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1 Abstract

We investigate recurrence statistics of two-particle circular billiards. Dynamics
of this billiard is generated by free-motion of two particles (with non-zero ra-
dius) inside a closed surface with piecewise smooth circular boundary in 2 — D
Euclidean space. Particles collide elastically against the boundary and each
other, with angle of incidence equal to angle of reflection. We are interested in
recurrences of time interval needed for both particles to come back to certain
area. We used time series, recurrence plots and Poincaré sections in order to
investigate this time recurrences. We compare our results with ones obtained
from [3, 5, 13]. Although more investigation and statistics (as well as simulation
running time) is needed, we were still able to make conclusions about correlation
decay of certain variables in our system, as well as of frequencies and periodicity
of appearance of integrable regions in our phase space. Correlation decay for
position and velocity obeys a power low with coefficient between -0.2 and -0.8,
whilst decay of probability of first return time obeys power low with coefficient
approximately -1. We make conjecture about dependence of this coefficient on
rate of inner and outer circle radius.

2 Modelling circular billiard system

In a billiard, a point particle of mass m and momentum p = mwv moves freely
until it encounters boundary or the other ball. Without loss of generality, one
can take m = |v| = 1. If the ball hits the boundary normal component of it’s
momentum becomes

D, 7
P = p — 2210 (1)
n

where 77 is unit normal to the boundary 0@ at the collision point, and billiard
surface Q € R?. If balls hit each other the change in momentum of one ball obeys
same formula, but with 7 being normal to the boundary line of the other ball.
Two-particle billiard is Hamiltonian system with a 4D- dimensional phase space
x = (¢, pl, ¢2,p2) and potential V(q) = 0 for ¢ € Q, and V(q) = oo for ¢ € 0Q.
To define a billiard flow we use Poincaré section defined by Birkhoff coordinates
sp and p,,. Here s, is arc length along the boundary of n!* ball-wall collision
(any point can be the starting point because of the symmetry of the system),



and p,, = |p| cos ¢,,, where ¢,, is angle between the normal to boundary and out-
going direction [11]. As we have assumed |p;| = |p2| = 1 hence eliminated two
coordinates, and using Poincaré section we eliminate another one, our Poincaré
return map is (4D-3)-dimensional. The configuration space for two hard balls
of radii R; in a circular container 9Q of radius R is ()2, the direct product of 2
copies of the circle of radius R — R; reduced from 0Q), from which one should
remove cylinder which corresponds to the interactions of the particles. Even
though we can explain topology of the configuration space quite simply, mix-
ing and ergodic properties of this system are still not completely understood [7].

Main tool we used was a simulation of two particle circular billiard in Matlab
programming language. Running this simulation for different initial positions
and velocities of particles as well as different radius, we obtained time series for
position, angle of collision and recurrence time probability, which we studied
using correlation plots and statistics techniques.

2.1 Billiard types, chaos and Lyapunov exponent

Lyapunov exponent measures exponential decay in chaotic systems, and can be
described as the mean rate of separation of trajectories of the system. At time
t it is defined as parameter A, where |6x(t)| = e**|6x(0)| and dz(t) is the sepa-
ration of two paths starting on a distance dx(0). Dynamic of the system is only
predictable up to Lyapunov time, which is defined as time until two neighboring
trajectories diverge by e. Positive Lyapunov exponent by itself isn’t enough for
appearance of chaos, and we also need mixing of trajectories. Hence after long
enough period of time paths can get arbitrarily close to each other. Usually
chaotic properties are investigated when the Lyapunov time gets small enough
in comparison with observational time of the system.

We calculated Lyapunov exponent for our system by doing small perturbation
of initial conditions for both balls and calculating distances between two paths
obtained for these two starting positions and velocities. We have calculated
Lyapunov exponent for position coordinates as well as for velocity coordinate
vy (we didn’t do calculation for v, as the magnitude of velocity is constant).
For Lyapunov exponent at time t we used following formula, as stated in [14]:

_ log(|[6Z(t) || / 11 62(0) 1) (2)
t

where ¢ is time in discrete time steps of 0.2s, and Z(t) is system parameter
(position or velocity) at time ¢ (time step 0.2 has been chosen as big enough for
simulation efficiency, and small enough to get precise results).

To get Lyapunov exponent for the system we averaged above values for differ-
ent time of our system transience, and took the biggest exponent of the ones
obtained for different variables in our system - position and velocity coordinates.

A

Billiards can have chaotic, regular or mixed dynamics. Circular one-point bil-
liard is completely defined by radius of the circle. Circular and elliptical one-



point billiards have regular dynamics and are integrable. This means that num-
ber of constants of motion equals number of degrees of freedom of the system.
Chaotic behaviour appears if the system is deterministic, locally unstable (has
positive Lyapunov exponent) and globally mixing (has positive entropy -growth
rate of number of topologically distinct trajectories).

Poincaré vision of chaos is the interplay of local instability (unstable periodic
orbits) and global mixing (intertwining of their stable and unstable manifolds).
In a chaotic system any open ball of initial conditions, no matter how small,
will in finite time overlap with any other finite region and in this sense spread
over the extent of the entire asymptotically accessible state space [11].

A dynamical system is ergodic if for some smooth well-behaving function f
describing it, space average equals time average, except for trajectories on set
of measure zero. We can also say that a system is ergodic if any function that
is constant on orbits is constant on the whole space.

Mushroom billiards exhibit mixed dynamics, hence if a ball is confined only
to the cap of the mushroom the behaviour of the system is regular, but if the
ball gets in the stem it becomes chaotic. Another example of chaotic behaviour
in billiards is Sinai billiard, which represents rectangular billiard with a circle
taken out from it’s center. Diamond billiard (table bounded by 4 circles curved
inwards) and stadium billiard are also well investigated types of both chaotic
and ergodic billiard system [2, 13, 6].

Billiard is integrable if divergence and convergence of neighboring orbits are
balanced (Elliptic), defocusing if divergence of neighboring orbits (in average)
prevails over convergence (Stadium) and dispersing if neighboring orbits diverge
(Sinai blliards).

By putting two particles inside a circle container we change the dynamics of
circular billiard, and balls show chaotic behaviour [13]. By Poincaré recurrence
theorem, every system will after long enough transience come back approxi-
mately close to its initial state (to the inner circle of radius R;, around initial
point). It is interesting to study the statistics for this time depending on how
close to initial state we want our system to return to. We start with circle of
radius R;, = 0.5 around initial point, hence outer circle has two times bigger
radius then inner one, increasing this rate(R/R;,) and investigating impact of
it on properties of our system.

3 Recurrence plot

Recurrence plot (RP) was introduced in 1987 by Eckmann as a tool to visualize
the recurrence of states x; in a phase space. Higher dimensional phase spaces
can only be visualized by projection to 2 — D or 3 — D space, but RP technique
enables us to analyze this systems with help of N x N matrix, where N denotes
time of our system evolution [9]. We can represent an RP mathematically as

RZ,] :6(617 ||‘T’Li$]||)7xl GRm,’L,j:l,,N (3)

where ¢; is a threshold distance, ||.|] a norm and © is the Heaviside function
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Figure 1: Recurrence rate for ball 1 for 20 different uniformly random initial
conditions, balls radius 0.02, outer circle of radius 0.9

[9]. We have made RP of evolution of position of particles in time, hence our
x; was distance of particle from the center, and we were interested in how
close and often will particle come back to points of its trajectory. Following the
suggestions of [9] as we have circular symmetry in our system, we have taken 0.01
(one percent of circle radius) for a threshold distance € , and Lo-norm for vector
distances. Then using recurrence quantification analysis (RQA) we measure
complexity of our billiard system. One of the measures of RQA is Recurrence
rate coefficient (RR) which measures the density of recurrence points in the RP

and is defined as N
Zi: (Ri, )
RR(e) = 7}1\]2 J (4)

As N — oo RR represent the probability for a state to recur to its € neighbor-
hood in the phase space [9].

On figures 1 and 2 we show RR coefficient for 20 uniformly random initial con-
ditions, when balls radius is 0.02, and outer circle radius is 0.9, from which we
can see that starting position influences this coefficient, as the consequence of
chaotic properties of our system.

4 Autocorrelation and Statistics

Autocorrelation is the tendency for observations made at adjacent time points
to be related to one another. It refers to the correlation of a time series with
its own past and future values. The correlation coefficient between series of
observations x and y is given by

21 (Wi — W) (@i — (@)
VT (i = W)Y (@i — (2))?)

ry =

()
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Figure 2: Recurrence rate for ball 2 for 20 different uniformly random initial
conditions, balls radius 0.02, outer circle of radius 0.9

where the summations are over the n observations, and (x), (y) are mean values
of x and y coordinates, respectively. A similar idea can be applied to time series
for which successive observations are correlated. Instead of two different time
series, the correlation is computed between one time series and the same series
lagged by one or more time units. Hence autocorrelation coefficient is calculated
as

n—I

R = 2 @i~ (2)(@in — (@)

24 (@i — (x))?

Negative autocorrelation shows that the direction of the influence is changing in
successive time intervals, hence if at time ¢; values were above average, at time
to we would have them below the average. Positive autocorrelation might be
considered a specific form of ”persistence”, a tendency for a system to remain
in the same state from one observation to the next.

(6)

Autocorrelation plots (correolograms) are a commonly-used tool for checking
randomness in a data set. This randomness is ascertained by computing au-
tocorrelations for data values at varying time lags. For random data, such
autocorrelations should be near zero for any and all time-lag separations, and
if a time series has a regular pattern, then a value of the series should be a
function of previous values.

5 Results

We are interested in investigating autocorrelation decay for x and y coordinate
of balls position and velocity, as well as the angle of collision with the wall.
When we have long sequence of wall hits without balls hitting each other in
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Figure 3: Autocorrelation plots for vy, (blue) and vys (green)

between, the system is predictable and stable, and time series for both balls show
periodic behaviour, whilst on Poincaré section we find integrable regions. Also,
when balls hit each other, the system is no longer predictable, and positions
and velocities of both balls show chaotic behaviour in time. We proceed on
investigating correlation plots for just one particle, because they will both have
peaks at same places as shown on Figure 3.

Figures 4 and 5 show us change in rate of ball vs wall hits for 20 different initial
conditions, uniformly spread around the circle. From Figure 4 we see that rate
between ball and wall hits, which we denote by hitBW, becomes bigger as radius
of balls gets bigger, which is as expected as there are more ball collisions for
bigger ball radius. Mean value of number of ball versus wall hits is 0.1059 with
minimum 0.0131 and maximum 0.3493 (hence standard deviation is very big,
0.1402).

Phase space of dependence of incident angle against arc-length of collision on
boundary (Figure 6) show us the chaotic behaviour of our billiard system, as well
as appearance of some stable areas. Horizontal lines that appear are integrable
regions in which balls were not hitting each other but moving as they are alone
in the circle - hitting the wall with same angle. When the ball collision happens
behaviour becomes chaotic again.

By plotting angle of wall collision (Figures 7 and 8) we again see integrable
regions where straight lines appear on these plots (hence ball was only colliding
with the wall). If we annotate with ni,ns,ns,... number of collisions with
the wall for each of these integrable regions (hence n; is for region ) it’s an
open question to investigate the pattern appearing among this sequence n;. We
are particularly interested if we can get statistics of this sequence for different
initial conditions by considering one random initial condition and letting our
simulation run for long enough period.
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Figure 4: rate of number of ball and wall collision for 20 uniformly randomly
picked initial conditions and radius of balls 0.03, circle R=1
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5.1 Recurrence plots and Recurrence rate coefficient

In Table 1 we show the mean, minimum and maximum values of RR (Recur-
rence rate) coefficient for different ball radius over 20 initial conditions (where
starting positions of balls were 7 = 0.1,79 = 0.3 and uniformly distributed
around circle). If we look at the mean of this coefficient for both balls we notice
it is bigger as ball radius becomes bigger (except in case of ball radius 0.035).
This is maybe opposite result from expected, because the system should show
more chaotic properties as the ball radius becomes bigger, because then we have
more collisions among balls. Hence we would expect it will come back close to
initial position more rarely. On the other hand, when radius is bigger it’s greater
possibility that it will cross particular area in the future. To investigate this
more we need to go to limit of very big and very small ball radius. In case of
radius 0.2 and random initial condition we get RR1 = 0.00027041, and when
radius is 0.22 RR1=0.00024625. Hence at the moment we can’t make conclusion
that RR is bigger for bigger ball radius, but we leave this question for future
work. Differences in RR for different ball radius are of order 10~°, while the
average value of coefficient is 0.00021569 hence this differences can’t be a secure
parameter showing the dependence of chaos appearance on ball radius.

When we run our simulation again for balls of radius 0.02 over 20 uniformly dis-
tributed initial conditions (so velocity and starting angle of ball2 are distributed
around the circle, whilst initial velocity and position of 1st ball are fixed), but
with starting positions at r; = 0.2, ro = 0.4, we get slightly bigger recurrence
rate coefficients, of order 107°.

In Table 2 Recurrence coefficients for two different initial positions of balls of
radius 0.02 are presented.
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RR—statistics mean median min max STD
R=0.02 0.0002129 0.0002139 | 0.0002036 | 0.0002196 0.000003939
R=0.03 0.00021375 | 0.00021425 | 0.000206 | 0.00022443 | 0.0000048255
R=0.035 0.0002052 0.0002098 | 0.0002052 | 0.0002203 0.0000038
R=0.04 0.0002181 0.0002103 | 0.0002047 | 0.0003408 0.00002929
R=0.05 0.0002167 0.0002153 | 0.0002074 0.000245 0.000007858

Table 1: statistics of RR coefficient for different ball radius

RR2—statistics min max mean median std
ry = 0.1,79 = 0.3 | 0.0002036 | 0.0002196 | 0.0002129 | 0.0002139 | 0.000003939
r1 = 0.1,79 = 0.4 | 0.0002505 | 0.0003466 | 0.0002678 | 0.0002613 | 0.00002064

Table 2: Recurrence rate of ball 2 for two initial radial positions of balls




5.2 Probability for balls to come back to certain area

Probability P(r) = P(7 > t), where 7 is Poinacaré recurrence time (here first
time of balls getting back to the inner circle) decays with a power law 48.82 x
2709628 in case of averaging over two initial conditions, and as 66.63 x 209038
in case of averaging over 20 initial conditions. This is for balls of radius 0.02
in circle of radius 0.9, with radius of inner circle 0.4. We have run the sim-
ulation for 6500 iterations. Power regression is in paper by [8] explained to
be due to the trapping of chaotic trajectories in the hierarchically structured
vicinity of islands of regular motion. In paper by [1] is shown that in Hamil-
tonian systems with KAM islands of stability, probability density has power
regression t~¢, where 1.5 < a < 2.5, whilst for probability itself parameter «
should be between 2.5 and 3.5. [7] In most Billiard system papers [13],[3],[5],[10]
the topics discussed were mushroom, diamond or stadium one-particle billiards.
Here we deal with more simple boundary shape (which 1-particle counterpart is
completely investigated integrable circular billiard), but the effect of ball colli-
sions brings in chaotic component whose behaviour is still not well understood.
By numerical methods we show that recurrence time of correlation decay has
smaller absolute value then in above mentioned investigated cases. This shows
a difference between one-particle and two-particle billiards, but also leave an
open question of influence of boundary shape on correlation decay.

Conjecture: Power regression of probability that 7 (mean return time to inner
circle of radius R;, over certain time interval) is greater then time t, P(7 > t)
depends on the relation between radius of outer and inner circle, R/R;,, as
well as on R;,,/R1, where Ry is radius of balls. We show this by our numerical
results for different R, R;,, R; and time periods. On figures below are plotted
probability function depending on t, for several different conditions. Table below
gives some of numerical results we calculated.

K=2, it=3000
R=0.9 R, =03,R =0.02: y =452 (exclude x < 100)
R=09,Ri, = 0.3, Ry = 0.01, K = 30,4t = 5000 : y = 143.22~ %9957 (excludexr <
180,z > 1000), y = 245.32 799985 (exclude x < 1105)
R =12, Ri, = 0.4, Ry = 0.02
R=1.8R;, =06,R =0.04:y = 1792~ (exclude z < 210)
R=0.6,Rym = 0.2, Ry = 0.01

— 1.5, Rin = 0.5, Ry = 0.02 : y = 332,15~ 0:9825
.6, R;p, = 0.2, R; = 0.0133(exclude x < 220)
2, Rip, = 0.4, Ry = 0.026 : y = 114.727%975 (exclude x < 210)
5, Rip = 0.5, Ry = 0.033 : y = 120.82 09839

= 1.8, Ri, = 0.6, Ry = 0.04 : y = 1792~ (exzclude z < 210)
K=20, it=3000
Exact fits when R/R;, =3, R;,/R1 =15
R =0.45, R, = 0.15, Ry = 0.01 : y = 4520~ ! (exclude x < 100, 2 > 990)
R=0.9,R;, = 0.3, Ry =0.02: y = 452 (exclude x < 80,z > 1000)
R =1.35R;, = 0.45, Ry = 0.03 : y = 202~ (exclude x < 60,z > 990)
R=18,Ri, = 0.6, Ry = 0.04 : y = 1792~ (exclude z < 210)

isvji=viiav R~ liey
I
—— O

In case of running our system for 5000 seconds averaged over two initial condi-
tions, was noticed that between probability iterations 1000 and 1200 we have

10
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Figure 9: K=2 balls radius 0.02, circle 0.9, inner circle 0.4, 20 initial conditions,
time=2000
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Figure 11: Probability of return time for R = 0.9, R;, = 0.4, R, = 0.02, K = 20
random, uniformly picked initial conditions, time=5000

non-predictable behaviour of probability function, whilst before and after it
comes back to power regression with coefficient near -1. This starting behaviour
is probably due to the existence of non-integrable regions in which system be-
haves unpredictable. But after long enough transience it’s probability function
stabilizes again.We get exact coefficient -1 as on Figure 12, when R/R;, = 3.
On Figures 9, 10 and 11 we represent probability function for several other val-
ues of outer and inner radius. We have again excluded some starting points due
to the transience needed for system to ’stabilize’, start behaving deterministic
as well as chaotic. This was also done in paper by [5], and we applied same
reasoning when determining power and exponential regression for coordinates
of position and velocity. We need to exclude more points as radius of balls and
circles becomes bigger, as then system is more chaotic and need longer time to
stabilize. We would expect that as the coeflicient R/R;,, becomes bigger, power
regression has smaller modulus of coefficient. This is because balls will get into
inner circle less frequent, hence time 7 will get bigger and there will be more t
for which it is satisfied that ¢t < 7.

5.3 Autocorrelation plots (Correolograms)

We have fit exponential curve on angle correologram, which can be obtained by
fitting linear function to log-log plot of wall collision angle. This is shown in
Figures 13 and 14, for ball radius 0.05, and outer circle R=1, where the expo-
nential regression is approximately 0.69 x 0.99593% = 0.69 x e~%9041% Ve can
also see non-exponential initial decay, which was found for diamond billiards in
work by [12]. Possible for same reason in paper by [5], they excluded first two
units measured in appropriate units of Lyapunov exponent from their results,
due to transient phenomena that are apparent in short time period. On Figure
22 we also show correologram for angle of ball 1 but made with bigger time step.

12
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In paper [4] it was shown that the appearance of long tails in correlation decay
is due to integrable regions. Results we get for angle correlation coincide with
this, because we make time series of angle with wall collision, and this happens
at start of each integrable region(when ball collides only with wall). For a future
research is left to determine some rules of behaviour for lengths of this integrable
regions by using symbolic dynamics and similar tools.

From autocorrelation plots of z and y coordinate for one ball, we can see the
periodic behaviour of autocorrelation coefficient. We average correlation coef-
ficients over initial conditions for particle 2 uniformly distributed around circle
(we fix particle 1 position at 7y = 0.1,61 = 7/3,v;1 = 1,vy1 = 0). Then fitting
exponential and power regression to it, we find that the power coefficient has
modulus less then 1 (average around 0.5).

Like stated in [5], in absence of rigorous asymptotic, we can only check if our
numerical results for decay of correlation functions are compatible with some
a priori function describing the decay. Hence we test if our time series for
correlation functions of position and velocity coordinates can be fitted with
exponential function of form a x e~?**, where t is time expressed in units of
0.3. Using this method from [5] we try to fit function of the form e~ f(wt),
for some periodic function f. In this case, we should be able to fit successive
maxima of logarithmic plot for correlation function with several parallel lines.
(as f would be free parameter of linear fit, and as it is periodic would only take
several different values, hence parallel lines).

On the Figure 15 we show the power fit for x coordinate of ball 1 just for
maximum points is 1.2878 x ¢t~0-26843 whilst for all points it is 1.304 x ¢~ 0-4116,
But we can see that all maximum points don’t fit well in mentioned power law,
and following the example of [5] we try to fit several parallel lines to maxi-
mum points on log-log plot, in order to get power regression in form ¢t~ f(wt),
where f is some periodic function of time. Coefficient a is then as for fit for
all points, a = —0.4116 as shown on Figure 15. Comparing this result with
ones obtained in [3], where in case of mushroom billiards the correlation decays
as a power function with modulus of exponent greater then 1, we see that fact
of two balls interacting in a simple shape billiard makes decay more more slowly.

Calculation of Lyapunov exponent gave us the mean value over radius 0.03,0.05
of 0.44584 for position, and 10.4162 for Cartesian velocity coordinates, which is
the maximum Lyapunov exponent for our system.

Results for exponential decay (Figure 17 and 18) are however similar to those
obtained in unpublished part of paper by S.Lansel and M.Porter where for X
coordinate they get exponential regression approximately 0.077x0.99025%. This
was in the case of one-particle mushroom billiard.

When comparing period of autocorrelation functions for x coordinate of balll
for different ball radius, we see that period becomes smaller as radius becomes
bigger - this is because of islands of stability being bigger in case of smaller balls,
hence correlation coefficient changes less frequent. By reading from graphs of
correlation function, we get that the periods for balls of radius 0.02, 0.03, 0.04,

14
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Figure 14: Semilog plot for autocorrelation coefficient of angle of wall-balll
collision, ball radius 0.05
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, Log-Log plot and power regressions X for continuous autocorrelation function for X1
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Figure 15: Correlation function of z1 coordinate over 15 random, uniformly
picked initial conditions, for balls of radius 0.04, outer circle of radius 1 (red=fit
for max points, green=fit for all points)
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Figure 16: Log-log plot for = coordinate of balll, balls radius 0.02, outer circle
0.9, inner circle 0.4, 20 random initial conditions and time=2000 (red=fit for
max points, green=fit for all points)
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Exponential regressions X for continuous autocorrelation function for X1, K=15
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Figure 17: x coordinate correlation function for ball 1 of radius 0.04 averaged
over 15 random uniform initial conditions (red=fit for max points, green=fit for

all points)
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Exponential regressions X for continuous autocorrelation function for X1
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Figure 18: Corr plots for x coord of balll, balls radius 0.02, circle 0.9, inner
circle 0.4, 20 uniformly picked random initial conditions, time=2000 (red=fit
for max points, green=fit for all points)

18



Semiltgg plot and exponential regressions VX for continuous autocorrelation function for VX
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Figure 19: Correlation plot and fit for v, coord of balll, balls radius 0.02, circle
0.9, inner circle 0.4, 20 initial conditions,time=2000 (red=fit for max points,
green=fit for all points)

0.05, 0.05 are as follows: 12.5, 8.72, 6.66, 4.76, 4.34.

On Figure 19 we see exponential and power fit for x-coordinate of velocity, with
power coefficient -0.14 for all info and -0.34 just for max points. Hence velocity
correlation is decaying more slowly then position coordinates, which is expected
as velocity only changes when collision happens.

5.4 Time series analysis

We have made autocorrelation plots for time interval needed for both balls to
get inside circle of radius R;;, (series of difference between time both get in and
previous time at least one of them was out-Figure 20 and 21), as well as of
angle of wall collision (Figure 22) . As in case of random time series we expect
autocorrelation plot to be around 0, we can see that in angle of wall hitting
is very correlated, whilst the time interval series becomes more correlated as
the radius becomes bigger. (as we could have expected, as then is the greater
probability of both particles getting into smaller circle).The autocorrelation plot
of recurrence time series (time intervals denoted by timeRec) averaged over
many initial conditions, the correologram has linear regression (best fit is linear
with residuals distributed randomly), but scattering of points around 0 show
that there is no connection between how correlated series is for different lags we
take. Also the mean value of the correlation is close to 0, and only about 10
percent of points get to 0.15 correlation coefficient.

19



corr of imeRec
0.35 T

0.251 b

corr coef fot timeRec

250 300

100 150 200
time of balls geting in inner circle

Figure 20: Time series of recurrence time
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Figure 21: Mean values of correlation function of return time over 20 random
initial conditions, and residuals plot
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Analysis of angle 2 corr fit for radius 0.02
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Figure 22: Correologram and fit for angle of wall hit of ball 2, for ball radius
0.02, outer circle radius 1

6 Summary

In the paper we have analyzed different recurrence times in two-particle circu-
lar billiard system. Starting from time for both balls to get back into a circle
of radius half and quarter of outer radius, for different ball size, we can make
conclusions that correlation in time series obtained depends on this coefficient
significantly. Autocorrelation plots for position and velocity components have
also been analyzed, and their exponential and power regressions found. Compar-
ing these with results obtained in [3, 6, 5, 4] and others we have seen similarities
in decay properties, but noticeable differences in coefficients of these regressions.
Investigating connections between shape of boundary, number and size of balls,
and similar system properties with correlation decay is topic for future research.
Also, we have found interesting results in power regression of probability of mean
recurrence time being greater then particular time interval. Power coefficient
is between -0.95 and -1, and we get exact result -1 when outer radius is three
times bigger then inner one. This is also topic for future investigation, where
simulation should be run for longer time interval over several hundred initial
conditions, so that we can numerically conjecture the dependence of probabil-
ity on radius of circles and balls with more precision. In future, properties of
lengths of integrable periods and dependence of it on initial conditions should be
analyzed. Also coefficient of exponential fit for correlation decay of position and
velocity coordinates is one of parameters we calculated and should be compared
with the coefficients obtained in work by [7, 3, 5].
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