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A bipartite group of oscillators in which all oscillators within the same group are positively
coupled, while any pair between groups is negatively coupled, is known as a antiferromagnetic
system. Synchronization of antiferromagnetic oscillators is achieved only when the coupling is greater
than a threshold value: in this case, all oscillators within one group are in-phase with one another,
and exactly out of phase with those of the other group. In the presence of an external driving force,
the phase difference during synchronization is perturbed from the noiseless synchronization phase
difference of π. We also show that this change in the phase difference is proportional to the external
coupling strength. This work may contribute to the understanding and application of collection
enhancement of precision in physical implementations of engineered antiferromagnetic systems.

Global synchronization is a ubiquitous prob-
lem arising in fields as disparate as developmen-
tal biology, distributed computation, geological
magnetodating and antiferromagnetism in cer-
tain metals at low temperatures. Antiferromag-
netism is a physical property of materials charac-
terized by localized negative interactions. In os-
cillator networks, antiferromagnetic implies that
two groups of oscillators are negatively coupled
and possess distinct phases. In positively cou-
pled oscillator systems (ferromagnetic), synchro-
nization is achieved when all oscillators possess
roughly equal phase for a prolonged period of
time (unimodal distribution). In an antiferro-
magnetic network, synchronization is defined to
occur when the phases of all oscillators fall into a
narrow bimodal distribution.

INTRODUCTION

Diverse biological and physical phenomena, from the
division of a cell to the cycle of an engine piston, display
regular periodic behavior, and can be modelled as oscil-
lators [2, 6]. When many instances of such systems are
connected, or located in close proximity to each other,
complex global behavior and patterns can emerge from
strictly local communication and feedback. This has been
the basis of research on cellular automata and neural
networks[8]. One simple example of global coordination
is synchronization, which can be subdivided broadly into
two main classes: ferromagnetic and antiferromagnetic,
wherein local coupling is uniformly positive or alternat-
ing positive and negative, respectively. Synchronization
of oscillation leads to collective enhancement of precision,
improving the group rhythm to far above the precision of
any individual component [3, 7]; thus a group of faulty
oscillators may act as a single reliable one.

The exact parameters and details of oscillator coupling
can vary greatly. One well-studied example is the Ku-
ramoto model [4, 5]. In this system, each of the N os-
cillators is coupled to all the other oscillators with the

same coupling strength K. The ith oscillator has intrin-
sic frequency ωi, drawn from a distribution g(ω). The
dynamics of their phases θi are described by:

θ̇i = ωi +
K

N

N
∑

j=1

H(θj − θi), i = 1, . . . , N. (1)

The function H(·) is the phase coupling function, and
is often taken to be the sine function. Each oscillator can
be expressed as a phasor zi = rk eiθi , where ri denotes
the amplitude and θi denotes the phase. The overall
synchronization state of the system can be described by
a complex-valued order parameter χ, defined to be the
weighted arithmetic mean of the phasors of all oscillators.
However, in our case, all weights are equal.

χ = R eiΘ =
1

N

N
∑

k=1

zk =
1

N

N
∑

k=1

rke
iθk , (2)

The magnitude R = |χ| is defined as the amplitude of
the average state. When R = 1, it means that the system
is perfectly synchronized. In the Kuramato model (1),
the amplitudes rk = 1 for all k.

The group frequency can be modulated via an external
driving force with phase φ and amplitude d. The phase
dynamics are then given by:

θ̇i = ωi+d sin(φ−θi)+
K

N

N
∑

j=1

sin(θj−θi), i = 1, . . . , N

(3)

When the system is synchronized, the phase φ is sim-
ilar to the group rhythm Ω = 1

N

∑N

k=1 θk studied by
Needleman, Tiesinga, and Sejnowski [3]. When the oscil-
lators are synchronized, the group rhythm describes the
collective rhythm of the system. The group rhythm Ω
follows a Gaussian distribution when a Gaussian noise
perturbation is introduced in the system.
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FIG. 1: [Color Online] Model of antiferromagnetic oscillator
network. Oscillators are represented by circles, while the cir-
cled arrows represent the final phase of the oscillator. All
blue (grey) oscillators are positively coupled to each other,
and negatively coupled to white oscillators. All white oscilla-
tors are also positively coupled to each other.

THE ANTIFERROMAGNETIC SYSTEM

We used a variation of the Kuramoto model to study
antiferromagnetic synchronization in a system of oscil-
lators that includes negative coupling between groups
of oscillators (Figure 1). The negative oscillator cou-
plings form a bipartite set: odd-numbered oscillators
(blue/grey) and even-numbered ones (white). Oscilla-
tors in the same odd/even group are positively coupled
with each other.

The phases θi (i = 1, . . . , N) of the oscillators are de-
scribed by:

θ̇i = ωi + d sin(φ − θi) +

N
∑

j=1

Kij sin(θj − θi), (4)

Kij =

{

K+ if (i + j) is even,

K
−

if (i + j) is odd.
(5)

The coupling strengths K+ > 0 and K
−

< 0 respec-
tively denote the coupling constant between cells of same
and different parities. In analysis and simulations pre-
sented here, K+ is abbreviated as K, and K

−
is taken to

be −K. Under these circumstances, all oscillators with
odd indices synchronize to a phase different from that of
all even indices. Due to positive coupling within the two
groups, oscillators in the same group tend to be synchro-
nized with each other, but are out of phase with those in
the opposite group. This is known as antiferromagnetic

synchronization.

SYNCHRONIZATION IN ABSENCE OF

EXTERNAL DRIVING FORCE.

Analytically, the simplest case is when the external
drive d is equal to zero. To avoid asymmetric boundary

conditions, we use a fully connected network of oscilla-
tors. In the case of ferromagnetic oscillatory networks, a
threshold value existed for K, above which the network
eventually synchronizes (order parameter χ approaches
1)[5]. An analogous critical value Kc is expected to exist
for the antiferrmagnetic network.

To calculate the value of Kc, I define the antiferromag-
netic order parameter to be:

reiψ =
1

N

∑

j

(−1)jeiθj . (6)

Algebraic rearrangement and derivation [1] leads to:

Kc =
2

πg(0)
. (7)

This result is confirmed by numerical simulations: Sys-
tems with coupling constants lower than Kc failed to syn-
chronize, and the order parameter was near zero by the
end of the simulations. In contrast, all systems exhibiting
coupling constants larger than Kc quickly synchronized.
The coupling constant of the external driving force, d,
affects the behavior of the antiferromagnetic oscillator
network by applying equal force to both groups of os-
cillators. This partially counters the groups’ negative
coupling constant, and the minimum energy state of the
network has the two groups of oscillators separated in
phase by less than π.

When K > Kc, one obtains global synchronization;
that is, only two distinct phase states exist in the set of
all oscillators. We represent these by θ1 and θ2. Thus,
the dynamics reduces to:

{

θ̇1 = ω + d sin(φ − θ1) − K sin(θ2 − θ1),

θ̇2 = ω + d sin(φ − θ2) − K sin(θ1 − θ2).
(8)

By adopting a rotating frame of reference at rotation φ,
we can set φ = 0.

Zero Drive

We first analyze the degenerate case in which ω = 0
and d = 0. Here the external drive is absent. From pre-
vious analyses, we expect the resulting phase difference
θ1 − θ2 is π. We approach the problem both numerically
and analytically.

We randomly selected the initial phase states of the
two oscillators from a Gaussian distribution with mean
0 and standard deviation 1. After stabilization, we find
that θ1 − θ2 ≈ 3.1416 ≈ π. See Fig. 2 for an example.

We analytically solve the differential equation pre-
sented earlier for the d = 0 case and compare with the
simulation results. To do this, we define two new vari-
ables S and D:
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FIG. 2: Two oscillators with no external drive. We selected
initial phases randomly from a standard normal Gaussian dis-
tribution. Initial frequencies are zero. Coupling constant K

was set to be 0.5. The phases of the two oscillator groups
stabilized very rapidly, with θ1 ≈ −0.0868 and θ2 ≈ 3.0548 ,
θ1 − θ2 ≈ π

S = θ1 + θ2

D = θ1 − θ2

For φ = 0 this gives:

{

Ṡ = −d(sin θ1 + sin θ2),

Ḋ = d(− sin θ1 + d sin θ2) + 2K sin(D).
(9)

For d = 0, we get

{

Ṡ = 0,

Ḋ = 2K sin(D).
(10)

Rearranging and integrating the above gives

e−2Kt = |
1

sin D
(1 + cosD)|.

When time goes to infinity, e−2Kt −→ 0 so | 1
sinD (1 +

cosD)| does as well. This gives

1 + cosD = 0,

so that

θ1 − θ2 = π. (11)

Thus, our analysis agrees with the simulation results.

Small Amplitude Drive

When 0 < d � 1, we would expect the results to be
very similar to the d = 0 case. Define a new variable
ξ to denote the deviation of the phase of each group of
oscillators from the d = 0 case. Because the phases of
the two groups of oscillators deviate in opposite ways in
the presence of external drive, we write θ2 = θ1 −π + 2ξ.
In this section, we derive an explicit relation between ξ
and d/K.

A typical result of this case is shown in Fig. 3.
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FIG. 3: Phase as a function of time for two oscillators with
non-zero external drive. d = 0.05, K = 0.5. We selected ini-
tial phases randomly from a standard normal Gaussian dis-
tribution. We let initial frequencies set to zero. At steady
state, θ1 ≈ 4.8126 and θ2 ≈ 1.4706. The phase difference
θ1 − θ2 ≈ 3.3420 = π + 2ξ. This gives ξ ≈ 0.1002

The relation between ξ and d/K is further character-
ized with repeated runs for various values of d/K. We
show our result in Fig. 4.
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FIG. 4: Relation between ξ and d

K
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From the figure we can see that ξ is growing propor-
tionately with d

K
, when d

K
is small.

For convenience, we define d̃ = d
K

. The differential
equations describing the trajectory of the phases of the
oscillators (9) can be rearranged to yield:

{

˙̃S = −d̃(sin θ1 + sin θ2) and
˙̃D = 2 sin(θ1 − θ2) − d̃(sin θ

−
sin θ2).

(in the equations above ˙̃S, ˙̃D represent Ṡ
K

and Ḋ
K

.)
This gives:

{

˙̃S = −d̃(sin(S+D
2 ) + sin(S−D2 )) and

˙̃D = 2 sin(D) − d̃(sin(S+D
2 ) − sin(S−D2 )).

Because we assumed that θ2 ≈ θ1 − π + 2ξ, we obtain:

D = π − 2ξ = π + ζ(ζ = −2ξ).

Hence,

˙̃D = ζ̇ = −2 sin ζ + cos(S/2) cos(ζ/2)2d̃ (12)

We Taylor expand D̃ and S̃ to obtain:

{

˙̃D ≈ −2ζ + cos(S/2)2d̃ and
˙̃S ≈ −2d̃ sin(S/2)ζ/2.

(13)

At steady state, set Ṡ = 0 and Ḋ = 0. From the equa-

tion ˙̃S = 0, we know either S = 0 or ζ = 0. But because
we are trying to figure out the relationship between ζ
and d̃, we cannot set ζ = 0. Plugging this result into
(12) gives

ζ = d̃ =
d

K
(14)

This analysis comfirms the result with numerical simula-
tion.

CONCLUSIONS

The synchronization properties of antiferromagnetic
oscillator systems were studied in both the absence and

presence of external drive. In order to effect global syn-
chronization, the coupling strength between oscillators
must be larger than a critical Kc = 2

πg(0) . After synchro-

nization, the phase difference between the two groups of
oscillators tends towards π − d

K
. Further work on noise-

prone oscillators and non-uniform coupling constants K
may lead to insight on network robustness and dynamic
behavior of locally-coupled systems.
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