measuring, then

we would expect it to be lost on shuffling. We do 4 shuffles for each of our network

features14 and average the β and deviance values obtained over the 4 shuffled fits.

We fit the Brownian motion model to 222 different network features (some di-

agnostics had to be excluded because they could not be feasibly computed or were

not defined for all networks, as discussed in Section 3.2), and each one was fitted

separately. The values of the features were normalised to lie between 0 and 1 via

the logistic function, as described earlier. In Figure 3.11, we show the results of the

model fitting procedure to the actual data and to the two null models just described.

The two plots correspond to the two versions of the phylogeny mentioned earlier:

unweighted and weighted. We see that there is no clear separation between the fits

to the actual and shuffled versions of the data in the unweighted case; but a much

stronger signal is apparent in the data in the weighted case, where the range of values

observed for β and the deviance also overlap substantially with those from the positive

null model (simulated data). The unweighted phylogeny can be regarded as extremely

13Note that the β values recovered from the fitting are not the same as those originally used
to generate the data, due to the intermediate normalisation step involved (we checked that the
original values were indeed accurately recovered if no normalisation was done). However the same
normalisation is used for the actual data and the null models, so that the fitted values obtained are
comparable.

14We chose to do no more than 4 shuffles per feature due to time constraints; as we are examining
a large number of features, in sum we obtain a sufficiently large number of samples from the shuffled
feature distribution to be able to demonstrate a significant difference between the shuffled and actual
features, as discussed shortly.
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(a) Unweighted phylogeny

(b) Weighted phylogeny

Figure 3.11: Phylogenetic signal in networks of interacting metabolic path-
ways.

Plots of β versus deviance for Brownian motion model fits to network features on
the two phylogenies. Green triangles: actual data; Cyan inverted triangles: negative
null model—i.e., shuffled data (each point is an average over fits to 4 independent
shuffles of a single feature); Blue dots: positive null model—i.e., simulated data. Fits
with exceptionally high values of β or deviance (i.e., those lying outside the range of
the axes) have been excluded to make the plots easier to view (for the unweighted
phylogeny, 32 of 222 actual feature fits and 34 of the mean shuffled feature fits are
not shown; for the weighted phylogeny, 8 actual feature fits and 117 mean shuffled
ones are not shown). It is evident that for the appropriate weighted phylogeny, most
actual network characteristics are much better fit by the model than would be
expected at random, indicating a significant (see main text for quantification and
discussion of this) phylogenetic signal in the structural properties of these networks.
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näıve (it makes no attempt to estimate branch lengths in a meaningful way), whilst

the weighted phylogeny is much more realistic as it contains actual information about

estimated divergence times. Thus the presence of a significant phylogenetic signal on

the more meaningful tree suggests that many of these network features are correlated

with aspects of biological function which are relevant for evolution.

In an attempt to quantify the significance of the signal, we compared the dis-

tributions of the deviance values for the actual features and their shuffled versions;

because deviance is a measure of how well the model fits the data, significantly lower

deviances for the actual features would indicate that they are better explained by

the model than could be expected at random. For the unweighted phylogeny, the

mean and standard deviation of the deviances are 302.75 ± 81.69 for the actual fea-

tures depicted in Figure 3.11(a) and 495.56 ± 3146.715 for their shuffled versions (4

shuffles each). We compared the two distributions using a Mann-Whitney U test, a

non-parametric test for assessing whether the values in one sample tend to be larger

than in another. This gives a p-value of 9.59 × 10−8, for the null hypothesis that

both samples are from identical distributions. For the weighted phylogeny, the mean

and standard deviation of the deviances are 522.20 ± 434.89 for the actual features

depicted in Figure 3.11(b), and 2949.4±2204.1 for their shuffled versions. The Mann-

Whitney U test gives a p-value of 2.91×10−91. Whilst these p-values cannot be taken

as directly meaningful, because the different network features are not independent,

they nevertheless provide an indication of how much more significant the feature sig-

nals on the weighted phylogeny are, complementing the visualisations in Figure 3.11.

Thus this is further evidence that many aspects of the structure of these metabolic

pathway networks are biologically significant.

We can also examine the deviance values for the fits obtained for individual net-

work features to see which particular network characteristics are most correlated with

15The large standard deviation is due to a few extreme values.
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Figure 3.12: Network features with the strongest phylogenetic signals.

We show the lowest deviances from the Brownian motion fit on the weighted
phylogeny. Dark green (bottom) bars are deviance values for actual feature data;
light green (middle) bars are averaged deviances over 4 fits to random shuffles of
that feature’s values amongst the tree leaves; and yellow (top) bars are the
equi-ranked (i.e., 10 lowest, in order) mean deviances obtained amongst fits to
shuffled versions of all 222 network features examined.
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a given phylogeny under our model. Figure 3.12 shows the 10 features with the lowest

deviances for the weighted phylogeny. For comparison, we also show the deviances

obtained after shuffling the values of each those features (average of fits to 4 shuffles,

depicted by the light green middle bars) and, as a more stringent null model, also

the 10 lowest deviances obtained amongst mean fits to the shuffled versions of all

network features considered (yellow top bars). We note again that the actual feature

data is significantly better fit than the null models. In particular, the rich-club coeffi-

cient, which is a measure of the fraction of a network’s nodes (ordered by decreasing

degree) which show high mutual connectivity (see Section 1.1.4.1 for the precise def-

inition) is found to be most strongly correlated with the weighted phylogeny; see

Figure 3.13. This suggests that the proportionate size of the ‘rich club’ of hubs, or

high-degree metabolic pathways in the NIPs, might be a significant differentiating

factor between different types of species. The rich-club coefficient was originally pro-

posed in the context of social and Internet networks [64, 285], and to our knowledge

has not previously been examined for such metabolic pathway networks. Thus, whilst

this particular feature is not unique in exhibiting a strong phylogenetic signal, and

is in fact strongly correlated for this data with other simpler features that exhibit

similar signals, such as density (see Figure 3.12), it does provide an example of how

our high-throughput approach can highlight the potential relevance of particular as-

pects of network structure in contexts where they would have been unlikely to crop

up otherwise.
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To test our method on a more specific and higher-confidence phylogeny, we re-

peated this procedure for a set of more detailed metabolic networks from 17 bacterial

species belonging to the genus Pseudomonas; this data set contains 6 networks for

each species, corresponding to 6 distinct metabolic pathways [188]. In this case, too,

we obtained a better fit with actual network features compared to the negative null

model, suggesting that aspects of the structure of these detailed metabolic networks

are also relevant to biological function, though the much smaller number of data

points makes it harder to get a strong signal (see Figure 3.14). We also find that

the largest values of the drift parameter β are obtained predominantly for features

corresponding to 2 of the 6 pathways: lysine degradation (4 of the top 10) and pheny-

lalanine metabolism (3 of the top 10). This is in accord with the much more detailed

evolutionary model fit by Mithani et al. [188], which suggested a higher probabil-

ity of random rewiring for these 2 pathways relative to the others; as noted there,

this appears to be in agreement with experimental data suggesting that some of the

Pseudomonas bacteria are losing their ability to assimilate lysine and phenylalanine.

We show the best-fitted features in Figure 3.15. Once again real feature fits are

substantially better than the shuffled ones. Summary statistics of the distributions of

certain node centralities such as subgraph centrality and eigenvector centrality (see

Section 1.1.4.2), alongside measures like modularity and the rich-club coefficient men-

tioned earlier, show up prominently in the set of best-fit features. This suggests that

the corresponding aspects of the structure of those particular Pseudomonas metabolic

pathways are biologically interesting and may be used to guide more detailed inves-

tigation of the correspondence between structure and function in these networks.

One limitation of our methodology is that it is generally able to indicate only

associations, not causal connections. It also involves the use of a random drift model

which cannot capture actual biological evolution. However, the associations thrown

up may serve as starting points for motivating more realistic evolutionary mechanisms.
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Figure 3.14: Phylogenetic signal in Pseudomonas metabolic networks.

Plot of β versus deviance for Brownian motion model fits to metabolic network
features on the Pseudomonas phylogeny [188]. Red: actual data (fits to 804
features, distributed over 6 pathways—we obtained 6 separate networks for each
species from Aziz Mithani); Cyan: negative null model—i.e., shuffled data (804
mean fits—each point is an average over fits to 4 independent shuffles of a single
feature); Blue: positive null model—i.e., simulated data (1000 fits). Fits with values
of β or deviance lying outside the axis ranges have been excluded to make the plots
easier to view (240 of the 804 actual feature fits and 279 of the mean shuffled
feature fits are not shown).
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Figure 3.15: Pseudomonas metabolic network features with the strongest phy-
logenetic signals.

We show the lowest deviances from the Brownian motion fit on the Pseudomonas
phylogeny [188]. Dark green bars are deviance values for actual feature data; light
green bars are averaged deviances over 4 fits to random shuffles of that feature’s
values amongst the tree leaves; and yellow bars are the equi-ranked (i.e., 10 lowest,
in order) mean deviances obtained amongst fits to shuffled versions of all 808
features examined. Features come from networks of 6 different metabolic
pathways [188]; the 3-letter prefix in each feature label denotes the pathway it
relates to (Pen: pentose phosphate pathway, Lys: lysine degradation, His: histidine
metabolism, Phe: phenylalanine metabolism).
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For instance, one may simulate models of proposed mechanisms such as duplication-

divergence (see Section 1.1.6.7), and examine whether particular network features

such as the rich-club coefficient tend to co-evolve with those mechanisms, and what

particular parameter settings or other tweaks in such a model might lead to behaviour

consistent with the phylogenetic signals we observe. If one wishes to reproduce the

conservation of rich-club behaviour in NIPs for instance, then something like a model

where links between high-degree nodes have a lower probability of being lost may be

suggested. Whilst it is true that our methodology, due to its operating at a high

level of abstraction16, leads only to quite preliminary suggestions and hypotheses of

this sort, we believe these can help to guide more focused investigation in the right

directions and also sometimes illuminate cross-disciplinary connections that might

have been difficult to arrive at otherwise. In Chapter 5, we provide a further example

of how our feature-based network representation can be utilised to fit generative

models to biological networks and obtain some insight into evolutionary mechanisms.

3.6 Discussion

In this chapter, we have laid out a data-driven approach to organising and utilising

many different ways of characterising networks. Our framework can serve as a general-

purpose tool for exploratory investigation of networks, and can suggest which aspects

of network structure are relevant in a given context. The approach we take is, in

a sense, complementary to standard perspectives in network science. When a new

diagnostic for studying networks is proposed, it is typically motivated by the need to

capture a particular structural aspect or by a desire for more efficient computation

relative to existing methods. Here, we instead seek to apply a large and wide-ranging

16Networks themselves represent abstractions of real-world systems where much information has
been discarded; and our mapping of networks to a feature vector representation involves a further
level of abstraction. Whilst this involves the loss of a lot of detail, it is also what enables us to
examine and compare such a large number of objects simultaneously.
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set of diagnostics to a set of networks, and allow the resulting information (the design

matrix) to direct our attention to aspects of network structure that are of interest in

a given context.

We demonstrate via examples ways in which our methodology can be applied to

the study of networks, in particular for the inference of relationships between struc-

tural properties and functional outcomes: detecting phylogenetic signals in biological

networks, and detecting structural features of graphs that can be used to estimate

the hardness of computational problems defined on them. In each case, we show that

the approach adopted here can highlight connections between network structure and

functionality that might have been hard to identify by conventional means, which

typically involve studying a small number of networks and examining a small number

of diagnostics. For instance, we find that the rich-club coefficient of the metabolic

pathway interaction networks we study appears to capture a structural aspect which is

evolutionarily significant; given that the rich-club phenomenon was originally posited

for social networks, this diagnostic may not normally have been used to characterise

metabolic networks. As discussed in the previous section, such an observation may

help to motivate certain kinds of evolutionary mechanisms, which can then be mod-

elled and simulated more rigorously to examine how well they reproduce trends in

the evolution of particular network features that have been noted here. Similarly, the

finding that network features like the maximum node betweenness and average cyclic

coefficient (see Section 1.1.4.3) are strongly correlated with the TSP solution length

across a range of solvers, at least for a class of networks generated via preferential

attachment, would be hard to obtain without a large-scale study of this sort.

As mentioned in the previous section, our methodology operates at a high level of

abstraction and as a consequence of this, the conclusions we obtain tend to be prelim-

inary and suggestive in nature. Another limitation of the work described here is the

choice of specific data sets and generative models for the networks we examine. The
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choice of the set of network diagnostics, whilst covering a fairly wide range of the ex-

isting literature, is also necessarily subjective and non-comprehensive. Thus, though

the high-throughput approach enables the simultaneous investigation of a larger num-

ber of networks and diagnostics than has been attempted previously, it is important

to keep in mind the specific choices of these that have been made when interpreting

any of our results. In our case studies here and in the subsequent chapters, we at-

tempt to study the effects of varying at least some of these choices, but given more

time one could build further on the sets of networks and diagnostics compiled here.

Overall, keeping in mind these caveats, we believe our examples demonstrate how the

approach adopted here might serve to aid tasks involving the characterisation and

comparison of networks in a variety of settings, by uncovering in a semi-automated

fashion connections and aspects of network structure which can serve as pointers for

more detailed and rigorous human investigation.

We have shown here how a simplistic evolutionary model (random drift) can be

used to identify network characteristics that correlate with some known functional or

phenotypic property. To take this further, in many instances one would like to de-

velop realistic models of network evolution as a whole: models that generate synthetic

networks which look as similar as possible to the real network. Thus, it is desirable

to be able to compare and match models to data, in order to quantify the structural

complexity of observed real-world networks and identify generative mechanisms that

reproduce it. In the following two chapters, we show how our high-throughput ap-

proach, combined with existing ideas from statistical physics and Bayesian inference,

can be used to develop an efficient methodology for doing this.
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Chapter 4

Feature Degeneracies and Network

Entropies

In this chapter, we examine patterns of correlations between different network features

and how these correlations vary depending on the set of networks being analysed. We

attempt to relate this to notions of network entropy. This chapter is exploratory in

nature, and might normally be placed at the end; however we have put it here as

some of the ideas described here help to set the scene for the next chapter. Part

of the work presented in this chapter will be included in a manuscript currently in

preparation [16].

4.1 Background

In Chapter 3, we described how our library of network diagnostics allows us to ob-

tain a feature vector representation of a given network, which in effect maps it to

a high-dimensional vector space. Our focus thus far has been on looking at how

different dimensions of this space relate to functional characteristics of certain kinds

of networks, and we have demonstrated with specific case studies how regression on

structural features can help identify functionally relevant aspects of network structure.
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However, one can also examine the correlations within the set of features themselves,

rather than regressing against an external variable. We have already seen in Figures

3.1 and 3.5 that there are substantial correlations amongst the features we are con-

sidering; clearly the dimensions of our vector space are not all measuring independent

quantities.

One can discern two separate causes for the correlations we observe between net-

work features. The first is that for a given pair of features, there might be a general

relationship between the aspects of network structure they are measuring: for in-

stance, the density of links is related to nearly every other structural diagnostic, as

networks that either have very few or very many links are much less likely to show

complex structure than networks with intermediate densities. Such relations should

be observed for nearly any set of networks one might examine, as long as it contains

sufficient variation in the characteristics being examined to allow for correlations to

be discernible. The second type of cause could be a relationship that is imposed

by the constraints particular to a specific family of networks (or to the observations

one is able to make from that family). For instance, in Watts-Strogatz small-world

networks (Section 1.1.6.4), if the re-wiring is low then the clustering coefficient [see

Equation (1.19)] will be largely determined by the node degrees, something which is

not the case in general. Thus, correlations of this second type can inform us about

the nature of the structural constraints imposed on a particular family of networks,

and can be seen as an indicator of how ‘complex’ a given kind of network is, if we

take more constrained structure to generally correspond to greater complexity, as per

Bianconi [43]. In this chapter, we make these ideas more precise, and also relate them

to notions of quantifying network complexity via thermodynamic entropy in statisti-

cal physics [22–24, 43–45]. We demonstrate how our vector space representation can

be used to define a novel notion of network entropy, and explore its relation to the

thermodynamic one.
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4.2 Network feature degeneracies

We start by observing how different network features correlate across different sets of

real-world networks. Figure 4.1 depicts the absolute values (i.e., magnitudes) of linear

correlations between pairs of features across multiple network data sets: here we use

only the interaction networks contained in the set of 192 networks used previously

(Appendix B), leaving out the similarity networks as many features that capture

topology, or unweighted structure, are constant for these fully connected networks, so

many of the feature-feature correlations are not meaningful for these. There are a total

of 137 such interaction networks in 9 categories; the figure depicts correlations across

the entire set as well as for the subsets thereof corresponding to Facebook, brain, and

protein interaction networks. These plots all depict a reduced set of 53 features, to aid

visualisation. We note that both the Facebook and the brain networks (see Appendix

B for details) also show a much higher level of correlation on average between these

features, an observation replicated across our full set of network features (see Table 4.1

and the discussion below). The protein interaction networks too show more feature

pairs with high correlations than the full set of 137, though the difference is less

marked than for the Facebook and brain networks, which is in accord with earlier

observations that this particular set of networks is structurally incoherent (Ref. [203]

and Section 3.3.2) and that these data sets in general have high levels of noise and

unreliability [26, 27, 53, 119, 234, 237, 267] (see Section 2.5). However, on the whole,

these enhanced correlations suggest the kinds of type-specific constraints on structure

mentioned earlier; they also tie in with Figure 3.2, which shows that several of the

different kinds of networks appear to lie in restricted regions of our feature space.

Table 4.1 shows the mean and median pairwise feature correlations across a larger set

of features, for all 9 categories of interaction networks. This table again shows that

for each of the 9 types, features on average correlate substantially more than they do

for the full set of networks. The two categories for which the difference is the least are
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Table 4.1: Mean and median feature correlations across different network
types.

Category (samples) Mean absolute correlation Median absolute correlation
All interaction networks (137) 0.30 0.26

Brain (12) 0.59 0.66
Collaboration (8) 0.49 0.50

Facebook (15) 0.60 0.65
Fungal (12) 0.45 0.43

Language (8) 0.54 0.57
Metabolic (15) 0.48 0.45

Political committee (16) 0.54 0.57
Protein interaction (25) 0.38 0.33

Social (26) 0.37 0.32

We computed pairwise correlation coefficients for each category of networks amongst a set of 281
features (we chose this as the largest set such that each feature had at least one counterpart with
which a meaningful correlation could be computed over every category; the total number of such
feature pairs amounted to 38,410). Absolute values of the coefficients were taken and here we report
their mean and median values over each set of networks.

protein interaction networks, as noted above, and what were labelled by Onnela et

al. [203] as ‘social’ networks. This suggests that the latter type are also structurally

diverse (a similar observation was made in Ref. [203]); this is unsurprising, as the

category label of ‘social’ is rather broad and includes many different types of data

(see Appendix B).

4.2.1 Granular contact networks

In order to examine in some more detail the phenomenon of feature degeneracies and

how it might relate to structural constraints on certain kinds of networks, we chose to

look at a specific example of networks that are spatially constrained: granular contact

networks, which represent contacts between particles in granular materials [32]. These

are spatially-embedded networks, with the nodes or particles having definite locations

in two-dimensional Euclidean space. It has been shown that the topology of these

networks has a significant influence on the propagation of sound through the materials

in question [32].

Here we are interested in these networks as an example with definite constraints

on structure, which can be compared against random graphs corresponding to null
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(a) 137 interaction networks

(b) 15 Facebook networks

Figure 4.1: Features are more degenerate on restricted sets of networks.

53× 53 feature distance matrices; the correlation distance is 1− |ρ|. Features are
alternately labeled on the x/y axes, for legibility, and in each case are ordered via
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(c) 12 brain networks

(d) 25 protein interaction networks

Figure 4.1 (continued).

single-linkage clustering (see Section 1.3.3), so as to group similar features together
(feature details in Appendix A). We illustrate the increased degeneracy using
Facebook, brain, and protein interaction networks (see Appendix B for details).
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models. For networks embedded in 2-D space, a natural null model is random geo-

metric graphs (RGGs; Section 1.1.6.2). Granular contact networks were compared to

RGGs by Bassett et al. [32], using a set of 19 network diagnostics, and the two were

found to differ substantially. We study the same data set using our larger set of net-

work features (which incorporates most of the earlier 19), and focus on feature-feature

correlations in the real and synthetic networks. The set of 17 real granular networks

(unweighted) was obtained from Bassett et al.1; alongside these we generated a set of

170 RGGs, with each real network having 10 corresponding random graphs with the

same number of nodes and links.2

We looked at pairwise correlation coefficients between all 267 network features

which were computable for the full set of 187 granular and random networks.3 For

each feature, the average absolute correlation with all other features was computed,

separately for the two types of networks. We then looked at the difference in this

average correlation between the real and synthetic sets of networks, as a way of

depicting how much more or less a given feature tends to correlate with others on the

granular networks, relative to the random ones. A histogram of these differences for

all features is shown in Figure 4.2(a). It is notable that the number of features with

positive differences (i.e., stronger correlations in the granular networks) is far more

than the number with negative differences. This suggests that on the whole there

are more feature degeneracies in the granular networks. The mean and standard

1This data was collected by E. T. Owens, working in the lab of K. E. Daniels.
2We chose to use just 10 random instances per real network, because the 17 granular networks

all had very similar numbers of nodes and links, and thus in effect this gave us an ensemble of 170
random graphs with nearly identical size and density. As can be seen from Figures 4.2(b)-(d), there
is considerable structural variablility within this ensemble, far more than within the set of 17 real
networks.

3This may appear to be a somewhat statistically underspecified problem, particularly for the set
of real granular networks, where we have a total of 267×266

2 different pairwise correlation coefficients
to compute, and a total of 17×267 data points. However, there are two ameliorating factors: firstly,
as we have noted, there are many dependencies amongst the features and so the pairwise correlations
are clearly not all independent parameters; secondly, we are averaging over all the correlations of a
given feature with all the others, and only using these averages here (i.e., only 267 different numbers),
rather than all of the pairwise correlations.
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deviation of all pairwise feature correlations are 0.31±0.11 for the granular networks,

and 0.18 ± 0.07 for the RGGs, further indicating that the features tend to correlate

more strongly on the former set.

Of more interest is to look at which specific features become more strongly cor-

related in the granular networks, as this might provide some insight into the na-

ture of the structural constraints specific to those networks. In Figures 4.2(b) and

4.2(c) we depict the distributions of two features which show a particularly large in-

crease (amounting to about 0.30 in either case) in average correlation for the granular

networks: degreeCentralityGroup and fiedlerV alue. Group degree centrality (see

Section 1.1.4.2) can be seen as a measure of the heterogeneity in the node degrees;

Figure 4.2(b) thus shows that the granular networks show more uniform degree dis-

tributions than RGGs, and also show much less variability in this measure across

samples. However, fiedlerV alue (Section 1.1.4.7) is a measure of global connectivity

and also determines the rate of convergence of a random walker on the network, which

is known to be related to modularity-based (and some other) notions of community

structure [156]. Thus Figure 4.2(c) indicates that the granular networks have higher

global connectivity and less well-defined communities than the RGGs. This is in

accord with the observations of Bassett et al. that the granular networks have less

local connectivity and more global cohesion [32]. Additionally, the fact that both of

these features are seen to have much less spread on the granular networks than the

RGGs is suggestive of these network properties being under greater constraint in the

granular systems.

We also used PCA (Section 1.3.3) to map the granular and RGG networks to a

two-dimensional feature space. In addition to these two, we also added in a third

set, of Erdős-Rényi or G(n,m) random graphs, with each granular network being

used to generate one G(n,m) instance with a matching number of nodes and links.

This provides an additional null model to compare against, in which networks are
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(a) Histogram of differences in average correlation

(b) Density plots for group degree centrality

Figure 4.2: Feature correlation comparisons for granular networks and ran-
dom graphs.

(a) Distribution of the difference in the average absolute correlation of a feature
with all other features, between the sets of granular and RGG networks. Histogram
produced using the MATLAB hist() function. (b) Distribution of group degree
centrality over the two sets. Density plots produced using the MATLAB
ksdensity() function.
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(c) Density plots for the Fiedler value

(d) PCA space plot of Granular, RGG, and Erdős-Rényi (E-R) networks

Figure 4.2 (continued).

(c) Distribution of Fiedler value for the two sets. (d) Granular networks and two
null models (including Erdős-Rényi, which are not spatially embedded and expected
to be very different structurally) mapped to a two-dimensional PCA space,
representing the two principal components with the largest variation in the space of
267 network features.
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not spatially embedded; we expect the Erdős-Rényi graphs to be completely different

from each of the two other ensembles. The PCA space for these three categories

is depicted in Figure 4.2(d), showing that the granular networks are very distinct

from either of the null models. The first principal component here is very highly

negatively correlated (ρ ≈ −0.9655) with the average local clustering coefficient [see

Equation (1.19)]; hence, we see as before that the granular networks have lower

local clustering than the RGGs, though similar to the Erdős-Rényi networks. The

second component correlates substantially with both the energy (ρ ≈ 0.8185) and the

entropy (ρ ≈ 0.6814) of the degree distribution (Section 1.1.4.9). Thus, the granular

networks appear to have lower energy and entropy than either type of random graph.

This implies that their degree distributions are more restrictive, allowing for fewer

different topologies. Thus, looking at our feature vectors and correlations on these

granular networks has allowed us to not only recover some of the observed structural

differences with RGGs that were noted in Ref. [32], but has also provided some insight

(consistent with physical intuition) into which aspects of the structure of the granular

networks seem to be more constrained than random graphs.

The observation that particular classes of real-world networks show degeneracies in

structural features suggests the idea that the corresponding systems may be subject to

particular constraints, which have the effect of lowering the number of configurations

that these networks can take. In statistical physics, the concept of entropy developed

by Boltzmann (which we refer to here as thermodynamic entropy, to distinguish it

from the statistical notion of entropy in general) is used as a way of quantifying such

degeneracy in the configurations of a system. We have seen that a particular type

of entropy, that of the degree distribution, shows up as significant in distinguishing

between granular networks and random graph models. We will now look at how the

concept of entropy can be applied more generally to networks, and how it might relate

to our observations.
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4.3 Thermodynamic entropy of network ensem-

bles

Many kinds of networks might be thought of as one instance from an ensemble of

functionally equivalent networks, where the ensemble conserves those structural char-

acteristics which are relevant to the network’s function [43]. (More generally, one can

think of a given network as a sample from a probability distribution over an ensemble

of networks, where the probability of drawing a particular network corresponds to

how viable it is in that functional role.) Such conserved characteristics can include

things like the density of links (which leads to the Erdős-Rényi model), the degree

distribution (which leads to the configuration model, as described in Section 1.1.6.3),

or any number of more complex quantities. For instance, one can imagine that protein

interaction networks from different species are all instances from an ensemble consist-

ing of all functionally viable network structures in that context. Of course, in general

we do not know the particular constraints operating on the formation of a given kind

of network. A network can be considered as belonging to many different ensembles.

If we generate a network with 100 nodes and 500 links, chosen uniformly at random

from all such networks, then we have used the G(n = 100,m = 500) ensemble; how-

ever we could also think of the obtained network as an instance from a configuration

ensemble that preserves its specific degree sequence. In general, we would like to

choose the ‘least specific’ (or least constrained) ensemble that can reasonably explain

a given network’s structural features: this is in accord with the intuitive principle of

Occam’s razor, of not invoking unnecessary detail in our models.

The statistical concept of entropy, which was originally introduced by Boltzmann

for the study of thermodynamic systems, has been proposed as a way of quantifying

this notion of the complexity of a given network ensemble, in particular in the work

of Bianconi et al. [22–24, 43–46]. Entropy is a measure of the amount of uncertainty
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in drawing a sample from a given probability distribution; it can also be seen as the

amount of information contained in the outcome of such a draw. For a discrete dis-

tribution over N outcomes, the standard definition of the entropy H of a distribution

where the probability of the ith outcome is pi is

H = −
N∑
i=1

pi log pi. (4.1)

In the case of network ensembles, each outcome i corresponds to one possible

network structure. If the distribution over networks in the ensemble is uniform (pi =

1/N for all i, also known as a microcanonical ensemble), then this formula reduces to

H = logN , (4.2)

so the entropy is the logarithm of the number of networks. Thus, we see that larger

or less constrained ensembles have higher entropy, and intuitively there is an inverse

relationship between entropy and ‘complexity’, in the sense of Bianconi [43], i.e., the

amount of information or number of structural constraints needed to specify a given

network ensemble. The ‘simplest’ ensemble or model from amongst a set of candidates

will be the one that has the maximum entropy.

To look at a couple of simple examples of computing ensemble entropies, let us

consider the Erdős-Rényi model G(n, p) and its related counterpart G(n,m) (see

Section 1.1.6.1). The G(n,m) model specifies a microcanonical ensemble, as every

network with n nodes and m links is equally probable under this model. Thus, for

this model the entropy is given by H = logN , where the number of possible networks

is N =
(
n(n−1)/2

m

)
. The G(n, p) model gives the corresponding canonical ensemble:

this contains all networks with n nodes, but with varying probability weights; and

the constraint on the density of links is not satisfied for every instance but only on

average. The simplest way to evaluate the entropy in this case is to make use of the
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fact that the presence or absence of each possible link is an independent event under

this model; thus, the total entropy is the sum of the entropy contributions from all

the links. For a given pair of nodes (i, j), they are linked with probability p and not

linked with probability 1 − p, so the entropy is Hij = −[p log p + (1 − p) log(1 − p)].

The total thermodynamic entropy for this model is given by

Her
td =

n∑
i=1

n∑
j=i+1

Hij = −n(n− 1)

2
[p log p+ (1− p) log(1− p)]. (4.3)

It is worth noting that there is a direct correspondence between generative models

for networks (as in Section 1.1.6) and ensembles, as both in effect specify a proba-

bility distribution over the space of all possible networks. As an example, consider

the G(n,m) ensemble, which assigns equal probability to all networks with n nodes

and m links, and 0 probability to all other networks. This corresponds to the gen-

erative model in which one starts with n disconnected nodes and then connects m

distinct node pairs at random. Thus, in principle for any proposed model (includ-

ing settings for any parameters therein), we should be able to define the entropy

of the corresponding ensemble, i.e., the probability distribution over networks gen-

erated by that model with those parameter settings. In practice, however, it has

only been possible to evaluate this for simple models specified in terms of particular

structural constraints, such as Erdős-Rényi, the configuration model, or models that

constrain the degree correlations or some notion of community structure [44]. For

a model specified in terms of evolutionary mechanisms rather than constraints, e.g.,

duplication-divergence models in biology (Section 1.1.6.7), there is no easy way to

analytically evaluate the corresponding probability distribution over networks.

One way of thinking of the entropy of an ensemble is that it represents the volume

it occupies in a “phase space”, i.e., the space of possible network structures. As we

have discussed, our feature vector representation of networks in effect maps them into
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a different space; we call this a feature space. We can examine the distribution of a

sample from a given ensemble of networks in this space and compute (an estimate

of) the entropy of this distribution as well; how does this relate (if at all) to the

thermodynamic entropy of the ensemble in phase space, and can it inform us about

the plausibility of proposed generative mechanisms? These are the questions that

motivate the following sections.

4.4 Statistical entropy in feature space

For a given network feature, we can look at how its values are distributed across

a set or ensemble of networks. In theory, if we have a probability distribution over

networks (such as that specified by a G(n, p) model), then it specifies a corresponding

probability distribution over any given feature of those networks, e.g., their mean

degree. The entropy of the distribution over such a feature is a measure of disorder

or uncertainty in that particular aspect of network structure over the ensemble being

considered. If we look at multiple features simultaneously, then we can define the

joint entropy over them. For instance, for two continuous-valued features denoted (as

random variables) by X and Y , the joint entropy is

H(X, Y ) = −
∫
{x}

∫
{y}

P (X = x, Y = y) logP (X = x, Y = y)dxdy. (4.4)

However, in practice it will be difficult to know what the distribution over a

particular feature is for a given ensemble. One way to estimate this is via sampling;

one can generate a number of instances from a specified ensemble and compute the

values of the features over these in order to examine the resulting distributions. In this

case, we will use a standard binning procedure (i.e., a histogram) in order to obtain a

discretised probability distribution from a sample. Suppose that the features X and

Y range over [0, 1]; we divide this range into k equally spaced bins or intervals (in
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practice, we use k = 10 for our results below). The discretised estimate of the joint

entropy is then given by

Ĥ(X, Y ) =−
k∑
i=1

k∑
j=1

P

(
i− 1

k
≤ X <

i

k
,
j − 1

k
≤ Y <

j

k

)
logP

(
i− 1

k
≤ X <

i

k
,
j − 1

k
≤ Y <

j

k

)
.

(4.5)

Thus, in this case the entropy is computed over a two-dimensional histogram,

defined by a total of k2 square-shaped bins.4

If we are looking at a variety of features that capture diverse aspects of network

structure, then we might hope that the joint entropy over them, the disorder in the

range of features, would relate to the aggregate disorder in structures in the given

ensemble. Thus motivated, we sought to compute such a quantity using our library of

network diagnostics. The ensuing feature vector representation of a network defines a

position for it in a high-dimensional vector space. However, as we have seen in Section

3.3, there are substantial degeneracies amongst the features and it might be possible

to capture much of the variance between the vectors corresponding to different types

of networks in a much lower-dimensional space. Thus, rather than attempting to

compute joint entropies in the full feature space (a very difficult task in any case, as

for a consistent choice of binning along each dimension, the total number of bins scales

exponentially with the dimensionality), we will instead do this in a low-dimensional

projection. As demonstrated in Section 3.3.2, one way of obtaining such a projection is

via Isomap, which we chose to use in order to be able to pick up reduced dimensions

that were as far as possible uncorrelated, even in a non-linear fashion. This was

4Our choice of uniformly-spaced bins on either axis is the simplest and most commonly used.
Other approaches have been tried as well: for instance, if the spread of the data over the range is
very non-uniform, then equal mass binning [50, 95]—which attempts to pick bins that all contain
approximately the same number of data points, rather than being of the same size—may be advisable.
Here we chose to stick to the default approach, in the absence of any particular motivation for
changing it.
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important for being able to gain insight into genuinely orthogonal aspects of network

structure that vary amongst real-world and model-generated examples. However,

here we stick to a linear principal components analysis (PCA) for simplicity, as our

primary goal is to obtain entropy estimates rather than to directly interpret the

reduced dimensions.

Thus, our procedure is to obtain the design matrix for a set of networks corre-

sponding to samples from particular ensembles, map these to a low-dimensional space

using PCA, and then compute the joint entropies for each sample in this space, as in

Equation (4.5). In practice, we use just the first 2 principal components for the ex-

amples reported here, as we find that they are sufficient to pick up a large proportion

(60–70%) of the variance and they make it easy to visualise the space. As indicated,

our motivation is to be able by this means to obtain an estimate of the amount of

disorder in network feature space that any given ensemble permits. This is in a sense

analogous to what the thermodynamic entropy discussed previously seeks to capture,

but there is at least one key difference. In computing thermodynamic entropies, the

nodes are regarded as distinguishable; for example, if we are considering networks

with 3 nodes and 1 link [G(n = 3,m = 1)], then there are three possibilities, as the

link could be between nodes 1 and 2, 1 and 3, or 2 and 3. Of course all three of

these represent the same topology, and they are isomorphic: one can be changed to

another by re-labeling some nodes. In principle one could compute the thermody-

namic entropy for networks with indistinguishable nodes too, but this is generically

computationally intractable for all but trivially small networks, as it involves solving

the graph isomorphism problem, i.e., finding pairs or groups of isomorphic graphs, for

which no efficient general algorithm has yet been found [99].

However, in computing various network diagnostics, we ignore any node labellings

that might be present, and all our network features treat nodes as indistinguishable.

Hence, the 3 networks in G(n = 3,m = 1) will all have exactly the same feature
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vectors and are mapped to a single point in feature space. In general, ignoring node

labels will reduce the size (and thus the entropy) of an ensemble, though the amount

of reduction depends on the nature of the ensemble. Consequently, due to this factor

alone, we cannot expect any generic relationship between thermodynamic entropy

and entropy in our feature space. Additionally, mapping from a network to a feature

vector itself involves loss of information, and there will be cases where even non-

isomorphic graphs have the same feature values.

Thus, the entropy in feature space is measuring something quite different from

thermodynamic entropy. We would like to study whether and how these two notions

of network entropy might relate; we now seek to do this using example ensembles

corresponding to simple network models for which the thermodynamic entropy can

be obtained analytically.

4.5 Entropy comparisons

4.5.1 Erdős-Rényi networks

As a first step, we look at ensembles generated from the G(n, p) model, with different

settings for n and p. We generated a random sample of 100 networks from each of

3 ensembles: G(50, 0.3), G(50, 0.5), and G(100, 0.5). We then computed the design

matrix for these 300 networks and carried out PCA to map them to the space defined

by the two largest principal components. The results are depicted in Figure 4.3.

For each ensemble, we compute the thermodynamic entropy as per Equation (4.3)

(denoted Htd in the figure), as well as the discretised joint entropy in the 2-D PCA

space as per Equation (4.5) (denoted HPCA in the figure).

As noted above, the absolute values of the entropies are not comparable, as they

are defined on different spaces and are measuring different quantities. However it is

notable that in this instance the relative ratios and ordering of the joint entropies (also
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Figure 4.3: Entropy comparisons for Erdős-Rényi ensembles.

Samples of 100 networks per ensemble, shown in the space defined by the top two
principal components, after carrying out PCA on a set of 124 features that could be
successfully computed for all networks. For each ensemble, the thermodynamic
entropy (Htd) and the discretised joint entropy (HPCA, based on dividing the range
of each component into 10 equi-spaced bins) in this space are shown in the legend.
The first principal component is largely reflecting the number of nodes, whilst the
second is substantially correlated with density, maximum degree centrality and
maximum clustering coefficient (see main text discussion).
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apparent from the spreads of the 3 point clouds) roughly mirror those of the thermo-

dynamic entropies. Thus, in this case, the amount of disorder shown by the samples

from the different ensembles in the low-dimensional PCA feature space provides some

indication of their entropy in network phase space, even though the latter treats nodes

as distinguishable whilst the former does not. This suggests that the PCA dimen-

sions might be indicative of aspects of network structure left unconstrained within

these ensembles. Here in Figure 4.3, it is evident that the first principal component

is essentially just a scaled version of the network size (number of nodes), though the

actual values along the component are much larger due to the presence of many other

correlated features with high numerical values. The second component is significantly

correlated with the density of links (ρ ≈ 0.70), but is also capturing other aspects of

local structure such as the maximum degree centrality (ρ ≈ 0.78) and maximum local

clustering coefficient (ρ ≈ 0.76). This indicates that these are the sorts of network

properties that show relatively large variation within these ensembles.

4.5.2 Modular networks

We generated modular networks in similar fashion to those described in Section 3.3.1,

with 10 modules of 10 nodes each such that each module starts as a clique, and then

with some probability λ, each link is rewired randomly. We choose values of λ ranging

from 0.1 to 1 in steps of 0.1 and generate 100 random networks for each setting. This

gives samples from 10 ensembles (one for each value of λ).

For these networks, it is possible to obtain an approximate analytical expression

for the thermodynamic entropy per node Hmod
td as a function of the total number of

nodes n, the mean degree 〈k〉, and λ [16]:

Hmod
td (λ) =

−1

2
[〈k〉 [εin log εin + (1− εin) log(1− εin)] +

(n− 1− 〈k〉) [εout log εout + (1− εout) log(1− εout)]] ,

(4.6)
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where

εin = 1− λ+ λ
〈k〉
n− 1

,

εout = λ
〈k〉
n− 1

.

We provide our derivation for this expression in Appendix C. In our case, we have

n = 100 and 〈k〉 = 9 as constants, and we only vary λ. Because all networks we are

considering for this example have the same number of nodes, we divide the ensemble

entropy by the number of nodes (100) to get entropy per node; this rescaling makes

it easier to plot the thermodynamic entropies on the same scale as the PCA space

entropies.

As before, we map our 1000 (10 × 100) modular networks to a 2-D PCA feature

space; this is depicted in Figure 4.4(a), with different colours denoting the different

ensembles (i.e., values of λ). Joint entropy for each ensemble sample is then computed

by using 10 bins on each axis, as per Equation (4.5). In Figure 4.4(b), we plot these

alongside the thermodynamic entropy values computed as per Equation (4.6). It can

be seen in Figure 4.4(a) that there is little change in the spread of the ensemble

samples with increasing λ, which is borne out in Figure 4.4(b), where we see that

whilst the thermodynamic entropy increases steadily with λ, the PCA space entropy

changes little.

Thus in this case there appears to be no correspondence between the two values

of entropy. It is notable that the principal components shown in Figure 4.4(a) appear

to primarily capture variation between ensembles rather than within them. This

suggests that entropy computed in this space will not really capture the disorder

within ensembles, which may explain why no increasing trend is seen with increasing

rewiring. Whilst the PCA space is still potentially useful in being able discriminate
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(a) Modular networks in PCA space for varying λ

(b) Entropy comparison for modular networks

Figure 4.4: Feature space and thermodynamic entropies for modular net-
works.

(a) 10 sets of 100 modular networks each, corresponding to 10 different settings of
the rewiring parameter λ, mapped to the space of the two largest principal
components in feature space. (b) Plots of thermodynamic entropy values for the 10
ensembles, as well as joint feature entropy of the 100-network samples from each
ensemble in the PCA space.
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between networks generated with varying values of the model parameter (we attempt

to pursue this further in Section 4.6 and in Chapter 5), examining additional principal

components or other ways to obtain reduced dimensions or features may help to

determine if and under what conditions a meaningful space for computing entropy

might be obtained.

4.5.3 Watts-Strogatz networks

As a third example, we generated synthetic networks using the Watts-Strogatz model

[273] (Section 1.1.6.4), with n = 100, k = 4, and rewiring probability p ranging from

0.1 to 1 in steps of 0.1. As for modular networks, we generated 100 instances for each

setting of p. The analytical expression for thermodynamic entropy per node Hws
td in

this case is given by [16] (our derivation is in Appendix C):

Hws
td (p) =

−1

2
[k [εnear log εnear + (1− εnear) log(1− εnear)] +

(n− 1− k) [εfar log εfar + (1− εfar) log(1− εfar)]] ,

(4.7)

where

εnear = 1− p+ p
k

n− 1
,

εfar = p
k

n− 1
.

In Figure 4.5(a), we show in PCA feature space the networks sampled from these

10 ensembles, corresponding to varying values of p. In Figure 4.5(b), we plot the joint

entropy in feature space, along with the thermodynamic entropy [Equation (4.7)]. We

see similar results to those for the modular networks, with little variation in feature

space entropy across ensembles and the principal components appearing to capture

predominantly inter-ensemble variation.
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(a) Watts-Strogatz networks in PCA space for varying p

(b) Entropy comparison for Watts-Strogatz networks

Figure 4.5: Feature space and thermodynamic entropies for Watts-Strogatz
networks.

(a) 10 sets of 100 Watts-Strogatz networks each, corresponding to 10 different
settings of the re-wiring parameter p, mapped to the space of the two largest
principal components in feature space. (b) Plots of thermodynamic entropy values
for the 10 ensembles, as well as joint feature entropy of the 100-network samples
from each ensemble in the PCA space.
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4.6 Discussion

In this chapter, we have examined correlations between network features and observed

that sets of particular types of networks show more correlations than varied or mixed

sets. This suggests that the additional correlations might be indicative of structural

constraints that are specific to given network types. Using the example of granular

contact networks, we have demonstrated how an examination of particular network

features that show increased correlations relative to a null model can give us insight

into the nature of such constraints.

We have also looked at the concept of the entropy of a given network model or

ensemble as a way of capturing the amount of information contained in it. We define

a joint entropy over network feature space, which may be seen as a complement to

the conventional entropy over phase space. We study the relation between the two

quantities and find some correspondence for simple Erdős-Rényi ensembles, but not

for others. A major reason for this appears to be that the principal directions of

variation in feature space, for a given collection of ensemble samples, might capture

variability between the ensembles rather than within them, so computing entropy in

that space may not be informative about intra-ensemble disorder. Thus, the computa-

tion of feature-space entropy is clearly sensitive to the particular features or principal

components selected, and a question for future work is whether it is possible to find

ways of carrying out this selection such that the corresponding entropy serves as a

meaningful measure of the amount of structural variability in the ensembles being

studied. Another question worth studying further is what one can learn from the

particular feature correlations observed for a given kind of ensemble, and the extent

to which this might help to pin down both constraints and variable aspects for those

ensembles.

However, we believe our representation of network ensembles in a low-dimensional

PCA space provides a tractable way of estimating the range of structural variants, or
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the region of structure space, captured by a given network model with given param-

eter settings; Figures 4.3, 4.4(a), and 4.5(a) all indicate that distinct regions of the

space can be associated with networks drawn from a particular model with particular

parameters. What we would like to do in practice is to compare such models to net-

works from the real world: to be able to fit models to data and thus obtain plausible

generative mechanisms for the structures we observe. It seems natural to attempt to

do this by measuring the overlap between the regions of our space occupied by model

and data. In the next chapter, we show how this can be formalised using Bayesian

statistical inference techniques and develop an approximate Bayesian computation

(ABC) methodology for model-fitting to networks.
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Chapter 5

Bayesian Model-Fitting for

Networks

In this chapter we develop a methodology for matching networks to generative models

via our feature space representation, making use of the framework of approximate

Bayesian computation. The majority of the work in this chapter is included in a

manuscript currently in preparation [17].

5.1 Background and motivation

We have shown in Section 3.5 how a simplistic evolutionary model can be used to

identify network characteristics that correlate with some known functional or pheno-

typic property. To take this further, in many instances (such as networks representing

biological or social systems), it is desirable to develop models of network evolution as

a whole: models that generate synthetic networks with structure essentially similar

to the real network(s) of interest. This can be useful for simulating virtual instances

of a particular type of real-world network, or for gaining insight into the natural

processes that generated that network structure. Typically, the fit of a model to a

real network is evaluated by comparing them using only a few diagnostics. By con-
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trast, our approach will allow us to compare synthetic networks to real ones more

comprehensively, using any number of structural features.

In the previous chapter, we have seen how, given ensembles of networks corre-

sponding to a particular model, it is possible to pick out directions in our vector

space of features which correspond to the variations of model parameters, and also

ones which correspond to variation independent of model parameters (i.e., structural

characteristics not entirely constrained by the specification of the model parameters).

We would like to be able to use such directions in structure space to compare models

to data, as they can allow us both to discriminate between different parameter set-

tings and to examine how well the structural variation observed in a real-world data

set (i.e., its entropy, which might be defined in multiple ways as seen in the previous

chapter) can be explained by a particular network model. However, in practice, for

complex models with multiple parameters and intractable analytic entropy, it is not

feasible to find directly features that correlate with these quantities. As we have

suggested, a low-dimensional embedding that captures the bulk of the variability in

a given data set (e.g., networks from a given model with varying parameter settings,

as for the examples in Section 4.5)—obtained, for instance, via Principal Compo-

nents Analysis (PCA)—may in practice represent the desired structural aspects to

an extent. In this chapter, we develop an algorithm for model-fitting to networks in

such a PCA space, using the methodology of approximate Bayesian computation, and

demonstrate how this can serve as an effective means of matching models to data.

5.2 Bayesian inference for model-fitting

Bayesian inference [47, 124] is a generic and widely used framework for fitting prob-

abilistic models to data: both for comparing distinct models and for determining

appropriate parameter values for a given model. Suppose we are given model M ,
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inclusive of some model parameters θ, which specifies a probability distribution over

data instances (in our case, networks). Given a particular observed data set x, our

task is to evaluate different models and parameter settings to judge how likely they

are to have generated this data. Bayes’ theorem tell us that this can be expressed in

the following manner:

P (M, θ|x) ∝ P (x|M, θ)P (M, θ). (5.1)

Here P (x|M, θ) (known as the likelihood) is the probability of the data x under

model M and parameter settings θ; and P (M, θ) is the prior probability of selecting

this particular combination of model and parameters. The product of prior and like-

lihood is proportional to P (M, θ|x), the posterior probability of the model-parameter

combination, once the data x has been observed. This posterior is the quantity that

allows us to evaluate different possibilities, and in general models and parameter

values that have a high posterior probability are preferable. If we wish to select a

single combination, then the natural choice is the one that maximises the posterior

distribution, also known as the maximum a posteriori estimate. However, one of the

attractive features of Bayesian inference is that it does not just give us a single an-

swer, but allows us to look at the entire distribution of posterior probabilities over

possible choices, thus also providing a quantification of uncertainty in making this

choice.

Another feature of this framework is the need to assign a prior probability distri-

bution to models and parameters being considered. There are differing views about

the extent to which this can or should be seen as a means of incorporating subjective

human opinion [103, 104, 271]. In the absence of any specific prior knowledge, it is

common to choose as uninformative a prior as possible, typically a uniform distri-

bution over all models and the feasible ranges of all parameters therein. This is the

approach we seek to adopt here. Naturally this choice too is subjective and may
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not always be appropriate: for instance, the feasible range of a parameter within a

mathematical model may be larger than its feasible range in the real world, due to

constraints that are not included in the model. In this case taking a uniform prior

over the entire range may correspond to a bias towards unrealistic values. However,

in the lack of specific knowledge about such constraints on the parameters in the

models we use, using a uniform distribution is the standard choice, the one which

involves the fewest assumptions.

Having made a choice of prior, if we have an analytic expression for the likeli-

hood function corresponding to a given model, then it is straightforward to get the

posterior. However, for complex models defined in terms of mechanisms rather than

distributions, such as the generative models for networks we are interested in here, a

closed-form expression for the probability of a given data set being generated is not

generally available. Thus, another means of estimating likelihoods is required; we

discuss our chosen methodology next.

5.3 Approximate Bayesian computation

In general, the likelihood function might not be tractable to compute, particularly for

complex models, and this makes it difficult to obtain analytic values for the posterior

probability of different models and parameter settings. One way of circumventing this

is to use the technique of approximate Bayesian computation (ABC) [173, 215, 255],

which allows one to obtain an estimate of the posterior via Monte Carlo sampling of

model outputs, without the need for specifying an explicit likelihood function. ABC

has previously been applied for model comparison and criticism in the context of

networks [218, 219, 261], and here we extend this approach to make use of the large

sets of both networks and features that we have compiled.

ABC relies on the fact that whilst the likelihood may be intractable, given a model
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M and a set of parameters θ, it is usually easy to generate samples from the distri-

bution P (·|M, θ). The simplest approach works by measuring the distance of these

samples from the actual data, using a discrepancy function (denoted here by d) that

typically combines a set of tractable summary statistics of the data. For instance, if

S(x) denotes a vector of summary statistics of data point x, then the discrepancy be-

tween the summaries of points x (sample) and x0 (actual data), d(S(x),S(x0)), might

be defined as the Euclidean distance between the two summary vectors. Subsequently,

only those values of (M, θ) are retained for which the discrepancy lies within a certain

threshold τ . These can then be used to define an approximate likelihood Pτ [218]:

Pτ (x0|M, θ) =
1

τ

∫
X
I(|d(S(x),S(x0))| ≤ τ/2)P (x|M, θ)dx. (5.2)

Here X is the domain of the data points, and I(·) denotes the indicator function:

it is 1 if its argument is true and 0 otherwise. Note that P (x|M, θ) is the unknown

likelihood; however, we are able to sample from this, and thus by counting the fraction

of samples retained after applying the τ threshold one can obtain a numerical estimate

of the above integral. As τ → 0, Pτ (x0|M, θ) will converge to the true likelihood of

the summaries of x0 under the given model and parameters [218].

Ratmann et al. [218] suggested that also retaining the discrepancy or error val-

ues themselves, and examining their posterior distribution allows for model criticism

(judging how well a model matches the data), in addition to model comparison (rel-

ative evaluation of different models). In this context, the threshold τ can be seen as

defining a prior belief on the discrepancy between model and data (see Figure 5.1).

Two important choices involved in ABC are those of the summary statistics and

discrepancy function (which may be multidimensional), and the choice of the error

prior, typically corresponding to a choice of τ (or multiple choices, if the discrepancy is

multidimensional). In previous work on using ABC to select models for network evo-
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lution, these choices have generally been based on intuition or convenience, and have

included a limited range of statistics or features such as network diameter, clustering

coefficient and measures of the degree distribution [218, 219]. Here we demonstrate

how these selections can be carried out in a more data-driven fashion.

5.4 Data-driven parameterisation for ABC

5.4.1 Automated network summary statistics

Regarding the choice of summary statistics, the library of algorithms compiled by

us allows the computation and comparison of over four hundred network features,

as described previously. We would like to pick out those network statistics that

show the most variability across the different kinds of networks produced by the

models we are considering, so that specific models matching the data can be identified

(recent work [172] provides theoretical evidence that appropriate summary statistics

for use in ABC are those whose mean values are different under the models being

compared, in the asymptotic limit of arbitrarily many samples from each model).

As shown in Chapter 3, the full set of features can be mapped to a low-dimensional

space where most of the inter-network variance is captured (Figure 3.2). Here, for

simplicity, we do not use Isomap but instead use PCA (see Section 1.3.3) to carry

out this dimensionality reduction. Our approach thus involves starting with a set of

synthetic networks B, which we generate from the multiple different models (described

in Section 5.5) being fitted (here B includes 500 networks per model). We compute

the design matrix for the set of networks B ∪ D (where D is the data to be fitted

using ABC), and then perform PCA on this matrix to pick out a small number d of

dimensions.

The choice of the parameter d involves a trade-off: more dimensions will capture

more variance, but in a higher-dimensional space we will need more data points to
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be able to adequately sample it and obtain a substantive match between model and

data. Thus the lowest dimensionality that is sufficiently discriminative is desirable;

in practice we find that even d = 2 seems to capture 60–70% of the variance for

the models and data sets examined by us. The choice of d is one of the sources of

subjectivity in our methodology; in the results presented here we stick to d = 2, partly

for ease of visualisation, but also because for these examples we find that the fraction

of the variance captured by the third principal component is only about 5%, whereas

doing ABC in 3 dimensions leads to considerably fewer samples being retained in the

posterior compared to 2 dimensions, making the results rather less reliable. However

for our examples involving comparison of different models, both for synthetic and real

data, we did attempt using the first three principal components as well, and in each

case the ABC fitting led to the same ranking of models as in the two-dimensional

results depicted below. A more detailed study of the effects of different choices, both

of the dimensionality reduction method and the number of reduced dimensions used,

remains a topic for future work.

The d chosen components (each of which is a linear combination of the original

feature set) become the summary statistics to be used in our ABC implementation.

In principle Isomap, sparse PCA [287] or any other methods of dimensionality reduc-

tion or feature selection could also be used to obtain the specific small number of

summary statistics to be considered. In some cases, the interpretability of the chosen

dimensions may be aided by having them correspond to one or a small number of

network diagnostics, rather than being a linear combination of all available features,

as given by PCA. Thus using direct feature selection, or a method like sparse PCA,

which forces the reduced dimensions to be combinations of relatively few of the orig-

inal features, may be helpful in providing additional insights. However, here we stick

to PCA as a means of demonstrating how our methodology works.
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5.4.2 Definition of error prior

The second issue is that of choosing the error prior. In past work [218, 219], this

choice had to be arbitrary as only a single network was being fit at one time, so

there was no information about how much noise or variability in the match between

data and model might be acceptable. Here, we propose fitting an entire ensemble of

networks simultaneously (i.e., D is a set of networks rather than a single network).

By examining the spread (i.e., the variance) of D after mapping to a low-dimensional

feature space, we can obtain an estimate of the intrinsic variability in the type of

networks we are trying to model, and use this to define a feasible region via the error

prior (see Figure 5.1). Allowing the data to drive the spread of the error prior makes

it relatively objective (compared to imposing an arbitrary error threshold), though a

Gaussian functional form is imposed for ease of computation.

LetG1, G2, ..., G|D| denote the networks comprising the target setD, and let Sd(Gi)

denote the vector of coordinates of Gi in the reduced d-dimensional feature space

obtained via PCA. We define the error or discrepancy ε for a given sample network

G as the vector difference from the mean of all networks in D:

ε = Sd(G)− 1

|D|

|D|∑
i=1

Sd(Gi). (5.3)

We then define the error prior as a multivariate (d-dimensional) Gaussian (see

Figure 5.1) rather than as a set of d step functions, as typical in previous work (e.g.,

Ratmann et al. [218]). We centre the Gaussian at 0, and set its covariance matrix to

equal the empirically observed covariance of the d features on the set D. Thus, rather

than retaining every point within a given error threshold during ABC sampling, we

retain points with the probability assigned to them by the error prior (Figure 5.1).
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Figure 5.1: Obtaining the empirical error prior from a given target data set.

We define a Gaussian distribution centred at the mean (red dot) of the target data
points (blue dots), and with covariance defined by the empirical covariance matrix
of the data (contour lines). This distribution defines the probability of retaining
samples in the posterior at any point in the feature space. In contrast, using a fixed
error threshold corresponds to retaining all points inside a given area (black box)
and rejecting all those outside of it.
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5.4.3 Algorithm

We use the following protocol for carrying out ABC:

• For i ∈ {1, 2, 3}; for j ∈ {1, 2, ..., 500}:

1. Draw parameters θij from priors for model Mi

2. Sample a network Gij from P (·|Mi, θij)

3. Add the element Gij to set B

• Compute the design matrix of network features for B∪D; perform PCA on this.

Map all networks into the space F defined by the d largest principal components

• Define the error prior πε as a bivariate Gaussian centred at 0, with covariance

matrix defined by the covariance of D (Figure 5.1)

• For i ∈ {1, 2, 3}; for j ∈ {1, 2, ..., 500}:

1. Compute εij, the discrepancy of Gij from the mean of the set D in space

F , as per Equation (5.3).

2. Retain (Mi, θij, εij) in posterior with probability πε(εij)

The last part is a probabilistic version of rejection sampling; this is the simplest

form of sampling for ABC model-fitting, which involves generating a number of inde-

pendent samples (here, the elements Gij) from the model at hand, and accepting or

rejecting each one based on some criterion which provides a measure of how close it

is to the data being fitted. The drawback of this method is that there may be con-

siderable wastage of samples if a large number of them are not close to the data and

get rejected. A number of other sampling strategies, collectively referred to as Monte

Carlo methods, have been used for ABC, such as Markov Chain Monte Carlo [174]

and Sequential Monte Carlo [244]; these attempt to successively sample more inten-

sively in regions closer to the data (as opposed to each sample being an independent
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draw), and thus lead to fewer wasted samples, though they are also more difficult to

implement and execute. Here we employ a rejection sampling protocol as a means of

demonstrating the sorts of results this methodology can achieve for fitting models to

networks, even with relatively few samples. Future extensions may include developing

more sophisticated sampling procedures for this setting to achieve better efficiency.

The aspects of this algorithm that are novel, compared to previous work using

ABC to fit models to networks, are: (1) The use of PCA on a set of several hundred

network features to determine the coordinates used to define the distances (discrep-

ancies) between networks (as opposed to using a pre-determined set of a few network

summary statistics); (2) The use of a target set D, as opposed to fitting one network

at a time, and the use of the covariance of D in the PCA space to define the er-

ror prior as a Gaussian distribution, rather than a set of step functions representing

pre-determined thresholds (as depicted in Figure 5.1).

5.5 Fitting network models

We chose to look at 3 models that have been proposed in the context of Protein

Interaction Network (PIN) evolution [218]. These are as follows:

• Preferential Attachment Poisson (PAP) [218]: As described in Section 3.3.1.

When generating our synthetic networks we choose m (the mean of the Poisson

distribution from which the number of node attachments are drawn) uniformly

at random from [0, 30], following Ref. [218].

• Duplication-Divergence-Attachment and Preferential Attachment (DDA+PA)

[219]: As described in Section 3.3.1. When generating synthetic networks for

model-fitting on the toy data set (Section 5.5.1), we choose α and δAtt uniformly

at random from [0, 1], and δDiv uniformly at random from [0, 0.3] (see comment

below). For fitting the real PINs we allow the latter to also vary over [0, 1].
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• Duplication-Divergence and Link addition and deletion and Preferential Attach-

ment (DD+LNK+PA) [37, 218]: In this model, one of four things can happen

at each step. (1) With probability α, there is preferential attachment to a sin-

gle node as in DDA+PA. The probabilities of the other three events depend

on network size; they are normalised to sum to 1 − α. (2) With unnormalised

weight of κDup × N (where N is the number of nodes), there is a Duplication-

Divergence event as above, with parameter δDiv, but no parent-child attach-

ment (δAtt = 0). (3) With unnormalised weight of κLnkAdd ×
[(
N
2

)
− E

]
(where

E is the number of links), there is link addition: a randomly chosen node

is preferentially attached to another node. (4) With unnormalised weight of

κLnkDel times the link addition weight, there is link deletion: a randomly chosen

node is preferentially delinked from one of its interaction partners. For network

generation, parameters are sampled uniformly at random from these ranges:

α, κLnkDel ∈ [0, 1], log κDup ∈ [−1,−24], log κLnkAdd ∈ [−2,−24], δDiv ∈ [0, 0.3]

(toy data), δDiv ∈ [0, 1] (PIN data).

In general, all parameter ranges are taken from Ratmann et al. [218]; the only

exception is δDiv for the toy data, where we chose to restrict the range to [0, 0.3] as a

small actual value of δDiv = 0.05 had been used to generate the data being fitted.

5.5.1 Synthetic data

We first demonstrate our ABC algorithm on synthetic data. Specifically, we gener-

ate a target set D of 50 networks with 50 nodes each from the DDA+PA model,

previously suggested as a viable mechanism for the evolution of Protein Interaction

Networks [218,219]. This set is generated with fixed values for the model parameters

(specifically, α = 0.4, δDiv = 0.05, δAtt = 0.6). We then attempt to fit to the tar-

get the three different models described above: DDA+PA, DD+LNK+PA, and PAP,

with parameters for each of these drawn from uniform priors as mentioned; and we
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(a) PCA plot for DDA+PA (b) PCA plot for DD+LNK+PA

(c) PCA plot for PAP (d) Posterior on α for DDA+PA

(e) Posterior on δDiv for DDA+PA (f) Posterior on δAtt for DDA+PA

Figure 5.2: Results of ABC model-fitting to a set of 50 synthetic networks
from the DDA+PA model.

(a)–(c): PCA space maps of the target set D (black), samples generated from priors
over model parameters (blue), and retained samples (green). The first principal
component has a very strong linear correlation with network energy (ρ ≈ 0.99), and
also with the link density (ρ ≈ 0.96), whilst the second correlates maximally with
subgraphCentralityfit:normal (ρ ≈ 0.96; feature descriptions in Appendix A).
(d)–(f): Posterior distribution over DDA+PA model parameters. Prior uniform over
[0, 1] for α, δAtt; uniform over [0, 0.3] for δDiv. Posterior mean in black, actual setting
for generating D in red. 173



follow the simple rejection sampling protocol of Section 5.4.3, using as samples the

500 networks per model generated for set B.

As a result, for each model fitted, we obtain posteriors over the parameter set

and the errors along different dimensions of the feature space. Figure 5.2 shows

the results, depicting the parameter posteriors only for the DDA+PA model (the

true model used to generate D). We observe that the true model matches the data

substantially better than the others, in particular the very different PAP model.

The first principal component depicted is found to have strong correlations with the

network energy (see Section 1.1.4.9), as well as with the density of links in the network.

The second component is strongly correlated to the goodness of fit (measured via log-

likelihood; see Appendix A) of a normal distribution to the node subgraph centralities

(see Section 1.1.4.2), respectively. This provides an indication of the specific aspects

of network structure that show high variability across the models and parameter

settings chosen here.

Also, the posteriors on the 3 parameters of DDA+PA shown in Figure 5.2 are

peaked around the true parameter settings, showing good performance in not just de-

tecting the correct model but also recovering model parameters. The error posteriors

for DDA+PA and DD+LNK+PA are shown in Figure 5.3; they are peaked near 0

and their spreads are similar to the corresponding error priors, indicating that these

models are largely able to capture both the central tendency and the spread of the

real data set D. We repeated the procedure for a smaller target set D′, comprising

25 networks, and we see greater uncertainty or spread in the posteriors in this case

(see Figure 5.4); this is a reflection of greater spread in the error prior, due to higher

variance in a smaller data set. However, the overall results obtained are similar in

terms of picking out the correct model and the shapes of the parameter posteriors

(Figure 5.4). As the size of the set B was the same in both cases (500 × 3), this

suggests that for this example, the results are fairly robust to changes in the ratio of
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(a) Error posterior 1 for DDA+PA (b) Error posterior 2 for DDA+PA

(c) Error posterior 1 for DD+LNK+PA (d) Error posterior 2 for DD+LNK+PA

Figure 5.3: Error priors and posteriors from ABC model-fitting to a set of
50 synthetic networks.

Prior and posterior distributions (plotted using MATLAB’s ksdensity() function
to perform smoothing using a Gaussian kernel, as discussed in Section 2.3) over the
errors on the two features chosen via PCA, for the DDA+PA and DD+LNK+PA
models (no samples were retained in the posterior for the third model, PAP).
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(a) PCA plot for DDA+PA (b) PCA plot for DD+LNK+PA

(c) PCA plot for PAP (d) Posterior on α for DDA+PA

(e) Posterior on δDiv for DDA+PA (f) Posterior on δAtt for DDA+PA

Figure 5.4: Results of ABC model-fitting to a set of 25 synthetic networks
from the DDA+PA model.

(a)–(c): PCA space maps of the target set D (black), samples generated from priors
over model parameters (blue), and retained samples (green). (d)–(f): Posterior
distribution over DDA+PA model parameters. Prior uniform over [0, 1] for α, δAtt;
uniform over [0, 0.3] for δDiv. Posterior mean in black, actual setting for generating
D in red.
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the sizes of the two sets.

5.5.2 Protein interaction networks

To test our ABC methodology on some real-world data, we took the 25 protein in-

teraction networks (PINs) included in our set of 192 used in Chapter 3 [203] (see

Appendix B). The unreliability of such data has been previously discussed in Section

1.2.2.1, and the set of 25 used here includes a mix of data from the different exper-

imental methods mentioned there like Y2H and AP/MS. Also, the networks are for

many different species, and it has already been observed that they show considerable

variability in structure (Ref. [203] and Sections 3.3.2 and 4.2). Thus, it would seem

unlikely that a single model could meaningfully explain this set of networks. How-

ever, we chose this as an example to study whether our approach might allow us to

identify certain structural patterns even in such a seemingly incoherent data set, and

to what extent those patterns could allow us to state that certain models might be

more plausible than others in explaining aspects of PIN evolution in general.

As the 25 networks are all of different sizes, and some are very large, it is not

feasible to try and obtain a single fit to the ensemble of the full networks. In past

work on fitting models to PIN data via ABC, it has been typical to fit one network at

a time [218, 219]; however we would like to be able to fit an ensemble of networks to

be able to make use of an empirically determined error prior, as described in Section

5.4.2. In order to do this, we adopt the following approach: for each of our 25 real

networks, we use snowball sampling [110] (see Section 1.1.4.10) to generate bN/50c

samples of 50 nodes each1, where N is the number of nodes in the respective network.

This gives a total of 987 samples, which we designate as our target set D. Then,

to constitute our background set B, we draw 500 samples from each of the 3 models

1As mentioned in Section 1.1.4.10, the choice of 50-node samples allows for fast computation of
all our diagnostics. In Section 5.5.2.1, when fitting more reliable data sets for specific species, we
will look at the effect of switching to 100-node samples.
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(a) PCA plot for DDA+PA (b) PCA plot for DD+LNK+PA

(c) PCA plot for PAP (d) Posterior on α for DDA+PA

(e) Posterior on δDiv for DDA+PA (f) Posterior on δAtt for DDA+PA

Figure 5.5: Results of ABC model-fitting to a set of 25 protein interaction
networks (PINs), via snowball sampling.

(a)–(c): PCA space representations of the target set of 50-node PIN samples (black),
samples generated from priors over model parameters (blue), and retained samples
(green). As for Figure 5.2, the first principal component has strong correlations
with network energy (ρ ≈ 0.99) and density (ρ ≈ 0.93). The second component is
strongly correlated with statistics of the avgNearestNeighbourDegree distribution,
such as the mean (ρ ≈ −0.92; feature names are described in Appendix A). (d)–(f):
Posterior distribution over DDA+PA model parameters. Priors are all uniform over
[0, 1]. The posterior mean is shown in black.
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considered here, allowing the size to vary in addition to other model parameters: each

time the number of nodes is drawn uniformly at random from the range [50, 8205],

which is the range of sizes in the actual set of 25 PINs. Subsequently, a single snowball

sample of 50 nodes is taken from the generated network and added to B. Thus, B

ultimately consists of 500 50-node samples for each of the three models, the samples

having been obtained from full-size networks lying in the same size range as the

real PINs. The sets B and D thereby defined are then used to carry out our ABC

procedure as per Section 5.4.3.

The results are depicted in Figure 5.5. We note that despite the well-known

unreliability and incompleteness of PIN data [15, 119, 270] (see Section 2.5), and the

extra uncertainty introduced by our subsampling,2 our approach is able to clearly

distinguish PAP as a bad model relative to the other two, whilst DDA+PA appears

to be identified as the most plausible model. These observations are in agreement

with Ratmann et al. [218,219], and also with more general notions of gene duplication

and divergence as evolutionary mechanisms [113,201,257,284].

Examining which specific network features are primarily represented in the prin-

cipal components can provide some insight into those aspects of network structure

that best discriminate between the different models and real networks being consid-

ered, something which has been difficult to discern from previous studies that have

been restricted to a small number of diagnostics. The first principal component here

also correlates strongly with network energy and density; however the second compo-

nent has the strongest correlations with features that are summary statistics of the

distribution of average nearest neighbour degree (denoted for node i by k̄nni ), which

is defined for any given node as the average of the degrees of all the nodes directly

linked to it: k̄nni = 1
ki

∑
j:Aij>0 kj, where ki is the degree of node i and Aij indicates

2Here we use just a single sampling protocol and a single sample size, and thus we cannot
estimate to what extent the results obtained might be an artefact of these particular choices. In
Section 5.5.2.1, where we examine some more restricted and reliable PIN data sets, we attempt to
look at how our results are affected by variation in these choices.
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entry (i, j) of the adjacency matrix. For instance, the second component has a strong

negative correlation (ρ ≈ −0.92) with the mean value of k̄nni over all nodes. This

may be related to the presence of hubs3 in the samples from these networks: nodes

with very large degrees will raise the average nearest neighbour degree of all their

neighbours, so a high mean value for this quantity may reflect the presence of many

such hubs. Thus the strong negative correlation with the second principal component

from Figure 5.5 suggests that most of our PIN samples may have fewer or less ex-

treme hubs than those from networks from the PAP model (preferential attachment

specifically favours the emergence of some nodes with very high degree, as discussed

in Section 1.1.6.3).

The posteriors on the model parameters for DDA+PA are quite flat (compared to

the results with the synthetic networks), suggesting that the PIN data is insufficiently

constrained to pinpoint these, and allowing for the possibility that such parameters

vary across different species. We now take a closer look at one possible example of

this, where we also seek to examine to what extent our results are robust to variations

in the sampling procedure and sample size.

5.5.2.1 Estimating rewiring rates

As an extension of the model comparison on the 25 PINs data set, we sought to delve

deeper into what model-fitting to PINs could tell us about actual evolutionary mecha-

nisms in biology. As mentioned, collectively fitting an ensemble of PINs from different

species does not seem to indicate much about model parameters for DDA+PA; hence,

one question that arises is whether there might be differences in how the PINs for

different organisms evolve. One parameter of particular interest in the DDA+PA

model is δDiv, as this determines the likelihood of the interactions of a duplicated

node diverging from its parent: one way of interpreting this is as a rewiring rate

3As discussed in Section 1.1.2.1, hubs have been defined in multiple specific ways; here we use
the term in a general sense to refer to relatively high-degree nodes.
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parameter, specifying how quickly new proteins can take on novel associations and

functionality. Even though DDA+PA is a simplistic model which certainly cannot

capture all the intricacies of PIN evolution, both our results here as well as earlier

work [218, 219] appear to suggest its viability for replicating at least some aspects

of PIN structure. More generally, it is widely believed that duplication-divergence

mechanisms have a prominent role to play in the evolution of gene/protein interac-

tions (see Section 1.1.6.7), and by attempting to fit a mathematical model thereof

one might hope to at least roughly quantify and compare the rates at which the PINs

of different species have evolved. Thus, by estimating the value of the δDiv parameter

via DDA+PA model fits to PINs for different species, we might hope to obtain some

indication of whether the networks of certain organisms in effect rewire faster than

others.

However, as noted in Section 2.5, existing PIN data is typically rather incomplete,

and this is likely to greatly affect our estimates of model parameters (and affect it to

varying extents for organisms with varying degrees of network completeness). Thus,

we would like to somehow try and compensate for this. Recent work by Lewis et

al. [166] developed a methodology for estimating the percentage coverage (i.e., the

percentage of actual interactions detected in our data sets) of the PINs of different

species, relative to the PIN of the yeast Saccharomyces cerevisiae (which, as the best

studied organism, is assumed to have 100% coverage). This study looked at human

and fruit fly (Drosophila melanogaster) networks in addition to yeast and estimated

coverage levels of these to be 18% and 7.5% respectively. Here, we use the PIN data

sets compiled for this study for the three species (summarised in Table 5.1), and

make use of the corresponding coverage estimates to attempt to put them all on a

level playing field with respect to the DDA+PA model that we seek to fit. We use

the following modification of our ABC procedure for fitting the model to the 3 PINs:

• For i ∈ {Y east,Human, F ly}; for j ∈ {1, 2, ..., 500}:
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Table 5.1: PIN data sets for estimation of rewiring rates.

Species Estimated gene count (S) Nodes in PIN Links in PIN Estimated link coverage
S. cerevisiae 5,827 5,827 43,019 100%

D. melanogaster 14,000 [4, 14] 8,617 27,071 7.5%
H. sapiens 23,000 [131,205] 11,601 53,738 18%

Data sets and coverage estimates from Lewis et al. [166]. Genome sizes for D. melanogaster and H.
sapiens are our rounded estimates based on the cited references.

1. Draw parameters θij from priors for model DDA+PA; set number of nodes

N equal to Si, an estimate of the genome size (in number of genes) of

organism i

2. Sample a network Gij from P (·|DDA+ PA,N = Si, θij)

3. If i ∈ {Human, F ly}: randomly remove (100 − coveragei)% of the links

from Gij (coverageHuman = 18, coverageFly = 7.5)

4. Use snowball or forest fire sampling (see Section 1.1.4.10) to get a K-node

sample Gij
K from Gij (we set K to 50 or 100, these being sizes for which the

bulk of the network diagnostics we use can be computed within a feasible

time of a few minutes)

5. Add Gij
K to set Bi

This builds the background sets Bi for each of the three species; the remaining

procedure is as in Section 5.4.3. The target sets Di are built by taking bNi/KcK-node

samples from the actual PIN for species i, where Ni is the number of nodes in that

PIN; this is analogous to the sampling of the set of 25 PINs mentioned above. Here,

however, we fit each of the three species separately and obtain posterior distributions

on the model parameters for each one.

We carry out this ABC fitting procedure for the DDA+PA model for two settings

of the snowball sample size, K = 50 and K = 100. We also repeat this for K = 100

using forest fire sampling, with the forward burning probability p set to 0.5 (which
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(a) 50-node snowball samples (b) 100-node snowball samples

(c) 100-node forest fire samples

Figure 5.6: DDA+PA model fits suggest yeast PIN rewires faster than fruit
fly and human.

Results of our ABC procedure for fitting the DDA+PA model separately to protein
interaction networks for yeast (S. cerevisiae), fruit fly (D. melanogaster), and
human (H. sapiens) via snowball sampling and forest fire sampling. (a) Posterior
distributions over the δDiv parameter when using 50-node snowball samples. Priors
are all uniform over [0, 1]. (b) Posteriors when using 100-node snowball samples. (c)
Posteriors when using 100-node forest fire samples with burning probability 0.5.
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is midway between the extreme choices of p = 1, equivalent to snowball sampling,

and p = 0, equivalent to random node sampling; see Section 1.1.4.10). Figure 5.6

shows the posteriors obtained in each of the 3 cases for the δDiv parameter, for each

of the three species. Notably, the estimate for yeast is peaked around a considerably

higher value than for the other two. There is some variation between the results with

the 3 types of samples, for instance with the smaller (50-node samples) we see some

mass in the posterior even at high values of δDiv, but this vanishes for the two types

of 100-node samples. This is likely to be because a smaller sample size allows for

more variation in the types of samples that can be obtained from any given network.

However the primary observation of a substantially higher δDiv for the yeast PIN is

quite consistent across the three sample types.

This observation suggests that, under the assumption of a DDA+PA-like evolu-

tionary model, the yeast PIN rewires significantly faster than the fruit fly and human

pins; in agreement with observations made in Lewis et al. [166] of relatively low con-

servation of protein-protein interactions in yeast across paralogs (pairs of proteins

arising from a common ancestor via gene duplication), compared to the other two

species. It has been noted earlier that smaller genomes often have faster rates of evo-

lution [180,209]; thus one explanation of our results might be that the small genome

size of yeast implies that there is more evolutionary pressure for new proteins to

rewire to enhance functional diversity.

5.6 Discussion

In this chapter, we have shown how our large library of network diagnostics allows us

to develop a partly automated procedure for selecting network features or summary

statistics for the purpose of model-fitting to networks using ABC. Here we use PCA

as a simple means of finding statistics which are linear combinations of our full set
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of network features, but an extension of the methodology may include using other

approaches like feature selection to obtain a small number of summary statistics which

may be more directly interpretable. We also make use of ensembles of networks to

quantify uncertainty in network structure, and are able to make use of this to define

a partly data-driven error prior for ABC, as opposed to arbitrary error thresholds

that have typified previous work. Whilst our approach also involves arbitrariness

in terms of choices such as the number of samples per model and the number of

principal components, we believe it is easier to postulate fairly general guidelines for

such choices, e.g., to use the minimum number of principal components that capture

a certain percentage of the variance. One can then assess such a choice for multiple

examples to evaluate its appropriateness. However, a choice of error threshold on a

particular network feature in a particular setting is much more specific, and there is

no easy way to formulate general guidelines for such choices on the basis of particular

examples.

Given that earlier work has required tens of thousands of samples to fit the models

of network evolution considered here, our ABC procedure provides a powerful way

of doing this using relatively small amounts of data, just a few hundred samples per

model. A key factor is that we appear to be able to capture aspects of network

structure relevant for differentiating between models and parameter values in just

2 dimensions, as opposed to 5 or more used in previous studies [218, 219]. The

partial automation of the choice of these features or summary statistics, as well as

of the error priors on them, not only reduces the subjectiveness of these choices but

also increases efficiency by identifying maximally informative feature combinations,

thereby reducing the dimensionality of the space to be sampled. Additionally, an

examination of the particular dimensions identified and what network characteristics

they correspond to can help provide enhanced understanding of how the structures

of model-generated and real-world networks match up, compared to previous work
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that has focused on only a few structural diagnostics. One limitation of our approach

is that it scales poorly with network size, due to the computational effort involved

in evaluating all of our network features, many of which have runtime which grows

super-polynomially with the number of nodes. Thus in our examples here we stick to

small networks, and use subsampling to fit models to the bigger protein interaction

networks. Further extensions of the approach, such as using feature selection to

reduce the number of features to be computed and developing more efficient sampling

methods, may improve the scalability and allow for larger networks to be fit directly.

We demonstrate our approach in the context of modelling the evolution of protein

interaction networks. On a synthetic data set, our algorithm is able to recover model

parameters fairly accurately with just a few hundred samples, even though we use

simplistic rejection sampling. On some real data sets, we show how we can identify

viable and bad models, and also use posteriors over model parameters to get an in-

dication of quantities like evolutionary rates and how they compare across different

organisms. Thus, alongside Section 3.5, we believe this provides another instance of

how our high-throughput network analysis approach can serve to suggest feasible hy-

potheses about the structure and evolution of biological networks: specifically, in the

examples used here, we suggest that a model like DDA+PA (a hybrid of duplication-

divergence and preferential attachment processes) may partly explain the observed

structural characteristics of protein interaction networks. This is in agreement with

earlier work by Ratmann et al. [218, 219]; however, our methodology also allows for

some addition speculation on the particular structural properties the model can re-

produce, such as the average nearest neighbour degree discussed in Section 5.5.2. Our

results also suggest that interactions in yeast (small genome size) may evolve faster

than those in fruit flies and humans (larger genome sizes), which to our knowledge is

a novel hypothesis. It is true that these hypotheses tend not to be very precise; but

hopefully they can be useful as data-driven starting points to assist in guiding more
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detailed experimental investigation of the underlying mechanisms.
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Chapter 6

Conclusions

In this thesis we have sought to examine multiple issues relevant to the study of

networks, with a particular focus on protein interaction networks. Here we first briefly

recapitulate our key results, and then discuss in some more detail their implications

and limitations, as well as directions for future research.

6.1 Key results

• We show that the proposed date/party hub dichotomy is not robust across PINs,

and they do not generally have the structural attributes imputed to them. We

find a lack of correspondence between the topological roles of hubs and their

expression correlations, but demonstrate that link-centric (rather than node-

centric) role definitions might be worth pursuing.

• We show how a simultaneous examination of a large number of networks using

a large number of diagnostics can be useful for network comparison and organ-

isation, and observe that some real-world network types appear to have highly

specific structural properties.

• We demonstrate how our methodology enables identification of structural fea-
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tures correlated with functional properties. For instance, many aspects of

metabolic pathway networks are found to show significant correlation with evo-

lutionary history; we also find features which strongly correlate with the solution

length and runtime of the travelling salesman problem for a particular graph

family, and can be thought of as relatively fast estimators of those quantities.

• We find that structural features correlate more over networks of a particular

type than over diverse sets, suggesting that such increased correlations indicate

particular structural constraints. We show how these can indicate distinctive

aspects of structure, such as low local clustering and high global cohesion in

granular contact networks.

• We develop a methodology for model-fitting to networks with partial automa-

tion of previously manual choices, which also allows for fitting of network en-

sembles rather than one network at a time. This accurately recovers model pa-

rameters on some synthetic data, using relatively few model samples. On real

PINs, our results indicate how evolutionary rates might differ across species,

in particular that yeast PINs may rewire faster than bigger genomes (fruit fly,

human).

6.2 Roles in protein interaction networks

We began in Chapter 2 by looking at the roles played by hubs in protein interaction

networks (PINs), specifically in light of the proposed categorisation into date and

party hubs. We show, for multiple PINs, that the distribution of hub expression

correlations with their interaction partners is not robustly bimodal, thus undermining

a primary basis for the date-party dichotomy. Our results also indicate that the

proposed date and party hubs do not have the structural roles suggested for them:

date hubs in general are not as critical to global network connectivity as has been
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implied, and in fact only a very small fraction of these hubs appear to have a major

role in this respect. Using a community detection approach to assigning node roles,

we show a general lack of correspondence between topological roles of PIN hubs and

their expression correlations, thus suggesting that the basic premise of date-party

type classifications was flawed.

We also adopt a link-centric (as opposed to node-centric) perspective to roles

in PINs (see Section 2.6); we find a lack of correspondence between the geodesic

betweenness centrality of a link (an indicator of its importance to connectivity) and

the expression correlation of the proteins linked, thus mirroring the observations with

hubs. However, we find substantial negative correlations between link betweenness

centrality and the functional similarity of the linked proteins, implying that more

‘central’ links tend to be between less similar proteins. This is somewhat reminiscent

of the weak/strong tie distinction in social networks, and suggests that a link-centric

approach to roles in PINs might be meaningful.

Our comparison of different PIN data sets also reaffirms earlier observations about

the unreliability and incompleteness of such data. This makes it difficult to obtain any

conclusive results regarding these networks. However, as more and higher-quality data

sets become available, one direction for future work could be to look at link-centric

properties across a larger number of networks and species and see to what extent the

correlations observed here hold up. It would also be of interest to explore the role of

expression levels in greater detail. The notion of date and party hubs emerged out of

an attempt to combine interaction and expression data to obtain some information

about the dynamics of otherwise static PINs. Whilst that particular idea may have

been misguided, it is certainly the case that better knowledge of what different parts

of a network are ‘activated’ at different times or under different conditions is likely

to be very helpful in understanding its organisation and functioning. As noted in

Section 1.2.2.2, one caveat with attempting to use mRNA expression data for this
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purpose is that there may in fact be little correlation between mRNA levels and

protein levels [91]. Thus, using data on actual quantitative protein expression, which

has started to become available on a substantive scale relatively recently (e.g., the

Human Protein Atlas [12]), is certainly a possibility worth examining.

6.3 High-throughput analysis of networks

Our examination of date and party hubs demonstrates that looking for patterns or

correlations on the basis of just one or a few network properties can be mislead-

ing; characterising hubs via multiple measures such as betweenness centrality and

community-based properties led us to conclude that in fact date and party hubs do

not fit the structural roles earlier imputed to them. We also noted that ideas arising

from the study of networks in a different discipline like sociology could be of relevance

to PINs. Motivated by these, we chose to expand the scope of the thesis towards an

attempt to develop a more comprehensive methodology for investigating networks

and network characteristics.

Our approach, introduced in Chapter 3, aims to examine simultaneously a large

number of networks of different types, using a large number of network diagnostics

from multiple disciplines. We show how this can be useful for comparing and or-

ganising both networks and diagnostics, and observe that some types of real-world

networks appear to show highly specific or constrained structural properties. Given

that our representation of networks as feature vectors involves substantial loss of in-

formation, and that a network itself is an abstracted representation of a complicated

real-world system such as metabolic pathways, it is perhaps somewhat surprising that

despite discarding so much detail, the representation still retains sufficient informa-

tion that in many cases one is able to pinpoint it as a metabolic network, as opposed

to any of the other diverse kinds of networks we look at.
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We also look at how the use of the large set of network diagnostics enables the

identification of structural features that are correlated with functional properties. In

one case study, we find that many aspects of metabolic pathway networks show a

significant correlation with their evolutionary history. For instance, for the data we

use, the rich-club coefficient is the network property with the strongest phylogenetic

signal, though it is strongly correlated with simpler features, such as link density,

that also display a strong signal. Observations of this sort can help to motivate par-

ticular evolutionary mechanisms or models for these networks that might reproduce

the observed signals, as discussed in Section 3.5.

In another case study (see Section 3.4), using synthetic networks generated from

a preferential attachment model, we show how one can detect structural features that

can serve as predictors of the solution or runtime of hard graph-theoretic problems;

the particular example we use is the travelling salesman problem. We find a number

of features that correlate very strongly with solution length in particular, and are

relatively quick to compute (as compared to running a heuristic algorithm to solve

the full problem). Specific examples of such features include the maximum node

betweenness centrality and the average cyclic coefficient, which show respectively

strong positive and negative correlations with the TSP solution length, across a set of

3 different solvers we examine. It would be difficult to highlight such specific features

without the sort of large-scale study employed here. We also make explicit the process

of testing many different hypotheses (i.e., features) and assessing their statistical

significance having taken this into account. This is as opposed to many traditional

studies where a single hypothesis may be tested and published as being statistically

significant, without having accounted for the fact that many other hypotheses may

have been tested too but not found significant and thus never published, leading to

a false sense of significance (this is also known as ‘fishing’) [51, 132].

There is of course a lot of scope for extending and improving upon the results
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obtained via our high-throughput methodology. When looking at structure-function

correlations, we make particular choices of data sets, and we have also chosen a

particular set of network diagnostics to examine. It is also the case that not all

these diagnostics were feasibly computable for all the networks, and in most case

studies only a subset of features could be used. We include some features computed

via subsampling the network, but as discussed in Section 3.2 we do this only on an

experimental basis using a single sampling method and sample size, and these features

do not appear in any of our results. Given more time it would be desirable to properly

examine the relationship between features on subsamples versus the full network, to

assess how robust various features are to such subsampling and to what extent it

might be possible to draw conclusions about a full network on the basis of samples

obtained in a particular manner.

Regarding the other choices involved in our methodology, in our case studies we

have attempted to vary some of them to examine how they affect our results, but

again this could be done more thoroughly given more time, to obtain a better notion

of the generality of our observations. The set of diagnostics (listed in Appendix A)

can certainly be built upon further, and in particular greater coverage of diagnostics

applicable to weighted and directed networks could be aimed for. There are also a

variety of other sorts of case studies that could be attempted with our methodology:

one example would be change detection in time-evolving networks, i.e., obtaining

snapshots of the network at multiple points in time, mapping them all to our feature

space and then studying the rate and pattern of evolution of the different features. It

may be that correlations can be found between changes in certain network features

and some external events; for instance, studies of changes in the co-voting network of

U.S. Senators have found a strong correspondence between modularity and a measure

of political polarisation [203,274].
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6.4 Feature degeneracies and network entropies

We also find substantial correlations amongst the different network features we ex-

amine. In Chapter 4, we examine how network features correlate with each other

over different sets of networks and find that networks of a particular type (e.g., brain

connectivity or Facebook) show substantially greater feature-feature correlations than

are observed for diverse sets of networks. This suggests that feature correlations or

degeneracies may be indicative of particular structural constraints. For a set of granu-

lar (spatially-embedded) networks (see Section 4.2.1), we show that such correlations

can provide an indication of which aspects of structure show distinctive behaviour,

relative to a null model such as random geometric graphs. For instance, we pick out

the group degree centrality and the Fiedler value as two features that show a substan-

tial increase in correlations with other features on the granular networks, compared

to the random ones; and it turns out that these two features are much more con-

strained in their distribution on the granular networks, in a manner that is in accord

with earlier observations that these networks have relatively low local connectivity

and relatively high global cohesion [32].

The observation of feature correlations corresponding to structural constraints

also suggested a relationship to the notion of network entropy, a way of quantifying

the amount of spread or uncertainty within a given network ensemble. We define a

notion of statistical entropy in a low-dimensional feature space (obtained via PCA),

and examine whether we can relate this in any way to the thermodynamic entropy of

certain chosen ensembles, for which the latter quantity is analytically obtainable (see

Sections 4.4 and 4.5). We observe a rough correspondence in the two types of entropy

for Erdős-Rényi ensembles, but for the other two kinds we study, Watts-Strogatz

networks and what we call ‘modular networks’, we find that the statistical entropy

in 2-dimensional PCA space shows very little variation with model parameters that

influence the thermodynamic entropy. One reason for this appears to be that the first
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two principal components are largely picking up variation between ensembles, rather

than within ensembles, and thus the space defined by them is not really capturing

the amount of spread within an ensemble.

Thus, whilst our results show that mapping networks to a low-dimensional PCA

space can be useful for picking out directions that most effectively distinguish between

ensembles with differing parameter settings, the meaning of statistical entropy in such

a space and its relation (if any) to thermodynamic entropy is unclear. Our study of

these concepts of network entropy was quite preliminary due to time constraints, but

it appears worthwhile to explore further to what extent and under what conditions the

feature space entropy can be a meaningful measure of ensemble uncertainty. Looking

at lower principal components (beyond the second), or using alternative methods like

Isomap to carry out dimensionality reduction, may provide ways of exploring this

question.

6.5 Bayesian model-fitting for networks

The observation that we can use PCA on our feature space to obtain directions that

correspond to variations in model parameters suggested that the PCA space might

be useful for comparing models to actual data, to see how well a given model with a

given set of parameters reproduces the structure observed in some real network(s). In

Chapter 5, we make use of this idea to develop an approximate Bayesian computation

(ABC) methodology for fitting generative models to networks. Our approach allows

for partial automation of choices that have been made manually in previous use of

ABC for model-fitting to networks, in particular the choice of which network summary

statistics to use and the size of the error prior. It also allows one to fit ensembles of

networks rather than one network at a time as has been done previously. We show that

our approach accurately recovers model parameters on examples of synthetic data,
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using a relatively small number of samples (despite our use of simple but inefficient

rejection sampling). On real PINs (see Section 5.5.2), our results provide an indication

of how evolutionary rates across species might differ, and in particular suggest that

under the assumption of a duplication-divergence mechanism, divergence rates in

yeast may be faster than for bigger genomes like fruit fly and human. This result

appears to be in agreement with the observation of lower conservation of interactions

across paralogous proteins in yeast, compared to the other two species [166].

The ABC approach presented here also offers plenty of scope for extension and

improvement. For the real PINs, we use subsampling in order to fit a model to the

data, due to the difficulty of computing some diagnostics on large networks and also

in order to have an ensemble of networks to fit, rather than a single one. Whilst our

results broadly seem to be consistent across 3 different choices of sampling procedure,

it is desirable to probe this further to investigate how robust the results are to different

ways of obtaining network samples, and also whether it is possible to fit the full

networks for comparison. The ABC procedure itself involves making choices of how

many PCA dimensions to consider, how many samples to generate from the model(s)

being fit, the number of networks in the real ensemble, and the use of a Gaussian-

shaped error prior. Whilst we attempt to provide some justification for our particular

choices and also allow for some variation, a more thorough study of the effects of

different possible choices remains to be done. We also use the simplest possible

model sampling protocol, i.e., rejection sampling, which involves throwing away a lot

of data, and future extensions may include developing a more intelligent sampling

algorithm, such as Markov chain Monte Carlo (MCMC).
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6.6 Summary

We have attempted to adopt and develop some new approaches to the study of net-

works, with a focus on protein interaction networks. Our case studies provide exam-

ples of how these can generate insights in the context of specific scientific questions,

and can assist in guiding and motivating further investigation. In particular, for pro-

tein interaction networks, we have presented results that throw some light on several

different aspects, such as roles and modularity, their interplay (or lack thereof) with

gene expression dynamics, and mechanisms and rates of evolution. More generally,

our high-throughput methodology provides a way of leveraging both large quantities

of data and a large number of ways of characterising that data, in order to illuminate

relationships amongst both networks and ways of thinking about networks, as well as

relationships between structural properties of networks and aspects of their function-

ality. Whilst the methodology involves abstracting away much detail and thus leaves

work to be done in relating any insights obtained back to the real-world system(s)

under consideration, we believe it can serve as a tool to complement more detailed

human efforts and experimentation, and help to focus them in fruitful directions.
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Appendix A

List of Network Features

Here we list all of the diagnostics and summary statistics1 that were utilised in the

high-throughput methodology presented in this thesis. For each diagnostic, the short

name given is that generally used to refer to it in the main thesis. We also spec-

ify whether each diagnostic returns a vector or function over nodes (F) or a set of

communities (C), and, where necessary, provide a reference for or description of the

diagnostic. For summary statistics, short names use a subscript to denote the sum-

mary (e.g., the maximum of the degree distribution is degreemax); shorthand summary

names used in such subscripts (where applicable) are given in parentheses.

Table A.1: List of network diagnostics.

Short name Full name Notes Reference

Connectivity

degree Degree distribution F

avgNearestNeighbourDegree Average of degrees of adjacent nodes F

assortativeCoefficient Assortative coefficient Degree assortativity [191]

density Density Number of edges present as

fraction of all possible edges

fractionArticulation Fraction of articulation nodes Fraction of nodes whose removal

results in a disconnected graph

erosionT ime Erosion time Number of steps for dilation,

1These lists were prepared using a template obtained from Gabriel Villar.

198



Table A.1: List of network diagnostics.

Short name Full name Notes Reference

starting from node of maximum

degree, to cover whole network,

normalised to network size [65]

dilationT ime Dilation time Number of steps for erosion,

starting from nodes of degree 1, to

cover whole network, normalised

to network size [65]

fraction2core Fraction of vertices comprising 2-core Fraction of nodes that form 2-core

fraction3core Fraction of vertices comprising 3-core Fraction of nodes that form 3-core

fraction4core Fraction of vertices comprising 4-core Fraction of nodes that form 4-core

richClub Rich-club index [64]

richClubNormalised Normalised rich-club index [64]

Centrality

degreeCentrality Degree centrality F [272]

degreeCentralityGroup Group degree centrality [272]

betweenCentrality Betweenness centrality F [272]

betweenCentralityGroup Group betweenness centrality [272]

closeness Closeness F [272]

closenessGroup Group closeness [272]

evectorCentrality Eigenvector centrality F [195]

subgraphCentrality Subgraph centrality F [65]

subgraphCentralisation Subgraph centralisation [66,79]

bipartivity Estrada’s measure of bipartivity [79]

infoCentrality Information centrality F [272]

infoCentralityGroup Group information centrality [272]

vulnerability Vulnerability F [65,109]

Community

modularity Spectrally optimised modularity [193,194]

modularityFast Louvain optimised modularity [48]

greedyPartitionEntropy Entropy of Louvain partition [48]

spectralf Newman’s spectral community detection C [193]

greedyComm Louvain community detection C [48]

pottsModel Potts model community detection C [220]

infomap Infomap community detection C [226]

Clustering

transitivity Transitivity

clusteringCoeff Clustering coefficient F [65]

clustSofferGlobalMean Global mean Soffer clustering coefficient [246]

199



Table A.1: List of network diagnostics.

Short name Full name Notes Reference

clustSofferLocalMean Local mean Soffer clustering coefficient [246]

Distance

diameter Graph diameter

radius Graph radius

szegedIndex Szeged index [145]

cyclicCoefficient Cyclic coefficient F [148]

geodesicDistanceMean Mean geodesic distance

geodesicDistanceV ar Variance of geodesic distance

harmonicMeanGeoDist Harmonic mean geodesic distance

Complexity

cyclomaticNumber Cyclomatic number [149]

edgeFraction Edge fraction Number of edges as fraction of

the maximum possible

connectivity Connectivity [149]

logNumSpanningTrees log(number of spanning trees) [149]

graphIndexComplexity Graph index complexity [149]

mediumArticulation Medium articulation [149]

efficiency Efficiency [160]

efficiencyComplexity Efficiency complexity [149]

offDiagonalComplexity Off-diagonal complexity [63]

chromaticNumber Chromatic number Minimum colours for

graph colouring

tspl TSP length from cross-entropy algorithm [3,68,232]

tsplga TSP length from genetic algorithm [2,128]

tsplsa TSP length from simulated annealing [1, 57]

Spectral

largestEigenvalue Largest eigenvalue

spectralScalingDeviations Deviations from ‘perfect spectral scaling’ F [78]

algebraicConnectivity Algebraic connectivity Second smallest eigenvalue

of graph Laplacian

algebraicConnectivityV ector Algebraic connectivity vector F Eigenvector corresponding to

algebraic connectivity

fiedlerV alue Fiedler value Smallest non-zero eigenvalue

of graph Laplacian

Statistical physics

energy Energy [65]

entropy Entropy [65]

Motif
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Table A.1: List of network diagnostics.

Short name Full name Notes Reference

fraction3motifs Fraction of 3-motifs [186]

fraction4motifs Fraction of 4-motifs [186]

Size

numNodes Number of nodes

numEdges Number of edges

totStrength Sum of all link weights

Model

ergm edges Exponential random graph model for edges Log-likelihood of model

fit to the edge count [206]

fitPowerLawAlpha Fitted power law exponent for degrees [62]

fitPowerLawP p-value of power law fit to degrees [62]

Table A.2: List of distribution summary statistics.

Central tendency Dispersion Shape Model fit log-likelihoods1

Mean Minimum (min) Kurtosis Normal

Geometric mean (geomean) Maximum (max) Skewness Log-normal

Harmonic mean (harmmean) Variance (var) Exponential

Mean excluding 10% outliers (trimmean10) Range Extreme value

RMS of positive values (posrms) Inter-quartile range (iqr) Gamma

RMS of negative values (negrms) Mean absolute deviation (meanad) Weibull (wbl)

Median absolute deviation (medad)

1 These features return the log-likelihood of fitting the corresponding model distribution to the actual data. In shorthand feature

names used in the main thesis, these are denoted by a subscript of the form fit : distribution, e.g., betweenCentralityfit : wbl.
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Table A.3: List of community structure summary statistics.

Partition summaries1 Distributions over nodes

Number of communities (numComm) Node role counts2

Partition entropy (entropy) Role entropy3

Number of inter-community links (icl) Within-module degree variability (wmdPCAwt)4

Participation coefficient variability (pcPCAwt)4

1 For multi-resolution community detection using the Potts method [220], we compute the

values of each of these (and additionally for numComm and entropy, finite-difference ap-

proximations of their first and second derivatives), at 10 different evenly-spaced settings of

the resolution parameter [203]. For numComm and entropy, we also add a feature record-

ing the area under the curve for these quantities over all 10 resolutions. In shorthand

feature names used in the thesis, we add to the end of the subscript resN to denote

the value at resolution N ; df resN and d2f resN for the first and second derivatives

respectively; and auc for area under the curve. For example, pottsModelentropy res1 or

pottsModelnumComm auc.

2 We assign one of the 7 Guimerà-Amaral roles [114] to each node, then count the frac-

tion of nodes in each role and report these as 7 separate features with subscript roleN

corresponding to role N ; for example, infomaprole1.

3 This is the entropy of the distribution of the nodes into the 7 Guimerá-Amaral roles [114];

we report it as a feature with subscript roleEntropy.

4 To compute these, we carry out PCA on the set of nodes in the two-dimensional space

defined by the within-module degree and the participation coefficient [114], and return the

weights of the two measures in the first principal component obtained.
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Appendix B

Set of 192 Real-World Networks

The set of 192 networks used for several of the case studies in this thesis was obtained

from Dan Fenn, who compiled it for use in his own D.Phil. thesis [87] as well an

associated manuscript [203]. The details of these networks presented here have also

largely been collated from these two sources.

Table B.1: List of 192 real-world networks.

Index Name Category Weighted Nodes Links Reference

1 Human brain cortex: participant A1 Brain Y 994 13,520 [118]

2 Human brain cortex: participant A2 Brain Y 987 14,865 [118]

3 Human brain cortex: participant B Brain Y 980 14,222 [118]

4 Human brain cortex: participant D Brain Y 996 14,851 [118]

5 Human brain cortex: participant E Brain Y 992 14,372 [118]

6 Human brain cortex: participant C Brain Y 996 14,933 [118]

7 Cat brain: cortical Brain Y 52 515 [235]

8 Cat brain: cortical/thalmic Brain Y 95 1,170 [235]

9 Macaque brain: cortical Brain N 47 313 [85]

10 Macaque brain: visual/sensory cortex Brain N 71 438 [85]

11 Macaque brain: visual cortex 1 Brain N 30 190 [279]

12 Macaque brain: visual cortex 2 Brain N 32 194 [279]

13 Co-authorship: astrophysics Collaboration Y 14,845 119,652 [190]

14 Co-authorship: comp. geometry Collaboration Y 3,621 9,461 [7, 69]

15 Co-authorship: condensed matter Collaboration Y 13,861 44,619 [190]

16 Co-authorship: Erdős Collaboration N 6,927 11,850 [8]

17 Co-authorship: high energy theory Collaboration Y 5,835 13,815 [190]

18 Co-authorship: network science Collaboration Y 379 914 [193]

19 Hollywood film music Collaboration Y 39 219 [84]

20 Jazz collaboration Collaboration N 198 2,742 [108]

21 Facebook: Caltech Facebook N 762 16,651 [263]

22 Facebook: Cornell Facebook N 18,621 790,753 [263]

23 Facebook: Dartmouth Facebook N 7,677 304,065 [263]

24 Facebook: Georgetown Facebook N 9,388 425,619 [263]
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Table B.1: List of 192 real-world networks.

Index Name Category Weighted Nodes Links Reference

25 Facebook: Harvard Facebook N 15,086 824,595 [263]

26 Facebook: Indiana Facebook N 29,732 1,305,757 [263]

27 Facebook: MIT Facebook N 6,402 251,230 [263]

28 Facebook: NYU Facebook Y 21,623 715,673 [263]

29 Facebook: Oklahoma Facebook N 17,420 892,524 [263]

30 Facebook: Texas80 Facebook N 31,538 1,219,639 [263]

31 Facebook: Trinity Facebook N 2,613 111,996 [263]

32 Facebook: UCSD Facebook N 14,936 443,215 [263]

33 Facebook: UNC Facebook N 18,158 766,796 [263]

34 Facebook: USF Facebook N 13,367 321,209 [263]

35 Facebook: Wesleyan Facebook N 3,591 138,034 [263]

36 NYSE: 1980-1999 Financial Y 477 113,526 [202]

37 NYSE: 1980-1983 Financial Y 477 113,526 [202]

38 NYSE: 1984-1987 Financial Y 477 113,526 [202]

39 NYSE: 1988-1991 Financial Y 477 113,526 [202]

40 NYSE: 1992-1995 Financial Y 477 113,526 [202]

41 NYSE: 1996-1999 Financial Y 477 113,526 [202]

42 Phanerochaete velutina control11-2 Fungal Y 117 136 [203]

43 Phanerochaete velutina control11-5 Fungal Y 526 588 [203]

44 Phanerochaete velutina control11-8 Fungal Y 721 821 [203]

45 Phanerochaete velutina control11-11 Fungal Y 823 954 [203]

46 Phanerochaete velutina control17-2 Fungal Y 232 240 [203]

47 Phanerochaete velutina control17-5 Fungal Y 816 874 [203]

48 Phanerochaete velutina control17-8 Fungal Y 1,113 1,303 [203]

49 Phanerochaete velutina control17-11 Fungal Y 1,205 1,469 [203]

50 Phanerochaete velutina control4-2 Fungal Y 461 490 [203]

51 Phanerochaete velutina control4-5 Fungal Y 1,380 1,476 [203]

52 Phanerochaete velutina control4-8 Fungal Y 1,869 2,061 [203]

53 Phanerochaete velutina control4-11 Fungal Y 2,190 2,431 [203]

54 Online Dictionary of Computing Language Y 13,356 91,471 [35]

55 Online Dictionary Of Information Science Language Y 2,898 16,376 [9, 69]

56 Reuters 9/11 news Language Y 13,308 148,035 [138]

57 Roget’s thesaurus Language N 994 3,640 [10,69]

58 Word adjacency: English Language N 7,377 44,205 [185]

59 Word adjacency: French Language N 8,308 23,832 [185]

60 Word adjacency: Japanese Language N 2,698 7,995 [185]

61 Word adjacency: Spanish Language N 11,558 43,050 [185]

62 Metabolic: CE Metabolic N 453 2,025 [137]

63 Metabolic: CL Metabolic N 382 1,646 [137]

64 Metabolic: CQ Metabolic N 187 663 [137]

65 Metabolic: CT Metabolic N 211 772 [137]

66 Metabolic: DR Metabolic N 800 3,789 [137]

67 Metabolic: HI Metabolic N 505 2,325 [137]

68 Metabolic: NM Metabolic N 369 1,708 [137]

69 Metabolic: OS Metabolic N 285 1,168 [137]

70 Metabolic: PA Metabolic N 720 3,429 [137]

71 Metabolic: PG Metabolic N 412 1,772 [137]

72 Metabolic: PH Metabolic N 318 1,394 [137]

73 Metabolic: PN Metabolic N 405 1,829 [137]

74 Metabolic: SC Metabolic N 552 2,595 [137]

75 Metabolic: ST Metabolic N 391 1,756 [137]

76 Metabolic: TP Metabolic N 194 788 [137]

77 Bill cosponsorship: U.S. House 96 Political: cosponsorship Y 438 95,529 [92,93]
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Table B.1: List of 192 real-world networks.

Index Name Category Weighted Nodes Links Reference

78 Bill cosponsorship: U.S. House 97 Political: cosponsorship Y 435 94,374 [92,93]

79 Bill cosponsorship: U.S. House 98 Political: cosponsorship Y 437 95,256 [92,93]

80 Bill cosponsorship: U.S. House 99 Political: cosponsorship Y 437 94,999 [92,93]

81 Bill cosponsorship: U.S. House 100 Political: cosponsorship Y 439 96,125 [92,93]

82 Bill cosponsorship: U.S. House 101 Political: cosponsorship Y 437 95,263 [92,93]

83 Bill cosponsorship: U.S. House 102 Political: cosponsorship Y 437 95,051 [92,93]

84 Bill cosponsorship: U.S. House 103 Political: cosponsorship Y 437 95,028 [92,93]

85 Bill cosponsorship: U.S. House 104 Political: cosponsorship Y 439 95,925 [92,93]

86 Bill cosponsorship: U.S. House 105 Political: cosponsorship Y 442 97,373 [92,93]

87 Bill cosponsorship: U.S. House 106 Political: cosponsorship Y 436 94,820 [92,93]

88 Bill cosponsorship: U.S. House 107 Political: cosponsorship Y 442 97,233 [92,93]

89 Bill cosponsorship: U.S. House 108 Political: cosponsorship Y 439 96,104 [92,93]

90 Bill cosponsorship: U.S. Senate 96 Political: cosponsorship Y 101 5,050 [92,93]

91 Bill cosponsorship: U.S. Senate 97 Political: cosponsorship Y 101 5,050 [92,93]

92 Bill cosponsorship: U.S. Senate 98 Political: cosponsorship Y 101 5,050 [92,93]

93 Bill cosponsorship: U.S. Senate 99 Political: cosponsorship Y 101 5,049 [92,93]

94 Bill cosponsorship: U.S. Senate 100 Political: cosponsorship Y 101 5,050 [92,93]

95 Bill cosponsorship: U.S. Senate 101 Political: cosponsorship Y 100 4,950 [92,93]

96 Bill cosponsorship: U.S. Senate 102 Political: cosponsorship Y 102 5,142 [92,93]

97 Bill cosponsorship: U.S. Senate 103 Political: cosponsorship Y 101 5,050 [92,93]

98 Bill cosponsorship: U.S. Senate 104 Political: cosponsorship Y 102 5,151 [92,93]

99 Bill cosponsorship: U.S. Senate 105 Political: cosponsorship Y 100 4,950 [92,93]

100 Bill cosponsorship: U.S. Senate 106 Political: cosponsorship Y 102 5,151 [92,93]

101 Bill cosponsorship: U.S. Senate 107 Political: cosponsorship Y 101 5,049 [92,93]

102 Bill cosponsorship: U.S. Senate 108 Political: cosponsorship Y 100 4,950 [92,93]

103 Committees: U.S. House 101, comms. Political: committee N 159 3,610 [211,212]

104 Committees: U.S. House 102, comms. Political: committee N 163 4,093 [211,212]

105 Committees: U.S. House 103, comms. Political: committee N 141 2,983 [211,212]

106 Committees: U.S. House 104, comms. Political: committee N 106 1,839 [211,212]

107 Committees: U.S. House 105, comms. Political: committee N 108 1,997 [211,212]

108 Committees: U.S. House 106, comms. Political: committee N 107 2,031 [211,212]

109 Committees: U.S. House 107, comms. Political: committee N 113 2,429 [211,212]

110 Committees: U.S. House 108, comms. Political: committee N 118 2,905 [211,212]

111 Committees: U.S. House 101, Reps. Political: committee N 434 18,714 [211,212]

112 Committees: U.S. House 102, Reps. Political: committee N 436 20,134 [211,212]

113 Committees: U.S. House 103, Reps. Political: committee N 437 18,212 [211,212]

114 Committees: U.S. House 104, Reps. Political: committee N 432 17,130 [211,212]

115 Committees: U.S. House 105, Reps. Political: committee N 435 18,297 [211,212]

116 Committees: U.S. House 106, Reps. Political: committee N 435 18,832 [211,212]

117 Committees: U.S. House 107, Reps. Political: committee N 434 19,824 [211,212]

118 Committees: U.S. House 108, Reps. Political: committee N 437 21,214 [211,212]

119 Roll call: U.S. House 101 Political: voting Y 440 96,505 [179,210,274]

120 Roll call: U.S. House 102 Political: voting Y 441 96,811 [179,210,274]

121 Roll call: U.S. House 103 Political: voting Y 441 96,348 [179,210,274]

122 Roll call: U.S. House 104 Political: voting Y 445 98,720 [179,210,274]

123 Roll call: U.S. House 105 Political: voting Y 443 97,841 [179,210,274]

124 Roll call: U.S. House 106 Political: voting Y 440 96,557 [179,210,274]

125 Roll call: U.S. House 107 Political: voting Y 443 97,816 [179,210,274]

126 Roll call: U.S. House 108 Political: voting Y 440 96,561 [179,210,274]

127 Roll call: U.S. Senate 101 Political: voting Y 100 4,950 [179,210,274]

128 Roll call: U.S. Senate 102 Political: voting Y 102 5,148 [179,210,274]

129 Roll call: U.S. Senate 103 Political: voting Y 102 5,080 [179,210,274]

130 Roll call: U.S. Senate 104 Political: voting Y 103 5,247 [179,210,274]
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Table B.1: List of 192 real-world networks.

Index Name Category Weighted Nodes Links Reference

131 Roll call: U.S. Senate 105 Political: voting Y 100 4,950 [179,210,274]

132 Roll call: U.S. Senate 106 Political: voting Y 102 5,148 [179,210,274]

133 Roll call: U.S. Senate 107 Political: voting Y 102 5,148 [179,210,274]

134 Roll call: U.S. Senate 108 Political: voting Y 100 4,950 [179,210,274]

135 U.K. House of Commons voting: 1992-1997 Political: voting Y 668 220,761 [11]

136 U.K. House of Commons voting: 1997-2001 Political: voting Y 671 223,092 [11]

137 U.K. House of Commons voting: 2001-2005 Political: voting Y 657 215,246 [11]

138 U.N. resolutions 59 Political: voting Y 191 18,140 [269]

139 U.N. resolutions 60 Political: voting Y 191 18,110 [269]

140 U.N. resolutions 61 Political: voting Y 192 18,331 [269]

141 U.N. resolutions 62 Political: voting Y 192 18,331 [269]

142 Biogrid: A. thaliana Protein interaction N 406 625 [249]

143 Biogrid: C. elegans Protein interaction N 3,353 6,449 [249]

144 Biogrid: D. melanogaster Protein interaction N 7,174 24,897 [249]

145 Biogrid: H. sapiens Protein interaction N 8,205 25,699 [249]

146 Biogrid: M. musculus Protein interaction N 710 1,003 [249]

147 Biogrid: R. norvegicus Protein interaction N 121 135 [249]

148 Biogrid: S. cerevisiae Protein interaction N 1,753 4,811 [249]

149 Biogrid: S. pombe Protein interaction N 1,477 11,404 [249]

150 DIP: H. pylori Protein interaction N 686 1,351 [6]

151 DIP: H. sapiens Protein interaction N 639 982 [6]

152 DIP: M. musculus Protein interaction N 50 55 [6]

153 DIP: C. elegans Protein interaction N 2,386 3,825 [6]

154 Human: CCSB Protein interaction N 1,307 2,483 [229]

155 Human: OPHID Protein interaction N 5,464 23,238 [55,56]

156 Protein: serine protease inhibitor (1EAW) Protein interaction N 53 123 [185]

157 Protein: immunoglobulin (1A4J) Protein interaction N 95 213 [185]

158 Protein: oxidoreductase (1AOR) Protein interaction N 97 212 [185]

159 STRING: C. elegans Protein interaction N 1,762 95,227 [135]

160 STRING: S. cerevisiae Protein interaction N 534 57,672 [135]

161 Yeast: Oxford Statistics Protein interaction N 2,224 6,609 [59]

162 Yeast: DIP Protein interaction N 4,906 17,218 [6]

163 Yeast: DIPC Protein interaction N 2,587 6,094 [6]

164 Yeast: FHC Protein interaction N 2,233 5,750 [41]

165 Yeast: FYI Protein interaction N 778 1,798 [121]

166 Yeast: PCA Protein interaction N 889 2,407 [254]

167 Corporate directors in Scotland (1904-1905) Social Y 131 676 [69,238]

168 Corporate ownership (EVA) Social N 4,475 4,652 [199]

169 Dolphins Social N 62 159 [168]

170 Family planning in Korea Social N 33 68 [224]

171 Unionization in a hi-tech firm Social N 33 91 [154]

172 Communication within a sawmill on strike Social N 36 62 [182]

173 Leadership course Social N 32 80 [185]

174 Les Miserables Social Y 77 254 [151]

175 Marvel comics Social Y 6,449 168,211 [20]

176 Mexican political elite Social N 35 117 [105]

177 Pretty-good-privacy algorithm users Social N 10,680 24,316 [49]

178 Prisoners Social N 67 142 [185]

179 Bernard and Killworth fraternity: observed Social Y 58 967 [38,39,225]

180 Bernard and Killworth fraternity: recalled Social Y 58 1,653 [38,39,225]

181 Bernard and Killworth HAM radio: observed Social Y 41 153 [40,146,147]

182 Bernard and Killworth HAM radio: recalled Social Y 44 442 [40,146,147]

183 Bernard and Killworth office: observed Social Y 40 238 [40,146,147]
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Table B.1: List of 192 real-world networks.

Index Name Category Weighted Nodes Links Reference

184 Bernard and Killworth office: recalled Social Y 40 779 [40,146,147]

185 Bernard and Killworth technical: observed Social Y 34 175 [40,146,147]

186 Bernard and Killworth technical: recalled Social Y 34 561 [40,146,147]

187 Kapferer tailor shop: instrumental (t1) Social N 35 76 [140]

188 Kapferer tailor shop: instrumental (t2) Social N 34 93 [140]

189 Kapferer tailor shop: associational (t1) Social N 39 158 [140]

190 Kapferer tailor shop: associational (t2) Social N 39 223 [140]

191 University Rovira i Virgili (Tarragona) e-mail Social N 1,133 5,451 [115]

192 Zachary karate club Social N 34 78 [283]
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Appendix C

Approximate Analytic Expressions

for Thermodynamic Network

Entropy

C.1 Modular networks

These networks are generated such there are a total of n nodes, divided into N

equally-sized modules, with each node initially being connected to all others in its

module, i.e, the average degree 〈k〉 = n
N
− 1. Subsequently, each link is rewired with

probability λ; i.e., it is disconnected from one of its endpoints and joined up to a

node chosen uniformly at random. Consider first a pair of nodes in different modules.

They can only be linked by a rewired link. Each of the two nodes has 〈k〉 links to

start with. For each such link, there is a probability λ of rewiring; if it rewires, there

is a probability 1
2

that it remains linked to the node being considered; and if that

happens, the other end can join up to any one of the remaining n − 1 nodes in the

network, so the probability of joining to the other node being considered is 1
n−1

. Thus,

for each such link, the probability that it ends up linking the pair under consideration
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is λ 1
2(n−1)

. Since there are a total of 2〈k〉 such links, 〈k〉 for each of the two nodes,

the total probability of the considered pair being linked, which we denote by εout, is

εout = λ
〈k〉
n− 1

. (C.1)

Here we are ignoring the possibility that multiple links might rewire to join the same

pair of nodes, which is negligible if n is sufficiently larger than 〈k〉.

Now consider a pair of nodes within the same module. There is a probability

1 − λ that the initial link between them will remain in place. Additionally, there

is a probability λ 〈k〉
n−1

that they will be connected by a rewired link. Thus the total

probability of such a pair being linked, which we denote by εin, is

εin = 1− λ+ λ
〈k〉
n− 1

. (C.2)

There are a total of n〈k〉
2

within-module node pairs, and n(n−1−〈k〉)
2

between-module

node pairs. Given the assumption that n is sufficiently larger than 〈k〉, we can sum

independently over the entropy contributions from each of these pairs. This gives us

a total entropy per node (denoted for these networks by Hmod
td ) of

Hmod
td (n, 〈k〉, λ) =

−1

2
[〈k〉 [εin log εin + (1− εin) log(1− εin)] + (n− 1− 〈k〉) [εout log εout + (1− εout) log(1− εout)]] .

(C.3)

C.2 Watts-Strogatz networks

A Watts-Strogatz small-world network [273] is obtained by starting with a circular

lattice where each node is connected to its k nearest neighbours, and subsequently

rewiring links independently with probability p, in a fashion similar to the modular

networks just described. The derivation here proceeds in a fashion exactly analogous

to the above. Again we can divide node pairs into two types: those that are initially

connected and those that are not. For the latter, the probability of being linked after
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rewiring (which we denote by εfar) is

εfar = p
k

n− 1
. (C.4)

For those node pairs close enough together in the lattice to be initially linked, the

final probability of being linked (denoted εnear) is

εnear = 1− p+ p
k

n− 1
. (C.5)

There are a total of nk
2

initially linked pairs, and n(n−1−k)
2

other pairs. Summing

independently over the entropy contributions of the two types of pairs, we get a total

entropy per node for these networks (denoted by Hws
td ) of

Hws
td (n, k, p) =

−1

2
[k [εnear log εnear + (1− εnear) log(1− εnear)] + (n− 1− k) [εfar log εfar + (1− εfar) log(1− εfar)]] .

(C.6)
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