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Abstract

We do a comparative study of the spacial con�gurations of particles that arise

from the stochastic processes of Random Sequential Adsorption (RSA) and Brownian

Dynamics (BD). We relate this to biochemical application areas and, in particular,

crowded environments. We describe some of the necessary theory of BD, RSA and

kernel density estimation, and we develop a variety of BD simulation algorithms to

tackle issues relating to collision handling. We undertake studies in one and two

dimensions, and show that classical RSA does not generate the same type of particle

con�gurations as BD, although the di�erence between the two is largely dependent

on factors such as crowdedness and polydisperisty. In one dimension, we achieve

better approximations to BD particle con�gurations through simple modi�cations of

the RSA procedure.
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Chapter 1

Introduction

1.1 Motivation

The notion of crowded media is of high importance in cellular biochemistry. It di�ers

from that of concentrated media in that no single macromolecular1 species occurs

at high concentration, but, taken together, the macromolecules occupy a substantial

fraction (typically around 20% to 30%) of the total volume [5].

The macromolecular particles in such crowded microbiological media (typically

cell cytoplasms) undergo certain forms of dynamics that determine how the particles

are distributed within the medium. If a �snapshot� is taken at a given instance,

the spacial con�guration of the particles should be possible to quantify statistically,

yielding interesting quantities such as the contact probability between particles. As

described in Section 1.3, the statistical properties of the spacial particle con�gurations

have wide-ranging e�ects on the inner workings of cells, making it important to be

able to estimate these properties.

One way to model the dynamics inside a cell is through the stochastic process

called Brownian motion, or Brownian dynamics2 (BD). Simulations of BD are gener-

ally less computationally heavy than most forms molecular dynamics (simulations of

approximations of Newton's classical physical laws of motion), but even BD typically

requires several iterations, and further complications arise as a consequence of the

high frequency of particle collisions in crowded environments.

An alternative way to establish the spacial con�gurations of the particles is o�ered

by another stochastic process, called Random Sequential Adsorption (RSA). This is

1Molecules such as nucleic acids, proteins, carbohydrates and lipids, which are signi�cantly larger

than the solvent molecules.
2Brownian dynamics is often the term applied to describe the dynamics of an ensemble of particles

undergoing Brownian motion.
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a packing method which is often used to model the adsorption of macromolecules

onto surfaces [14], but we want to investigate if it can be used to replicate the spacial

particle con�gurations of BD.

Although both BD and RSA are stochastic methods, it is far from obvious that

they should engender the same spacial particle con�gurations, and indeed our results

show that they do not. That being said, our results also show that simple modi�ca-

tions of the classical RSA procedure allow for much better approximations of the BD

con�gurations.

1.2 Summary of sections

The thesis is organised as follows. In Section 1.3 we introduce the necessary biochem-

ical background to motivate our studies. The rationale for employing BD is explained

in Section 1.3.1, and the theory behind crowdedness in Section 1.3.2. In Chapter 2

we consider the one-dimensional case of RSA and BD, introducing along the way nec-

essary tools and other considerations regarding the interpretation of the simulation

data. We begin by introducing analytical RSA in Section 2.1, before describing the

basics of density estimation in Section 2.2. This enables us to start with numerical

RSA, and describe the composition of the simulations experiments in Section 2.3. We

then delve into analytical and numerical BD in Sections 2.5 and 2.6, and in Section

2.7 we compare the spacial particle con�gurations of RSA and BD in one dimension.

We discuss one-dimensional polydispersity in Section 2.8 and the e�ect of varying the

density in Section 2.9. In Section 2.10 we discuss some of the relevant modelling and

implementation issues of this project, and in Section 2.11 we attempt to explain the

results obtained in one dimension. In Chapter 3 we treat two-dimensional BD and

RSA, re-investigating many of the same issues as we did in one dimension. In Chapter

4 we brie�y discuss modi�cations to the classical RSA algorithm, and in Chapter 5 we

summarise our methods and �ndings, and discuss potential future areas of research.

1.3 Biochemical background

In acknowledgement of the fact that this is a project with a direct application in

(physical) biochemistry, we here present an introduction to the relevant biochemistry.

For more details see [1, 4, 10].

Paraphrasing the review article [11], the e�ects of crowding on intra-cellular bio-

chemistry help to explain (at least) two very general properties of living cells:
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• Modest changes in the volume of a cell are associated with a broad spectrum

of diverse intracellular processes that are too large to be accounted for by mass

action laws (see Section 1.3.1).

• Every type of cell so far examined is equipped with mechanisms for the main-

tenance of cellular volume.

Crowdedness also leads to so-called �anomalous di�usion�, which is the sub-linear

scaling of the mean-squared displacement of the molecules over time [13]. This has

a bearing on many biochemical processes for which the di�usion rate is decisive,

including transport systems and the signal speed through signalling pathways [13].

Furthermore, crowding a�ects reaction rates and chemical equilibria. This happens

both indirectly through changes in di�usion rates, and through other phenomena, as

described in Section 1.3.2.

1.3.1 Intra-cellular biochemistry

Although deterministic rate laws have proven very successful in biochemistry, they

have certain limitations. First, these are empirical laws that give simple relations

between the concentrations of the reactant species. They are typically based on the

law of mass action, which considers the reactions to be macroscopic under convective

or di�usive stirring, and do not take into account the fact that what is �really� going

on is the �random� collision of particles with the correct geometry. More to the point,

they do not take into account the obvious discrete character of the quantities involved,

the inherent randomness of the system3, and the resulting �uctuations for very small

systems, such as cells [15]. The knowledge of such �uctuations dates back about

150 years, when Scottish botanist Robert Brown took notice of their existence while

studying microscopic living phenomena. This famously lead Albert Einstein to study

the phenomenon, and we have since grown accustomed to the ubiquitous presence of

Brownian motion on the microscopic scale.

The cell lies between two extreme scales: that of individual atoms and molecules

and that of whole multi-cellular organisms. Whereas those two �extremes� have been

the subject of biochemical studies for a long time, the cell constitutes a relatively

recent area of study [12] which has only really opened up in the last two decades or

so [8]. On this level, Brownian motion plays an important role, and knowledge of the

biochemical processes is often obtained through snapshots of BD simulations, which

yield the spacial con�guration of the macromolecules at speci�c points in time.

3Originating in the intractable movement of small particles.
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1.3.2 Excluded volume theory

The main problem for intra-cellular biochemistry is the sometimes huge discrepan-

cies between in vitro and in vivo4 chemical properties and processes. The solution

medium inside a cell is crowded with macromolecules that occupy between 7% and

40% of the volume. Although the in�uence of high fractional volume occupancy by

the macromolecules has been recognized since the 1960's [8], it is often, and unwar-

rantably, regarded as unwanted, �unchemical� e�ects, and some researchers try to

eliminate it by strategies such as extrapolation of results to zero macromolecular con-

centration [11]. In fact, the discrepancy between in vitro reactions, where the total

concentration of macromolecules is around 1 mg/ml, and in vivo reactions, where

the concentration is around 40 mg/ml, can be of several orders of magnitude [11].

The discrepancy is now understood to be caused by a neglect of the e�ect of nonspe-

ci�c interactions5 between these background macromolecules. As is described in [11]

and [5], this is explained through excluded volume theory, which takes into account

the spacial distribution of particles.

First, the di�usion rate decreases as the medium gets more densely packed. This

sometimes implies lower reaction rates, as reactants will encounter �new� reactants

less frequently. For some reactions, though, it can also lead to higher reaction rates,

as newly dissociated particles are �caged in� by the crowdedness, and so re-associate,

thus re-composing the previously dissociated molecule. Moreover, it also a�ects the

ratios between di�erent reaction rates, as the smaller molecules will move around

more easily than the larger ones.

Secondly, chemical equilibria are a�ected by crowdedness, as can be analysed

through the free energy6 of the particle con�gurations. Somewhat counter-intuitively,

when a medium is substantially crowded, adding more molecules to the system can

actually decrease its entropy. This a�ects chemical equilibria, because the reaction

state with fewer particles may induce a higher entropy and hence a lower free energy.

As an example, consider the following reversible dimerisation reaction taking place in

4
In vitro and in vivo mean �in glass� and �in life� respectively, and signify the contrast between

chemistry taking place in a lab (e.g. a test tube) and chemistry taking place in live environments

(e.g. a cell).
5Non-speci�c interactions include steric and/or electrostatic repulsion and electrostatic and/or

hydrophobic attraction, although the only one considered in this project is steric interaction, which

is the mutual repulsion of molecules as a consequence of their �nite size.
6Free energy is a composite measure of a certain potential which nature always �seeks� to min-

imise. In this context, the free energy can be expressed by H = U − ΘS, where U is the internal

energy of the system, Θ is the temperature, and S is the entropy.
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a crowded environment:

A+ A 
 A2. (1.1)

Assuming that the size of the dimer is much reduced (i.e. comparable to the size

of the monomer), the equilibrium will be �pushed to the right� by the fact that the

dimer represents one molecule less than the two monomers, and will thus contribute

more to the entropy of a crowded system.

Thirdly, both reaction rates and equilibria are a�ected by changes in thermody-

namic activity (de�ned below). To see how equilibria are a�ected, consider the same

dimerisation reaction as above. Chemists are used to the equilibrium association

constant depending on the relative concentration of the species involved, i.e.

K12 =
c2
c21
,

where c1 is the concentration of the monomer and c2 is the concentration of the

dimer. For crowded media, however, the equilibrium constant cannot be expressed

only through the concentrations. Instead it must depend on the thermodynamic

activities, ai, of the species involved. In the case of (1.1), the equilibrium constant

can be expressed as

K0
12 =

a2

a2
1

,

and if the macromolecules in the solution only interact through steric repulsion, then

the thermodynamic activities are de�ned through

ai
ci

=
vtot

vi
,

where vtot and vi denote the total volume and the volume available to species i, re-

spectively. The key connection to spacial particle con�gurations is that the volume

available to a given species is highly dependent on the spacial particle con�guration,

as illustrated through Figures 1.1 and 1.2. Consider for example a given test particle,

for which we want to determine the available volume. If the test particle is small com-

pared to the background macromolecules, then nearly all of the volume not occupied

by the background molecules is available to it (Figure 1.1a). If, on the other hand,

the test particle is of the same size as the background molecules, then the volume

available to it is much smaller (Figure 1.1b). Furthermore, given a certain number

of particles, their exact spacial con�guration also heavily in�uences the available vol-

ume (contrast Figures 1.1b and 1.1c). Finally, even intracellular �walls� impact the

available volume (contrast Figures 1.2a and 1.2b).
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Figure 1.1: Crowded media with di�erent particle con�gurations result in di�erent frac-

tions of available space for a given test species. The area available to the test

particle is designated by the light shading. The rings surrounding each back-

ground macromolecule in Figures 1.1b and 1.1c represent the unoccupied area

that nevertheless is unavailable because the particles cannot overlap. Fraction

of area occupied by background macromolecules: 15.5% in all three �gures.
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Test particle

(a) A small test particle in a

con�ned space.
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Test particle

(b) A large test particle in a

con�ned space.

Figure 1.2: Macromolecular con�nement: volume exclusion by pore boundaries. The dark

blue frame represents the con�nement container, such as a cell pore. The

light blue, inner frame represents the excluded volume with respect to the test

particle.

6



Chapter 2

One-dimensional RSA and BD

We will in this chapter consider RSA and BD in one dimension, and also introduce

some of the tools necessary to interpret the results of the numerical simulations and

computations. We will discuss modelling issues, algorithm issues, implementation

issues, and compare the results from RSA and BD simulations.

RSA, as opposed to BD, does not start out with a given distribution of particles; it

is not a method which describes the dynamics of a system, but a packing method that

gradually �lls up a d-dimensional domain. As de�ned in [14], the classical form of RSA

is a stochastic process in which �nite-sized particles are sequentially, permanently, and

randomly positioned in the d-dimensional domain with the condition that no particles

can overlap1.

Both BD and RSA can be applied in any number of dimensions. Rigorous analyti-

cal results for RSA are mostly restricted to one dimension, though, and are discussed

in Section 2.1. In one dimension, RSA is also known as the car parking problem,

because visualising one-dimensional particles inserted onto a line bears an obvious

resemblance to cars parking on a strip of road. In view of this analogy, the terms

�car� and �particle� will be used interchangeably, as some concepts are common for

both one-, and higher-dimensional systems.

2.1 Analytical results on RSA

The car parking problem was �rst introduced by Hungarian mathematician Alfred

Rényi in a paper published in 1958 where he solves a continuous version of the prob-

lem. There are also lattice-based models, such as the one studied and solved in [7],

1As examined in [6], there are also variations on this classical RSA procedure where partial

overlapping is allowed.
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and which in the in�nitesimal limit yield the continuous version, but here we shall

focus on the continuous version, as set out in [14]. The results on one-dimensional

RSA are listed in [14], but without any derivation, so I have worked through the

relevant details, as presented here.

Consider a test line, or a strip of tarmac, of length L, assumed empty at t = 0,

and suppose that cars of a �xed length λ attempt to park at random positions on

that line at a certain rate per unit length ka. Assume that the test line is a circle, i.e.

that it employs periodic boundary conditions (BCs). The RSA process is illustrated in

Figure 2.1. The times given in the �gure are approximate, given that it is a stochastic

process, in time as well as space. Now assume that we run the RSA process over and
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L

t ≈ 1/(Lka)

t = 0

t ≈ 6/(Lka)

t ≈ 2/(Lka)

Figure 2.1: Illustration of the RSA process in one dimension (car parking problem) at

progressive times.

over on an in�nite number of copies of the initial, empty system. By the law of

large numbers, the mean of the stochastic quantities involved are then deterministic.

Consequently, if the times in Figure 2.1 represented the mean of these copies, they

would then be deterministic, and would read t = 0, t = 1/(Lka), t ≥ 2/(Lka) and

t ≥ 6/(Lka), with the inequalities being due to the fact that successful car parking

only occurs if the �new� car does not overlap with the �old� ones.

De�ne P (t) to be the arithmetic mean (over all of the copies) number of cars per

unit interval (i.e. a number density) at time t, and ρ(t) to be the mean volumetric

density, i.e. ρ = Pλ. Let Φ(t) be the mean fraction of space available for parking

at a t, and note that this is not the same as the fraction of unoccupied space, (1 −
ρ(t)). This is because a parked car e�ectively shades a space of length λ behind (or

alternatively, in front) of itself from the insertion of a new car. This phenomenon was

further discussed as �excluded volume theory� in Section 1.3.2.

Let G(h, t) dh represent the mean number of gaps, per unit length, of gap length

between h and h+ dh. This function is referred to as the gap density function, and it

8



is central to this thesis. Note that G(h, t), along with ρ(t), P (t) and Ψ(t), is not only

de�ned for the RSA procedure, but are also valid de�nitions for BD procedures. The

di�erence lies in how they develop with time, and where there is an ambiguity we will

explicitly specify whether these quantities refer to particle con�gurations established

by BD or RSA. We will also repeatedly refer to estimates of G(h, t), which will be

denoted Ĝ(h, t) (see Section 2.2 for density estimation).

The rate of change of the number density is given by

dP (t)

dt
= kaΦ(t), (2.1)

and the relation tying together Φ and G also follows from the de�nitions:

Φ(t) =

∫ ∞
λ

(h− λ)G(h, t) dh. (2.2)

In this expression, the lower limit of integration and the (h − λ) factor is due to

volume exclusion, as discussed in Section 1.3.2. In view of the fact that there is one

car for each gap, the number density of cars is

P (t) =

∫ ∞
0

G(h, t) dh, (2.3)

whereas the uncovered line is related to G(h, t) through

1− P (t)λ =

∫ ∞
0

hG(h, t) dh. (2.4)

The governing di�erential equation of the system is

∂G(h, t)

∂(kat)
=


2

∫ ∞
h+λ

G(ĥ, t) dĥ h ≤ λ,

2

∫ ∞
h+λ

G(ĥ, t) dĥ− (h− λ)G(h, t) h > λ.

(2.5)

The di�erentiation by kat instead of t is necessary to normalise the rate expressions,

and simpli�es notation. The second term in the expression for G(h, t) on the interval

h > λ corresponds to the destruction of a gap of length h by the insertion of a car

into that type of gap; it is only present when the gap length h is larger than the

length of a car λ. The �rst term for both intervals corresponds to the creation of a

gap of length h, and can be derived as follows: a �new� gap of length h can arise from

any �old� gap of length ĥ ≥ h + λ, whence the lower limit of the integral; the rate

(normalised by ka) at which a car is inserted into such a gap is equal to the total

length of such gaps that is available for insertion, (ĥ − λ)G(ĥ, t); this then has to

be multiplied with the probability that the old gap ĥ is split into exactly the right

9



proportions (h and ĥ− h), 2 dĥ/(ĥ− λ); the factor 2 comes from the fact that there

are two symmetric (around the midpoint) spots where a car can be parked in order

to create the new gaps; thus the integrand is

2
dĥ

(ĥ− λ)
(ĥ− λ)G(ĥ, t) = 2G(ĥ, t) dĥ.

Equation (2.5) can be solved for h > λ by introducing the ansatz

G(h, t) = F (kaλt)e
−ka(h−λ)t. (2.6)

Substituting this into (2.5) for h > λ, we obtain

∂

∂(kat)

[
F (kaλt)e

kaλt−kaht
]

= 2

∫ ∞
h+λ

F (kaλt)e
kaλt−kaĥt dĥ− (h− λ)F (kaλt)e

kaλt−kaht.

Using the substitution u = kaht, carrying out the di�erentiation on the left hand side

and the integration on the right hand side, we get

λ [F ′(u) + F (u)] eue−kaht − hF (u)eue−kaht = 2F (u)eu
1

kat
e−ue−kaht

− (h− λ)F (u)eue−kaht.

Multiplying both sides by kate
kaht yields

u [F ′(u) + F (u)] eu − (kath)F (u)eu = 2F (u) + uF (u)eu − (kaht)F (u)eu

F ′(u)− 2
e−uF (u)

u
= 0.

This is a �rst-order ordinary di�erential equation, and can be solved by an integrating

factor, yielding

F (u) = A exp

(
2

∫ u

α

e−x

x
dx

)
,

for some 0 < α < u and some A ∈ R. This can be further rewritten as

F (u) = A exp

(
−2

∫ u

α

−e−x
x

dx

)
= A exp

(
−2

[
− ln

u

α
+

∫ u

α

1− e−x
x

dx

])
= B exp

(
−2

[
− lnu+

∫ u

0

1− e−x
x

dx

])
for some B ∈ R. Hence,

F (u) = Bu2 exp

(
−2

∫ u

0

1− e−x
x

dx

)
(2.7)

= Bu2Y (u), (2.8)

10



where we have introduced Y (u) = exp
(
−2
∫ u

0
1−e−x
x

dx
)
to simplify notation.

Having solved for h > λ, (2.5) can now be solved for h ≤ λ. Using the initial

condition G(h, 0) = 0 for all h > 0, and integrating the �rst line of (2.5), we obtain

G(h, t) = 2ka

∫ t

0

∫ ∞
h+λ

G(ĥ, t̂) dĥ dt̂

= 2ka

∫ t

0

∫ ∞
h+λ

F (kaλt̂)e
−kaĥt̂+kaλt̂ dĥ dt̂

= 2ka

∫ t

0

F (kaλt̂)

kat̂
e−ka(h+λ)t̂+kaλt̂ dt̂.

De�ning û = kaλt̂, we get

G(h, t) = 2

∫ t

0

F (û)
1

t̂
e−kaht̂ dt̂

= 2

∫ kaλt

0

F (û)

û
exp

(
−h
λ
û

)
dû.

We can determine the value of B by using the initial condition P (0) = 0. Using

equation (2.4), carrying out the integration, and letting t → 0, one �nds that B =

1/λ2. Summarising, the �nal expression for G(h, t) is then

G(h, t) =


F (kaλt)e

−ka(h−λ)t for h < λ,

2

∫ kaλt

0

F (û)

û
exp

(
− ûh
λ

)
dû for h ≥ λ.

(2.9)

Having solved for G(h, t), we can now directly solve for P (t). This can be done

starting from either equation (2.1) or (2.4), although equation (2.3) arguably o�ers the

most straightforward route, as shown here. Given that G(h, t) is de�ned distinctly on

the two intervals 0 < h < λ and λ ≤ h <∞, we need to do two separate integrations.

Consider �rst the interval 0 < h < λ:∫ λ

0

G(ĥ, t) dĥ =

∫ λ

0

2

λ2

∫ kaλt

0

e−
ĥ
λ
ûûY (û) dû dĥ

=
2

λ2

∫ kaλt

0

−λ
û

[
e−û − 1

]
Y (û) dû

=
2

λ

∫ u

0

[
1− e−û]Y (û) dû, (2.10)

where we use the substitution u = kaλt.
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Next consider the interval λ ≤ h <∞:∫ ∞
λ

G(ĥ, t) dĥ =

∫ ∞
λ

1

λ2
eue−kaĥtu2Y (u) dĥ

=
1

λ2
euu2Y (u)

1

kat
e−kaλt

=
1

λ
uY (u). (2.11)

As (2.10) is an integral expression, we also want to express (2.11) as such; rewriting

(2.11) through integration by parts,

uY (u) =

∫ u

0

Y (û) dû+

∫ u

0

ûY ′(û) dû

=

∫ u

0

Y (û)− 2û
1− e−û

û
Y (û) dû

=

∫ u

0

−Y (û) + 2e−ûY (û) dû.

This yields ∫ ∞
λ

G(ĥ, t) dĥ =
1

λ

∫ u

0

−Y (û) + 2e−ûY (û) dû. (2.12)

Summing up (2.10) and (2.12), we get

P (t) =
1

λ

∫ u

0

2
(
1− e−û)Y (û)− Y (û) + 2e−ûY (û) dû

=
1

λ

∫ u

0

Y (û) dû

=
1

λ

∫ kaλt

0

exp

(
−2

∫ û

0

1− e−x
x

dx

)
dû. (2.13)

Equations (2.9) and (2.13) give us analytical expressions for G(h, t) and P (t) for the

car parking problem. These are very useful, as they can be used to evaluate the

accuracy of the numerical results.

2.1.1 Evaluating the analytical RSA expressions

Analytical expressions for G(h, t) and P (t) were developed in Section 2.1. The eval-

uation of these is not entirely straightforward, and merits some discussion.

The complications stem from the fact that the expression for G(h, t), equation

(2.9) involves some problematic integrals. The integral in the expression for F (u),

equation (2.7), does not need to be explicitly evaluated through integration, as it can

be expressed as exponential integrals for which MATLAB has standard functions.

12



On the other hand, (2.9) does need numerical integration in order to solve for h > λ.

This was done using standard MATLAB quadrature functions, (the quad family, see

below for discussions) but since these cannot handle vector input values, a loop is

needed in order to evaluate G(h, t) at multiple gap lengths h.

The numerical RSA procedures (see Section 2.3) are run up until a certain target

volumetric density, ρ0, is reached. De�ne TRSA to be the point in time such that

ρ0 − ρ(TRSA) = 0. Given that equation (2.9) for G(h, t) requires the time of the RSA

procedure as input, whereas the numerical experiments run the RSA procedure with

ρ0 as input, a method is needed to estimate TRSA from ρ0. The RSA simulations do

give estimates of TRSA,

T̂RSA = N∆tRSA,

where N is the total number of insertion attempts necessary to reach ρ0 and ∆tRSA =

1/ka. However, these are not very accurate when the number of particles in the

system, n, is small.

However, since the function ρ(t) is strictly increasing for increasing t, ρ0 − ρ(t) is

strictly decreasing for increasing t. Therefore, and especially when using T̂RSA, it is

not too hard to �nd one point at which ρ0 − ρ(t) is negative, and one at which it is

positive. These two points can then be given as starting values to MATLAB's fzero,

which uses a combination of bisection, secant, and inverse quadratic interpolation

methods, to �nd TRSA [9].

In order to evaluate ρ(t) one could use equation (2.13), or alternatively (2.3).

In the latter case, which is the one employed in this project, the upper limit of

integration is in�nite and this causes some problems for the numerical integration.

If quad is used, then an �nite, yet su�ciently large limit has to be supplied. The

problem is that after a certain point, as one extends the upper limit, the integral was

observed to decrease towards zero, even though G(h, t) is strictly positive! The exact

reason for this is probably a combination of sti�ness2 and the discontinuity in the �rst

derivative of G(h, t) at h = λ, as neither of these factors were individually enough

to cause this problem3. The solutions that we found to work was either to explicitly

carry out the integration in two parts, or to use quadgk, which can accommodate

discontinuities through so-called way points.

2The sti�ness in question is the fact thatG(h, t) has the shape of a decreasing exponential function
which, when viewed from �afar�, looks like it's discontinuous around zero.

3Using quad on equally big intervals for functions that are equally sti� as G(h, t) on large intervals

(but analytically C∞ on the whole interval, as opposed to G(h, t)) works �ne, while quad over

equally large intervals with h ·G(h, t) as the integrand also works �ne, even though there's still the

discontinuity.
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2.2 Density estimation

Density estimation is the attempt to infer a probability distribution function (PDF)

from a large enough set of observed data that one assumes is a random sample from

a population distributed according to an underlying PDF [3]. It is an important tool

in experimental science, also when the experiments are run on a computer, as is the

case with this project, where we use it predominantly to estimate the shape of the

gap density function G(h, t), thus obtaining simulation estimates, Ĝ(h, t).

2.2.1 Kernel smoothing techniques

The genesis of density estimation is the familiar histogram. Histograms are di�cult

to superimpose for comparisons, but more importantly, they have the disadvantage

of being de�ned on a partition. Therefore, what is often applied is a kernel smoothing

technique [3]. Kernel smoothing is a form of non-parametric4 curve �tting that is

employed to reveal traits of the data set. Whereas a histogram amasses the data into

certain bins which partition the space containing the data, kernel smoothing can be

regarded as its continuous counterpart, giving continuous curves instead of bars. In

kernel smoothing, the generalisation of the bin width for histograms is the bandwidth

and it regulates the smoothness of the estimated curves5. The density estimate, f̂ ,

at x, of the underlying PDF, f , based on the set of data, {xi}1≤i≤n, is:

f̂wb(x) =
1

nwb

n∑
i=1

K

(
xi − x
wb

)
, (2.14)

where K is the kernel function. Two of the most common choices for K is that of a

normal PDF (i.e. K ∼ N ) and that of a uniform PDF (i.e. K ∼ U), both of a given

variance, denoted σ, and centred on zero for symmetry. It is easy to show that as

long as the kernel is a PDF, then the density estimate, f̂(x), will also be a PDF.

All, save one, of the density estimation in this thesis employ normal PDFs for the

kernel. The one which doesn't is Figure 2.4, which uses a uniform, symmetric PDF

for the kernel. As can be seen by comparison with the other �gures, the result is

generally less smooth for a given bandwidth. This is because, for a given point, the

uniform kernel only takes into account data within a distance wb from that point,

whereas the normal kernel takes into account all of the data, albeit with less weight

on distant points.

4Non-parametric in the sense that one does not try to �t the data to a known type of an underlying

model.
5Conversely, a histogram can be regarded as a kernel smoothing technique using a box kernel

and only doing the estimation at points that are wb apart.
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2.2.2 Selecting the bandwidth

A measure that is often used to establish optimality of bandwidths is the Mean

Integrated Square Error (MISE), expressed by

MISE
(
f̂wb

)
= E

(∫ [
f̂wb(x)− f(x)

]2
dx

)
. (2.15)

As noted in [9], although the real density f is of course generally unknown, assuming

that it is a normal PDF of variance σ2, and minimising (2.15), leads to

wb =

(
4

3n

)1/5

σ. (2.16)

Noteworthy observations from this formula are the two scalings n−1/5 and σ, which

imply that the bandwidth grows for increasing variation and shrinks for increasing

data sample size.

Although the data samples of gap lengths used in estimating G(h, t) is not nor-

mally distributed, using the same bandwidth selection formula (2.16) as for normally

distributed data still seems reasonable; there is only one discontinuity in the �rst

derivative of G(h, t) (2.9), as discussed in Section 2.4; furthermore, plots of G(h, t)

(for example in Figure 2.2) reveal that G(h, t) does not otherwise exhibit large �uc-

tuations in of the �rst derivative (i.e. large second derivatives), but rather decreases

smoothly towards zero.

Moreover, often a �robust�6 estimate of the variance is preferred to the regular

empirical standard deviation. This works better for density distributions with long

tails7, something that also seems justi�ed in the case of G(h, t), and the default choice

of MATLAB's ksdensity is derived from the Median Absolute Deviation, or MAD,

expressed as

MAD ({xi}) = mediani (|medianj(xj)− xi|) . (2.17)

From (2.17) one can derive a consistent estimate of the standard deviation σ by multi-

plying by a certain factor, which in the case of normal distributions is approximately

1/0.68, where 0.68 arises as approximately the 3rd quartile of N (0, 1). We did some

numerical experimentation, and the results show that the MAD of the data of the

gap densities {hi}1≤i≤n (as generated by simulations) is between 78% and 84% of the

empirical standard deviation, independently of the system size.

6An estimate which is not easily thrown o� by extreme sample values.
7Distributions with long tails can be said to have relatively large standard deviations compared

to, e.g. a uniform distribution, which has no tail.
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In summary, we use the following formula to establish the kernel density estimation

bandwidth:

wb =

(
4

3n

)1/5

MAD ({xi}). (2.18)

2.2.3 Data on bounded supports

Given that the length of a gap is a positive quantity, the data from the numerical

experiments, {hi}1≤i≤n, will lie inside [0,∞). However, G(h, t) does not tend to zero

for h → 0, but instead peaks at h = 0. This is a problem, because the density

estimate for low values of h will be dragged down by the absence of values for h < 0.

Figure 2.2a shows the result of this, as all of the curves, except the analytical one,

bend downwards as they approach zero. This is obviously an artefact of the kernel

smoothing technique, and cannot be remedied inde�nitely by increasing the system

size, n, because computing power is limited.
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(a) Without log-transformation of data.
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(b) With log-transformation of data.

Figure 2.2: Comparison of kernel density estimation with and without log transformation.

The graphs are gap density functions, for varying system size, n, indicated by

the colour bars.

A possible solution is to apply a transformation to the bounded region which

transforms it into an unbounded one. Taking logarithms is suitable for a domain

bounded below by zero, transforming the positive real line into the entire real line.

As with any change of variables, the chain rule then requires the multiplication by

the derivative of the transformation, in this case d
dx

log(x) = 1/x. The bandwidth

is calculated from the transformed data. The result can be observed in Figure 2.2b;
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although for small systems this method produces large oscillations (through 1/x), for

large enough systems (the orange lines) the numerical curves are visually indistin-

guishable from the analytical one, all the way up to h = 0. However, as discussed

further in Section 2.4, the log-transformation of the domain is not employed in this

thesis, mostly due to the oscillations it causes for small values of h when n is below

1× 104.

2.3 Simulating RSA

(a) Equidistant packing (b) RSA packing

Figure 2.3: Demonstration of the visualisation of the system of cars on a line that was

used for debugging. The test line is broken up into several lines to make the

most out of the display area.

It is convenient to begin with implementing RSA before BD, as RSA naturally

deals with some of the issues common to both processes. The test line is typically set

to unit length, and cars are sequentially inserted onto the line until a target volumetric

density, ρ0, is reached. The system size, i.e. the number of cars, n, is be provided

alongside ρ0 as a parameter to the experiment, and the (�xed) length of the cars is

calculated by

λ =
L

n
(1− ρ0) (2.19)

in order that nλ = L(1−ρ0). Note that in the case of varying car lengths, considered

in Section 2.8, (2.19) only gives the mean car length.

The default form of the RSA procedure is set out in Algorithm 1. Other variations

include polydispersity, as discussed in Section 2.8, and variations on the implemen-

tation is given in Section 2.3.2.
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Algorithm 1: Random Sequential Adsorption (RSA)

Input: L, n, ρ0, ka

Output: A list of cars packed by RSA, TRSA

1 Let ρ = 0

2 while ρ ≤ ρ0 do

3 Draw ξ from U [0, 1]

4 Increment the RSA time by ∆tRSA = 1/ka

5 if The position indicated by Lξ is available for insertion then

6 Insert the car position and length in the arrays

7 Increment ρ by ∆ρ = λ/L

8 else

9 Reject the insertion attempt

2.3.1 Why G(h, t) characterises the distribution

Once RSA simulations have been run, the spacial particle con�guration can be studied

by plotting density estimates of the gap density function G(h, t). Given that di�erent

system sizes, n, and domain lengths, L, may be used, the gaps are all given relative

to the car lengths, λ, or to the mean gap length of the system, h̄ = λ(1− ρ)/ρ.

The central question that is asked in this thesis is whether the spacial particle con-

�gurations obtained from BD matches those obtained from RSA. The reason why the

gap density function can be used in answering this question in one dimension is that,

apart from the order of the gaps, the gap density function G(h, t) fully characterises

the particle con�guration.

In the case of RSA, the ordering is doubtlessly independent of the gap lengths.

In other words, the length of gap i gives no information on gap the lengths of gaps

i+ 1 and i− 1, or those further away. This follows from the de�nition of RSA, which

employs a uniform probability of insertion, and it implies that knowing G(h, t) is

su�cient to characterise the spacial particle con�gurations.

Unlike RSA, it is not immediately evident that for BD that there is this indepen-

dence between the gap lengths; although an attempt at showing this from theoretical

arguments is made in Section 2.11, I am not aware of any rigorous mathematical

proof of this (keeping in mind the �nite size of the particles). Therefore a numerical

study was undertaken, and Figure 2.4 shows the probability that a gap of length href

follows a gap of length h, relative to the abundance of gap length h. Each curve

corresponds to a di�erent href , and since the abundances of href also di�er, the curves
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have been scaled according to their abundance. Figure 2.4 shows that both for RSA
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Figure 2.4: Plot illustrating that the order of gaps is independent of their length. n =
1× 106, ρ = 0.3. Density estimation uses a uniform Kernel function, unlike all

of the other density estimates in the thesis.

and BD, and regardless of href , the general tendency is that of a uniform probability

distribution. This uniformity means that for any given type of reference gap href , the

conditional probability of the following gap being of length h is equal to the uncondi-

tional probability of that gap being of length h. By induction, this observed, pairwise

independence can then be propagated throughout the sequence of cars, leading to the

conclusion that the length of a given gap is independent of any of the gaps around it.

2.3.2 Implementation issues relating to RSA

At �rst the car/particle con�gurations were stored in simple two-column arrays; the

�rst column would hold the �Front� of the cars, while the second would hold the

length of each car. Unlike higher-dimensional systems, one-dimensional systems have

a natural ordering based on the position of the cars. Furthermore, it is an inherent

characteristic of working with non-overlapping cars that the order is �xed. Due to

considerations such as search speed and structure, the arrays would be kept sorted

(i.e. in the same order as the cars on the line) over the course of the RSA packing

procedure. With hindsight this now appears to have been a misjudgement, as the ex-

tra coding work required for this does not outweigh the dubious advantage in running
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time of the code8.

Another implementation option is to keep a running list of the space available for

the insertion/parking of a car, at the cost of considerable bookkeeping. Because the

random variable, ξ, specifying the insertion position is mapped to this space, each

insertion �attempt� will then always succeed. Due to the bookkeeping, we found this

method to be several times slower than Algorithm 1, depending on the system size

(for n = 1 × 104 it was about four times slower). It also requires extra calculations

to give an estimate of the packing time TRSA, with ∆tRSA(t) = Φ(t)L/ka. For these

reasons, and because it is di�cult to generalise this method to higher dimensions, the

bookkeeping RSA version was also only given preliminary use in the beginning of the

project.

2.4 Convergence of RSA simulations

The one-dimensional simulations are computationally light-weight compared to two-

dimensional systems, and so system sizes of up to n = 1× 106 can be simulated on a

time scale of a day on a modern laptop (see Appendix B for computer speci�cations).

As can be observed from the sub�gures of Figure 2.5, the numerical curves get closer

and closer to the analytical curve for increasing n, clearly converging for n→∞.

The magni�ed plot (Figure 2.5b) serves to highlight this convergence for a speci�c

interval, where the di�erence between the curves is easily observable due to the peak-

ing of the curves. Observe that the curves corresponding to n ≥ 1×104 are practically

collinear with the analytical curve until a very noticeable change in curvature occurs.

Let hI denote the point at which this change occurs, typically estimated visually,

although arg maxh Ĝ(h, t) provides a good automatic estimator. Clearly, the domi-

nating �form� of convergence for n ≥ 1 × 104 is that hI shrinks as n increases. This

di�ers from the typical form of convergence that one expects from estimations with

n→∞, where the vertical di�erence between curves gradually decreases over a given

interval. The shrinking of hI is therefore not so much a consequence of the higher

accuracy provided by larger samples; it is rather due to the fact that the bandwidth,

wb, as calculated from (2.18), gradually decreases for increasing n.

The bandwidth used for n = 1×106 is about 0.07λ, while the corresponding curve

does not start swinging downwards until h = 0.2λ. This means that for h > 3wb, the

8The running time is of course dependent on the size of the system, n, but keeping the list sorted

during the RSA procedure increases the running time compared to not doing so. One-dimensional

BD is much faster to simulate with an ordered list, but because the order is permanently set, the

ordering need only take place once before the simulation.
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downturn e�ect of the kernel smoothing is no longer visually discernible. The reason

is of course that the weight attributed to points at that distance is negligible; the

cumulative density function of N (0, 1) at -3 is is 0.00135.

What is also observable from Figure 2.5b is that only for n ≥ 1 × 105 can the

curves be said to follow the kink at h = λ, and so for any type of simulations, whether

RSA or BD, the density estimates of G(h, t) should not be expected to possess this

feature. This kink arises as consequence of the piecewise de�nition of G(h, t) (2.9)

which guarantees C0 continuity, but not higher, and it is very useful as a pronounced

feature of the RSA curves which can be used in comparisons.

It is frequently of interest to have a measure of the di�erence between functions.

The l2 norm is probably the most common choice for numerical data points, and as

such it is the one we will use. The question arises, however, whether it would be

wise to include the interval [0, hI ] in the range of application of the l2 measurements.

Although the downwards bend for h < hI is an artefact of the kernel smoothing,

the answer is not obviously to exclude [0, hI ], as, for instance, two equal data sets

would engender two identical curves, over the interval [0, hI ]. Moreover, one could

argue that the downwards bend is a blessing in disguise, as it does help to visually

distinguish the curves. Nevertheless, due to the added complication of varying system

sizes, n, and bandwidths, wb, both of which a�ect the width of the arti�cial downturn

(i.e. hI), we restrict the range on which the l2 norm is applied to [hI ,∞). It should

be noted, however, that this has a bearing on results such as the convergence rate,

which in the case illustrated in Figure 2.5d is approximately halved when the [0, hI ]

is taken into account. An alternative solution to restricting the interval of application

could be to use a log transformation before applying the kernel smoothing technique,

as discussed in section 2.2.3. However, this is prone to extreme oscillations for small

h, and therefore we do not apply this method. In summary, if density estimation is

carried out for M points, and I represents the index of hI , the expression applied to

calculate the restricted l2 norm of the di�erence between two curves is

‖G− Ĝ‖2,res =
1

M − I + 1

M∑
i=I

(G(hi)− Ĝ(hi))
2, (2.20)

where, unlike for the rest of this thesis, the indices i do not represent the car/particle/gap

index, but the index of an abscissa point hi.

Figure 2.5d shows a log-log plot of the restricted l2 error between the analytical

and numerical curves. In view of the preceding discussion on the restriction of the l2

norm this should not be taken to convey a lot of information in absolute terms, but

is more useful in establishing convergence rates. As can be seen from the slope of

the regression line in Figure 2.5d, the restricted l2 error for numerical RSA appears
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to converge at the rate of n−2/5. The data curve is clearly linear, although it should

also be noted that with a higher resolution on the abscissa (as a result of a larger

number of simulations with di�erent system sizes), the curve would have been more

jagged. Presumably the convergence of the error would continue to decline as shown

in Figure 2.5d, if system sizes larger than n = 1 × 106 are simulated, up until some

point depending on machine precision.
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(a) Plots of Ĝ(h, t) from RSA simulation exper-

iments of increasing system size n. Also in-

cluded is the analytical RSA curve (2.9).
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(b) Magni�cation of the upper right part of sub-

�gure 2.5a.
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Figure 2.5: Convergence studies for RSA simulations. Colour bars indicate n.
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2.5 Analytical results on Brownian motion

The advantage of modelling the dynamics of particle systems by Brownian Dynamics

(BD) is that it reduces the dimensionality (and hence complexity) of the system.

Instead of explicitly considering all of the particles within a system, one focuses on

the particles of interest, i.e. the macromolecules, and represents the other particles in

the system as having the e�ect of random background noise on the macromolecules.

The following results on Brownian motion can be found in most basic stochastic

textbooks, and their derivation is given here for completeness.

Let X(t) ∈ Rd be the position of particle i (in this section we drop the particle

index, i, for clarity) at time t, the stochastic di�erential equation representation of

this particle undergoing Brownian motion is

dX(t) = D dW(t) + F({X(t)} ; t) dt, (2.21)

where F represents deterministic drift, {X(t)} is the set of positions of all of the

particle in the system, D, is the di�usion constant, and W(t) is a Wiener process, i.e.

a stochastic process with independent increments such that any component, Wj, of

W follows a normal distrjbution of variance equal to the duration of the BD process,

TBD. In other words,

Wj(t+ TBD)−Wj(t) ∼ N (0, TBD) ,

for all t. The drift term is used to model inter-particle interactions and external

forces. As no such forces are considered in this thesis, however, we shall immediately

set it to zero. When numerically simulating Brownian motion, one of course has to

discretise time. Hence Equation (2.21) becomes

Xk+1 = Xk +D
√

∆tBD ξ
k+1, (2.22)

where Xk is the position of the particle at the kth step of the simulation, ξk is a

normally distributed, d-dimensional, random variable of mean zero and variance σ =

Id (identity matrix), and ∆tBD = TBD/N . The square root of ∆tBD provides the

correct scaling, as seen by the following argument:

XN
j −X0

j =
N∑
k=1

(
Xk
j −Xk−1

j

)
=

N∑
k=1

D
√

∆tBD ξ
k = D

√
∆tBD

N∑
k=1

ξk.

But the variance of two independent, normally distributed variables is the sum of

their variance. Thus, since the ξk are independent,

XN
j −X0

j = D
√

∆tBD

√
Nξ

= D
√
TBDξ,
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where ξ denotes a random variable that follows N (0, Id). Hence, we observe that

the total potential displacement of the N steps is equal to that of the continuous

de�nition of Brownian motion (2.21), scaling with
√
TBD. It is then easy to calculate

that the expected value for the absolute displacement also scales with
√
TBD:

E
(|XN

j −X0
j |
)

= D

√
2

π
TBD. (2.23)

2.6 Simulating BD

The BD simulations, although seemingly straightforward, o�er quite few choices and

challenges, even in one dimension. These are mostly due to collisions between the

particles, and are discussed in Sections 2.6.1.

Equation (2.22) is the starting point for the simulations, and Algorithm 2 describes

a generic, one-dimensional BD algorithm.

Algorithm 2: General Brownian dynamics (BD)

Input: A list of n cars with given positions, {X0}, and lengths, D, ∆tBD, TBD

Output: The same list of cars, but with new positions

1 Calculate N = TBD/∆tBD

2 Set k = 1

3 while k ≤ N do

4 Draw ξk ∈ Rn from N [0, 1]n

5 Move cars according to Xk = Xk−1 +D
√

∆tBD ξk

6 Check for overlapping cars or cars which have switched order

7 Treat these overlappings (collision handling)

2.6.1 Collision handling

In re�ection of �reality�, all of the particles should be moved simultaneously, for each

iteration, i.e. not one-by-one, or sequentially. However, the �nite time step might

cause collisions between the cars (cars that either overlap, or have switched order).

This should be resolved by some form of collision handling, where ideally some form

of molecular dynamics resolves the collisions. For example, if two cars are found to

overlap, then one can bounce them apart a distance equal to that with which they

overlap, as a re�ection.
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The problem arises when multiple overlappings happen on successive cars, due to

clustering9. Or perhaps even car i − 1 and car i + 1 (i.e. cars which should have

one car and two gaps separating each other) are now overlapping. If one were to

make all of the correct bounce-backs for a sequence of successive collisions, it would

be necessary to draw out the trajectory of the cars from one iteration to the next.

Another compounding di�culty is the fact that resolving one collision zone might

create another on its fringes, whose resolution might create another, and so on. This

could in principle all be resolved as long as the collision handling has a su�cient level

of sophistication, but it would be at great computational cost, and would require

keeping track not only of the current position of the particles, but also their previous

position. The question then is whether that would be worth it, or if it actually just

defeats the purpose of BD simulations.

Note that this is really a consequence of simulating �nite-sized particles in a

crowded environment. Unless ∆tBD is in�nitesimal, or one does actually trace out

the trajectories of the particles from k to k+1, the collision handling is probably bound

to a�ect the statistical properties of the dynamics, making the BD simulation depart

somewhat from the �pure� continuous form of Brownian motion (2.21), to which all BD

simulations should converge as ∆tBD → 0. Although I did not analytically attempt

to analyse these properties, the recognised objective was to minimise this departure

from the continuous form. �Common sense�, mixed with numerical experimentation,

was an important source of guidance. The result was the implementation of several

algorithms to resolve the collision problem, and is discussed in Sections 2.6.2 and

2.6.3.

As discussed in [13], many forms of BD have been developed by researchers for

di�erent purposes. For example, some employ adaptive time-stepping and some use

discretised domains (lattices). Some of these would surely have been useful to this

project. However, they would have to be e�ective in crowded environments, and not

too intricate, as it is important that they do actually implement Equation (2.22), and

not some slight variation of it. Other variations might be hard to analyse, and in this

thesis our principal aim is to approximate BD by RSA, not the other way around.

With the time limit involved and the di�culty of �nding and analysing other BD

methods, I therefore developed and used my own BD algorithms.

9Although there are no particular attractive forces in the system, some clusters are bound to

arise simply because there are so many cars in the system.
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2.6.2 A short study of a failed BD algorithm

Before we discuss the algorithms that were used with success in this project in Section

2.6.3, consider Algorithm 3, which substitutes Line 7 of Algorithm 2, and provides an

interesting example of a collision handling method that is not very successful. The

Algorithm 3: Rejective BD (collision handling method)

1 while There are any overlapping cars do

2 if There are two successive overlappings then

3 Reject/cancel the movements carried out by ξk

4 Break while-loop

5 else

6 Bounce apart those cars that overlap by a distance equal to that with

which they overlap

7 Check again how many overlapping cars there are

8 if Movements were rejected then

9 Do not increment k

10 else

11 Increment k

problems with Algorithm 3 are two-fold: (1) in limiting certain movements it employs

a relatively drastic collision resolution method, whose in�uence on the statistical

properties of the BD might be correspondingly drastic, and (2) it is computationally

heavy for large n.

What is interesting about Algorithm 3 is that it allows for some interesting heuris-

tics in explaining the observed, dreadful simulation times. Assume, for the sake of

explanation, that there are nc distinct clusters
10 of cars in the system, where nc is

proportional to n: nc = γn, γ � 1. Also assume that the probability of any given

cluster producing at least one double overlapping, for iteration k → k + 1, is 1 − β,
β ∈ [0, 1]. In other words, 1 − β is the probability that any given cluster makes Al-

gorithm 3 reject the proposed set of movements, D
√

∆tBDξ
k, for k → k+ 1. In order

for the next iteration to be accepted, none of the nc clusters must produce double

overlappings. Assuming independence between clusters, the probability of not having

any double overlappings is βnc = βγn. This implies that the probability of accepting

10It is surely possible to put a strict de�nition on clustering, but only the intuitive concept of

�regions of extra high density� is necessary for this argument.
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the proposed set of movements decreases exponentially with n, and this makes large

systems practically impossible to simulate via Algorithm 3.

The obvious solution to the problem is to decrease the iteration time ∆tBD, as

this should reduce the number of overlappings overall, as discussed in Section 2.6.5.

This, however, was not observed to be very successful for Algorithm 3, as the time

saved by not having as many rejected iterations was fully compensated for by the

extra iterations of the decreased ∆tBD. This could again be explained by some rather

interesting reverse-engineered heuristics, but we conclude this section simply with the

empirical observation, as it stands.

2.6.3 Working BD algorithms

With the lessons taken from the trial and error of Algorithm 3 it seems that one

must compromise a little on the strictness of the collision handling. What if each

overlapping is treated separately, regardless of how the �bounce-back� may a�ects

other neighbouring cars, and only once. This is the method of Algorithm 4, which

again replaces line 7 of Algorithm 2.

Algorithm 4: Simultaneous BD (collision handling method)

1 for Each collision between two cars do

2 Bounce apart those cars that overlap by a distance equal to that with

which they overlap

3 Check again how many overlapping cars there are, and store this

information

4 Increment k

The collision handling of Algorithm 4 might create some new remaining, unre-

solved overlappings each iteration, but not as many as it resolved in the �rst place.

Moreover, it is relatively inexpensive, as the number of operations in the collision

handling procedure, per iteration, only scales with n, and not en, as with Algorithm

3. Furthermore, the total number of unresolved collisions, ζ, is monitored (line 3 of

Algorithm 4). Let Ψ = ζ/(nN) be the average number of unresolved collisions of

a BD procedure per iteration per car. Then Ψ gives a measure of how valid a BD

simulation is, and can be used as a �quality guarantee� of a given BD simulation.

There are of course many intermediate versions of Algorithms 4 and 3. For ex-

ample, one could do two repetitions of Algorithm 4, or one could keep looping until

there were no unresolved collisions left. Neither would ensure that the simulation is

close to continuous BD, though, and they would come at greater computational cost.
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Another, quite di�erent, approach consists in compromising on the simultaneity

of the movements of the particles (as is in e�ect already done in the collision handling

of Algorithm 4). This is the method of Algorithm 5, which replaces lines 5 to 7 of

Algorithm 2. In order to avoid �prioritising� one car ahead of others, Algorithm 5 also

randomises the order of movement of the cars from one iteration to the next. This is

represented by the random permutation R on the numbers {1, · · · , n}. Note that no

Algorithm 5: Sequential Brownian dynamics (BD)

1 for i = 1, · · · , n do
2 Get a random car index: j(i) = R({1, · · · , n}; i)
3 Move car j according to Xk

j = Xk−1
j +D

√
∆tBD ξkj within segment

delimited by neighbouring cars

4 Increment k.

collision handling is necessary in Algorithm 5; as the cars are moved sequentially, the

bounds on the movement of car i for a given iteration, k, are set by the neighbouring

cars, i − 1 and i + 1, which are stationary while car i is moved. If car i overtakes

those bounds, it is simply re�ected back onto the delimited segment.

Although Algorithm 4 is the algorithm that has been used to produce all of the

plots for the one-dimensional BD procedures, both Algorithm 4 and 5 have their

advantages and disadvantages. These are related to ∆tBD and TBD, and are discussed

in Sections 2.6.4 and 2.6.5.

2.6.4 Selecting TBD

Two key parameters to all BD algorithms are the time step, ∆tBD, and the total time

of the process, TBD. The question is how they should be set.

Recall that the total, expected, unrestricted movement of a particle undergoing

Brownian motion, either continuous (2.21) or discrete (2.22), scales with
√
t:

Xi(t)−Xi(0) = D
√
tξ ∼ N (0, t).

The movement of the non-overlapping cars is not unrestricted, though, and the

result is that the resulting movement after N iterations (corresponding to t = TBD)

is approximately a uniform PDF on the limited interval, as long as TBD is su�ciently

large, as shown by the following argument.

De�ne T0 as the point in time when the standard deviation of Xi(t) − Xi(0) is

equal to h̄: this will serve as the reference time, against which all other times are
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measured. As illustrated in Figure 2.6, let f(x) ∼ N (0, σ2) be the PDF of XN
i −X0

i

(i.e. σ = D
√

∆tBD), and suppose that cars i−1 and i+ 1 are both a distance l0 away

from the front and rear of car i respectively (i.e. the movement of car i is limited to

an interval of length 2l0 = h̄). Let a ∈ [0, 1] be such that x = al0, and b > 0 be such

that σ = bl0.

l0

4l0 + x−(2l0 + x)

2l0 − x

x = al0

−(4l0 − x)

σ = bl0

Figure 2.6: Illustration of the PDF of the expected, total movement of an unrestricted car

undergoing Brownian motion. The solid, red lines represent the restriction on

the movement on the car, and are a distance 2l0 apart. The dotted, red lines

lie at multiples of 2l0 away from the centre. The ticks on the abscissa mark

the points on the curve which will lie on top of x after the Gaussian curve is

folded back on itself, as shown in Figure 2.7.

Figure 2.7: Illustration of how a Gaussian PDF that is �re�ected� on the segment walls

(neighbouring cars) e�ectively turns into a uniform PDF on that segment.

Think of the tails of the distribution as being folded inwards and put in layers

on top of each other.

The restriction on the movement of car i means that the PDF of XN
i −X0

i becomes

the result of �re�ecting� the tails of the Gaussian tail back upon itself, as illustrated
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in Figure 2.7. Thus the PDF of XN
i −X0

i , f(x), after restriction, is

f(x) =
1√

2πσ2

[
exp

(
− x2

2σ2

)
+
∞∑
k=1

{
exp

(
−(2kl0 + x)2

2σ2

)
+ exp

(
−(2kl0 − x)2

2σ2

)}]

for |x| < l0, and f(x) = 0 otherwise. Substituting in x = al0 and σ = bl0, we get

f(x) =
1√

2πσ2

[
exp

(
− a2

2b2

)
+
∞∑
k=1

{
exp

(
−(2k + a)2

2b2

)
+ exp

(
−(2k − a)2

2b2

)}]

for |x| < l0. This series does not, to my knowledge, have a closed-form expression,

but is easily evaluated numerically, which we do in order to con�rm that the �folded

up� Gaussian PDF does indeed result in a uniform PDF on the restricted interval.

Figure 2.8 shows plots of f(x)/f(0) = f(al0)/f(0) for a few di�erent values of b. As

can be seen, even for b = 0.82, i.e. when σ ≤ l0 and TBD ≤ T0, f(a) is practically

uniform, with f(l0)/f(0) = 0.86 being the minimal ratio for 0 ≤ a ≤ 1. For higher

values of b, the PDF is 1 for all 0 ≤ a ≤ 1.
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3.7

6.1
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Figure 2.8: Plots of f(x)/f(0) = f(al0)/f(0) for di�erent values of b (indicated by colour

bar). Most of the curves are identically one, but are obscured by the curve for

b = 10.

Additionally, the average position of the cars hardly changes over the course of one

simulation (i.e. the drift is zero). This can be deduced by the central limit theorem,

and is con�rmed by numerical simulations: running BD with TBD/T0 = 4, i.e. b = 2,
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caused the average position to change by ≈ 0.01h̄. Therefore, although the borders

�uctuate a little, the space in which a car can move is not only restricted over one

iteration, but it is e�ectively restricted for the entire duration of the BD simulation.

This implies that convergence to a steady state of the car con�guration should

happen for TBD not much larger than T0, because by then f(a) looks like a uniform

distribution between the two neighbouring cars. Exactly how large TBD has to be is

di�cult to deduce from this analysis, though, as there is still some uncertainty related

to the e�ect of the �uctuations of the neighbouring cars. To get a better answer, one

should study the convergence towards a steady state of the particle con�guration, as

is done is Section 2.7, but from Figure 2.8 one would expect that TBD only needs to

be on the order of T0.

2.6.5 Selecting ∆tBD

Decreasing ∆tBD decreases the probability that two cars collide when moved, as the

expected movement of a car scales with
√

∆tBD (2.23). On the other hand, decreasing

∆tBD increases N , and the simulation will take more time (at least unless the colli-

sion handling procedure is very sensitive to the number of overlappings). Therefore,

choosing the optimal ∆tBD involves compromising between these two e�ects.

Let d̄ = D
√

∆tBD be the standard deviation of the PDF of the unrestricted

movement over one iteration, X1
i − X0

i , of car i. As Figure 2.9 shows, Ψ, the

number of overlappings per iteration per car, increases at a rate of approximately

d̄1.7 ∝ (
√

∆tBD)1.7 = (∆tBD)0.85, which is more than a linear increase with d̄.

When is Ψ su�ciently low to ensure that the BD simulations are su�ciently close

to the continuous version of BD? The question can again be answered by studying

the convergence of the particle con�gurations as ∆tBD → 0, as is done in Section 2.7;

when Ψ ≤ 0.01 it seems that decreasing ∆tBD has no further e�ect, and so Ψ ≤ 0.01

was generally employed as the maximum allowed value of Ψ (the value of Ψ is always

given). As can be deduced from Figure 2.9, this happens at around d̄/h̄ ≈ 0.1.

The big advantage of the sequential BD algorithm (Algorithm 5) is that the time

step can be very large, since there are never any collisions. Setting ∆tBD = TBD

will not work, though, probably because the non-simultaneity of the movements. It

was found through simulations that one needed at least N = 2 in order for the car

con�guration to converge, but a few more were generally employed, as a safety margin.

Given that fewer iterations are needed for Algorithm 5 than for Algorithm 4, one

would hope that Algorithm 5 could be run much faster. This is not the case though,

as by its sequential nature, it is not vectorisable as a MATLAB function, and this

makes it much slower, and therefore we persist in employing Algorithm 4. Presumably
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Figure 2.9: Log-log plot illustrating the increase in overlappings with increased time step

∆tBD for Algorithm 4. ρ = 0.4, slope of linear regression curve: 1.7.

it would have an advantage in other programming languages though.

2.7 Comparison of BD and RSA

In order to rigorously assess the probability that two data samples originate from the

same underlying probability law, one would have to perform a statistical test on the

data samples from the simulations. This has not been applied in this thesis, though,

because of time limitations and because visual comparison of the curves and their

qualitative convergence tendencies were considered su�cient as a beginning.

In anticipation of the discussions below, it should be stated from the outset that

despite the similarities of the curves, the conclusion drawn in one dimension is that

RSA and BD to not lead to the same particle distributions.

Figure 2.10 gives plots of the gap density function for increasing TBD. The simu-

lations have been produced with each snapshot as the starting particle con�guration

for the next, with initial con�guration being a uniform (equidistant) distribution,

making the curves for small TBD resemble a central spike. For higher values of TRSA,

this feature disappears, and the curves approach the analytical RSA curve.

Figure 2.10b gives a log-log plot of the restricted l2 norm, of the di�erence between

the RSA and BD curves. The slope is approximately −0.6, and so it seems that the
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(b) Plot of ‖G(h, TBD)− Ĝ(h, TBD)‖2,res, with

hI = arg maxh Ĝ(h, TBD) for the lowest

value of TBD. Logarithmic axes. Slope of

the linear �t is about −0.6.

Figure 2.10: Convergence studies of BD simulations of increasing di�usion time TBD. The

system starts o� from an equidistant distribution. n = 1× 104, ρ = 0.4. The
value of ∆tRSA is such that Ψ < 0.01.

di�erence decreases at the rate of T−0.6
BD ≈ 1/

√
TBD, which is proportional to the

increase in the expected total distance of an unrestricted car undergoing Brownian

motion (2.23).

The decrease in the restricted l2 norm of the di�erence stops at a certain point,

when TBD/T0 ≈ 10. At �rst we thought to this was a consequence of the limited

accuracy given the size of the system. That is, if n got larger, the error would get

smaller. However, we now consider it a consequence of the actual di�erence between

RSA and BD distributions, as will be more apparent in Sections 2.8 and 2.9.

Figure 2.11 takes a slightly di�erent approach from the simulations that produced

the plots of Figure 2.10. Instead of starting o� from an equidistant con�guration,

the particles here start o� from a RSA con�guration. This �wastes� less time, as

Figure 2.10a clearly shows that the stable regime of the BD system possesses particle

con�gurations that are (at least) close to the RSA distribution.

Skipping the transitory regime allows the simulations of Figure 2.11 to employ

a smaller TBD and hence also a smaller time step, and also more particles, without

increasing the simulation time. This should reduce the inaccuracies, and increase

our con�dence that the curves are close to what would be obtained if TBD → 0 and

∆tBD → 0. Another BD curve, labelled �Final BD� has also been produced, using

extra small time steps. The simulations for Figure 2.11 take about 10 hours on a
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Figure 2.11: Convergence studies for BD simulations of increasing di�usion time TBD.

The system starts o� from an RSA distribution. The value of ∆tBD is such

that Ψ < 0.01 for all of the BD curves, except the �Final BD� curve where

Ψ ≈ 0.0009 and TBD/T0 = 22. n = 3× 104, ρ = 0.4.

modern laptop.

What Figure 2.11 shows under scrutiny is that RSA and BD do in fact not give

equal particle con�gurations in one dimension. In order to draw this conclusion one

must recall the discussion from Section 2.4 about accuracy relating to system size n,

and consider the following. The system size (n = 3 × 104) is large enough that the

numerical RSA curve on Figure 2.11 is very accurate; it follows closely the analytical

RSA curve across the kink and up to the peak, at which point the e�ect of density

estimation bends the curve downwards. Hence one would expect the BD curves to stay

very close to these curves if they originate from the same underlying PDF. They does

not do this, as in fact it seems that it converges11 to a particle con�guration whose gap

density function lies slightly above the RSA gap density for h/λ ≤ 0.6 and slightly

below for h/λ ≥ 0.6. From this we can carefully begin to draw the conclusion that

the particle con�gurations of BD and RSA are not, in general, equivalent, although

the next two sections will make this more evident.

11Converges both in terms of increasing TBD and also for ∆tBD → 0, given the �Final BD� curve.
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2.8 Polydispersity

Polydispersity refers to having a mixture of di�erent kinds of particles. In one di-

mension, though, this variation is limited to variations in the lengths of the cars. For

the BD procedures that were implemented in this project, in one dimension, this has

no e�ect on the distribution, as is discussed in Section 2.11. For RSA the impact of

polydispersity is not so obvious, and numerical simulations are needed in order to in-

vestigate it. The way we implemented polydispersity in one dimension is by sampling

the car lengths from a given PDF that is composed by centring a Gaussian curve at

some value, and re�ecting the bits of its tail that are negative back onto [0,∞).

Figure 2.12 plots curves of the gap density function for BD and RSA, magnifying

the region of small h. For polydisperse RSA there exist two general versions of RSA,

namely competitive and non-competitive. The di�erence between them is that non-

competitive RSA does not change the particle type if an insertion fails, but keeps

to insert the same particle until it succeeds, whereas competitive RSA draws a new

particle for each insertion attempt. It is not obvious how to achieve the target density,

ρ0, in competitive RSA, since the car lengths do not necessarily add up to ρ0L. In

non-competitive RSA, on the other hand, the car lengths can all be chosen ahead of

the insertion phase, and scaled correctly. As is seen in Figure 2.12, the BD gap density
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Figure 2.12: Plot of gap densities for polydisperse systems. The analytical RSA curve is

for a �xed car length. n = 1× 105, ρ = 0.4.

curve lies somewhat above and below the other curves for h < 0.6λ and h > 0.6λ.
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Unlike �xed-size numerical RSA curves, as observed in previous Figures (e.g. Figure

2.5b), neither of the two numerical, polydisperse RSA curves in Figure 2.12 follows

the kink at h = λ of the analytical RSA curve12. This ought to be expected, as h = λ

now only represents the mean of the car lengths, and not their actual size.

Again however, the curves all lie su�ciently close to each other that one could

easily be led to think that they follow the same underlying probability law. This,

however, would be contrary to what one may expect from polydisperse RSA, and

suggests that one should be careful to conclude that the spacial car con�gurations,

although leading to similar gap densities, are not the same.

2.9 The in�uence of crowdedness

As mentioned, this project aims to experiment with a volumetric density of about

0.3 � 0.4. Therefore, although it was well-known to me (through numerical experi-

mentation) that changing ρ (while keeping n constant) had a signi�cant impact on

the shape of G(h, t), experimentation with other values of ρ was limited, as extreme

values of ρ (e.g. 0.01 or 0.73) were regarded mostly as being outside of the scope of

the project. With hindsight, this now seems to have been poor reasoning, or a rather

a lack thereof, because extreme values of ρ allow for much clearer comparisons, and

�nally allows us to con�dently draw the conclusion that BD and RSA do not give rise

to equivalent particle con�gurations.

Figure 2.13 shows plots of the gap density function for a very high value of ρ, near

the jamming limit of about 0.7475 [14]. In this case, the kink at h = λ is much more

pronounced than what it is for ρ ≈ 0.3. The numerical RSA curves �t tightly too the

analytical one, kink included. In this case, however, there is no doubt that BD result

in di�erent car con�gurations than RSA, as the BD curve has no tendency towards a

kink, but is very smooth, and it also peaks well above the numerical RSA curve.

12Note that the analytical RSA curve, from (2.9), is for �xed-size cars. One-dimensional, poly-

disperse RSA is studied analytically in [6], but due to time limitations, this was not implemented

here.
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Figure 2.13: Plots of Ĝ(h, t) for ρ = 0.73 and n = 2 × 104. TBD/T0 = 9, ∆tBD such that

Ψ = 0.017.

The other extreme case, ρ � 1, plotted in Figure 2.14, yields the opposite result

� the curves are now virtually indistinguishable. Note that as λ → 0, λ/h̄ → 0, and

consequently the range h < λ, practically disappears from the plots of G(h, t)13

13Magnifying the region just around h = λ, the kink is still discernible, but only just.
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Figure 2.14: Plots of Ĝ(h, t) for ρ = 0.01 and n = 2× 104. TRSA/T0 = 9, ∆tBD such that

Ψ = 0.018.

These results leads us to conclude that in the limit of ρ→ 0 the BD and RSA car

con�gurations are theoretically the same (for TBD →∞), while this is clearly not the

case for ρ ≈ 0.74.

2.10 Further modelling and implementation issues

Over the course of this project, many choices were made concerning the modelling

and implementation of the experiments. Some of these have a relatively small impact

on the results, while others, like the density ρ, have considerable e�ect.

For example, for generality, and in order to be able to concatenate test lines

(although this turned out to be of little relevance), functionality to use di�erent

test line lengths L was implemented. However, λ is proportional to L (2.19), and

G(h, t) depends on λ. Therefore, if one wants to be able to compare simulations

with di�erent L, one has to rescale h and G(h, t) in order that the curves from the

various simulations correspond (this is of course only possible since these quantities

scale linearly). Also, if the simulation estimate of TRSA supplied to the function for

calculating the analytical expression for G(h, t) (see Section 2.1.1) is to be accurate,

it is necessary to rescale ka with L so that ∆tRSA is correct.

Issues such as the one above make it apparent that conducting the simulations

would be a lot easier if as many parameters as possible are encapsulated, and this is

why the simulations were implemented object-orientedly. Otherwise the complexity
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of comparing many di�erent simulation experiments is much more daunting.

2.10.1 Boundary conditions

Periodic boundary conditions (BCs) were used predominantly for most of the exper-

iments, and is employed throughout this report. This means that particles going

across one edge of the domain enters on the opposite edge. But we also experimented

with �closed� BCs, meaning that particles are re�ected back from the domain walls.

Although seemingly trivial, in one dimension this was quite problematic to imple-

ment. First, writing algorithms for both methods must take into account the fact that

there are n gaps when periodic BCs are used, whereas there are n + 1 when closed

BCs are used. Secondly, if periodic BCs are employed, car number 1 should always

be to the right of (i.e. non-overlapping, and in the right order with) car number n,

and vice-versa. If closed BCs are used, though, car number 1 should always be to the

right of the left edge of the domain, and car number n should always to to the left

of the right edge of the domain. This ambiguity causes problems for functions that

move the cars, for example. A solution that proved e�ective is to implement low-level

functions into the object-oriented classes that take care of the ambiguity in accor-

dance with the BCs used by that simulation experiment. Hence, for example, the BD

algorithms could be implemented without worrying about which BCs are used.

Although boundary conditions can have an impact on small systems, or systems

where a drift term is present, they otherwise become negligible as n→∞.

2.10.2 Many small systems versus one large system

One important implementation issue is whether to use one large system of particles,

or many initial copies of a small one (such that the number of cars used in the small

system, times the number of copies of that system, equals the number of cars for the

big system n). In terms of accuracy of the estimated gap densities, we found that

this makes no di�erence, but that it does matter for speed.

As for the RSA procedure, we found that the small-systems approach beats the

big-system approach by a speed factor varying somewhat irregularly between 3 to 30,

for n between 1×102 and 1×104. For BD, however, we found the opposite to be true;

when the number of copies and the number of cars in the small systems were both

1× 102 (i.e. n = 1× 104), the big-system approach beat the small-systems approach

by a factor of about 2.

The reason why the big-system approach was faster for BD seems to be due to

the additional overhead involved in calling all of the subroutines many more times
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for the small-system approach.

However, the reason why RSA is faster for small-systems approach lies in the

nature of RSA. Assume for the sake of explanation that there are 10 small systems

corresponding to one big system, and that the process in both cases has reached a

signi�cant density ρ. Let ∆ρsmall = λsmall/L be the resulting change in density from

the insertion of one car to the small systems. Then ∆ρbig = ∆ρsmall/10. For the 10

small systems, one insertion is necessary to increase ρ to ρ + ∆ρsmall. For the big

system, 10 insertions are necessary. The di�erence is that the insertions into the big

systems will take place at progressive densities: ρ, ρ+∆ρbig, · · · , ρ+9∆ρbig, whereas

the insertion into the small systems take place only at a density of ρ. This means

that the rates of insertion will progressively decrease for the big system, whereas the

rate of insertion for the small systems is �xed. Therefore, for crowded environments,

the RSA procedure takes a lot longer for the big system than for the 10 small ones.

Overall, what tended to take the longest time were the BD simulations. Therefore,

and also because it is comparatively slightly more complex to run many small exper-

iments instead of one big one, the big-system approach was the prevailing approach

in one dimension.

2.11 Explaining the numerical results

The general trend of the gap density plots is that of a smooth decrease from small

values of h to bigger values of h. And as long as ρ is not to close to the jamming

limit, the BD and RSA curves lie very close. Consider however some alternatives;

a spiked gap density distribution would be exceedingly unlikely, corresponding to a

uniform (equidistant) con�guration; also, large gaps are unlikely, as both RSA and

BD have a propensity to �ll in such gaps, and so anything resembling a uniform PDF

for the gap density is also highly unlikely.
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Figure 2.15: Semilog-y and log-log plots of the analytical RSA gap density function and

estimates of the BD gap density function for ρ = 0.73.

As can be deduced straight from the expression for G(h, t) (2.9), for h > λ,

G(h, t) is exponential in h. Moreover, Figure 2.15 attempts to shed some light on the

behaviour of G(h, t) for all values of h. In order to accentuate the characteristics of

the gap density function for RSA, ρ has been near the jamming limit. As can be seen,

the (�rst part of the) analytic RSA curve bends upwards in the semilog-y plot, and

downwards in the log-log plot, so for h < λ, G(h, t) could be said to be something in

between an exponential function and a power of h. On the other hand, as shown in

the semilog-y plot, the BD curve is clearly exponential in nature.

Explaining this with some rigour gets a lot easier once the following dual �point

of view� is taken into account14. When it comes to BD in one dimension, the car

lengths are irrelevant and can all be amassed at one end of the test line, whilst the

gap lengths are maintained by point-cars (i.e. cars with no length) on the line. This

dual point of view is illustrated in Figure 2.16, and was already implicitly used in

Section 2.6.4. The justi�cation is simple; the movement of the particles as de�ned

through Algorithm 2 is not in�uenced whatsoever by the length of the cars, except

in establishing the lengths of the gaps between the cars15.

14The idea of this dual point of view came from private correspondence with Prof. T. Aste of

Kent University [2], although the following reasoning is my own.
15The dual point of view can also be applied to the RSA process, but only for �xed-size RSA, and

it also requires some more sophistication.
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Figure 2.16: An equivalent way of looking at lengths for one-dimensional BD.

Therefore, one can conclude that the gap length distribution established by BD

should arise from minimising the entropy of n identical points on a line. Since there

is no reason this should give rise to discontinuities of any sort the BD curves should

not be expected to mould to the kink that is observed in RSA curves.

In order to explicitly derive the exponential nature of the BD curves, one could

argue as follows16. The way the re�ective collision handling of Algorithm 4 works, cars

are bounced apart a distance equal to that with which they previously overlapped,

while their mean position is maintained. This, from the dual point of view, looks just

as if the cars had actually passed by each other. In other words, the BD simulations

from the dual point of view is just like the free, unrestricted BD of n point-cars on

a reduced line of length (1− ρ)L. This implies that the position of each point-car at

TBD follows a uniform PDF on the reduced line (as long as TBD is su�ciently large, as

was discussed in Section 2.6.4), and this is equivalent to the way RSA gaps of length

h ≥ λ are formed17. Hence the same reasoning that follows from (2.5) can be applied

to BD, and this gives an exponential curve.

Note also that the revelation of the dual point of view of with unrestricted point-

cars, seems to imply for BD that the ordering of the gaps is independent of their

lengths, as was investigated numerically in Section 2.3.1.

16This is an alternative method to that of minimising the entropy, which was not attempted in

this thesis.
17All RSA gaps of length h > λ have been created from insertion at a point drawn from a uniform

PDF. Unlike gaps of length h < λ, however, they have also �faced� destruction by insertion of a car

at a point also drawn from a uniform PDF.
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Chapter 3

Two-dimensional RSA and BD

3.1 Conducting numerical experiments in two dimen-

sions

With the conclusions of one dimension in mind, we now make the jump into two

dimensions. Less discussions are given in two dimensions, as many of the algorithms

employed are similar in one and two dimensions, and so many of the lessons learnt

from one dimension are applicable in two dimensions too. As Figure 3.1 shows, the

(a) Uniform packing (b) RSA packing

Figure 3.1: Demonstration of the visualisation of the system of particles on a domain that

was used for debugging. The particles are labelled, to help in tracking them,

as there is no natural ordering in two dimensions.
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two-dimensional particles that we use are all discs, and polydispersity is modelled

employing di�erent discrete size types. Furthermore, only non-competitive RSA is

studied in two dimensions.

The particles involved in each simulation experiment, are speci�ed through an

array [s1, s2, · · · sq] specifying the relative sizes (areas) of the particles, and another

[p1, p2, · · · pq] with the relative proportion in area that they occupied. �Relative� here

means that these arrays need not be normalised, and q is the number of di�erent size

types to be used. A certain volumetric density ρ and a total number of particles n

has to be speci�ed, as well as the width W and height H of the domain. With these

numbers one can deduce the di�erent absolute sizes [S1, S2, · · ·Sq] and numbers

[n1, n2, · · ·nq] of particles of given sizes to be used in the experiment, as they should

satisfy the following system of equations. Their sum should add up to n, i.e.

q∑
i=1

ni = n. (3.1)

(We again break with the convention of this thesis here by using i as an index for size

type, instead of as a particle index.) The sum of their areas should add up to the

total occupied area,

q∑
i=1

niSi = ρWH. (3.2)

The absolute areas of the particles are speci�ed through [s1, s2, · · · sq], i.e.
S1

Si
=
s1

si
∀i ∈ 2, · · · , k, (3.3)

and the proportion of the total area that each particle type occupies should satisfy

n1S1

niSi
=
p1

pi
∀i ∈ 2, · · · , k. (3.4)

This gives 2k equations for the same number of unknowns, and solving them results

in

ni = nρ

Qq
j=1 sj

si∑q
j=1 pj

Qq
j=1 sj

si

, (3.5)

where the formula has been expressed in such that it is easy to vectorise in MATLAB.

The expression for Si is similar:

Si =
ρWHsi∑q
j=1 nj

sj
si

. (3.6)
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3.1.1 Measuring distances

Given that there is no natural order of particles in two-dimensions, their spacial

distribution is measured by nearest-neighbour distances, dmin(i) for all 1 ≤ i ≤ n.

This gives rise to a nearest-neighbour density function analogous to the gap density

function used in one dimension, and we will therefore denote and refer to the nearest-

neighbour density function in the same way, i.e. as the gap density function G(h, t).

Formally, G(h, t) dh denotes the mean number of particles, per unit area, whose

nearest neighbour lies within a distance between h and h + dh to those particles.

Note that the distances are measured not between centres of discs, but as the shortest

distance between any point in one disc to any point in another. Additionally, one

could divide G(h, t) by h + r, or 2π(h + r), where r is the particle radius, in order

to compensate for the e�ect of the growth of the area of a ring of inner radius h+ r,

but this is not employed here. Given that no analytical solution is known in two

dimensions for the RSA procedure [14], only numerical curves of the gap density

function are plotted.

In order to determine the nearest-neighbour distances, we �rst determine the

global pair-wise distances, d(i, j), for all 1 ≤ i, j ≤ n. This information can be

assembled in a symmetric matrix that we will refer to as the global distance matrix,

Dglob, such that element (i, j) of Dglob is d(i, j). The nearest-neighbour distance is

then found by �nding the minimal element, outside of the diagonal, of each row (or

column) of Dglob, i.e.

dmin(i) = min
i 6=j

d(i, j).

The aforementioned operations are all vectorisable in MATLAB, and so this

method is relatively fast, but Dglob does require a lot of memory; for n particles,

Dglob ∈ Rn×n, and consequently require 8n2 bytes of contiguous memory1. The alter-

native would be to loop over all particles, and establish dmin(i) one-by-one, which

would be slower, but requires less memory. Therefore, with system sizes up to

n = 1 × 104, which is the biggest system size that was used for the two-dimensional

experiments, it was necessary to use a workstation with more memory than the afore-

mentioned modern laptop (see Appendix B for computer speci�cations). As an ex-

ample of the time of the simulations, Figure 3.6 took 105 hours to produce on such a

workstation.

1This assumes that the numbers are floats in MATLAB, and that one does not take advantage

of the symmetry of Dglob.
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3.1.2 Further algorithm and modelling issues

Section 2.10.2 discusses the advantages and disadvantages of carrying out one big sim-

ulation experiment versus using many copies of a small experiment. In one dimension,

the time taken for BD simulations is a little less for the big-system approach than for

the small-systems approach. In two dimensions, this would probably not hold true

however, as the number of operations involved in checking for overlappings scales

with n2 (n comparisons for n particles each iteration). This is also true for RSA.

Therefore I expect that carrying out many smaller experiments would have been a

better approach in two dimensions, as this would also not require such large amounts

of memory, although this approach was not implemented, due to the limited time

available.

As for the BD algorithms, and collision handling, the lessons learnt from one-

dimensional experiments are very helpful. Again, a certain number of unresolved

overlappings per iteration is considered acceptable, (see Section 3.3 for convergence

studies) as the computational and programming costs of fully resolving them are too

big. The collision handling in two dimensions is similar to that in one dimension

in that each particle is bounced back by a distance equal to that with which they

overlapped. In two dimensions, though, this operation also includes the calculation

of the angles for this re�ection.

The collision checking procedure in two dimensions take much longer time than in

one dimension, as it has to check for overlappings between all of the particles. There

is however a noteworthy trick which makes the process faster. To begin with, one can

measure the L1 distance between the particles. Only the ones that are found to be

within a distance of the sum of their radii then need to be checked in the L2 norm ,

which requires more computer �ops to calculate, for collisions2.

Recall that the big advantage of the sequential algorithm in one dimension is

that it allows for huge time steps. In one dimension the bounds on the movement

of a given car is easily found by looking at the two neighbouring cars. This does

not directly translate into two dimensions, however, and therefore even the two-

dimensional inheritor of Algorithm 5 needs some form of collision handling, and the

size of the time step is therefore limited. Still, since only one particle is moved at a

time, the sequential method leads to fewer unresolved collisions, and a lower value of

Ψ, as no two particles are be bounced �simultaneously�.

On the other hand, checking for overlaps takes place n times per iteration for the

sequential algorithm, while the simultaneous algorithm, inheritor of Algorithm 4, only

2This idea I owe to Maria Bruna, D.Phil. student at the Oxford Centre for Collaborative Applied

Mathematics (OCCAM), whose work is also within BD.
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does it once per iteration. Moreover, the reduction in Ψ for the sequential algorithm

is very slight, as is revealed by the following asymptotic analysis: for small time steps,

the probability of that any given overlapping takes place is very small. Therefore,

the probability that two neighbouring overlappings, which after the bounce-backs

give rise to an unresolved overlapping, take place, is approximately the square of the

probability of the �rst probability. Therefore, given the increase in computational cost

of the sequential algorithm, the simultaneous algorithm was again generally preferred,

and it is this that is used to produce the results in this thesis for two dimensions.

In one dimension, the distances are all considered relative to the car length (aver-

age if it varied) or the mean gap length. There is also a �xed relation between these

two, namely ρh̄ = (1− ρ)λ, which justi�es the car length as a reference distance. In

two dimensions there is no such obvious choice of reference distance. Although the

average radius is analogous of the car length, due to the involvement of square pow-

ers in two dimensions, the average radius does not have such an obvious relationship

with the average nearest-neighbour gap length d̄, nor with the square root of the total

unoccupied volume
√

(1− ρ)WH, both of which could also be used as a reference

distance. Nevertheless, we use the average radius, r̄, as the reference distance because

it is simple, and important in establishing the time step; in determining ∆tBD, one

should consider the average nearest-neighbour distance and the square root of the

total unoccupied volume (as was discussed in one dimension in Section 2.6.5); but

one also has to make sure that ∆tBD is small enough that the expected displacement

each iteration is smaller than the radius of a particle. Otherwise one risks having

particles that, over the course of one iteration, fully pass by each other without a

collision even being detected. Therefore, both ∆tBD and TBD are set with respect to

T0, the time at which the expected displacement is equal to the reference length, r̄.

3.2 Polydispersity

One of the aims of this project is to investigate the e�ects of polydispersity, as in the

case of having, say, three di�erent types of macromolecules making up the crowded en-

vironment. The question is whether particles of di�erent types have di�erent contact

probabilities.

Figures 3.2a and 3.2b show some plots to this purpose. As mentioned, in order to

establish the nearest-neighbour distances, Dglob was �rst established, and it is density

estimates of d(i, j), for all 1 ≤ i, j ≤ n, that are plotted in Figure 3.2a. Furthermore,

Figure 3.2a assimilates the data into di�erent categories, according to the types of the

particles. For instance, the �Type 1 � Type 2� curve can be thought of as counting
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Figure 3.2: Distribution established by RSA. Plot of density estimates of G(h, t) for in-

dividual types. n = 1 × 104, ρ = 0.3. [s1, s2, s3] = [1, 2, 3], [p1, p2, p3] =
[1, 1, 1]. Size of domain: 1× 1.

the average number of particles of type 2 that are inside a ring of a given radius and

width, centred at a particle of type 1. This is illustrated in Figure 3.3a. Although

the particle con�guration studied in Figure 3.2a was established by RSA, the fact is

that even an equidistant distribution would induce curves that are overwhelmingly

similar to the ones in Figure 3.2a (as was numerically veri�ed), since both RSA and

equidistant distributions have the same, uniformly distributed, volumetric particle

density. There would be slight di�erences for small values of h, but these would tend

to be smoothed out by the kernel density estimation. Hence we see the importance

of employing the nearest-neighbour distances as measures of the spacial con�guration

of the systems.

It should be noted that, as illustrated in Figure 3.3a, the distances are measured

as if the system uses closed BCs, despite the fact that the simulations uses periodic

BCs. If true periodic boundary condition measurements are performed (i.e. where

the periodicity is repeated in�nitely, as illustrated in Figure 3.3b), h would not be

bounded above (as it is now by
√
H2 +W 2), and the curves on Figure 3.2a would be

increasing linearly (given the linear relationship between circumference and radius).

In order to measure nearest-neighbour distances assuming periodic BCs, one would

have to measure nine times the amount of distances that what is currently done by

Dglob, as illustrated in Figure 3.3b. Further periodicity is not necessary for nearest-

neighbour measurements, because these would never be nearer than any of those

nine-fold measurements. This increase is not insurmountable, but its e�ect on the
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Figure 3.3: Illustration of the e�ect of boundary conditions upon distance measurements.

nearest-neighbour gap densities is negligible, since the number of particles on the

rims is very small compared to those further inside the domain. Consequently, the

distance measurements are done assuming closed BCs.

Figure 3.2b plots the nearest-neighbour distances, and although the curves in this

case are not overlapping, that is not because di�erent size types result in di�erent

gap densities. It is due to the fact that the individual densities are di�erent, and

this means that the density curves are more stretched out for the lower density types.

Further simulations were carried out where only particles of type 1 were present, and

in the same amount as in Figure 3.2b, and the resulting gap density curve was found

to be equal (within expected stochastic variations) to the �Type 1 � Type 1� curve of

Figure 3.2b. In other words, polydispersity, implemented as size di�erence, does not

seem to have an e�ect on the particle con�gurations, although one could argue that

we have not gone far enough in our investigations, and should try out more extreme

di�erences in the sizes of the particles.

3.3 Comparison of BD and RSA

The way we compare and draw conclusions on the similarity of the particle con�gu-

rations is the same as it was in one dimension. See Sections 2.3.1 and 2.7 for more

details.

Figure 3.4 shows how the distribution converges from a equidistant distribution

for increasing TBD. In Figure 3.4b, the RSA curve is mostly obscured by the curves

for the intermediate and higher values of TBD, because the curves again lie relatively

close to one another. But with the lessons drawn from one dimension, we know that

we need to be careful on drawing the conclusions, and therefore Figure 3.4 does not
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provide enough details to conclude whether RSA and BD in two dimensions result in

the same particle con�gurations.
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Figure 3.4: Plots of Ĝ(h, t) for increasing TBD. The BD simulations start out from a

equidistant particle con�guration. TBD/T0 indicated by the colour bar. ∆tBD

such that Ψ is below 0.04 for all curves. n = 1× 104, ρ = 0.3. Only one type

of particle size present in system.

As can be seen by the apparent convergence of the curves in Figure 3.4, TBD ≈ 5,

should be a su�cient time span in order for a BD system to reach a stable regime,

and therefore Figures 3.5 and 3.6 use this values of TBD. In order to do more in-depth

studies on the matter of convergence, one has to study how the BD curves converge

for ∆tBD → 0. This is provided by Figures 3.5 and 3.6.

Figure 3.5 seems to suggest the startling conclusion that the two-dimensional

particle con�gurations of RSA and BD are equal. Startling, because this was shown

not to be the case in one dimension. Note that the RSA curve in two dimensions, as

can be seen on all of the �gures of this section do not exhibit any form of kink at any

point, as was the case for h = λ in one dimension. This is a clear indication that the

nature of the RSA process is qualitatively di�erent in two dimensions, and this extra

smoothness could be used to argue why one should expect the RSA and BD curves

to lie closer in two dimensions than what they do in one dimension.

The curves in Figure 3.5 do seemingly converge, because the distance between

them decreases for decreasing values of ∆tBD. However, all of the curves exhibit

the trend of peaking with strictly increasing heights for decreasing ∆tBD. With the

stochastic inaccuracies of the system (n = 1 × 104), though, one would expect some

oscillation around the stable distribution, if the curves have converged (as in Figure
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3.5a

Figure 3.5: Plots of Ĝ(h, t) for decreasing ∆tBD. The BD simulations start out from a

particle con�guration established by RSA. TBD/T0 = 5, ∆tBD/T0 indicated by

the colour bar, although ∆tBD is such that Ψ is around 0.51 for ∆tBD/T0 = 2
and decreases to Ψ ≈ 0.019 for ∆tBD/T0 = 0.016. n = 1× 104, ρ = 0.5. Only
one type of particle size present in system.

2.11). Figure 3.5 does not exhibit such oscillation, and so it is not certain that the

curves have actually converged.

Therefore more simulations experiments are needed, with even smaller values of

∆tBD. This is provided in Figure 3.6, where also a lower density has also been

employed. This lower density (for a �xed n) means that T0, the time at which the

estimated displacement of an unrestricted particle is equal to r̄, is also lower than

it was for Figure 3.5. Hence, although the ratios ∆tBD/T0 are the same for the two

�gures, the values of ∆tBD relative to the gap lengths is actually lower in Figure 3.6

than it is in Figure 3.5, and this induces fewer overlappings per iteration, i.e. lower

values of Ψ, and more con�dence in the simulation results.

The conclusion that can be drawn from Figure 3.6 contradicts that which was

suggested by Figure 3.5. In view of the lower values of Ψ for Figure 3.6, and the

lack of certainty that the curves of Figure 3.5 have converged, the conclusion seems

to be that in two dimensions, again, RSA and BD do not generate the same particle

con�gurations.

However, Figure 3.5 was produced using ρ = 0.5, whereas Figure 3.6 used ρ =

0.3. So one can not be entirely con�dent that this holds for all densities. The one-

dimensional experiments suggest that the di�erence between RSA and BD is largest

when ρ is near the jamming limit, though. And for ρ→ 0 (i.e. using point particles)
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Figure 3.6: Plot of Ĝ(h, t) for di�erent values of ∆tBD for BD simulations that start out

from a particle con�guration established by RSA. TBD/T0 = 10. ∆tBD/T0 indi-

cated by the colour bar, although ∆tBD is such that Ψ ≈ 0.18 for ∆tBD/T0 = 2
and decreases to Ψ ≈ 0.0024 for ∆tBD/T0 = 0.016. n = 1× 104, ρ = 0.3. Only
one type of particle size present in system.

the distributions are certainly equal3. Therefore it would be surprising if ρ = 0.5

actually leads to more similarity than ρ = 0.3 Unfortunately the simulations for

Figure 3.5 took 24 hours on the workstation, and those of Figure 3.6 took 105 hours,

and due to time limitations no further experiments could be pursued.

3This was veri�ed numerically, but it is also relatively clear that RSA and BD are equivalent in

theory for ρ→ 0.
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Chapter 4

Modifying the RSA algorithm

The modi�cation of the RSA algorithms can take several forms. One option is to

do something similar to the collision handling methods of BD (see Section 2.6.1);

instead of rejecting potentially overlapping insertions, one bounces the particle being

inserted a distance of u (u > 0) times the overlap away from the already inserted

particle. A second option is to manipulate the insertion probabilities on the available

intervals. This is studied in [6], but with the objective of modelling some form of

polymer adsorption, and not to approximate BD distributions, as we do here1.

Both of these alterations were tried out in one dimension. Recall that the objective

is to make the RSA gap density curve approximate the BD gap density curve. The

�rst, employing the bounce-backs, is not very successful, as shown in Figure 4.1a.

More values of u were tried out than those plotted in Figure 4.1a, all without notable

success, and the main e�ect of varying u seems to be stretching the curve along the

x-axis.

In order to describe the second method, again let 2l0 = h − λ be the length

the space available for insertion of a car in a given gap, and x = al0, with −1 ≤
a ≤ 1. Denote aλ = (l0 − λ)/l0 the value of a which corresponds to x = l0 − λ.

This is illustrated in Figure 4.2. Also, de�ne χ(a) to be a scaled PDF denoting

the probability of insertion of a car at position x = al0 inside a given gap (χ(a)

is scaled such that max
−1≤a≤1

χ(a) = 1). The objective then is to make the RSA gap

density curve approximate the BD curve by tuning χ(a) in certain ways. What

would be interesting is if this tuning could be grounded in some theoretical argument

on the RSA algorithm. However, the rationale we use is simply to make the following

observation; the largest discrepancy, at least for ρ near the jamming limit, is the kink

1Note also that this second option is a generalisation of another method, which was not imple-

mented, where one varies the probability of insertion as a function of the size of the gap, but not

within the gap itself.
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at h = λ. Therefore, tuning χ(a) in such a way that fewer gaps of length λ are created

should attenuate the kink. The desired property is therefore to make χ(a) smaller

at x = −l0 + λ and x = l0 − λ, the two symmetric points in a gap where insertion

would create a gap of length λ. One way to have this property is to de�ne χ(a) to be

a quartic,

χ1(a) = c+
1− c

a2
λ(1− aλ)2

[
(a− aλ)2 (a− (1− aλ))2] , (4.1)

where the parameter c determines χ1(aλ). A plot of χ1(a) is provided in Figure 4.3.

The result of using (4.1) can be seen by observing how the modi�ed RSA curve

overlaps with the BD curve in Figures 4.1c and 4.1b. The method is highly successful;

the kink is fully eliminated, and the curve now overlaps with the BD curve across the

peak and to some extent along the tail. The latter two improvements are side e�ects

of the elimination of the kink; as fewer cars are inserted where they would create gaps

of length λ, the frequency of occurrence of other gaps must increase.

A further �ne-tuning was attempted. This is referred to as χ2(a) in Figures 4.1d

and 4.3. The �ne-tuning was done because we observed over several trials that the

modi�ed RSA curve, although lying very close to the BD curve, would typically lie

slightly below it for h < 0.45λ and slightly above it for h > 0.45λ (for ρ = 0.73). In an

attempt to remedy this, a Gaussian �bump� is added locally around h = 0.45λ which

switches sign at h = 0.45λ. Trials show that this typically made the modi�ed RSA

curve approximate the BD curve a little better. The question is, however, whether

the improvement is worth the cost of setting three additional parameters (the height,

mean, and spread of the Guassian bump). This question is also relevant for χ1(a),

although there is only c that needs to be tuned for χ1(a).

Of course, one could employ methods that measure the l2 di�erence between

curves and run optimisation routines to minimise this di�erence. Or one could employ

empirical formulae based on trial and error to determine the parameters. But as long

as the modi�cations are based on trial and error, and not grounded in theoretical

comparisons of BD and RSA, the tuning of these parameters, and the addition of

more parameters, remains slightly arti�cial. Nevertheless, having only one parameter,

c, to tune, can be said to be a fairly successful modi�cation.
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(a) ρ = 0.73, RSA modi�cation: �bounce-back�.
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(b) ρ = 0.5, RSA modi�cation: χ1 with c = 0.5
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(c) ρ = 0.73, RSA modi�cation: χ1 with c =
0.1.
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(d) ρ = 0.73, RSA modi�cation: χ2, as illus-

trated in Figure 4.2.

Figure 4.1: Resulting approximations to the BD gap density curve by the modi�ed RSA

algorithms.
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Figure 4.2: Illustration of dual point of view of insertion of a car.
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Chapter 5

Conclusions

5.1 Summary

This project has undertaken a comparative study of the spacial particle con�gurations

that arise from the stochastic processes of BD and RSA. Factors that have been taken

into account includes crowdedness and polydispersity. The principal motivation has

been to replicate the particle con�gurations of BD using classical, or modi�ed RSA.

The analytical expression for the gap density function of one-dimensional RSA

was useful in measuring the errors of estimates obtained by simulation, and helped in

asserting criteria for the comparisons. Otherwise the study has been mostly numeri-

cal, relying on some analytical results and numerical convergence studies to guide the

tuning of the BD simulation parameters, and some theory of density estimation. The

simulations were been implemented in object-oriented MATLAB code, which can be

downloaded from https://sites.google.com/site/patrickatoxford/home. Al-

though there is room for improvement in e�ciency, we can simulate two-dimensional

systems of 1 × 104 particles on workstations (see Appendix B) on a time scale from

hours to days, and hence the accuracy of the simulation results is high enough to

draw conclusions.

Multiple issues were encountered relating to collision handling in the BD simula-

tions, and we developed and compared several algorithms to deal with this. Other

issues encountered includes numerical integration of non-smooth, sti� functions; root-

�nding techniques; kernel smoothing, bandwidth selection and the e�ect of bounded

supports; optimisation of the data structure storing location of the particles; error

measurements; distance measurements and the implementation of polydispersity.

Results have been obtained in both one and two dimensions that suggest that even

though the similarity of the particle con�gurations of BD and RSA varies depending

on certain system parameters and algorithmic variations, the spacial con�guration of
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particles are generally not equivalent. However, with a simple modi�cation of the RSA

insertion probability for a given gap, the approximation to BD particle con�gurations

is much improved. As far as we are aware, this type of comparison has not been

undertaken before1, and therefore the results and conclusions reached in this thesis

constitute an interesting, and potentially, new perspective on both BD and RSA.

5.2 Future work

Although we do answer the basic question of the thesis, and go some way in modifying

RSA to approximate BD, there are still plenty of possible directions for future research

on this topic.

5.2.1 Improving the simulation algorithms

Many of the improvements that could be made to this project relate to the BD

algorithms and collision handling. As we already explored some basic variants of the

BD algorithms (see Section 2.6), this e�ort should start with looking at algorithms

developed in other biochemical simulation projects, and a good starting point would

be [13].

One can of course always attempt larger simulations, employing more particles

n, longer TBD and shorter DtBD. However, this is probably not the most worthwhile

improvement, as our convergence studies show that the accuracy of our simulations

is su�cient for most of the purposes in this thesis.

It would also be interesting to implement the sequential form of the BD algorithm

(discussed in Section 2.6.3 in a programming language which is e�cient with loops,

while also supporting object-oriented code, such as C++. This could o�er dramatic

gains in simulation time, although this only applies in one dimension.

As discussed in Section 3.1.2, it would probably be wise to implement the multiple-

copies approach in two dimensions, instead of running one big simulation, as was done

in this thesis project.

5.2.2 Further analysis

Theoretical arguments in two dimensions relating to why RSA and BD give rise to

di�erent particle con�gurations, like those of Section 2.11, should be formulated.

1This is backed up by private communication with Prof. T. Aste, who is an expert in the �eld of

packing of granular materials [2].
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Another potential improvement to the project would be to try to set the BD

algorithms of Section 2.6 on a solid mathematical foundation, in turn relying less on

heuristics and empirical convergence studies to validate the results of the simulations.

Furthermore, as discussed in Section 2.8, it would be useful to study and imple-

ment an analytical form of for polydisperse RSA in one dimension.

One might also want to look into the theory of statistical hypothesis testing, and

apply it to the simulation data, in order to rigorously assess the probability that the

particle con�gurations of RSA and BD originate from the same underlying probability

distribution.

5.2.3 Further modi�cations

There is a multitude of possible variations of the parameters and the composition of

the simulation experiments. In addition to crowdedness, BCs and size di�erences,

one could for instance experiment with the e�ect of drift and intermolecular forces.

Under the banner of polydispersity, it would be interesting try out more extreme

size di�erences, or implement other shapes than discs and spheres, and investigate

whether this a�ects nearest-neighbour distances and contact probabilities. Further-

more, one could implement conservation of momentum in the BD algorithms, both in

collision handling and by employing di�erent di�usion constants D for di�erent types

of particles.

Further modi�cation of the RSA algorithm, to approximate BD particle con�g-

urations should also be studied, and trying out some of these modi�cations in two

dimensions should also be of high priority. Theoretical arguments to support these

modi�cations would also be of great interest.

5.2.4 Higher dimensions

One further area of future research is of course to go from two to three dimensions,

or even higher. This should not be very di�cult to implement, as it presumably only

involves adding an extra dimension to all of the methods and data structures that are

already implemented. This is in contrast to the switch from one to two dimensions,

where the nature of the simulations were drastically changed2. For example, Figure

5.1 shows a possible visualisation of three dimensional experiments; it was made with

a few simple modi�cation of the function used for making Figure 3.1, illustrating the

2E.g. insertion of a car into a gap partitions that gap into two separate intervals. In higher

dimensions, no such partition takes place. Also, any particle can encounter any other particle over

the course of a BD simulation, whereas in one dimension the order of cars is �xed.
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simplicity of transitioning from two to three dimensions. The ease with which the

Figure 5.1: Visualisation of three dimensional experiments made from a simple update of

the function used to make Figure 3.1.

generalisation to three dimensions can be implemented stems from the fact that the

nature of two and three dimensional systems is not far apart, and this also makes me

conjecture that the results of a comparison between RSA and BD in three dimensions

would be similar to the results in two dimensions; although the spacial particle con-

�gurations are similar, and more so than in one dimension, they are not statistically

the same.
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Appendix A

Symbols and abbreviations

Most used symbols:

• a and b: factors such that x = al0 and σ = bl0

• d: number of dimensions

• f(x): generic density estimate, and PDf of Xi(t)−Xi(0)

• G(h, t): gap/nearest-neighbour density function

• h gap length

• h̄: average gap length

• hi: gap length between car i and car i+ 1

• hI : arg maxh Ĝ(h, t) of a modi�cation to RSA

• H: height of two-dimensional domain

• i: car/particle index (also used temporarily for other indices)

• k: iteration variable of BD and RSA

• ka: rate constant

• l0: 1
2
(h− λ) for a given h

• L: length of test line

• n: system size: total number of cars/particles

• N : total number of iterations of BD and RSA
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• P (t): number density

• q: total number of di�erent size types

• r: radius of two-dimensional discs

• t: time, employed both for RSA and BD

• TRSA: total time of packing

• TBD: total time of di�usion/Brownian motion.

• u = kaσt and also multiplicative factor for the �bounce-back�

• W : width of two-dimensional domain

• ∆tRSA: insertion time increment for RSA simulations

• ∆tBD: time step of BD simulations

• ρ(t): volumetric density

• ρ0: target density for RSA procedure

• σ: standard deviaton (generic)

• ζ(t): total number of unresovled collisions for a BD simulation

• λ: car lenght (�xed)
• ξ random variable, distributed either normally, or uniformly

• Φ(t): proportion of space available for insertion

• χ(a): insertion probability function for modi�ed RSA algorithms

• Ψ(t): number of unresolved collisions per iteration per car

Abbreviations:

• RSA: Random Sequential Adsorption

• BD: Brownian Dynamics

• PDF: Probability Distribution Function

• MISE: Mean Integrated Square Error

• MAD: Median Absolute Deviation
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Appendix B

Computer speci�cations

Modern laptop:

• Processor: Intel Core 2 Duo P8600 (CPU Freq: 2.4GHz)

• Memory: 4GB

Workstation:

• Processor: Dual Core AMD Opteron(tm) Processor 875 (CPU Freq: 2.2GHz)

• Memory: 32GB
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