
The behaviour of
modularity-optimizing community

detection algorithms

Sally Hutchings

St Hugh’s College
University of Oxford

A thesis submitted for the degree of
Mathematics and Foundations of Computer Science

1 September 2011



Acknowledgements

I am very grateful to my supervisors, Dr Mason Porter and Dr Raphael Hauser, for
their guidance and encouragement. They have tirelessly provided me with their time
and resources, and most importantly their insights into this vast field. Thank you also
to Peter Mucha, Roger Guimerà and Renaud Lambiotte for helping me to understand
their algorithms and write MATLAB programs for them, to Professors Colin McDiarmid
and Oliver Riordan for their influential lectures on Graph Theory and Probabilistic
Combinatorics which introduced me to the fields of graph theory and network science,
and to my supervisor Jonathan Pila for his support. I would not be here without the
love and support of my family and friends, and a special thank you goes to Dominic
Bowe, Lindsay Munroe, and Anne Hillebrand for a fantastic time this year!



Abstract

Networks can represent many relationships between collections of objects - for example,
friendships or geographical proximity between people, or neural connections between
brain cells. Communities are a mesoscopic property of a network representing the in-
tuitive concept of a community, such as friendship groups in a friendship network, or
towns and villages in a geographical network. Community detection algorithms aim
to divide a network into communities using only knowledge of the nodes and the links
between them. The results of such algorithms can therefore tell us who belongs to the
same community, how many communities there are in a network and even in some cases
whether someone belongs to multiple communities. Dividing a network into its under-
lying communities can also indicate the roles of nodes in the network, such as whether
a highly-connected node is connected to many communities, or only to nodes within its
own community. Thus community detection can provide deep insights into the structure
and resilience of the network, that local properties such as node degree alone cannot.

Results like this motivate the study of communities in networks - but conversely, the
strong ties to applications have resulted in fewer mathematical results than in graph
theory. In particular, there is little mathematical understanding of the behaviour of
community detection algorithms and the statistical significance of their results. This
dissertation will focus on the popular method of community detection called modularity-
optimization. Currently, modularity-optimizing community detection algorithms are
assessed based on their performance on networks with known community structure.
However, there are serious concerns about the results of modularity-optimization that
suggest that what is more important is knowledge of the behaviour of such algorithms.
Therefore we will discuss and also address these issues by providing both an up-to-
date review of theoretical work on the behaviour of modularity-optimizing community
detection algorithms as well as new theoretical results on the subject. The aim is to
show that with these theoretical results come new insights into the behaviour of these
algorithms and a deeper understanding of the significance of modularity-optimization
results.
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Chapter 1

Introduction

Networks are graphical representations of a collection of objects and a type of relationship that
holds between them.

Examples of networks are students at Oxford University connected by friendships, or train stations
connected if they are only a stop apart. In certain ways, networks are the same as graphs, in the
basic sense that they consist of nodes, pairs of which are connected by edges. In this sense one
can apply the results of graph theory to gain insight into the network. However, there are vast
differences in the structures and properties found in networks and graphs, and the significance of
them [23]. These differences have led to the development of different methods to study networks
in order to better understand the structures and properties that arise in them. Communities in
networks are a prime example of such a structure. An example of a community is a friendship group
in a friendship network, for example, or a city in a railway network. That is, the groups we classify
as communities in networks all represent communities in the intuitive sense of the word: a group
of people sharing religion, race, profession, the area in which they live or other characteristics. In
a network of people with links representing one of these attributes, such communities will appear
as densely connected areas. Thus, to complement this intuitive idea of a community there is a
corresponding characterisation of the communities found in networks:

Communities are groups of nodes more densely connected to each other than they are to nodes
in the rest of the network.

This is not a definition of what we signify as a true community in a network, for there may be both
groups we would call communities that are not dense enough to be picked out by this characterisation
and groups of nodes we would not call communities (such as cliques arising in random graphs) that
would be picked out by this characterisation. Yet groups of nodes more densely connected to each
other than they are to nodes in the rest of the network represent groups of induividuals sharing
the relationship represented by the edges and thus represent a community in the intuitive sense,
therefore in general the two coincide. The aim of community detection in network science is to find
such communities.

Note Providing a definition of a community is an issue and the subject of an intense discussion
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Figure 1.1: Coauthorship network [22] visualised using the Fruchtermann-Reingold algorithm [30,
11], where colours represent communities as determined by Blondel et al’s modularity-optimizing
community detection algorithm [3].

that we shall not broach here, as the above characterisation is sufficient for the purposes of
this dissertation (for more information see Fortunato’s paper [9]).

There are many reasons to divide a network into communities. One might want to know how
segregated (or integrated) the French and Flemish-speaking people in Belgium are [3, 8], perhaps
in order to advise the government on how to address various issues. Or one might need to know
how a terrorist network is made up of cells, in order to determine whether an attack was an isolated
plan or part of a larger sequence of attacks [17]. Or one might use community detection in conflict
resolution to detect nodes that belong to multiple communities and can therefore act as effective
negotiators [9]. A very versatile use with many important applications is the classification of node
roles, and this we shall consider in more detail.

Example 1. Guimerà and Amaral [15] have developed a node classification scheme based on the
results of community detection algorithms. It allows one to say how highly connected or isolated
a node is in a network and to determine the sort of function it and others like it may have. While
their results can be applied in principle in many areas, Guimerà and Amaral focused on biological
networks, and in particular they investigated the classification of nodes in metabolic networks into
seven functional roles. The important element is that these classifications are based purely on how
the node is connected to nodes in its own community and how it is connected to nodes in other
communities.

The roles are defined as follows. The first distinction is between “hubs” and “non-hubs”, where
a hub is a node highly connected within its community, and the second is between between three
different types of hub, “connector” hubs that connect their community to nodes in many other
communities, “provincial” hubs that mostly connect to nodes in their own community, and “kinless”
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hubs whose links are homogenously distributed between communities. This distinction alone has
a notable impact on the study of structure and resilience, for the removal of a provincial hub will
have much less of an impact on network connectedness than the removal of a connector or kinless
hub, even though the nodes may have the same degree. The last distinction is between four non-
hub node types, “connector” and “kinless”, which are similar to the above in being connected to
other communities or being homogenously connected, and two other roles, “peripheral” and “ultra-
peripheral” correspond to being connected mostly or only to nodes in their own community.

In various empirical tests, it was found that these classifications correspond to functional
metabolic groups, thus supporting the use of community detection to define node roles. Such a
method can be extended to other areas, for example it was noted by Guardiola et al’s [14] that due
to the intensely modular structure of the trust network they consider, many links could be removed
before intra-community communication was affected; furthermore, the entire network’s communi-
cations could be re-established by rebuilding just a few links. Being able to determine which nodes
are connector hubs would be very useful in this case.

A consequence of our characterisation of a community in a network is that it suggests how we
can go about finding such groups algorithmically. For example, the pioneering article on community
detection by Girvan and Newman in 2002 [13] suggested using a betweenness centrality, a diagnostic
that measures how many shortest paths pass through an edge, since intercommunity edges tend to
have higher betweenness values. Having brought community detection to the attention of math-
ematicians and statistical physicists with this paper, many community detection methods have
sprung up in its wake, but few theoretical results to explain their behaviour, justify their use, or
increase our understanding of community structure in networks [23]. Modularity-optimization is a
particularly popular community detection method, frequently used, and yet it too lacks theoretical
support and understanding. Modularity is a partition quality function, measuring how “good” a
partition is; that is, how much community structure it suggests a network has compared to what is
expected at random.

In Chapter 2, we introduce and define the modularity function, and the principles of its optimiza-
tion. In Chapter 3, we shall discuss some interesting types of computational heuristics popularly
used to optimize it and discuss their performance. Then, in Chapter 4, we shall introduce and
explain the problems that beset modularity-optimization, which brings us to the study of the be-
haviour of modularity-optimizing community detection algorithms. Following this review, we shall
discuss two particular problems of interest and present some results of my own. The first of these
problems relates to properties of the modularity function and the behaviour of the heuristics on a
random graph model, and this is discussed in Chapter 5. The second problem, discussed in Chapter
6, relates to the theoretical properties and behaviour of simulated annealing, one of the heuristics,
on a random graph model. Thus my own work on the subject can be found in Chapter 5 and
Chapter 6. Lastly, a summary and conclusion can be found in Chapter 7.

Note In this dissertation we consider only undirected, unweighted networks, although many results
can be extended to directed, weighted networks. See [9] for more information.
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Chapter 2

The modularity function

Modularity is a partition quality function that measures how “good” a network partition is, where
in this case the better a partition is the more community structure the network has, when compared
with a chosen random graph model called the null model. In this section, we follow the development
of this intuition into a definition of the partition quality function modularity, first introduced and
defined by Mark Newman [21].

2.1 Preliminaries

Definition 2. Given a network A, let M be the number of edges, N the number of nodes, A = (Aij)

the adjacency matrix where Aij = 1 if the edge ij is present in the network and 0 otherwise, and
di the degree of the ith node and k the mean node degree.

Definition 3. By a partition σ of a network A we mean an assignment function σ : {1, . . . , N} −→
{1, . . . , r} where σ (i) is the class assigned to node i and r is the number of classes in the partition.
For ease of notation we can write partitions as vectors of length N , for example, σ = 1, . . . , N for
the singleton partition where σ (i) = i for each node i.

Definition 4. Given a community of a network A, define ki to be the number of intra-community
edges and ko the number of edges it has to other communities.

Definition 5. Also define δ (i, j) = 1 if σ (i) = σ (j), and 0 otherwise.

Definition 6. Let G(N, p) be the class of Erdös-Rényi (ER) random graphs on N nodes with edge
probability p. This means that any graph G(N, p) ∈ G (N, p) has N nodes and each edge in that
graph has probability p of being present, independently of all the other edges.

Definition 7. A blockmodel A is a computer-generated network with predefined communities, it
was introduced in [13] and as such is sometimes called a Girvan-Newman model. Each edge has
probability pi of being present if it is an intraclass edge or probability po otherwise. One can
generate them by defining an N ×N probability matrix P = (Pij) where each Pij is the probability
that the edge ij occurs in the graph and comparing this to a random N×N matrix U = (Uij) whose
entries are sampled from the uniform distribution, if Pij > Uij then Aij = 1, otherwise Aij = 0.
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Figure 2.1: Two blockmodels generated using the method given in definition 7. In the network on
the left, any intra-community edge has probability 1

2 and any inter-community has probability 1
96 ,

wheras in the network on the right every edge has uniform probability of 16
128 = 1

8 .

Definition 8. The null model with respect to a network A is the random graph G on N nodes
such that each edge ij has probability didj

2M of occurring. Thus G has expected degree sequence
d1, . . . , dN identical to the network A, but each edge is placed randomly.

Definition 9. Finally, to fix notation, we shall use <> for the mean and ≈ for approximately.

2.2 The mathematical definition

Definition 10. Given a partition σ of a network A , its modularity (as defined in [21] is:

Qσ =
1

2M

�

i,j

�
Aij −

didj

2M

�
δ (i, j) (2.1)

where σ,M,N,Aij , di and δ (i, j) are as defined in Definitions 2, 3 and 5.

Definition 11. The matrix B = (Bij) where Bij = Aij − didj

2M is called the modularity matrix [21].

The expectation of an edge can be calculated locally or globally and Definition 10 uses the local
expectation, didj

2M , the ratio between the number of ways for such an edge to occur and the total
number of edges. Thus modularity compares the presense (or lack thereof) of an edge, Aij , to the
expectation didj

2M of that link being present, for each intraclass edge (each i, j for which δ (i, j) = 1).
Or, equivalently, it compares the intraclass structure of network A with respect to the partition
σ to that of the null model (see Definition 8). Thus the null model gets its name from statistics,
as it represents what the network would be expected to look like if only randomness was at play
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in the development of its structure. Therefore modularity represents how “good” a given partition
is, where the better a partition is the more unexpected intraclass edges the network has, with
respect to the null model. This means that the higher the modularity score, the more a network
has unexpectedly high numbers of intraclass edges with respect to that partition. Thus given a
network, the partition(s) with the largest modularity scores are the ones with respect to which the
network A has the most unexpectedly dense intraclass structure.

Note The factor 1
2M scales the modularity score so that it is between −1 and 1 and so that it is 0

when the adjacency matrix is identical to that expected.

The definition of modularity is based on the idea of a community given in Chapter 1, namely
that it has more links between its members than expected at random and fewer than expected
between those members and the rest of the network. Consider the networks shown in Figure 2.1.
The network on the left was generated randomly with each intraclass edge having probability 1

2

and each interclass edge having probability 1
96 , thus having a mean expected node degree of 16.

The network on the right has the same node degrees (on average), but each edge was placed with
uniform probability 1

8 .
Evidently any partition of the network on the right will have many more links between groups

than the intuitive partition of the network on the left, displaying our intuition that the network on
the left has community structure. Furthermore many partitions of the lefthand network will have a
larger number of links between groups than the intuitive partition, demonstrating our idea that the
intuitive partition is a good partition of this network. Modularity allows us to say which partitions
are good and bad in this sense of representing the underlying community structure, as well as its
maximum value giving us an idea of how much community structure a network has.

2.3 Optimization

The aim of modularity-optimizing community detection algorithms, then, is to determine the par-
tition(s) with maximum modularity. However, because we are looking for a maximum over all
partitions of a network, the number of which is exponential in N , maximising modularity is equiva-
lent to comparing the modularity of each and every partition of the network to determine the best
one, and decision problems like this are often NP -hard. Therefore, this problem could be NP -hard,
and in fact it is, as has been shown by Brandes et al [4]. We shall not discuss complexity here, as
it only affects my dissertation in as much as it means that there is no polynomial time algorithm
that can reliably find Qmax (unless P = NP ). There are, however, approximation algorithms, and
these are the topic of my next chapter.
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Chapter 3

Computational heuristics for
optimizing modularity

There are a variety of algorithms that attempt to approximate Qmax, and to do this reliably
and accurately (and quickly, although this is not our concern as we are looking at theoretical
properties and for this we will sacrifice concerns for speed and resources) [23, 9]. Four popular
classes of modularity-optimizing community detection algorithms are greedy, extremal optimization,
simulated annealing, and spectral algorithms. We shall consider one or two of the main competitors
from these types. In the rest of this chapter, we discuss their methods, and summarise their
achievements assessed according to common practice.

3.1 Methods

3.1.1 Louvain greedy method

Blondel et al’s greedy algorithm [3] works by starting with the singleton partition (each node alone
in its own class) and assessing potential moves for each node in turn, always choosing the move
with the largest increase in modularity. More specifically, one starts with the adjacency matrix
A of the network, the singleton partition G = 1, . . . , N where G(i) is the class of node i, and an
ordering of the nodes α1, . . . , αN . Then, one by one, each node is assessed by moving it from its
current class to a neighbour’s class and calculating the change in modularity of each move, selecting
as the permanent move the move with maximal increase in modularity, or leaving it in its current
class if no such move exists. This last step is then repeated until no further increases in modularity
are possible. Note that the result of this algorithm depends on the chosen ordering of the nodes,
Blondel et al claim in [3] that test cases suggest the dependence is not significant.

3.1.2 Extremal optimization

Duch & Arenas’ extremal optimization algorithm [7] works by recursive bipartitioning, beginning
with a random bipartition and using each node’s contribution to the modularity as a fitness test,
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Algorithm 1 Simulated annealing algorithm [15]
K = 1
σ = 1 : N
WHILE K ≤ 25 OR Q ((K − 25) : K) �= Q (K)
| FOR i = 1 : fN2

| | old = modularity(A, σ)
| | Choose a node x uniformly at random
| | Choose a different class a

| | σ� = σ

| | σ�(x) = a

| | new = modularity(A, σ�)
| | IF new > old

| | | σ = σ�

| | ELSE σ = σ� with probability exp(−(new − old)/T )
| | ENDIF
| ENDFOR
| FOR i = 1 : fN
| | old = modularity(A, σ)
| | Choose merge or split uniformly at random
| | IF merge
| | | Choose a two classes a and b

| | | σ� = σ

| | | FOR x = 1 : N
| | | | IF σ�(x) = a

| | | | | σ�(x) = b

| | | | ENDIF
| | | ENDFOR
| | ELSE Choose a class a

| | | σ� = σ

| | | Randomly bipartition a into a and b

| | ENDIF
| | new = modularity(A, σ�)
| | IF new > old

| | | σ = σ�

| | ELSE σ = σ� with probability exp(−(new − old)/T )
| | ENDIF
| ENDFOR
| Q(K) = modularity(A, σ)
| T = cT

| K = K + 1
ENDWHILE
RETURN Q(K), σ

12



at each step moving the node with the lowest fitness. The fitness function of node i is defined as
qi = κσ(i) − diaσ(i) where κσ(i) is the number of neighbours i has in its current class σ(i), di is
the degree of node i and aσ(i) is the fraction of edges in the network with at least one end in i’s
class, so that Q = 1

2M

�
i qi. Thus the qi are local variables, whose joint optimization results in

the optimization of the global variable Q. These local variables qi can be normalised by dividing
through by di to get corresponding local variables λi =

κσ(i)

di
− aσ(i), where −1 ≤ λi ≤ 1. Therefore

to optimize the global variable Q is to optimize over the local variables λi.
The algorithm is based on the process of calculating the λi’s for every node i and moving

the node with the lowest fitness to the other class in the bipartition. Each such move results in
an increase in modularity and this process is repeated until no further increase in modularity is
possible, at which point the links between the two classes are removed and the whole process is
repeated for each class as if it were a network itself. This step is then also repeated also until no
increase in modularity is possible.

Note There is also a version of this algorithm where other nodes are selected with a small prob-
ability, which aids the algorithm in escaping local maxima, see [7] for more details, we will
consider only the original version in order to isolate the study of the principle of using the
fitness test as a basis for selecting a node move.

3.1.3 Simulated annealing

Guimerà and Amaral’s simulated annealing algorithm [15] is an iterative procedure relying on a
temperature T , which decreases with each iteration by a factor c. Each iteration involves fN2+fN

updates, each of which is accepted with probability 1 if it results in an increase in modularity or
otherwise with a small probability, exp

�
�Q
T

�
, where �Q is the old modularity minus the new

modularity. This small probability of accepting the move that results in a decrease in modularity
is again in order to increase the chance of finding the global maxima. The updates include fN2

individual steps followed by fN collective steps. An individual step involves choosing a node
and a community to move it to randomly, and a collective step involves randomly choosing two
communities to merge, or one community to split. The factor f for the number of updates can
be varied depending on results, but f = 1 is usually chosen [15]. Parts of this algorithm will be
considered in great detail in Chapter 6, so let us set it out more formally. See Algorithm 1 above,
with reference to the definitions below.

Definition 12. Let modularity(A, σ) be the modularity of the input network A with respect to
partition σ, and Q a vector where Q(K) is the modularity at the Kth iteration.

3.1.4 Spectral methods

Newman’s spectral algorithm [22] calculates the largest eigenvector of the modularity matrix B (see
Definition 11) and use the entries’ signs to bipartition the nodes. Richardson, Mucha and Porter’s
version [29] uses the two largest eigenvectors of B to bipartition and tripartition the nodes, choosing
the split with the largest modularity increase.
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1 2 3

4 5 6

Figure 3.1: The karate club network, visualised using [11] with colours indicating partitions given by
(1) the Louvain greedy method [3], (2) extremal optimization [7], (3) simulated annealing [15], (4)
spectral method (Newman) [22], (5) spectral method (Richardson et al) [29] and (6) the observed
community structure [31] (6).

Let’s look at Newman’s version first. Let s = (si) where si = 1 if node i is in class 1 and
si = −1 otherwise (that is, if node i is in class 2). Then we can write modularity as Q = 1

4M sTBs.
Alternatively, writing uj for the jth eigenvector of B and βj for the corresponding eigenvalue so
that s =

�
j

�
uT
j · s

�
uj , we can write Q = 1

4M

�
j

�
uT
j · s

�2
βj . Maximizing Q is now equivalent

to choosing s so as to concentrate as much weight as possible on the terms involving the largest
eigenvalues. Therefore, if β1 is the largest eigenvalue, we want to choose s ∝ u1. Of course,
because si ∈ {−1, 1} this is not always possible, but by choosing the sign of si to match that of the
corresponding element of u1, we find the bipartition with maximal modularity.

Richardson et al’s spectral algorithm [29] is based on this method but considers the first two

eigenvectors in order to both bipartition and tripartition the nodes, selecting the partition which
most increases modularity at each stage.

3.2 Performance

Let us now assess their performance according to the most common practice (not necessarily the
best practice), which is to run the algorithm on networks with known community structure, or
benchmarks, and compare the results of the algorithm with the actual community structure. Such
benchmarks include empirical networks as well as artificially generated networks.
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Model 1: p
i
 = 1/2, k =16 Model 2: p

i
 = 1/3, k =16 Model 3: p

i
 = 1/4, k =16

Figure 3.2: Blockmodels for various pi, all with N = 128, mean expected degree k = 16 and r = 4
communities, giving po = 16−32pi

96 . Note that for model 3 we have ki ≈ ko.
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Figure 3.3: Performance of the algorithms on the blockmodels depicted in Figure 3.2.
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3.2.1 Benchmarks

Of the many empirical networks used to test algorithms, the coauthorship network [22] in Figure
1.1 and a network called the karate club network [31] have become standard [23]. The karate club
network is a very small network of 34 nodes representing alliances between members of a karate
club, as observed by a sociologist Zachary [31]. Zachary was observing and recording allegiances in
the group when the two leaders argued and the club broke up into communities. Zachary realised
that he could have predicted the divisions using the data he had collected, as it provided him with
information about the community structure, thus the karate club network has become a standard
test of the performance of a community detection algorithm. The coauthorship network depicted
in Figure 1.1 is another standard benchmark, as the underlying structure is that of working groups,
making it too a good test.

Artificial networks with community structure can also be generated in various ways. A popular
method is the generation of blockmodels, proposed by Newman and Girvan [13], where one specifies
the groups vector or optimal partition and then sets a higher probability of intraclass links than
interclass (see Definition 7). For example, one can define a network on 128 nodes with 4 classes
each of 32 nodes and specify an intraclass link probability of 1

3 and interclass link probability of
1
16 to get a network with mean expected degree 16 and an instance like that depicted in Figure
3.2. Because in all of these cases the community structure is known, one can compare not only the
modularity scores of the results but also the accuracy.

Definition 13. Given a partition σ of a network A with known community assignments, the
accuracy of σ is the proportion of correctly placed nodes.

3.2.2 Comparison of performance

Consider Figure 3.1, which depicts the partitions of the karate club network given by each algorithm
compared to the observed community structure. What it shows is that even on such a small network
the resulting partitions aren’t necessarily going to be alike. While the two spectral algorithms
produce partitions very similar to each other and to the optimal one, some disagree with the observed
assignment for a large proportion of nodes, such as the extremal optimization partition. For a
comparison of modularity scores, consider Figures 3.2 and 3.3, which show that for < ki >≤< ko >

(see Definitions 4 and 9) all the algorithms achieve similar modularity scores and perform well (over
80%) in terms of accuracy. Note also that it is hard to differentiate between the results of greedy,
spectral (Richardson et al) and simulated annealing, despite their having produced very different
partitions in the case of the karate club. If we now look at Figure 3.4, which depicts the mean
modularity scores achieved by running each algorithm on ER random graphs (see Definition 6)
with N = 100 and mean expected degree between 3 and 20, we can see more of a distinction (each
line is distinguishable from the others) but again the results are very close.

It is hard to believe, especially after witnessing the differences in partitions in the case of the
karate club network, that our conclusion should be that we can use any algorithm we choose and
get fairly accurate, reliable results, but what more can this sort of computation tell us? There is
good cause to be sceptical, for the algorithms each work very differently to each other, and little is
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Figure 3.4: Results of each algorithm on ER random graphs with mean degree 3 ≤ k ≤ 20 for
N = 100, averaged over 20 runs. Bars indicate standard deviation.

known theoretically about the impact of these methods on the resulting partitions [23]. Of course,
we could make many more such investigations in this manner, comparing resulting partitions for
whole swathes of blockmodels and random graphs and empirical benchmarks, but what such an
investigation would be searching for is theories on the behaviour of these algorithms, for that is
what will tell us which algorithms are doing what we want them to do and as a consequence whether
a given algorithm truly is reliable and accurate. Therefore it is the behaviour of these algorithms
that is the better subject of investigation, and the subject to which we now turn.
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Chapter 4

Issues with modularity optimization

It might seem from the tests performed above that the algorithms are consistently performing “well”;
that is, on the small benchmarks discussed above they are providing partitions and modularity
scores close to those of the optimal ones. However, we also know that optimizing modularity is
NP -hard [4], so we know that all these algorithms can do is approximate the optimal solution -
they are unlikely to be consistently and reliably providing optimal results. In fact, unless P = NP ,
they cannot be doing this, for they are polynomial time algorithms approximating a solution to an
NP -hard problem.

Because we are dealing with such a hard problem, it might seem that the only way to assess
these algorithms is to analyse their performance on benchmarks, but this is not the case, and there
have been several successful investigations into the behaviour of modularity-optimization algorithms
[12, 16, 24, 29, 9]. Some of these are negative results and some positive, but all provide deeper
understanding of the modularity function, the optimization algorithms, and their results. First we
shall discuss some very worrying theoretical results that have been presented recently, such as the
extreme near-degeneracy and inconsistencies of the modularity function as well as the existence of a
resolution limit. Then we shall discuss a positive result that has shone through the negative, namely
Richardon et al’s investigation of the behaviour of spectral modularity-optimization algorithms.

4.1 Extreme near-degeneracy

Good et al [12] have shown that not only does the number of partitions increase exponentially with
the size of the network, but the number of near-optimal solutions (solutions within just a few per-
centage points of the optimal solution) grows exponentially with the number of communities in the
graph. This means, counter-intuitively, that the more modular a network is (the more communities
it has), the harder it is to find the optimal partition (the partition into these communities). The
reason for this is that the more communities there are, the more ways there are to merge just two
of them.

In the class of networks consisting of r sparsely interconnected modules with edge-densities
of roughly 2M

r , the resulting loss in modularity from merging two of these communities is just
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�Qr = −2r−2 where r is the number of communities in the network. This value is very small for
even moderate r; as Good et al point out, for a network with just 20 communities, the penalty for
merging two of them is just 0.005. This means that even partitions with modularity within just 1%
of optimal, ones we would certainly call near optimal, can be far from optimal in terms of accuracy
(recall Definition 13) as they have merged two communities. That is, they are not sub-optimal due
merely to the misplacement of a single node, but perhaps as much as a whole misplaced community.

The number of such near-optimal solutions is bounded below by 2r−1, a huge value in the case
above where r = 20. Thus even for moderate r our confidence in near-optimal modularity scores
must be greatly reduced. For even if they are just 0.005 short of the optimal modularity score, the
partition giving them may be quite different from the optimal one. Clearly, then, this is a serious
problem that greatly affects our treatment of the modularity scores and partitions that modularity-
optimizing algorithms provide us with. Although a negative result, it is therefore a very significant
one in the field, and one that should be taken very seriously. That is, unless it can be shown that the
partition that goes with the near-optimal score is also near-optimal, then it should not be trusted
to be all that similar.

4.2 Inconsistencies

Bickel and Chen [2] investigated the asymptotic behaviour of modularity on a random graph model
defined as follows. There are K unknown communities, a potentially infinite number of nodes,
and a K × K edge probability matrix P = (Pab) such that Pab is the probability of an edge ij

given that i is in community a and j is in community b. Thus the case for which K = 1 is the
class of ER random graphs of Definition 6. Defining consistent to mean identifying the members
of each community perfectly, Bickel and Chen show that on this model the modularity function, as
maximised in [21], is not always consistent. In fact they show via counterexample that even in the
subset of cases that have more intracommunity edges than intercommunity edges (ki > ko) it is not
always consistent. The problem in the counterexample they give is that two small communities are
merged, and this is a problem with the modularity function that we shall proceed to discuss in the
next section.

4.3 Resolution limit

From our characterisation of a community in a network and our definition of modularity as seeming
to pick out exactly these structures, it is worrying to learn from Fortunato and Barthélemy [10]
that communities smaller than a certain size, depending on the number of edges in the network,
M , will not be distinguished. This is called a resolution limit. As Good et al [12] explain, it arises
due to the fact that the change in modularity from merging two classes in a partition is given by
the equation:

�Q =
Eij

M
− 2

Di

2M

Dj

2M
(4.1)

where Eij is the number of edges with one end in class i and one in class j and Di is the sum of
the degrees of nodes in class i. This means that two classes are merged if and only if Eij >

DiDj

2M .
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Figure 4.1: Bucket brigade network with 8 nodes.

Problems arise because properties of the null model (recall Definition 8) mean that modularity
tends to expect Eij to be less than 1, making even a single edge between two modules unexpected,
thus merging two communities even though there is just one edge between them.

The good news is that certain sorts of algorithms can circumvent this problem, ones involving
recursive partitioning in particular, such as the spectral algorithms described in Chapter 3 and
multi-resolution models (see [9]). The reason the resolution limit is circumvented is that at each
stage the network is divided into smaller “sub-networks”, thus reducing the resolution limit at
each stage. Therefore this negative result on the behaviour of modularity has shone light on the
advantages of certain methods, such as spectral algorithms, showing them to be behaving in a
desirable way and thus giving us results closer to those we desire (the optimal partition).

4.4 Spectral behaviour

A development in research on the behaviour of modularity-optimizing community detection algo-
rithms is Richardon et al’s work on bucket brigade networks [29]. When Newman introduced his
spectral method [22] he noted that it had a fault, a fault which can be seen in the consideration
of a theoretical case called a “bucket brigade network”. A bucket brigade network is a chain of
nodes each connected only to the one before it and the one after, such as the 8-node one pictured in
Figure 4.1. Due to the size of the network, the optimal partition can be determined by exhaustive
comparison of all partitions, and it is found that it consists in 3 classes. The recursive bipartitioning
of Newman’s spectral method partitions this network into 4 groups and therefore fails to determine
the optimimal partition [29]. The solution it provides is rather different to that of the optimal
partition, since it divides the bucket brigade into 4 equally sized groups of 2, whereas the optimal
partition consists in two groups of 3 and one of 2 (the central 2 nodes) [22, 29].

To combat this issue, Richardson et al suggest consideration of the first two eigenvectors in order
to consider both bipartitions and tripartitions, which extends the options considered and avoids
this problem by finding the tripartition in the initial stage, and choosing it over the bipartition.
This extension goes a long way in opening up the options for the spectral method, but even this
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version has limitations. For example, at each stage the algorithm has to decide whether to go with
the bipartition or the tripartition so there are cases it too will miss. The example considered in
[29] is a 20-node bucket brigade, where the optimal partition consists of 4 groups. At the initial
stage, the bipartition has lower modularity than the tripartition, so the tripartition is chosen and
the option to split the network into 4 groups at the next stage is missed. The results of Richardon
et al’s extension of Newman’s algorithm is actually inferior to those of Newman’s in this case, even
though Richardon et al’s has more tools and considers more options.

4.5 Progress

In summary, there are several serious problems in the field, including extreme near-degeneracy, a
resolution limit, inconsistencies, and limitations of recursive bipartitioning (and tripartitioning).
These issues create a certain amount of distrust in the results of modularity-optimizing community
detection algorithms, but so far little progress in the way of deepening theoretical understanding
has been made. Instead, current best practice in the use of such algorithms is to run different types
and compare the results for consistent structural properties. This is not to say that progress has not
been made, as we have seen investigations have been made into the behaviour of the function and
algorithms optimizing it, results including that recursive algorithms avoid the resolution limit and
that including tripartitioning in spectral algorithms takes us a lot closer to optimal results. These
results show how much there is to be gained from a theoretical investigation into the behaviour of
modularity and modularity-optimizing algorithms.

This consideration of the theoretical properties, and theoretically interesting networks such as
the bucket brigade, results in a deeper understanding of the limitations and restrictions on spectral
methods, and could provide similar insight in other cases. Results like this create interest in finding
further ways to develop this algorithm in ways that help it to avoid these pitfalls rather than merely
run multiple algorithms to compare results. Theoretical results take us beyond the practical results,
such as the occassional case of a surprisingly low modularity score, to bigger developments in the
field, such as a theoretically justified improvement in the case of Richardson et al’s work. More
than this, to present trustworthy results one needs to understand that the new version also has
limitations and Richardson et al have provided us with an understanding of these also.

Moving forward, we turn to a discussion of my own results in this area, in particular, work on the
modularity of ER random graphs, presented next in Chapter 5, and work on simulated annealing’s
behaviour on ER random graphs, presented in Chapter 6.
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Chapter 5

Modularity of random graphs

In this chapter, we investigate modularity in random graphs. From the definition of modularity,
given in Section 2.2, one can quite reasonably expect the modularity of a random graph to be zero,
but natural fluctuations in the distribution of the edges mean that many particular instances of a
random graph will have strictly positive modularity scores [9]. This means that random graphs can
appear to have significant community structure by achieving strictly positive modularity scores.
To counter this, we need to know what maximum modularity scores random graphs are likely to
produce, and then adjust our rubric for what we call significant accordingly. The typical maximum
modularity of a random graph was independently investigated by Reichardt and Bornholdt using
spin-glass theory [24, 25, 26, 27, 28], and Guimerà, Sales-Pardo, and Amaral using combinatorial
arguments [16]. Both did this by looking at the sort of partitions one can expect in an ER random
graph and then looking within that group of partitions for the one with the largest modularity.

Knowing the expected maximum modularity of a random graph tells us that any networks
whose modularity scores are equal to or lower than this value are not likely to contain structure
that couldn’t arise randomly; that is, any seeming community structure contained within could have
arisen randomly and is therefore not significant. What such results about expectation cannot tell us
is what does count as significant, for without knowing the variance, we do not know how frequently
partitions with larger modularities than expected occur. If they occur very frequently, then a
network achieving modularities larger than expected may still not have significant enough structure
for one to conclude that it is unlikely for it to have occured at random. The work of Reichardt and
Bornholdt, and Guimerà, Sales-Pardo and Amaral on the expected maximum modularity of null
models is the extent of work done in this area, so there is an issue here that has not been addressed
in the literature to date. That is, there has not as of yet been an investigation into the variance,
only a consideration of the expectation, and this is an issue that should be addressed.

The structure of this chapter is as follows. First, there is an assessment the work of both
Reichardt and Bornholdt and Guimerà et al and a comparison of their results. Following this, a
presentation of my own work, involving an extension of Guimerà et al’s work to consider also the
variance, thus addressing the issue of being able to say what is significant.

Both Guimerà et al and Reichardt and Bornholdt chose to consider the Erdös-Rényi (ER)
random graph model, so let G(N, p) be the class of Erdös-Rényi (ER) random graphs as in Definition
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6. On average graphs in this class have M = p
�N
2

�
edges and each node has on average k = p (N − 1)

neighbours, or pN asymptotically. We will look in particular at ER random graphs for which the
mean degree k is fixed, giving p = k

N .

5.1 Spin-glass models

Reichardt and Bornholdt showed that optimizing modularity is equivalent to finding the ground
state of an equivalent spin-glass model [25]. They use this equivalence, together with spin-glass
theory, to show various properties of modularity maxima of ER random graphs. For example, they
show that the partition of an ER random graph with maximal modularity will be an equipartition
[25], so that only the modularity of equipartitions of random graphs need be considered in order to
predict the typical modularity maximum. They then use these results to provide theoretical results
on the typical modularity of a random graph.

Reichardt and Bornholdt conclude that the maximum modularity of an ER random graph is
typically QER (N, p) = 0.97

�
1−p
pN . This appears to be a fairly accurate prediction when compared

with the modularity score results of running simulated annealing on sample ER random graphs [25].
An interesting conclusion of Reichardt and Bornholdt [26] is that modularity scores of a certain
value being expected at random explains why algorithms are notably less accurate when there are
less intraclass edges than interclass (see Figure 3.3). For, they explained, this limit represents the
point at which the mean number of edges a node has into its own community equals that it has to
other communities. The reason that the algorithms are less accurate is that only when there are
more intraclass than interclass links do we have modularity greater than that expected in a random
graph with similar size and number of edges. That is, only when there are more edges from a node
into its community than between it and other communities is there more structure than expected
in a random graph with similar size and number of edges.

Thus being able to say what is not a significant modularity score is is not the only result of
considering the typical modularity of ER random graphs, it can also explain other phenomena, such
as the cut-off point observed in Figure 3.3. However, Reichardt and Bornholdt have not gone as far
as to consider the variance. We now consider Guimerà et al’s work, which uses some of Reichardt
and Bornholdt’s results (namely the one that shows the optimal partition to be an equipartition),
but works in a combinatorial environment that allows one to extend their work to consider the
variance.

5.2 Combinatorial arguments

Guimerà et al study the behaviour of the number of equipartitions as a function of the number of
nodes N , the edge probability p, the number of classes r, and the number of intraclass edges ki.
The number of such equipartitions is a random variable and as such one can look at its expected
value and its variance. This makes it very useful when considering the modularity of a random
graph, as the modularity of such an equipartition can be written in terms of N, p, r and ki as
Q (N, p, r, ki) =

2rki
N2p − 1

r [16]. Thus, to find the maximum expected modularity with respect to N
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Figure 5.1: Logarithmic scale plot showing that E [Z (N, p, r, ki)] is proportional to f(k) = k−
2
3 for

N = 100 (left) and N = 150 (right)

and p only, denote it Qmax(N, p), one wants to optimize Q(N, p, r, ki) with respect to r and ki. Let
us consider a more formal presentation of their work. A presentation that follows the traditional
methods of calculating the expectation of a random variable, while preserving their results and
equations, will be beneficial for the purposes of clarity and consistency.

Definition 14. Let Z (N, p, r, ki) be the number of equipartitions of an ER random graph G(N, p)

with r classes of n = N
r nodes and exactly ki intraclass edges. Thus Z (N, p, r, ki) is a random

variable.

Definition 15. Given an equipartition partition σ of G(N, p) (with r classes of roughly n = N
r

nodes), call it valid if each class has exactly ki intraclass edges.

Note Each class in a valid equipartition will have roughly ko = N2p
r − 2ki interclass edges, as each

class has ki intraclass edges and N2p
r is the expected number of edges shared by nodes in two

classes.

To find the typical modularity, one would find the most typical equipartition (given r), but
to find the maximum expected modularity, one wants to refine this partition, achieving larger and
larger ki and also larger and larger Q. Therefore, one must find an equipartition that is still typically
expected but also has the largest possible value of ki. This involves solving E [Z (N, p, r, ki)] = 1,
as such an equipartition is typically expected but also the least expected of the typically expected
partitions, and thus the most refined (that is has the largest ki, and thus largest modularity). This
value of ki will be a function of N , p and r, so one then wants to maximise over the pairs r and ki

using the equation Q (N, p, r, ki) =
2rki
N2p − 1

r to find the optimal pair, call them r∗ and k∗i .
The first step to finding the typical modularity of an ER random graph, then, is to calculate the

expected number of equipartitions Z (N, p, r, ki). Now E [Z (N, p, r, ki)] =
�

σ P (σ valid) where σ

is an equipartition as defined above. Given σ, by considering each class one at a time, we have

P (σ valid) =
r�

t=1

��n
2

�

ki

�
p
ki (1− p)(

n
2)−ki

�
n (N − n)

koαt

�
p
koαt (1− p)n(N−n)−koαt

. (5.1)
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Therefore,

E [Z (N, p, r, ki)] =
r�

t=1

�
N − (t− 1)n

n

�
Pi (N, p, r, ki)Po (N, p, r, koαt) , (5.2)

where
Pi (N, p, r, ki) =

��n
2

�

ki

�
p
ki (1− p)(

n
2)−ki

, (5.3)

Po (N, p, r, koαt) =

�
n (N − n)

koαt

�
p
koαt (1− p)n(N−n)−koαt (5.4)

and lastly αt =
r−t
r−1 is the proportion of classes left to be considered.

Thus, given N and p = k
N where k is the mean degree, one can compute the expected maximum

modularity of an ER random graph by taking the above equation, solving it equal to 1 and max-
imising over r to find r∗ and k∗i . This will give us an upper bound for the modularity that occurs
on average at random, which tells us not to consider modularity scores less than or equal to this
value to be significant.

Guimerà et al solved numerically EZ (N, p, r, ki) = 1 and maximised over r for various N and
p. See Appendix A for an analytical evaluation of this equation. Using logarithmic scale plots
they showed that Qmax(N, p) is proportional to f(k) = k−

2
3 = (pN)−

2
3 [16]. See figure 1 in

their article for a demonstration of these findings, as well as Figure 5.1, which is plotted from
the results of my own programmes based on these equations. Taking into account the percolation
point at Np = k = 2 they conclude that the function that best predicts Qmax(N, p) is F (N, p) =
�
1− 2√

N

��
2

Np

� 2
3

[16]. These results suggest that any network with N nodes and mean degree
k (and similar degree distribution i.e. not power law) that has modularity less than or equal to
F
�
N,

k
N

�
has no more a modular structure than the average ER random graph, thus saving the

large amount of computational time required to directly compute Q (N, p, r, ki), and optimize over
r and ki, providing us with a convenient theoretical result about modularity and random graphs.

Furthermore, this value is large for k small, which means that even the seeming community
structure of networks with large modularity scores could have arisen at random in cases where
the mean degree of the network is small. My own work included generating sample ER random
graphs and running the selection of algorithms discussed in Chapter 3 on them to determine their
modularity, to compare with this prediction. The results of this work can be seen in Figure 5.2, which
shows that the prediction is so close to the actual modularity scores as to almost underestimate the
modularity for larger k.

Note that Reichardt and Bornholdt’s prediction differs from Guimerà et al’s, not merely in
coefficient, but in the function of N and p. For Reichardt and Bornholdt claim the expected
modularity maxima to be QER = 0.97

�
1−p
pN and Guimerà et al claim that Qmax(N, p) is best

predicted by F (N, p) =
�
1− 2√

N

��
2

Np

� 2
3
. The reason for the difference is that Guimerà et al

derived their equation using a logarithmic scale plot and measuring the gradient to determine
Qmax(N, p) as a function of N and p. This results in a fairly accurate prediction but it doesn’t
mean that they will arrive at the same function as an analytical investigation or one that imports
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Figure 5.2: Comparison of the prediction F (N, p) and the modularity results of the algorithms.
Bars indicate standard deviation.

from the results of another field, such as spin-glass theory. Both functions are fairly accurate in
predicting expected modularity maxima in ER random graphs [25, 16], and the reason this can
happen is that they are in fact very similar to each other. Consider Figure 5.3 which compares
these functions and shows them to be within 0.02 of each other for N = 100 and N = 150.

5.3 Variance

As discussed above, what we can’t say without knowing the variance in modularity is how much
above this value a result needs to be in order to say that the network does have significant com-
munity structure. In order to determine the variance in modularity, I calculated the variance in
the underlying random variable Z (N, p, r, ki). The reason for this is that it is the variance in
Z (N, p, r, ki) that will determine the possible choices of k∗i and as a consequence perhaps even the
choice of r∗. If there is large variance in the most refined partition present in a random graph
instances G(N, p), then there will be large variance in occuring modularities. Once we have an
equation for the variance in Z (N, p, r, ki), we can consider the largest frequently-occurring k∗i as
opposed to the typical one and thus consider the largest frequently-occurring modularities. This
will allow us to say, given a network with a modularity score Q, whether such scores frequently
occur in ER random graphs (and are thus likely to occur at random) or whether they do not. If they
do not then the score is unlikely to have been caused by randomness and thus indicates significant
community structure. Hence, calculating an equation for the variance in Z (N, p, r, ki) will lead us
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to a solution to the problem of being able to say what is a significant modularity score, as opposed
to only what is not significant. Thus in this section we shall perform the first calculation of the
variance of the random variable and make the first assessment of the most frequently-occurring
maximum modularity in ER random graphs, as opposed to considering only the mean maximum
modularity.

The variance of the random variable Z (N, p, r, ki) is given by

var [Z (N, p, r, ki)] = E
�
Z (N, p, r, ki)

2
�
− E [Z (N, p, r, ki)]

2 (5.5)

where for σ, τ equipartitions we have

E
�
Z (N, p, r, ki)

2
�
=

�

σ

�

τ

P (σ, τ both valid) =
�

σ

�

τ

P (σ valid)P (τ valid|σ valid) (5.6)

Now P (σ valid) will be as above, but P (τ valid|σ valid) will depend on how the partitions overlap.
Hence to calculate var [Z (N, p, r, ki)], we need to calculate P (τ valid|σ valid).

All we need to derive a formula for the variance, then, is to derive a formula for P (τ valid|σ valid).
For this we need to consider how knowing that the first partition σ is valid affects the probability
that the second partition τ is also valid. Being valid is a global property of the graph (it says
something about every node and edge, not only a small number of them) which makes the process
of calculation quite complex. First we shall need a way of talking about partition overlap, and for
this we shall extend the notation Achlioptas uses in his discussion of equipartitions with respect to
k-coloring [1].

Definition 16. Let the matrix L = (lij) where 1 ≤ i, j ≤ r and lij is the number of vertices in
class i in partition σ and class j in partition τ [1]. Also define the matrix P = (Puv) for each pair
of nodes u, v such that Puv is the probability of edge uv occuring, given that partition σ is valid.
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Then:

Puv =






ki

(n2)
if σ (u) = σ (v) ,

ko
n(N−n) otherwise,

(5.7)

because edges are uniformly distributed within classes and between classes in σ, as we are in the
graph class G (N, p).

Definition 17. For ease of notation, let p1 = ki

(n2)
and p2 = ko

n(N−n) .

To make sure our intuition is correct at each stage of development of our formula, let us consider
a specific case and create general formulas from our observations of this case.

5.3.1 Deriving the variance

For the example, let us take N = 8, r = 2, n = 4, ki = 2, ko = 2 and equipartitions σ and τ as
illustrated in Figure 5.4. We know that P (τ valid|σ valid) is the probability that each class in τ

has ki intraclass edges and ko interclass edges, given that we know that each class in σ has ki

intraclass edges and ko interclass edges. In this case, lij = 2 for all 1 ≤ i, j ≤ 2, so L =

�
2 2

2 2

�
.

Intraclass edges Let us consider class 1 of τ first and the probability it has ki intraclass edges.
When we choose ki intraclass edges of the

�n
2

�
possible, the probability that exactly those ki edges

are there isn’t pki (1− p)(
n
2)−ki any more, because the probability of each edge uv isn’t uniformly

p but depends on whether it’s an interclass or intraclass edge in the partition σ. Thus, we can
characterise the probability of there being exactly ki edges by summing over choices of ki potential
edges the number of times that scenario occurs multiplied by the probability of it occuring. The
total number of possible edges that are intraclass edges in class 1 of τ is

�n
2

�
, and each edge is either

intraclass or interclass in σ. We want to consider the various scenarios as to whether the edges are
intraclass or interclass in σ. Of the intraclass edges in class 1 of τ , there are

�
j

�l1j
2

�
edges that are

intraclass in σ, because this is the number of ways to choose pairs of nodes that are in the same
class in σ. Similarly, there are

�
j

�
k �=j

l1j l1k
2 edges that are interclass in σ, because this is the

number of ways to choose pairs of nodes that are in different classes in σ.
Because ki = 2, our only options are that either both edges are intraclass edges in σ, both

are interclass in σ edges, or there is one of each. Let x be the number of ways the first scenario
can occur, y the second, and z the third. From observation, x = 1, as there is only one way to
choose 2 edges such that both edges are within classes in σ. We can generalise these observations
by characterising them in terms of the matrix L. This gives

x =

��
j

�l1j
2

�

2

�
. (5.8)

The probability of an instance of the first scenario occuring (i.e. the probability that the ki intraclass
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Figure 5.4: Example of two 8-node partitions, σ and τ (partitions 1 and 2, respectively).
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edges in σ chosen are exactly the edges that are present) is
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ki�n
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1− ki�n
2

�
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j (
l1j
2 )−2 �

1− ko

n (N − n)

��
j

�
k �=j

l1jl1k
2

, (5.9)

because there are 2 edges for which Puv = ki

(n2)
and the rest are such that Puv = ko

n(N−n) . To put
this more simply Equation 5.9 is equal to

p
2
1 (1− p1)

�
j (

l1j
2 )−2 (1− p2)

�
j

�
k �=j

l1jl1k
2 . (5.10)

Similarly, from observation, y = 4 and z = 8. In terms of the matrix L we have

y =

��
j

�
k �=j

l1j l1k
2

2

�
, (5.11)

and

z =
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
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 . (5.12)

Similarly the probability of the second scenario is

p
2
2 (1− p1)

�
j (

l1j
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l1jl1k
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, (5.13)

and the probability of the third scenario is

p1p2 (1− p1)
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j (
l1j
2 )−1 (1− p2)

�
j

�
k �=j

l1jl1k
2 −1

. (5.14)

Hence, the probability that there are exactly ki edges in class 1 of τ , given the fact that σ is valid,
is
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(5.15)
More generally, the probability that there are exactly ki edges in class 1 of τ , given the fact that σ
is valid, is
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. (5.16)

Similarly, the probability that there are exactly ki edges in class 2 of τ , given the fact that σ is
valid, is
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That is, instead of Pi (N, p, r, ki) =
�(n2)
ki

�
pki (1− p)(

n
2)−ki , we have that for each class t in τ , the

probability that that class has exactly ki intraclass edges is

�Pi (N, p, r, ki)

=
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(5.18)

Interclass edges Now we need to consider the probability that each class has ko interclass edges.
The situation is different here, for we only have to look at probability of ko edges out of class 1
and this entails that there are ko edges out of class 2 as well. Of course, if there were 3 classes,
there being ko edges out of class 1 would mean we still had to look for ko

2 edges between classes 2
and 3, but at least part of the work is done in this case too. In fact, for each class t we need only
account for edges between that class and classes yet to be considered. This means that only koαt

edges between class t and classes u > t need to be sought.
In the case we are considering, with r = 2, class 1 of τ is made up of 2 nodes from class 1 of σ

and 2 nodes from class 2 of σ, and so is class 2 of τ . Therefore, with ko = 2, the only possibilities
for the interclass edges in τ are that both edges are intraclass edges in σ, both are interclass in σ, or
that there’s one of each. There are

�
j l1j l2j possible edges out of class 1 that are intraclass edges

in σ in this specific case, or for any r,
�
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�
j ltj luj . So there are
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scenario. The probability of the first scenario is similar to before:
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, (5.19)

which can also be written in terms of p1 and p2 as
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There are also
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2 possible edges that are interclass in σ, or more generally
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and
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. (5.22)

Thus, instead of Po (N, p, r, koαt), the probability that there are exactly ko edges between class t
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and all of the other classes is
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Thus

P (τ valid|σ valid) =
r�

t=1

�Pi (N, p, r, ki) �Po (N, p, r, koαt) , (5.24)

where �Pi (N, p, r, ki) and �Po (N, p, r, koαt) are as defined in Equations 5.3 and 5.4.

5.3.2 A formula for the variance

Now, using Equation 5.24, we can say that:
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,

(5.25)
where where �Pi (N, p, r, ki) and �Po (N, p, r, koαt) are defined in Equations 5.3 and 5.4.

Also, because the partitions are chosen randomly, the lij ’s are approximately N
r2 . This means

that we can approximate �Pi (N, p, r, ki) and �Po (N, p, r, koαt) too.
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Thus the variance is approximately

var [Z (N, p, r, ki)]

≈ E [Z (N, p, r, ki)]
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P i (N, p, r, ki)P o (N, p, r, koαt)− E [Z (N, p, r, ki)]

�
.

(5.28)

This means that we can numerically approximate the variance and therefore consider the variance
at points such as k∗i and r∗. We want to look at the variance for ki ≥ k∗i , as we want to determine
whether partitions with larger ki than k∗i (and consequently larger modularity) occur frequently or
not.

5.3.3 Computation

Thus using these equations for the variance in number of partitions, I computed the partition that
is both frequently occurring and has largest ki ≥ k∗i , call k�i the largest such value. By frequently
occurring I mean that the expectation plus one standard deviation is greater than or equal to 1,
so a partition with that number of intraclass edges frequently exists. By the largest such partition
I mean that partitions with ki > k�i do not fit this criteria and thus partitions. On the one hand,
Q (N, p, r, k�i) is larger than Q (N, p, r, k∗i ), and is frequently the maximum modularity of ER random
graphs, so modularity results larger than Q (N, p, r, k∗i ) are not necessarily significant. On the
other hand, because Q (N, p, r, k�i) is the largest such frequently occurring maximum modularity,
any modularity result larger than this can be said to be unlikely to be caused by randomness.
Therefore Q (N, p, r, k�i) provides a measure for the point at which we can call the structure found by
modularity-optimization significant. It is important to consider the variance because the maximum
frequently occuring modularity can be significantly larger than that given by the expectation. This
can be seen in Figure 5.5, which shows the frequently occurring maximum modularity (“maximum
Q”) versus the expected or typical maximum modularity (“expected Q”). For all but very small
p (less than 0.02) there is at least a 0.05 difference between the frequently occuring and typical
maximum modularities.

Note Because the equations for the expectation and variance of Z (N, p, r, ki) involved multiplying
enormous numbers by miniscule numbers, this required matching up numbers of order p =

33



10
−1.6

10
−1.5

10
−1.4

10
−1.3

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

p

Q

 

 

expected Q
maximum Q

10
−2

10
−1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

Q

 

 

expected Q

maximum Q

Figure 5.5: Plots showing results taking into account the variance for N = 100 (left) and N = 150
(right).
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�
with numbers of order N .

5.4 Conclusions

As we argued at the beginning of this chapter, while considering the typical modularity of an ER
random graph allows us to show the insignificance of a modularity score, considering the variance
in the number of equipartitions gives a better bound for showing that a network modularity score
is significant. For to say that the structure it represents is unlikely to have occurred at random,
one needs to be able to say that modularity scores that high do not frequently occur at random,
not merely that they do not typically occur at random. That is, whilst showing what a typical
modularity score on a random graph tells us that anything up to and including that score is likely
to be random, to say that a score is unlikely to be caused at random requires more than merely
being above the typical value; it requires that the score be above all frequently occuring random
graph modularity scores (not just the most frequently occurring one). In this chapter we presented
a derivation of a formula for the variance in the the random variable Z (N, p, r, ki) and from it I
computed for various N and p the largest frequently occuring modularity for a range of ER random
graphs. From the results, presented in Figure 5.5, we saw that the largest frequently occuring
maximum modularity was in general larger than the typical modularity, therefore the variance
should be considered in this manner when making claims regarding a network having significant
structure.
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Chapter 6

Convergence in simulated annealing

6.1 Introduction

Definition 18. To fix notation, with high probability means with probability almost or tending to
1 as N tends to infinity.

Definition 19. By convergence we mean the point at which with high probability no further
increase (in modularity) is possible through repetition of the same process.

In this section we investigate the convergence of individual node moves in Guimerà and Amaral’s
simulated annealing algorithm. Guimerà and Amaral’s simulated annealing algorithm [15] runs
individual node moves in blocks of N2, or fN2 for some specified constant f , with the aim of
maximising modularity. However, there is no theoretical understanding behind this choice. The
choice was made based on computational findings that suggest it might be a good choice. To see
that they do indeed suggest this, consider Figure 6.1, which depicts modularity versus number of
steps for N = 100 and mean degree k ∈ {3, . . . , 20}. As you can see, all but the case where k = 3

have fully converged by N2 moves, and even the anomalous case clearly converge in O(N2). In
this section we show that simulated annealing’s individual node moves do indeed converge within
O(N2) moves. Before we begin, let us fix our notation.

6.2 Notation

Definition 20. For simplicity, in this chapter, an individual node move (or a step) involves choosing
both a node and a different class of the current partition, and moving that node to the new class
if and only if the modularity increases.

Note Node moves that result in a decrease in modularity also occur in the algorithm, with a
small probability decreasing with the number of iterations performed. That probability,
exp

�
−�Q

T

�
, is designed to be so small as to occur only a few times in each run of the

algorithm. Thus, the consequence of these moves would be the multiplication of any result by
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Figure 6.1: Convergence of individual node moves in a run of simulated annealing on N = 100,
3 ≤ k ≤ 20.

a small factor, and thus we can ignore this situation for the following theory, where we shall
be less exact than that.

Definition 21. We shall call a step a success if the move is completed and merely a try otherwise.
Let us also say that a new stage begins after each success.

Definition 22. Finally, recall that G = G(N, p) is an ER random graph as in Definition 6, where
throughout this chapter p = k

N so that the mean node degree is k for 1 ≤ k ≤ N − 1.

Definition 23. To fix notation let dense mean having a lot of edges, more specifically in the limit
of large N a dense graph has O

�
N2

�
edges. Let sparse mean having few edges, and in the limit of

large N having O (N) edges. [6]

6.3 Hypothesis

For fixed N , let us think about the extreme cases: k small and k large. Call them the sparse case
and the dense case in accordance with Definition 23.

Sparse case: In a sparse graph, the nodes have so few options (there are so few classes with
neighbours of theirs in) that they won’t move to a different class very often, even if there’s a large
number of classes. This means that each node moves very few times, say O(1), so there are only
O(N) successful moves before convergence. Also, because the mean degree is small, each try has
a very small chance of finding a neighbour, and thus at least as small a chance of success. This
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Figure 6.2: Left: Logarithmic scale plot of the mean number of successes versus the mean degree
k, showing at most linear growth with gradient α ≤ 1. Bars indicate standard deviation. Right:

Logarithmic scale plot of the mean number of tries per success versus the mean degree k, showing
at least linear growth with gradient −α. Bars indicate standard deviation.

means that we might have to try a lot of moves before there is a successful one. There are O(N)

successful moves out of a maximum of N2, so on average there might be O(N) tries per success.
Thus, as the number of steps to convergence is the number of successful node moves multiplied by
the number of tries per success, we have O(N2) steps to convergence in the sparse case.

Dense case: In a dense graph, the mean degree is large, so each node is connected to a significant
fraction of the other nodes. This means that there are so many successful moves possible that
practically any move is a success, so there are only O(1) tries per success on average. Conversely,
each node having a large number of neighbours means that they are unlikely to settle in a community.
This means that the nodes will move around a lot more than in the dense case - they could potentially
move up to O(N) times (if their neighbours are divided into many classes). This means that there
are up to O(N2) successful moves, but only O(1) tries per success and therefore O(N2) moves to
convergence in the dense case too.

Computation: I ran simulated annealing individual node moves on ER random graphs of size
N = 100 with varying mean degree k, to see what relation k had to the mean number of successes
and the mean number of tries per success. My results are presented in Figure 6.2, which shows that
the mean number of successes increases at most at a rate identical one upper bounding the rate at
which the mean number of tries per success decreases.

Hypothesis: Let k be the mean degree in a network of N nodes. Then the number of tries per
success is at most on average O(Nk ) and the number of successful moves to convergence is at most
on average O(kN), therefore the number of tries to convergence is O(Nk ) ·O(kN) = O(N2).

37



6.4 Showing convergence

If we can show that the hypothesis holds, it would guarantee the numerically observed convergence
of Figure 6.1, explaining simulated annealing’s behaviour and lending substance to the algorithm’s
popularity. What we shall see in this section is that on the one hand the number of tries per success,
T , depends on the number of successes possible, which is bounded, and on the other hand, with
small variance in class size and number of neighbours, nodes almost always move to classes with
more neighbours, and this gives an upper bound on the number of possible successes, S. Note that
we consider the behaviour for large N , in particular as N −→ ∞. All the work in this section is
my own.

I begin by showing that the number of tries per success is bounded. I want to show that the
expected number of successes in O(Nk ) steps is at least 1. The expected number of successes, given a
number of tries, is the probability of each try being a success, summed over all the tries. At a given
stage, the probability of success of a following step is the ratio of the mean number of successful
moves possible at this stage to the total number of possible moves. I want a lower bound for this,
at an arbitrary stage, to give an upper bound on the number of tries per success, T .

Lemma 24. There are, on average, at most O(Nk ) tries per success.

Proof. The mean number of successes per node is at most k, the mean number of neighbours, and
it is not much smaller, for if it is much smaller, say O(1), then very few moves are possible and we
would converge almost instantly in all cases, which we would have seen in our computation. The
total number of moves is the number of communities which is at most N , making the probability
of success on average at least k

N and we’re done, because for
�

tries P (success) to be at least 1, we
need at most O(Nk ) tries, so T ≤ O(Nk ).

Now we show that the variance is mean degree and class size is small, and that a node x will
only move to a smaller or sparser class than its current one, or a class with more of its neighbours
in. These propositions together are used in Lemma 29 to show that the number of successes to
convergence is bounded.

Proposition 25. The expected number of shared neighbours for any two nodes x and y is
k2

N .

Proof. Expected number of neighbours of x shared with neighbour y is (N − 2) p2 ∼ k2

N as edges
are independent and p = k

N .

Proposition 26. The variance in mean degree tends to 0 as N −→ ∞.

Proof. The mean degree of any given node x is
�

y �=x P(xy) = (N − 1) p ∼ k as N −→ ∞ and

variance is
�

y

�
z P(xy & xz) −

��
y �=x P(xy)

�2
= (N − 1)2 p2 − k2 −→ 0 as N −→ ∞ because

edges are independent.

Proposition 27. A node x will only move from one class in the partition σ, say a, to another class

in the new partition σ�, say b, if the new class b contains more of x’s neighbours than a and/or if

b is smaller and/or sparser than a.
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Proof. Take a step with partition σ, where node x and class b are chosen, where x is currently in
class a. By definition of a successful move, x will move from a to b (that is, the new partition σ�

is chosen over σ) if and only if the change in modularity is strictly positive. Let δ(i, j) = 1 if i

and j are in the same class in σ and δ(i, j) = 0 otherwise, and let δ�(i, j) = 1 if i and j are in the
same class in σ� and δ�(i, j) = 0 otherwise. Then the change in modularity is �Qab = Qσ −Qσ� =
1

2M

�
y

�
Axy − dxdy

2M

�
δ(x, y) − 1

2M

�
z

�
Axz − dxdz

2M

�
δ�(x, y). This equation depends only on the

number of non-zero Axy’s (i.e. the neighbours of x) and the number and degrees of the members of
the classes a and b, as all other contributions are identical in partitions σ and σ�. Hence, �Qab > 0

if and only if b contains more of x’s neighbours than a and/or if a is smaller and/or sparser than
b.

For the next proposition recall that the optimal partition of an ER random graph comes in the
form of an equipartition [25].

Proposition 28. With high probability, at any stage, the difference in class size is O(1).

Proof. We start with an equipartition, the singleton partition. Suppose that we are at an equipar-
tition (could be the singleton, or later on) with r classes. Suppose b gains a node at a stage. The
probability that a class other than b is next to gain a node is:

�
R− 1

R
.
N − N

R

N

�
∼

�
R− 1

R

�2

≥
�
N − 1

N

�2

−→ 1

Furthermore the probability of any one class, b, growing twice within C stages for some constant
integer C is: �

1

R

N − N
R

N

�2 �
R− 1

R

�C−2

−→ 0

Essentially, due to the uniform and independent nature of the choices of node and class, the
chance of something happening to any particular class as opposed to any of the others tends to 0

and N tends to infinity, so for large N the probability of any stage containing classes more than
O(1) apart in size tends to 0.

Lemma 29. With high probability O(Nk) successful moves to convergence.

Proof. Propositions 26 and 28 imply that nodes rarely move to sparser or smaller communities, so
they (almost always) move only to communities with more neighbours. Letting S be the number
of successful steps to convergence, we know that S is at most the sum over each node of the mean
number of times each node moves. Thus, with high probability,

S ≤
�

x

k�

d=1

O(1) = O(Nk).

Theorem 30. With high probability simulated annealing’s individual node moves converge within

O(N2) steps.
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Proof. This follows from Lemmas 24 and 29, as the number of steps to convergence is given by
S × T = O(N2).

6.5 Conclusions

In this chapter, we saw that with high probability simulated annealing’s individual node move
iterations converge on ER random graphs in O

�
N2

�
steps. This helps in the understanding of the

behaviour of the simulated annealing algorithm. Furthermore, this result increases understanding
of modularity optimization, as it helps to characterise the factors at play behind each sequence of
moves. It provides insights into the upper bounds of the number of modularity increases. That
they are, for example, a function of the number of times a node can move class with an increase in
modularity. It also increases our understanding of the simulated annealing algorithm and allows us
to make some guarantees about convergence in certain classes of networks, such as those relating
to random graphs, for example the null model.

The proof above was only possible due to factors such as nodes only moving to classes that are
smaller and/or sparser and/or with more neighbours in them, and the uniformity in choice of node
and class. These factors are general to the algorithm, that is they are not specific to the network
or graph it is run on. However, some factors, such as the uniformly distributed edges resulting in
small deviation in node degree, are not necessarily properties found in empirical networks, so there
is more work to be done to be able to show convergence on empirical networks.
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Chapter 7

Conclusions and further research

The aim of this dissertation was to show the importance of studying the behaviour of modularity
and modularity-optimizing community detection algorithms. The aim of community detection is
to find communities with significance; that is, to find communities in the formal sense given in
Chapter 1, with statistically significant results showing that this structure is not the result of
chance, thereby giving us communities in the intuitive sense as opposed to groups of people that
randomly happen to be connected (see Chapter 1). There are concerns about the ability of a
polynomial time algorithm to do this, despite the near-optimal solutions modularity-optimizing
community detection algorithms seem to provide in benchmark tests. These concerns precipitate
from various results, including that providing optimal solutions is an NP -hard problem (see Chapter
2) and that modularity exhibits extreme near-degeneracy for optimal solutions and suffers from a
resolution limit, discussed in Chapter 4. On top of this, as also discussed in Chapter 4, properties
of the algorithms themselves, such as the use of recursive bipartitioning, can limit ones ability to
discern the optimal solution.

However, there is much that can be done to abate these concerns by investigating the behaviour

of modularity and modularity-optimizing community detection algorithms. A little bit of work
in this area has already been done, including Good et al’s investigation of the behaviour of the
modularity function [12], Richardson et al’s investigation of the behaviour of spectral algorithms
[29] (Chapter 4), and Reichardt and Bornholdt’s [24, 25, 26, 27, 28] and Guimerà et al’s [16] work
on the modularity of ER random graphs (Chapter 5). My own work in this area (Chapters 5 and
6), involved investigating the convergence of individual node moves in simulated annealing, and
taking into account the variance in modularity of ER random graphs to allow one to make claims
about significant modularity results. In the work presented in Chapter 6 I showed that simulated
annealing’s individual node moves converge in O(N2) moves, justifying Guimerà and Amaral’s
choice of fN2 moves for some positive integer f . In the work on the modularity of ER random
graphs I presented a derivation of a formula for the variance in partitions with a specific modularity
and used it to compute the largest frequently occuring modularity in ER random graphs G (N, p).
To our knowledge such a computation for modularity has never previously been done. It showed
that the largest likely modularity was notably larger than the largest typical modularity and thus
that the variance should be taken into account when making claims of significance.
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If I were to extend this work in the future, I would do so in a number of ways. Firstly, I would
have liked more time and computational resources in order to collect more results for the testing of
hypotheses and I would have liked to have looked at larger networks. In terms of theoretical results,
I would like to investigate the number of merges, splits, and decreasing modularity moves needed
when running simulated annealing on ER random graphs to (with high probability) converge on
a modularity score (that is, to get as close as possible to the optimal solution). An area I would
particularly like to extend my investigation to is the expected and frequently occurring maximum
modularity scores of other random graph models, such as the null model defined in Chapter 2,
which is closely related to the configuration model [20], a random graph model for networks.

Definition 31. The configuration model is a random graph model with fixed degree sequence
{d1, . . . , dN}. Edges are placed using the “stub-matching” method of [19], where each node i is
given di “stubs” (half-edges) and pairs of stubs are chosen randomly with equal probability to be
“matched” (make an edge). [20]

The close connection to the null model arises in the limit of large N , where the expectation
of there being an edge between nodes i and j becomes didj

2M , the same as for the null model [20].
The configuration model is a useful model of networks as it has many solvable properties [20].
These properties also make it useful in studying the community structure of empirical networks,
therefore to be able to extend the results of this dissertation to the null model, and from there to
the configuration model, would greatly help us to understand community structure in networks.
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Appendix A

Analytical evaluation

In this section I present my work on solving EZ (N, p, r, ki) = 1 analytically. Guimerà et al [16]
solve this equation numerically to obtain k∗i given N, p and r, but this is very case-specific and
more understanding could be gained from understanding how k∗i behaves in response to variations
in N, p and r. The best way to gain this understanding is to analytically manipulate the function
EZ (N, p, r, ki) = 1 in order to obtain a function for k∗i in terms of N, p and r.

First note that numerical solution of this equation suggests that k∗i is O(N) for r small, and
that r∗ is typically small (usually as small as 2 or 3 for N ≤ 200, except for especially small p).
Thus we may assume that ki � N2 and r � N . We shall also use Stirling’s approximation,
ln (n!) ≈ n ln (n)− n. and the fact that for x � 1, ln (1− x) ≈ −x.

Recall from Equation 5.2 that

E [Z (N, p, r, ki)] =
r�

t=1

�
N − (t− 1)n

n

�
Pi (N, p, r, ki)Po (N, p, r, koαt) . (A.1)

Thus we want to solve

1 =
r�

t=1

�
N − (t− 1)n

n

�
Pi (N, p, r, ki)Po (N, p, r, koαt) , (A.2)

for ki, given N, p and r. Note that for t = r, αt = 0 and so
�N−(t−1)n

n

�
= 1 and Po (N, p, r, koαt) = 1.

Thus solving Equation A.2 is equivalent to solving

0 =
r−1�

t=1

ln

��
N − (t− 1)n

n

�
Pi (N, p, r, ki)Po (N, p, r, koαt)

�
+ Pi (N, p, r, ki) (A.3)

Using the definitions of Pi (N, p, r, ki) and Po (N, p, r, koαt) from Equations 5.3 and 5.4, we have
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0 =
r−1�

t=1

ln

��
N − (t− 1)n

n

���n
2

�

ki

�
p
ki (1− p)(

n
2)−ki

�
n (N − n)

koαt

�
p
koαt (1− p)n(N−n)−koαt

�

+

��n
2

�

ki

�
p
ki (1− p)(

n
2)−ki (A.4)

and

ln

��
N − (t− 1)n

n

���n
2

�

ki

�
p
ki (1− p)(

n
2)−ki

�
n (N − n)

koαt

�
p
koαt (1− p)n(N−n)−koαt

�

= ln

�
N − (t− 1)n

n

�
+ ln

��n
2

�

ki

�
+ ki ln (p) +

��
n

2

�
− ki

�
ln (1− p) + ln

�
n (N − n)

koαt

�

+ koαt ln (p) + (n (N − n)− koαt) ln (1− p) . (A.5)

Expanding this and using the fact that ko = N2p
r − 2ki, and moving ki terms to the left hand side

of the equation we get

r−1�

t=1

[ki ln ki+

��
n

2

�
− ki

�
ln

��
n

2

�
− ki

�
+

�
N2p

r
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��
r − t

r − 1

�
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��
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r
− 2ki

��
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r − 1
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−ki ln p+ki ln (1− p)+
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�
n

2

�
− k2i�n

2
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�
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n

2

�
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N2p

r

�
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�
ln p
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r

�
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r − 1

�
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�
n

2

�
ln (1− p) . (A.6)
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Thus using the approximations above we have

r�
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Now by observing that only some terms depend on t, we can rearrange this using standard partial
sums such as
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and
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Therefore we have
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I would have liked to have developed this further, and if I were given the time I would. With more
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time it may be possible to isolate ki on the left hand side, or to solve the quadratic to get ki as a
function of N, p and r, but the ln ki term on the left hand side will cause problems with doing this
in any standard way.
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