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Abstract

For many decades the random graph model presented by Erdős and Rènyi [12] has been the
main subject of study of random graphs. Many of it’s key properties have been rigorously
proven [3] such as the Poisson degree distribution, component sizes, and existence of a giant
component etc. However, this model fails to reflect many of the properties found in the real
world such as arbitrary degree distributions and clustering. The issue of degree distributions
has been mostly solved by the configuration model studied by [2] and [22], in which any degree
distribution can be achieved, subsequently Molloy and Reed [22, 23] rigorously proved vertain
key properties about this model such as the tree like structure of small components which has
subsequently been exploited by applied mathematicians and physicists such as Newman [24] in
deriving approximative methods to compute further key properties. These results have been
know for about a decade now.

On the other hand, there has been far less success in creating random graph models with
clustering that reflects that of real word network. Indeed, the configuration model has a zero
clustering coefficient in the limit of a large graph size. Since then, many attempts have risen to
derive a model with non zero clustering but were unsolvable analytically such as [16].

Very recently, few authors have published papers claiming that they have a solution to this
long standing problem in network theory. Newman [29] and Gleeson [14] introduced models that
are essentially a generalisation of the classical configuration model and which have provable non
zero clustering in the limit of large graph size. In deriving key properties of graphs of this model,
they use methods based on similar assumptions about the structure of graphs in the classical
configuration model namely the locally tree like structure.

Our aim in this dissertation is to make the work of Newman and Gleeson more rigorous
by demonstrating that their assumptions are justifiable. We will achieve this by adapting the
Molloy and Reed [22] proofs of the classical configuration model to the new generalised form.
We will then build on this result to present in detail, results shown in Newman’s and Gleeson’s
papers that were derived using tree cascade and generating function methods. We will derive
further results not shown in their papers. We will then go further by considering the most
general forms of the configuration model conceivable consisting of configurations of any fixed
mixed distribution of any motifs, and argue that they must have the same qualitative behaviour
as the classical configuration model in having tree like small components and a threshold for the
formation of the giant component.
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Chapter 1

Background

Introduction

It could be said that study of random graphs was started by the highly influential paper[12]
by Erdős and Rènyi [12] in which they presented a random graph model where vertices are
connected independently and uniformly with a constant probability p. They have also rigorously
demonstrated that such a random graph undertakes a qualitative transition above a certain
threshold namely the appearance of a giant component. Since then a lot of extensive work has
been done on this model and many key properties have been rigorously calculated and proven
such as the average geodesic distance, number of cycles, the distribution of the size of small
components, motif count etc.

On the other hand the study of networks, which is the term used to denote graphs taken from
the real world, has seen a new emerging direction in its research shifting from the study of small
graphs and local properties to the study of much larger graphs and their global properties. For
example, previously a network theorist might have been interested in answering the question what
is the shortest path between two given vertices in a transportation network, a newly interesting
question now would be to ask what is the average distance between two vertices in a network
representing the World Wide Web. This shift has been mainly driven by the appearance of such
huge networks like the lately created large online social networks and also the technology that
enables network theorists to handle such large amounts of data.

This shift in the scale of networks and properties of interest has also drawn a shift in the
method, making random graphs an ideal tool to model such networks. Random graph theory
produces results about the structure that apply almost certainly to any graph within a certain
family in the limit of large graph size. Hence, armed with an appropriate model and a large
enough target real life network one can make very powerful predictions. Random graph mod-
els are also used as null models in explaining which aspects of networks can be attributed to
randomness and which aspects can’t.

Random graphs have been used to understand how some real life networks came to have the
structure they do. An example of that is the Barabási and Albert’s [1] preferential attachment
growing model in attempting to explain the degree distribution of the web. They have also been
used to compute important properties such as the size of the giant component, which is the
proportion of the network connected to each other. Through random graph models we can also
predict global behaviour just by knowing local properties: by knowing the degree distribution
in a communication network we can predict the existence of a giant component and measure
its resilience by computing the percolation threshold, this example in particular we shall see in
more detail later.

The importance of network theory for real life applications lies in the fact many real life system
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have an underlying structure: the Internet, the brain, the cell. Understanding the structure of
such networks can therefore help us understand the behaviour of entities on these networks.
Many real life networks are known to display the following properties:

• Sparseness: The ratio of the number of edges to the number of vertices tends to a constant
in the limit of large graph size.

• Small world phenomenon: Any two vertices in the network are connected by a short path
(that grows logarithmically with the size of the network).

• Clustering : Two vertices that have a common neighbour are more likely to be connected
to each other, also called transitivity.

• Heavy tails: In their degree distribution, many networks have a significant proportion of
vertices with degree significantly higher than the mean.

The classical Erdős and Rènyi random graph model can be tuned to display sparseness by
choosing an appropriate connection probability. It is also know to display small world behavious.
But it can be shown that in the limit of large graphs it is known to have zero clustering. It is
also straightforward to show that for a sparse graph it has a Poisson degree distribution which
is not very common in the real world.

In the configuration model [22] the degree distribution is taken as a parameter. The random
graph is then constructed by selecting a graph uniformly at random from the ensemble of all
graphs with such a degree sequence. A lot of significant work has been done on on this model
too and many properties are well know and proven. The configuration model is a very that
solves the issue of matching the degree distribution of real world network. However, here again
it can be shown that in the limit of a sparse large graph size, a random configuration has zero
clustering.

Since this success with degree distributions, very little has been achieved in the next signif-
icant characteristic which is clustering. This has limited the prospect of application of random
graphs as a tool to model important real life networks such as social networks which are known
to have very high clustering. The aim of the work discussed in this dissertation is solve this
problem and be able to reflect the type of clustering like that found in social networks.

In this dissertation we will focus on generalised forms of the configuration model introduced
by Newman [29] and Gleeson [14] that have non zero clustering. In their papers, the authors
use the same methods in computing key properties as they does for the classical configuration
model, thereby making the assumption that graphs generated using the new models have a tree
like structure as they do in the classical configuration model.

In chapter 1, we will give a brief overview of the study of networks. This will be in brief
review of the literature surveyed. We hope this will motivate many of the ideas in later chapters.

In chapter 2, we introduce the classical configuration model, discuss its properties and present
the intuition behind the proof of Molloy and Reed [22]. We will also present the generating
function formalism developed and used by Newman [24] and justified by Molloy and Reed’s
result, we will see how it can be used to facilitate the computation of many results. This chapter
is a restatement of the authors ideas.

In chapter 3, we will present Newman’s new random graph model with clustering.
In chapter 4, we will present an adapted proof of Molloy and Reed’s results about the configu-

ration model to Newman’s new model, this will be a necessary result to justify the the calculation
of key properties computed in chapter 5. Although this is an adapted proof, it is entirely novel in
every other aspects and contains corrections to the original proof. Furthermore, the implications
of this result in generalising the configuration model discussed later in the chapter 4, are entirely
novel and have never been treated in any literature or publication that we know of.
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In chapter 5, we compute key properties of Newman’s model. Some of these results are
derived, but in little detail, in his paper [29]. Other results are not derived in his papers, we
show these here for the first time by adapting the generating function method.

In chapter 6, we will introduce Gleeson’s model [14] and discuss generalisations of these types
of models and methods to compute their key properties. Everything discussed in this chapter,
except the presentation of Gleeson’s model is novel.

6



1.1 Real world networks and clustering

In this section we will give a brief overview of the different types of real life networks. We
will define key properties that are relevant to their study. We will also briefly discuss some of
the most popular random graph models used in recent years. We hope through this section to
provide a motivation to the following chapters where our main results are stated.

1.1.1 Types of networks

Many developments in network theory have been driven by observing certain structural properties
in real life networks, of these the most studied are listed below. It is worth noting that the
classification of these networks very often overlaps. Online social networks can both be classified
as technological social.

Social networks

These are networks used to represent social relationships, in these networks vertices usually
represent individuals and edges represent relationships between them ranging from friendships
to business partnerships. These networks are usually covered in social sciences literature. One of
the most famous early works in this area is probably is the small world experiments by Milgram
[21].

These networks are characterised by skewed degree distributions [27, 32] and what Milgram’s
study attempts to show: very short distance between the vertices in the network. They are
also characterised by very high clustering and positively correlated degrees of neighbouring ver-
tices. Newman et al, argue that these two properties can be explained by the phenomenon of
communities and groups in these networks [28].

Applications in this area, include how the topology of such networks influences the behaviour
of individuals. An example is opinion formation: Yu Song et, claim using their model, that the
larger the clustering coefficient in the network the easier a consensus takes place [35]. Porter et
al, show using techniques drawn from network theory that there exists correlations between the
organisational structure and members political positions in the American house of representatives
[31].

Definition 1. The in degree of a vertex is the number of edges directed towards it. The out
degree is the number of number of vertices directed away from it.

Technological & information networks

Examples of such networks include scientific paper citations: One of the most famous studies in
this area is that by Price [33] in which he presents a model of growing networks which recreates
the power law degree distribution sometimes observed in these networks using a concept called
preferential attachment, which is based on the intuition that an already popular paper is more
likely to be encountered by an author writing a new paper and therefore is more likely to be
cited again.

Another example is the World Wide Web which is the largest sampled network to date. The
web is in fact a directed network but also exhibits an approximate power law distribution (see
degree distribution) in both its in and out degree. Barabási and Albert [1] created a growing
network model also based on preferential attachment to explain such structure. Results of their
work were later derived more rigorously by Bollobás and others [7]. Applications on the Web
network deal mostly with the link between the structure of web pages and their content. A very
famous example of this is the Page Rank algorithm used in the Google search engine.
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The Internet is a network where nodes represent communication hubs and edges represent
communication links. The Internet display very short path lengths [27] and disassortative corre-
lations between the degree of its neighboring vertices [28], as well as a high clustering coefficient
[4].

Applications on information and technological networks are mainly concerned with their
efficient exploitation, or how does the topology of such networks affect communication traffic,
robustness to damage etc [4].

Biological networks

Food webs are networks where vertices represent species and edges the relation of feeding on or
being fed on.

Biological networks have become an essential tool in understanding the function of organisms
on a cellular level. It was expected that after sequencing the human genome we would be able
to map each gene to a specific function. But this proved not to be the case because of the
complex interactions between the different cellular components. This has motivated modeling
such interactions using networks.

Jeong et al [19], created metabolic reaction networks for 43 different organisms. He found
that characteristics such as scale-free degree distributions, short path lengths, high clustering
coefficients were found universally.

Neural networks can be defined on many scales. Nodes can be anything from individual
neurons with edges as synaptic connections to brain regions with edges as pathways. These
are very sparse networks, they show scale-free degree distributions, small world properties, and
cluster organisation [4]. Their study aims to map structure properties with functional properties.

1.1.2 Key properties

We will now look at some properties of networks that are useful in applications and also because
we would like to make our random graph models tractable in the sense that we would like to be
able to compute and measure these properties and compare them to those in the real world.

The small world effect

The small world effect refers to the property that most pairs of vertices in the network are linked
by a very short path through the network. This property can be quantified in terms of the
average geodesic distance l.

l =
1

n/2(n+ 1)

∑
j≥i

D(i, j)

Where D(i, j) denotes the geodesic distance from vertex i to vertex j, n is the number of vertices
in the network.

By convention, the term small world effect has been used to designate graphs in which the
average distance is of order log(n) or slower as function of the size of the graph. This logarithmic
scaling can be proved for a variety of models. Riordan and Bollobás [6] have shown that these
characteristics always apply for a random graph with power law degree distribution in the limit
of large graph size.

Degree distribution

Degree distributions are usually represented by a function pk which gives the fraction of vertices
of degree k or equivalently the probability that a randomly selected vertex has degree k.

In the case of the Erdős and Rènyi random graph [12], we have that pk = p = p(n) which
produces a Poisson distribution in the limit of large graph size. As mentioned earlier, real world
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graphs are found to be usually unlike this, in fact they often have a rightly skewed tail. That is
if we sketch k against pk we obtain a long tail for high values of k above the mean.

A common right skewed degree distribution is the power law distribution where pk = k−α

for a constant α. This type of distribution is found in many real world networks but in fact only
applies to the tail of the distributions i.e. there exist a threshold above which the power law
applies and not before. Values of α have been empirically found in many cases to lie between 2
and 3. Power law degree distributions can be spotted with a straight line on a doubly logarithmic
plot of pk.

Percolation thresholds

The resilience of networks such as communication networks is measured by applying a percolation
process [15] in which the graph is gradually destroyed (or built) by the removal (or the addition)
of vertices or edges, hence giving rise to many types of percolation.

In bond percolation, the edges of the graph are uniformly and independently kept with a
probability φ and removed otherwise, we say such an edge is occupied if it is kept. In site
percolation a vertex is independently and uniformly occupied with a probability φ, otherwise it
is removed along with its adjacent edges.

In percolation processes we are interested in the value of φ above which we have a giant
connected component. This value is called the percolation threshold [15].

Site percolation has applications in network resilience such as in communication networks,
where an unoccupied vertex represents a communication node failure [10]. The percolation
threshold represents the fraction of nodes that can fail whilst still allowing the bulk of the
network to communicate. Bond percolation has applications in epidemic spread in social contact
networks, where an occupied edge represents a contact between two individuals susceptible of
passing on the disease ([36]). The percolation threshold represent the fraction of infectious
contacts necessary to cause an epidemic.

Degree correlation

Another question one might ask about networks is what type of vertices tend be connected to
each other. Most commonly, this is asked in the context of vertex degrees. We would like to
know the extent to which two vertices of certain degrees are related to each other. This is usually
measured by the correlation coefficient of the degrees of connected pairs in the network.

ρ =
Cov(Dv, Dw)√
V ar(Dv)V ar(Dw)

Where Dv, Dw are random variables giving the degrees of two randomly selected pair of
connected vertices.

Clustering

As mentioned previously, one the main features in which real world graphs differ from the classical
random graphs is clustering, and since clustering is the main focus of this dissertation we need
to motivate and define what we mean by clustering.

In many real world networks, especially social networks, we find if node A is connected to
node B and node B is connected to node C then node A is very likely to be also connected to
C. This transitive property can easily be motivated in a social context by the fact that a friend
of one’s friend is also very likely to be one’s friend.

So a natural way to measure clustering is the probability that two vertices that share a
neighbour are themselves neighbours, or alternatively the probability that a connected triple
A,B,C forms a triangle. This is given by
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C1 =
3× number of triangles

number of connected triples
We call C1 the clustering coefficient. An alternative definition was introduced by Watts and

Strogatz, which is a measure of clustering on a local level, we define this by the probability that
a triple connected to a vertex i forms a triangle.

Ci =
3× number of triangles connected to vertex i

number of connected triples

The clustering coefficient of the whole network is the average over all vertices:

C2 =
1
n

∑
i

Ci

It is important to note that this only one of many ways one can quantify clustering. In fact,
this type of clustering is referred to as triadic closure as it measure the fraction of closed triples
of vertices. This type of clustering is the simplest one can think of. Various other higher order
clustering coefficients have been proposed, notably the k-clustering coefficient [20] that takes
into account neighbours of distance up to k, coefficients that account for cliques of size larger
than 3, cycles and other motifs, see [13]. In our work we will only consider the clustering of
triadic closure quantified by the clustering coefficient above because it is much easier to work
with analytically and is also the most common.

1.1.3 Random graph models

We will now give a brief overview of the most common random graph models talked about in
the networks literature.

Erdős and Rènyi

This is probably the simplest form of a random graph. It is also the most studied and whose
structure we know most about [3]. This random graph undertakes a phase transition at the
point p = 1

n . Above this point we have a unique giant component and all other components are
small. It is also well known that it has a zero clustering in the limit of large graph size.

Because every edge in the graph is present independently with a probability p. The proba-
bility that two vertices that share a common neighbour are connected is p. So, any connected
triple is closed with probability p and hence the clustering coefficient is also p. In the case of
sparse graphs the probability p is taken as a decreasing function of n of the form c

n in order to
obtain an average degree of c and a total number of edges of order θ(n). So for sparse graphs,
the clustering coefficient is zero in the limit of large graph size.

The configuration model

As described before, in this model the degree sequence of the graph is given as a parameter.
Actually, the parameter is usually a degree distribution function pk from which we create a
degree sequence dk giving the degree of each vertex. Given a degree sequence, a random graph is
constructed by uniformly selecting a graph among all possible graphs with this degree sequence.

The configuration model has been studied for quite sometime now [22, 23]. Many of its
properties are known including the criterion for the formation of a giant component, the number
of its cycles and its size. Some of these results were derived rigorously like [9], others using
heuristics and approximations. Newman, for example, exploits the tree like structure in such
random graphs to derive many properties using the generating function formalism [24], which
as we will see later, can also be adapted to the generalised form of the configuration model that
we discuss here.
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Growing networks

One can classify models of random graphs into two types: Static models and growing models.
In static models the number of vertices is fixed, a graphs is then selected at random from a class
of graphs with that size. In growing networks vertices and edges are gradually added to the
graph. In static models the aim to mimic or recreate properties of real world graphs, whereas in
growing networks the aim is to explain why networks are the way they are, by explaining how
they grow.

Some of the most popular models in the category of growing networks are those aimed at
explaining the right skewed degree distributions of real world networks described previously.
Some of these like Price’s model, are actually models of directed graphs but are still worth
mentioning.

Price’s model [33] is a model that was originally aimed at explaining the power law distribu-
tion found in the in-degree of scientific paper citation networks. This model relies on a property
called preferential attachment in which newly added vertices are more likely to attach to vertices
with high in-degree. This is motivated by the intuition that an already highly cited paper is
more likely to be encountered by the author of a new paper and therefore be cited again.

The graph is constructed by adding one vertex at a time with mean out-degree m, and each
edge it is connected to a vertex of in-degree k with probability

(k + 1)pk∑
k(k + 1)pk

=
(k + 1)pk
m+ 1

where pk is the in-degree distribution of the graph. This probability is proportional to (k+1)
to give a chance to newly created vertices which have in-degree zero. The degree distribution
pk is calculated using a method from statistical physics called the master equation method that
aims to find a stable point in pk, in the limit of large graph size, it has been shown in [33] that
pk ∼ k2+ 1

m .
Another popular model in this category, is the model by Barabási and Albert [1] that en-

davours to explain the the degree distribution of pages in the World Wide Web network. Simi-
larly, it uses a linear preferential attachment property, but the graph here is undirected contrary
to the network which it tries to model (The World Wide Web is directed). Added vertices have
fixed degree m and the attachment property is proportional to the degree of target vertices. The
probability that a new vertex is a vertex of degree k is

kpk∑
k kpk

=
kpk
2m

This model can also be solved using the master equation method and has a degree distribution
of pk ∼ k−3 in the limit of large k. This result was subsequently derived using more rigorous
methods by Bollobás [7].

Clustering models

Since they are main topic of this dissertation, it is also worth mentioning some random graph
models that were aimed to create graphs with non zero clustering coefficient in the limit of large
graph size.

There are many growing network processes such as the ones described above that involve the
addition as well as the deletion and moving around of edges. One category of these models aims
to create clustered graphs using triadic closure processes[16]. In these models, in addition to
preferential attachment of newly added vertices one tries to add edges to form closed triangles.
These models however all seem not to be tractable, and the calculation of their properties is
limited to numerical methods.
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The small world model proposed by Watts and Strogatz [34], is based on the process of
rewiring the edges of a regular lattice or ring, this model produces non zero clustering coefficients
and a small average distance between vertices, hence the name. Its main criticism however, is
that it produces homogeneous degree distributions which is a lot unlike real world graphs.

Finally, two very recent models by Gleeon [14] and Newman [29] have been shown to have
non zero clustering and many of their properties have been computed. The authors show that
making certain assumptions of the structure of the graph (the tree like structure) makes the
calculation of certain properties very simple.

We must also acknowledge the very recent paper by Bollobás, Janson and Riordan [5] in
which they present a very general and flexible model that allows clustering and is also tractable.
This work is still very recent and not much work has been done on it in terms of applications.

12



Chapter 2

The classical model

Before we start discussing random graph models in more detail. We need to define certain key
concepts that are of particular importance to our work here.

Definition 2. We say that an event An happens with high probability, and we denote it whp ,
iff

lim
n→∞

P (An) = 1

So an event An happens whp in the context of a graph G, if it happens with probability 1 in
the limit of large graph size.

Definition 3. The giant component C1 is the unique component whose fractional size tends to
a non zero constant in the limit of large graph size i.e. :

limn→∞|C1|
n

= c > 0

where |C1| denotes the size of C1 and n is the size of the graph.

The term giant component was first used in the context of the Erdős and Rènyi model to
designate the unique component whose size was θ(n), this implied that when a giant component
appears all the other components are of size o(n). This term was carried on to other models like
the configuration model and it designates a component with these same properties.

Definition 4. A small component C is a small component if it is not giant, that is it contains
a zero fraction of the vertices of the graph in the limit of large graph size:

limn→∞|C|
n

= 0

Definition 5. • The diameter of a graph is the longest geodesic distance between any two
vertices in the graph. That is it is the longest shortest path in the graph.

• The girth g of a graph is the length of its shortest cycle.

Definition 6. We say that a graph, or a component of a graph is locally tree like if it has
diameter d and girth g such that 2d ≤ g.

So roughly speaking, a component is locally tree like if does not have any short cycles. This
is illustrated by figure (2.1).
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Figure 2.1: Example of a locally tree like graph.

2.1 The configuration Model

Before we move on to describing Newman’s model which is the main model on which this
dissertation is centered, it is essential to be familiar with the model on which it is based namely
the configuration model.

Definition 7. The degree sequence of a graph G, is a sequence of integers d1, d2, . . . such that
dk is the number of vertices of degree k.

Definition 8. An asymptotic degree sequence is a sequence d1(n), d2(n), . . . of integer valued
functions such that for a fixed graph size n, we obtain a fixed degree sequence d1, d2, . . . .

In the configuration model we are given an asymptotic degree sequence d1(n), d2(n), . . . ,
which for a given graph size n gives the degree sequence d1, d2, d3, . . . . This creates a space Ω
of all possible graphs of size n with such a degree sequence. We construct our random graph by
uniformly selecting a member of Ω.

We say that a degree sequence is feasible if the set Ω is non empty. We say that an asymptotic
degree sequence is smooth if there exists a limiting degree distribution pk such that

lim
n→∞

dk(n)
n

= pk

Definition 9. We say that an asymptotic degree sequence is well behaved if it is feasible, smooth
and

lim
n→∞

∑
k≥1

k(k − 2)dk(n)
n

=
∑
k≥1

k(k − 2)pk

where pk is the limiting degree distribution.

Definition 10. We say that an asymptotic degree sequence is sparse if there exists a constant
K such that ∑

k≥0

k
dk(n)
n

= K + o(1)

In their paper Molloy and Reed [22] have derived and proven, that under certain conditions,
the criterion for the formation of a giant component is

∑
k≥1 k(k − 2)pk > 0. Their result is

stated as follows :

Theorem 1. (Molloy & Reed) Let dk(n) be a well-behaved sparse asymptotic degree sequence,
such that for any ε > 0, if k > n1/4−ε then dk(n) = 0. Let G be a graph of size n with degree
sequence dk(n) chosen uniformly at random from the space of all such graphs. Then:
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• If
∑
k≥1 k(k−2)pk > 0 then there exist constants c1, c2, c3 > 0 such that G almost surely has

a component with at least c1n vertices and c2n cycles. Furthermore, if
∑
k≥1 k(k−2)pk > 0

is finite then G almost surely has exactly no other component with size greater than c3 log n.

• If
∑
k≥1 k(k−2)pk < 0 and there exists an ε > 0 and a function w(n) such that 0 ≤ w(n) ≤

n1/8−ε and if k ≥ w(n) then dk(n) = 0 for all n. Then there exists a constant R such that
G almost surely has no component with size greater than Rw(n)2 log n vertices and more
than one cycle.

This result shows that small components have a tree like structure. The condition required on
the maximum degree to be at most n1/4−ε is required here simply to guarantee that the algorithm
used to construct a random configuration produces a simple graph with positive probability. The
remainder of the results are therefore conditioned on the graph being simple. More recently,
Janson [18] has shown that no constraint on the maximum degree is required to satisfy this,
but simply that the second moment of the degree sequence increases linearly in n. The proof of
theorem 1 is based on the following algorithm used to construct a random configuration for a
given fixed degree sequence dk.

Algorithm 1. 1. Create a set S such that for each vertex i with degree k, S contains k copies
of i. We create a random configuration F by pairing up the copies in S. If a copy of a
vertex i is added to F we say that i is exposed and the remaining copies corresponding to
i that have not been added to F are said to be open.

2. Repeat until S is empty :

• Pick an element from S selected uniformly at random, choose its partner similarly at
random, add the pair to F and remove it from S.

• Repeat until there are no open copies left

– Choose an open copy from S and pair it with any element from S, add the pair
to F and remove them from S.

In other literature, the same configuration building process is described in terms of pairing
up stubs or half edges [3]. Note that step 1 is only executed when starting a new component
and that as long as as there are open vertex copies we are still exposing the same component.

The proof of the result itself is based on the intuition that the initial rate of increase of the
number of open vertex copies is roughly

∑
k≥1 k(k − 2)pk. If this is positive then we expose a

large number of vertices in our component. If it is negative the number of open vertices goes to
zero very quickly and we don’t expose many vertices.

Further properties have been proven for the configuration model. In a subsequent paper [23],
the same authors calculated and proved that the size of the giant component C1 is εn + o(n)
for some some ε dependant on the degree sequence. They also determine λ1, λ2, . . . such the
structure of the graph after removing C1 is that of another random graph of size n′ = n−εn+o(n)
and degree sequence such that λin′ vertices have degree i.

In a more recent paper[18], Janson and Luczak have produced a new proof of the criterion
of the emergence of the giant component in thoerem (1), and that all other components are
small. They used a different method from Molloy and Reed that relies on the convergence of
random variables. Most importantly, they do not require a limit on the maximum degree of the
order n−1/4, but a simple condition on the second moment of the asymptotic degree distribution:∑
i d

2
i = O(n). However, in their paper they did not produce any results about the number of

cycles or size of small components.
The configuration model was generalised to bipartite graphs by Neman et al [26]. It was

also shown by Dorogovtsev et al that almost all vertices of the configuration model are mutually
equidistant [11].
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2.2 Newman’s generating functions

Since the work done by Molloy and Reed, many further properties of the configuration model
have been calculated. These results build on those shown by Molloy and Reed in the sense that
they use heuristics and approximations that assume the tree-like structure proved by them.

One of these methods is the probability generating function formalism developed by Newman
[24]. This method exploits the tree-like structure of the graph, that is the property that the graph
has very few cycles in the limit of large graph size, allowing the neighbours of a given vertex to be
independent. This allows the computation of key properties through the iteration of generating
functions which is justified by the power property.

The power property of generating function

If X1, . . . , Xn is a sequence of independent random variables (not necessarily from the same
distribution) and

Sn =
n∑
i=1

aiXi

Then the probability generating function of Sn is given by

GSn(x) = E(xSn) = E(xa1X1+···+anXn) = E(xa1X1 . . . xanXn)

By independence this is

= E(xa1X1) . . . E(xanXn) = GX1 . . . GXn

Similarly if X1, . . . , XN is a sequence of independent random variables, but identically dis-
tributed with generating function GX(x), where N is an independent random variable itself.
Then

GSN (x) = E(xSN ) = E[E(xSN )|N ] = E[
(
GX(x)

)N |N ] = GN
(
GX(x)

)

We give a short illustration taken from Newman’s paper [24] to show how generating functions
are used to compute key properties in the classical configuration model.

Suppose for instance that we are given the degree distribution function pk. We would like to
compute the average number of vertices which are a distance two away from a random vertex v
in a random graph with this degree distribution. Given that the graph has very few short cycles,
the picture around v looks approximately like figure (2.2).

Essentially, the number of second neighbours of v is the sum of the number of neighbours of
its immediate neighbours. The number of immediate neighbours is generated by the function

gp(x) =
∑
k

xkpk (2.2.1)

The number of the neighbours of a neighbour of v is however not generated by the same function.
It is intuitive to see that if we select a random edge in the graph and follow it in either direction,
the probability that we land on a vertex of degree k is proportional to its degree:

Pr(one of its incident edges is selected) pk =
k∑
k kpk

pk

Note also that selecting a random vertex then following one of its edge at random is equivalent
to selecting a random edge in the graph. What we are interested in here, is the probability that
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Figure 2.2: No short cycles around a randomly selected vertex.

a given vertex reached by selecting a random edge and following it has degree k not counting
the edge that we just traversed. This happens with probability

qk =
(k + 1)∑
k kpk

pk+1 (2.2.2)

This is referred to as the excess degree. Let X be the random variable representing the
number of neighbours of v as in fiigure (2.2). Let Y1, Y2, . . . , YX be the sequence of random
variables for the number of neighbours of each of the neighbours of v, not counting v.

Then the total number of second neighbours is Y1 + Y2 + · · ·+ YX . Therefore its generating
function is GX(GY ). Since the Yis are independent because their vertices are disjoint and X
is independent of the the Yis because we do not count the edges between v and its neighbours.
Since X has distribution pk and the Yis have distribution qk, the number of second neighbours
is generated by gp(gq(x)). Note also that:

gq(x) =
1∑
k kpk

∑
k

(k + 1)pk+1x
k =

1
〈k〉

g′p(x) (2.2.3)

where 〈k〉 denotes the average degree of vertices. We find that the expected number of second
edges is given by

gp(gq(1))′ = g′p(1)g′q(1) = 〈k〉 1
〈k〉

g′′p (1) = g′′p (1)

For example if we had a Poisson degree distribution Po(c). The generating function would
be gp(x) = ec(x−1), so the average number of second neighbours is g′′p (1) = c2.

Many more examples of other properties computed using the generating function formalism
are given in [24]. It is important to note here that what is most impressive about Newman’s
generating functions formalism is that it allows the derivation of key properties not just for a
random graph with one specific degree distribution but for any degree distribution given that we
can solve equations (2.2.1), (2.2.3) about its generating function, which if we can’t do analytically
we can achieve numerically.

Remark 1. It is important to note here that the generating function formalism requires that
the first neighbours are independent and therefore disjoint. This is why we require the condition
that components are locally tree like. Where components are not completely tree like this method
provides only an approximation and not an exact solution.
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Remark 2. It is also important to note that the Molloy and Reed result shown in thoerem (1)
only shows that small components are tree like and not the giant component. In fact it has many
cycles. In his papers [29, 26], Newman nonetheless uses this method to estimate properties about
the giant component. This is justified by the subsequent work by Molloy and Reed [23] on the
size of the giant component which we shall not discuss in this dissertation.

Finally, to motivate the next section we will use the generating functions method to show
the weakness of the of the configuration model that the new model by Newman presented in the
following chapter tries to fix, namely that a random graph with a fixed degree distribution has
zero clustering in the limit of large graph size [30].

Consider a randomly selected vertex v, we will attempt to estimate the clustering coefficient
by estimating the average probability that two pair of its neighbours are connected. This is
illustrated in figure (2.3).

Figure 2.3: Clustering in the configuration model.

Suppose v has two neighbours i and j with excess degrees ki, kj , the probability that they
are connected given that the graph is constructed by pairing half edges at random is:

kikj
n
∑
j kpk

=
kikj
n〈k〉

.

because the total number of half edges is
∑
j k(npk). Therefore the mean probability that i

and j are connected is:

〈kikj〉
n〈k〉

=

∑
i,j qiqjkikj

〈k〉
=

(
∑
i qiki)

2

n〈k〉
The mean excess degree

∑
i qikj is given by:∑

i piki(ki − 1)
n〈k〉

=
〈k2〉 − 〈k2〉

n〈k〉
So the mean probability that that i and j are connected is:

(〈k2〉 − 〈k2〉)2

n〈k〉3
=
〈k〉
n

(〈k2〉 − 〈k2〉)2

〈k〉4

For sparse graphs, the value 〈k〉 is constant and 〈k2〉 ≤ 〈k〉2. Therefore, the above fraction
tends to zero as n goes to infinity and therefore the clustering coefficient is zero in the limit of
large graphs size for a random graph with fixed sparse degree distribution.
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Chapter 3

Newman’s random graph model
with clustering

3.1 Newman’s random graph model with clustering

In a very recent paper [29], Newman introduced a random graph model which has a provable
non zero clustering coefficient in the limit of large graph size. This model can be considered a
generalisation of the classical configuration model, in the sense that the classical configuration
model is a special case of the new one.

In Newman’s model we specify two kinds of vertex specific sequences: one sequence for the
number of single edges incident to a vertex i denoted si, and one for the number of triangles in
which the vertex participates in denoted ti. In this way a vertex has total degree si + 2ti. The
motivation behind this model is that for a significant number of triangles attached per vertex,
the fraction of closed triples will tend to a non zero value.

An example graph created in this way is shown in figure (3.1). The shaded triangles are those
explicitly specified by the degree sequence.

Figure 3.1: Newman’s random graph model with clustering. Source [29].

In this model we define a joint degree distribution function pst which represents the proba-
bility that a randomly chosen vertex has s single edges attached to it and t triangles. Note that
if we were to define two separate degree distributions ps and pt we would loose any correlation
that we would like to implement between the number of triangles and the number of singles
edges a vertex can have.

In his paper, Newman derives many key properties for this model using the same generating
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function formalism that he uses with the classical configuration model with the only difference
that we now have a joint degree distribution. In doing this, he is implicitly assuming the same
locally tree like structure of the classical model i.e. that the graph contains very few short cycles.

Of course, we do have explicitly implemented triangles which form short cycles. This implies
that by using the generating functions he is assuming that the graph is locally tree like in the
sense that it does not contain short cycles not counting those explicitly specified by the degree
sequence. In the next section we will define clearly what we mean by short cycles excluding
explicit triangles.

However, regardless of what these short cycles are, it is not necessarily clear that we still
won’t have any short cycles even if it has been proved for the classical configuration model in the
limit of large graph size. A skeptic can think that with triangles explicitly attached to vetices
we are more as likely to form cycles.

Furthermore, Molloy and Reed’s work does not just give a qualitative description of the
behavior of the graph. As mentioned earlier in theorem (1), in their work, they give a clear
criterion for the point where the giant component forms. They also give bounds for the size of
smaller components and the number of cycles within components including the giant component.
It would be of interrest to have equivalent results for Newman’s model. This will be the main
result of the next chapter.
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Chapter 4

A proof for the new model

The aim of this chapter was to give a proof for the formation of a giant component and the locally
tree like structure of the small components of a random graph with a fixed joint degree sequence
consisting of single edges and triangles as in the model introduced by Newman. However, Having
found some important mistakes in the proof at a very late stages of this dissertation and because
of the fact that the main result (the criterion for the formation of a giant component) does not
agree with Newman’s predictions using the generating functions method, we decided to omit
this proof here and put in the appendix with some notes on what mistakes were made.

Instead, we dedicate this chapter to provide a proof of a special case of the above random
graph model, which is a random graph with no single edges i.e. a random graph with a fixed
triangle sequence.

Although not a very straighforward one, this proof is essentially an adapted from of the
classical configuration model presented by Molloy and Reed. We will in fact follow the same
structure and order in which it is presented to facilitate it to a reader familiar with Molloy and
Reed’s paper [22]. We have also made some corrections to their proof, there given in the form
of lemmas (4) and (8).

We aim by this chapter to show how Molloy and Reed’s proof of the classical configuration
model can be adapted to other types of degree sequence, in this case triangles, and possibly
motivate the reader to research the problem that we attempted originally, which is to prove that
random graph with a fixed joint distribution and triangles behaves similarly to the classical fixed
degree distribution configuration model in that it has a threshold below which all components
are small and tree like and above which a giant component forms and contains many cycles.
Most importantly, one need to define (and prove) a criterion or the transition point where this
happens.

We will start by defining a few concepts, we will then state our result in the form of a theorem.
We will split the theorem into smaller lemmas which we will then prove individually.

Definition 11. A triangle degree sequence is a sequence of non negative integers t1 . . . tn that
represents the number of triangles t attached to the vertex i. We will usually denote this by (ti).

Since we are dealing only with triangle degree, we will simply refer to them as degree se-
quences.

Definition 12. An asymptotic triangle degree sequence is a sequence of integer valued functions
t1(n), t2(n) . . . , such that for a fixed graph size n we obtain a fixed triangle degree sequence (ti).

Definition 13. We say that a triangle degree sequence is feasible if the set of all possible graphs
with that sequence is non-empty.
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4.1 A configuration model with triangles

Suppose we are given an asymptotic triangle degree sequence t1(n), t2(n), . . . representing the
number of triangles for a each vertex i in a graph of n vertices.

Using this sequence, we construct the sequence dj(n), where each entry represents the number
of vertices in the graph with exactly j triangles.

First, we Construct a set S of copies of vertices for our graph, by creating t copies for every
vertex with t triangles attached to it. In total we have

∑
i ti(n) =

∑
j≥1 dj(n) copies of vertices

in S.

Definition 14. A random configuration F is a partition of S that consists of a set of triples
of the copies of S. This partition is selected uniformly at random from the set of all possible
partitions.

Definition 15. An configuration cycle is a cycle that is not created explicitly by a triangle in
the degree sequence.

We will construct a random graph G with the above degree sequence by constructing a
random configuration using the following algorithm.

Algorithm 2. We construct our configuration F by tripling the copies of the set S. We say
that a vertex is exposed if any of its copies has been added to F , and we say that the copies of
an exposed vertex that remain in S are open.

Repeat the following until S is empty:

1. Expose a random vertex v in G by selecting a random element or copy in S then exposing
all the remaining copies of the same vertex.

2. Repeat the following until there are no open copies left.

• Select an open copy x from S uniformly at random. Then, select another copy y
from S (open or non open) uniformly at random. If y is not an open copy, expose
its corresponding vertex by opening all its remaining copies. Remove y and half of x
from S.

• Select a copy z from S uniformly at random. Remove z and the other half of x from
S and add the triple (x, y, z) to F . If z is a copy of an unexposed vertex, open all its
remaining copies.

We can see that using this algorithm, we construct any configuration with the specified degree
sequence uniformly at random from the set of all possibilities. The action of tripling the three
copies (x, y, z) corresponds to connecting three vertices in a triangle. Hence, the algorithm is
exposing the components of G one at a time. A component is fully exposed when there are no
more open copies left and a new component is started everytime we go back to step 1. Note also
that in step 1, the vertex did not have to be selected at random, it could be any vertex whose
component we would like to expose.

Of course, the above algorithm essentially constructs a multi-graph, but for the case of the
classical configuration model Janson [17] showed that given certain conditions, there is a positive
probability that the graph is simple. This condition is that the second moment of the degree
sequence is at most linear in the size of the graph n :∑

i

si(n)2 = O(n).
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Where si(n) represents the degree of the ith vertex. This is an improvement to the condition
used by Molloy and Reed which is a restriction that the maximum degree of the graph is n−1/4−ε

for any ε > 0.
We claim that one can show the same result under similar conditions for a random graph

with triangle degree sequence and larger motifs beyond triangles. Although we do not show this
here, in what follows we condition on the fact that graph we obtain is simple. We will state all
our lemmas in terms of results for random configurations this will imply that the results hold
for a random graph.

Definition 16. We say that a joint degree sequence is sparse if the sum of all degrees of the
vertices of the graph is linear in the size of the graph:∑

i≥1

ti =
∑
j≥1

jdj = Kn+ o(n).

Definition 17. We say that a triangle degree sequence is well-behaved if it is feasible and there
exists constants pj such that

1.

lim
n→∞

dj(n)
n

= pj .

2. For all j, j(2j − 3)dj(n)/n tends uniformly to j(2j − 3)pj as n→∞.

3. limn→∞
∑
j(j)(2j− 3)dj(n)

n tends uniformly to limn→∞
∑
j(j)(2j− 3)pj, i.e. for all ε > 0,

there exists j∗, N such that for all n > N :

|
j∗∑
j

(j)(2j − 3)
dj(n)
n
−
∑
j

j(2j − 3)pj | < ε

Definition 18. We define, the following constants

D =
∑
j

j(2j − 3)pj (4.1.1)

Q =

∑
j jdj(2j − 3)∑

j jdj
=
D

K
(4.1.2)

The expression D represents the criterion for the formation of the giant component. Note
that this value can be infinite. We now state our main result.

Theorem 2. Let t1(n), t2(n), . . . be a sparse, well-behaved asymptotic triangle degree sequence
such that the probability that a random configuration with this sequence constructs a simple graph
is positive. Let G be a graph with the above triangle degree sequence chosen uniformly at random
from the set of all graphs with such a sequence. Then

1. If D > 0 and if Q is finite. Then, there exist constants c1, c2, c3 > 0 such that G whp has
one component with at least c1n vertices and c2n configuration cycles. Furthermore, G whp
has exactly no other component with size greater than c3 log(n) and no such component has
more than one configuration cycle.

2. If D < 0 and there exists an ε > 0 and a function w(n) such that if 0 ≤ w(n) ≤ n1/8−ε and
the maximum degree of the sequence is at most w(n) for all n. Then there exists a constant
R such that G with high probability has no component with size greater than Rw(n)2 log n
vertices and such component has more than one configuration cycle.
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Remark 3. Note that the second condition required in the first case of the theorem i.e. that
Q is finite can be made redundant if one is able to show, as Janson did [18] for the classical
configuration model, that the condition required a random configuration forms a simple graph
with positive probability is that the second moment of the degree is O(n). This would give :

Q =

∑
j jdj(2j − 3)∑

j jdj
≤ Ln

Kn
=
L

K

Note that Q represents the initial rate of increase of open vertices as we begin our exploration
of any component. The sign of Q is determined by D. We motivate the main idea behind the
proof as follows: If the initial rate of increase of open copies is positive, then we are likely to
expose many vertices and form a giant component. If it is negative the number of open copies
goes quickly to zero and we expose a small component. Let us first we define few variables that
will be useful later.

Definition 19. We define the following variables :

• Let Xr be the number of open copies after the rth pair has been formed. Note that a triple
here is counted as two pairings. When we say that a pair has been exposed we mean an
execution of one of the two sub steps of step 2 of algorithm (2).

• Let Cr be the number of components fully or partially exposed when the rth pair has been
exposed, again counting a triple as two pairs.

• We say that a back-edge has been formed when we pair an open copy of S with another
open copy of S in step 2. This in fact corresponds to forming a configuration cycle.

• Let Yr be the number of back-edges formed when the rth pair has been exposed.

We will now motivate the remainder of our proof by looking at the initial rate of increase of
open copies Xr. This is given by: ∑

j

jdj∑
j dj

(j − 3
2

).

This is because every copy in S is selected with a probability (j/
∑
j jdj), and by doing so

we add j new open copies and remove 3
2 .

Remark 4. Note that it would have been more intuitive to define our construction algorithm (2)
by selecting two open copies y, z in one step, tripling them with the open copy x then removing
all three copies and exposing the two new vertices. Both constructions are in fact equivalent.
If we construct our configuration in way the initial rate of increase of open vertices would have
been: ∑

i,j

idi∑
i idi

jdj∑
j jdj

(i+ j − 3)
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because we expose two new vertices with degrees i, j respectively. This sum is:

=
1∑

i idi
∑
j jdj

∑
i,j

idijdj(i+ j − 3)

=
1∑

i idi
∑
j jdj

[2
∑
i,j

(i2dijdj)− 3
∑

i, jidijdj ]

=
1∑

i idi
∑
j jdj

[2
∑
i

(i2di)
∑
j

(jdj)− 3
∑
i

(idi)
∑
j

(jdj)]

=
1∑

i idi
∑
j jdj

∑
j

(jdj)[2
∑
i

(i2di)− 3
∑
i

(idi)
∑
j

(jdj)]

=
1∑
j jdj

∑
i

dii(2i− 3)

Which is double the expected increase we have in each sub step of step 2 of algorithm (2), but most
importantly it produces the same criterion of the formation of the giant component in theorem
(2).

Definition 20. We define the following useful variables :

• We define the variable Zq to be the sum of (j − 3
2 ) over the first q exposed vertices.

• We also define the analogous variable Wr to be the sum over (j − 3
2 ) over all vertices

exposed by the time the rth pair has been exposed, counting a triple as two pairs.

Remark 5. The reason we introduce Zq is that it has the same rate of increase as Xr but
behaves much more nicely in that it only increases by (j− 3

2 ) every time a vertex with j triangles
is exposed. Hence, it is easy to put a bound on it’s expected value when a fixed number of vertices
have been exposed as we shall see later.

We now relate all the variables defined previously. We define the variable Rq to be the
number of pairs exposed by the time we expose the qth vertex i.e. WRq = Zq.

Remark 6. Note that Xr is (roughly) the same as Wr except when we form a back edge. In
which case Xr decreases. Hence we obtain :

Wr = Xr +
3
2
Yr. (4.1.3)

Remark 7. We can also relate Wr to Zq. If no back edges are formed we would have exposed
Rq + 1 = q or Rr = r− 1 vertices. Consequently we would get Wr = Zr−1, but given that we get
some back edges we have that the number of steps Rr = r + Yr − 1 or r = Rr − Yr + 1, so

Wr = Z(r−Yr+1). (4.1.4)

Remark 8. Zr decrease by at most 1− 3
2 = − 1

2 ) every time a vertex is exposed. This happens
when we expose a vertex with degree 1. Therefore

Zr ≥ Z(r−Yr+1) −
1
2

(Yr − 1)

= Wr −
1
2
Yr

= XrYr

≥ Xr.

So Zr is bounded below by Xr.
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4.2 Small components

We now show that if the conditions of the second case of theorem (2) are satisfied, the graph has
no components of size larger than α = Sw(n)2log(n) vertices. We will show that if the expected
increase in Zq is negative, then the probability that it remains greater than zero for too long is
very small and therefore the probability that the probability that the number of open copies Xr

is greater than zero is also very small.

Lemma 1. Let F be a configuration that satisfies the conditions of the second case of the theorem.
Let v be any vertex then the probability that v lies in a component of size α = Sw(n)2log(n) is
less than n−2.

Proof. Suppose that we start our algorithm by exposing v at step 1. We have that

Q =
D

K
=
∑
i,j

djj∑
j jdj

(j − 3
2

) < 0.

The probability that a given component has size at least α is at most the probability that
Xα > 0, which is consequently at most the probability that Zr > 0 from remark (8). This is
because if Xr = 0 then we would have exposed the whole component.

Initially the rate of increase of Zr is∑
j

djj∑
j jdj

(j − 3
2

).

After exposing q ≤ α vertices, the rate of growth of Z is highest if the first q vertices that
were exposed have degree 1. This because the negative terms in sum (j − 3

2 ) are those where
j = 1. Hence the rate of increase of Zq is at most:

− 1
2 (d1 − q) +

∑
j≥2 djj(j −

3
2 )

(d1 − q) +
∑
j≥2 jdj

, (4.2.1)

this is at most:

≤
∑
j djj(j −

3
2 )∑

j jdj − q
+

1
2q∑

j djj − q

≤
∑
j djj(j −

3
2 )∑

j djj
+

1
2q∑

j dj(i+ j)− q
.

Because q ≤ α = o(n) and
∑
j dj(i + j) = Kn = θ(n), we get the expected increase after q

steps is:

≤ Q+ o(1) ≤ 3Q
4
< 0

for n large enough. The expected increase in Zq is still negative, indicating that the process
should die out quickly. Given that the degree of the the first chosen vertex v is at most w(n),
we get that after α vertices the expected value of Zα is at most

Initial value + (Rate × α) ≤ (3Q/4)α+ w(n).

Because α = Sw(n)2log(n), for n large enough it follows that

3Q
4
α+ w(n) ≤ Q

2
α.

We now introduce an important result known as Azuma’s inequality that will help bound
the probability of Z deviating too far from its mean.
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Azuma’s inequality

Let X0, . . . , Xn be a martingale with |Xi−Xi−1| ≤ 1, for all 0 ≤ i < n, with Let λ > 0 it follows
that

Pr(|Xn| > λ
√
n) < e−λ

2/2.

Azuma’s inequality yields the following standard corollary.

Corollary 1. Let Σ = Σ1, . . . ,Σn be a sequence of random events. Let f(Σ) = f(Σ1,Σ2, . . . ,Σn)
be a random variable defined over these events. Then if E(f |Σ1,Σ2, . . . ,Σi) is c−Lipshtiz, that
is if there exists constants ci and c = (c1, . . . , cn) such that for all i :

max|E(f(Σ)|Σ1, . . . ,Σi+1)− E(f(Σ)|Σ1, . . . ,Σi)| ≤ ci
Then

Pr(|f − E(f)| > t) ≤ 2 exp
(
−t2

2
∑
i c

2
i

)
.

We will make use of Azuma’s inequality by defining Σi to indicate the ith vertex to be
exposed, for i = 1, . . . , α and f(Σ) = Zα. We also define Ei+1(x) = E(Zα|Σ1, . . . ,Σi+1), where
Σi+1 is the event that the (i+ 1)th vertex is x. We would like to bound

|E(f(Σ)|Σ1, . . . ,Σi+1)− E(f(Σ)|Σ1, . . . ,Σi)|

We will do this by first bounding |Ei+1(x)−Ei+1(y)| for any x, y. Let u, v be any two vertices.
Suppose that we are choosing the (i+ 1)st vertex. We are therefore left with n− i vertices. Note
that by ignoring u, v, the distribution of the order in which the remaining vertices are exposed
is unaffected by the positions of u and v.

Let Ω be the set of the first α− i− 3 vertices in this order. Then:

Zα = Zi +
∑
Ω

(j − 2
3

) + deg(y1)−
(2

3
)

+ deg(y2)−
(2

3
)
.

where y1 is either u or v and y2 is either u, v or the next vertex in the order. Hence we see
that the choice between u and v can only change Zα by an amount equal to the maximum degree
which is w(n). Hence:

maxx,y|Ei+1(x)− Ei+1(y)| ≤ w(n).

Given the fact that

E(f(Σ)|Σ1, . . . ,Σi) =
∑
x

Pr(x is chosen) Ei+1(x) ≤ maxx Ei+1(x),

we get that

|E(f(Σ)|Σ1, . . . ,Σi+1)− E(f(Σ)|Σ1, . . . ,Σi)|

≤ maxxy |Ei+1(x)− Ei+1(y)| ≤ w(n).

Therefore, the probability that Zα > 0 is at most

Pr(|Zα − E(Zα)|) > E(Zα).

By Azuma’s inequality, this is at most
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2 exp(− (Q/2α)2

2
∑
i w(n)2

) = 2 exp(− (Q/2α)2

2αw(n)2
)

Substituting α = Sw(n)2log(n), we get

2 exp
(
− (Q2/4Slog(n))

2

)
= 2n−Q

2/8S < n−2.

The last inequality holds by substituting S = 17
Q2 and working through.

Hence the probability that a randomly chosen vertex lies on a component of size at least α
is o(n−1) and hence the expected number of such vertices is o(1), so with high probability all
components in F have size at most Sw(n)2 log(n).

4.2.1 Very few configuration cycles

We we will now show that there is asymptotically no component with more than one configuration
cycle, when the conditions of the second case of the theorem are satisfied. We will do this by
showing that asymptotically we have very few back-edges.

We will build on the result of the last section. We will show that if the size of any component
is at most α = Sw(n)2 log(n) then the probability that we form two back edges before exposing
more than α vertices is very small.

Remark 9. Looking at our algorithm, we see that Xr the number of open vertices decreases
by at most 3

2 < 3 at every execution of step 2. By lemma (1), the size of any component is at
most α. This implies that Xr < 3α at any step r during the execution of our algorithm. More
precisely, at any step r ≤ α we must have that Xr < 3(α− r).

Lemma 2. Let F be a configuration satisfying the conditions of the second case of the theorem.
Then whp F has no components with 2 cycles.

Proof. Fix any vertex v. We start our algorithm at step 1 with this vertex. Remember that this
is legitimate. We suppose that v lies in a component with more than one cycle. We will show
that this happens with a very small probability and therefore asymptotically no such vertices
are expected to exist.

Because at every iteration of algorithm (2) we either expose a new vertex or form a back
edge, we must have that the second back edge is formed before (α + 2) steps or else we would
have exposed more than α vertices which we saw by lemma (1) has a probability less than n−2

of happening.
Suppose the first and second back edges are formed at step A and B respectively such that

0 ≤ A ≤ B ≤ α+ 2. The probability that we form two backedges is at most

α+1∑
A=0

α+2∑
B=A

(
3(α−A)

Kn− 3(α−A)

)(
3(α−B)

Kn− 3(α−B)

)
.

This is because the number of open vertices is less than 3(α−A) or 3(α−B) and the number
of elements left in S is more than Kn− 3(α−A) or Kn− 3(α−B). This probability is at most:
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α+1∑
A=0

α+2∑
B=A

(
3(α−B)

Kn− 3(α−B)

)2

≤
α+2∑
A=0

α+2∑
B=0

(
3(α−B)

Kn− 3(α−B)

)2

≤ (α+ 2)
α+2∑
B=0

(
3(α−B)

Kn− 3(α−B)

)2

≤ (α+ 2)
1

(Kn− 3(α+ 2))2

α+2∑
B=0

(3(α−B))2

= (α+ 2)
1

(Kn− 3(α+ 2))2

α+2∑
B=0

(3B)2

≤ (α+ 2)
9

(Kn− 2(α+ 2))2
(α+ 2)3.

Because α = Sw(n)2log(n), if we take w(n) = n1/8−ε for any ε > 0, we get

9
(Kn− 3(α+ 2))2

(α+ 2)4 = o(n−1)

So the probability that a random vertex v lies in a component with two cycles is at most
o(n−1). Therefore the expected number of these is o(1). So with high probability there are no
components with more than once cycle as n tends to infinity.

Remark 10. Note that this way of bounding the probability of forming two back edges is different
from the way it is presented in Molloy and Reed’s paper [22]. This was done in an attempt to
eliminate or at least relax the constraint that we have on the maximum degree in the second case
of theorem (2). Because this probability largely depends on α, this was then reduced to giving
a better bound for the maximum size of small components. However, we were unable to find a
better bound than that given by Azuma’s inequality in the Molloy and Reed paper.

4.3 A giant component

In this section, we will consider the first case of theorem (2). We will show that given that
D,Q > 0 and finite, then with high probability our graph has a giant component with at least
a linear number of cycles.

We will proceed as follows: First, we start our configuration building algorithm with any
given vertex, and we show that after a certain number of steps, Zq is very large with high
probability. We will then use relation (4.1.3) to show that Xr is also very large with high
probability. Having shown that the number of open vertices Xr is very large, we will deduce
that with high probability our configuration building algorithm will form a large number of back
edges and exposes a large number of new vertices, hence forming a giant component and a large
number of cycles.

Lemma 3. Let F be a configuration that satisfies the conditions of the first case of theorem (2),
then there exists 0 < ε < 1 and 0 < ∆ < min( 1

2 ,
K
2 ) such that for all 0 < δ < ∆, then a.s.

Zδn > εδn. Moreover, The probability of the converse is zn1 for some 0 < z1 < 1.
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Proof. In what follows, we will assume for simplicity that δn is an integer. This can be achieved
for n large enough.

Recall that in the proof of lemma (1), we bounded the expected increase in Zq after a number
of steps of α = o(n). We then used this to have a bound on the expected value of Zq itself. Then
we showed using Azuma’s inequality that with high probability we cannot deviate too far from
the mean.

We will proceed similarly. However, the problem here is that we want to bound the expected
increase in Zq after a linear number of steps δn. This causes the probability of choosing a copy
of a vertex of a certain degree to shift significantly and therefore the expected increase (4.2.1)
in Zq shifts significantly as well.

To get around this, we will define a new variable Z∗q that behaves much more nicely than Zq
such that Zq majorises Z∗q , i.e. that:

Pr(Zq ≥ x) ≥ Pr(Z∗q ≥ x).

We will then show that Z∗q grows as largely as we want it. Define qj to be the initial
probability that that we choose a copy of a vertex of degree j. We have that:

qj =
jdi,j∑
j jdi,j

= j
pj
K
.

This probability is likely to significantly shift after δn steps. We define Z∗q by fixing a number
j∗ and a sequence of probability values φ1, φ2, . . . , φj∗ . Such that Z∗q is the sum of all (j− 3

2 ) by
the time the qth vertex is exposed, with the difference that every vertex of degree j is chosen with
the fixed probability φj at every step, and that if we select a vertex of triangle degree greater
than j∗ we treat as having triangle degree 1 i.e. subtract 3

2 . Clearly, if after q steps qj ≥ φj for
2 ≤ j ≤ j∗, then:

Pr(Zq ≥ x) ≤ Pr(Z∗q ≥ x).

for any x. Therefore, it suffices to find such j∗ and φj such that after δn steps Z∗q is at least
εδn, this will be achieved by finding a Z∗q that has a positive expected increase.

Because Q > 0, we have that:

Q =
∑
j

(j − 3
2

)
jdj∑
j jdj

=
∑
j

(j − 3
2

)qj

=
∑
j

(j − 1
2
− 1)qj =

∑
j

(j − 1)qj −
∑
j

1
2
qj

=
∑
j≥2

(j − 1)qj −
1
2
> 0

Because the asymptotic degree sequence is well behaved, see definition (17). We can find a
j∗ such that:

j∗∑
j≥2

(j − 1)qj >
1
2

+ ε′.

for some ε′ > 0. Therefore we can also find a sequence φj of joint probability values such that:

• φj < qj , for 2 ≤ j ≤ j∗.

• φ1 = φ1 + · · ·+ φj∗ .

•
∑
j≥2(j − 1)φj = 1

2 + ε′

2 .
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This gives that: ∑
j≥2

(j − 3
2

)φj =
ε′

2
> 0.

We construct such a joint probability sequence as follows: Given that qj = jpj
K , for j ≥ 2,

choose any ∆j > 0 such that:
(jpj −∆j)

K
≤ φj < qj

Taking

∆ = min
j
{∆1,∆2 . . .∆j∗ ,

1
2
,
K

2
},

then after exposing up to ∆n vertices, the probability of choosing a copy of a vertex of degree
2 ≤ j ≤ j∗ is at least

jpjn−∆n
Kn

≤ φj < qj .

Therefore for 0 ≤ q ≤ ∆n:
Pr(Zq ≥ x) ≥ Pr(Z∗q ≥ x).

Let us now consider the variable Z∗q with the following properties:

• Z∗0 = 0.

• Z∗q+1 = Z∗q + (j − 3
2 ) , with probability φj for 2 ≤ j ≤ k∗.

This variables has expected increase ε′

2 at every step q. Therefore, after δn steps, for delta <
Delta, its expected value is ε′

2 δn. By Chernoff’s inequality, see [8], we get that:

Pr(Z∗δn ≤
1
2
E(Z∗δn)) ≤ exp

(
−E(Z∗δn)

4

)
Pr(Z∗δn >

ε′

4
δn) ≥ 1− exp

(
−ε
′δn

8

)
Therefore, if we take ε = ε′

4 we get that with high probability Zδn > εδn.

Having shown that Zq is very large for q large enough. We will now show that Xr also
becomes very large at some point before ∆n vertices have been exposed. But to do that, we
need to show first that Zq does not get too large.

Lemma 4. If Q > 0 and Q finite, then there exists δ′ ≤ 1
2 such that for all 0 < δ ≤ δ′, there

a.s. exists 0 < η < 1 such that Zδn ≤ ηn where η ≤ K
4 . The probability of the converse is at

most (z2)n for some 0 < z2 < 1.

Proof. The initial expected increase in Zq is given by Q. We will show that even after δn steps
this expected increase is not that large. We will the use an upper bound on the expected increase
to bound E(Zq) and then Chernoff’s inequality to bound Zq itself.

The initial expected increase in Zq is given by Q:

Q =
∑
j

(j − 3
2

)qj

=
∑
j

(j − 3
2

)j
pj
K

=
D

K
.
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In the worst case, the first δn exposed vertices are all of degree j = 1. After δn steps the
probability of choosing a copy of a vertex of degree j ≥ 2 is:

qj = j
pj

K − δ
≤ j pj

K/2
≤ 2qj .

This implies that for all q ≤ δn the expected increase in Zq is at most 2Q. Therefore:

E(Zq) ≤ 2Qδn.

If we take δ ≤ min{ 1
2 ,

K
16Q} = δ′, then by Chernoff’s inequality:

Zδn ≤
K

4

with a probability exponential in n.

Remark 11. Note that lemma (4) has no equivalent in the Molloy and Reed paper. This is put
here to correct a mistake that occurred when bounding the Zq from above in the equivalent of the
proof of lemma 5 in the Molloy and Reed paper.

Lemma 5. If Q > 0, then there exists 0 < δ′′ < min(δ′,∆) for δ′ as defined in lemma (4), such
that for any 0 < δ ≤ δ′′, there a.s. exist an R, 0 < R < Rδn such that XR > γn where γ = εδ

4 .
The probability of the converse is (z2)n for some 0 < z2 < 1.

Proof. We will bound Xr using relation (4.1.3):

Zq = WRq = XRq +
3
2
YRq

XRq = Zq −
3
2
YRq

We also have that because Xr ≥ 0 :

Zq ≥
3
2
YRq

Therefore if we want to bound XRq , we will have to bound the number of back edges formed
YRq from above. We will do this by counting the number of back edges formed before Xr > γn,
or Rδn pairs have been formed.

At any step r, 1 ≤ r < Rδn, the probability that we form a back edge is the probability of
choosing an open vertex in step 2 of algorithm (2), which is at most Xr

Kn− 3
2 r

. Let us now bound
Rq the number of steps required to expose q vertices:

Rq = q + YRq − 1 ≤ q +
2
3
Zq − 1

Using the result of lemma (4), we have that Zq ≤ K
4 . This gives:

Rq ≤ q +
K

6
n− 1 ≤ δn+

K

6
n

for n large enough. The probability p of forming a back-edge when Xr ≤ γn is at most:

p =
Xr

Kn− 3
2
K
6 n−

3
2δn
≤ εδ/16

K
2 −

3
2δ
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Consequently, the number of back edges formed has an expected value of at most:

E(YRq ) ≤ pRδn ≤
εδ/16
K
2 −

3
2δ

(δ +
K

6
)n

We would like this expected value to be less than εδ
8 n i.e. :

E(YRq ) ≤
εδ/16
K
2 −

3
2δ

(δ +
K

6
)n <

εδ

8
n

δ + K
6

K
2 −

3
2δ

< 2

δ +
K

6
< K − 3δ

4δ <
5K
6

If we take δ < K
6 = δ′′, we get by Chernoff’s inequality:

Pr(YRq >
εδ

4
n) ≤ (z3)n

for some 0 < z3 < 1.
Therefore, if for all 1 ≤ r < Rδn, Xr ≤ εδ

4 , we get that with high probability:

YRq ≤ 2
εδ

8
n.

Using inequality (A.4.1) we obtain

XRδn ≥ Zδn −
3
2
YRδn

≥ εδ − 3εδ
8

=
5εδ
8

>
εδ

4
.

Having shown Xr grows very large after exposing a number δn of vertices, we can show
that a large number of those Xr vertices will paired within themselves to form configuration
cycles, and a large number will be paired with unexposed vertices before Xr goes to zero thereby
guaranteeing that after step Iδ we will expose enough new vertices to form a giant component.

Lemma 6. If Q > 0, there exists constants c1, c2 such that the component being exposed at step
R ≤ Rδ′′n, with δ′′ as defined in lemma (5), has at least c1n vertices and c2n cycles with high
probability. The probability of the converse is (z4)n for some 0 < z4 < 1.

Proof. We have shown that there exists a step R ≤ δ′′n such that XR > γn, 0 < γ < 1. We
will show that with high probability c1n of the XR open copies will be matched with unexposed
vertices and that c2n will be matched with other open copies.

We construct a set B containing all open copies. This set has size at least γn. Also, at step
Rδ′′n, we have only exposed δ′′n vertices. From lemma (3), δ′′ is at most 1

2 this implies there is
at least n

2 remaining vertices. We create a set A containing one copy of each of these vertices.
After R steps there at most (Kn − 3

2R) copies left to be matched. We will show that c1n
copies will be matched with members of A and c2n copies will be matched with members of
B. Our configuration building algorithm triples up, these (Kn − 3

2R) open copies of vertices
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uniformly. It essentially creates (Kn − 3
2R)/3 triples, with every triple created with an equal

probability.
In general, given any two sets A and B which are subsets of a set C, the probability that we

create a triple containing a copy from A and a copy from B from a set C is

|A||B||C|(|C|
3

)
where |A| denotes the size of set A, and the expected number of these is:

|A| |B| |C|(|C|
3

) |C|
3
≤ |A| |B|

|C|
.

Therefore, the expected number of triples containing one copy from A and one copy from B
in our configuration is:

≥ n/2 γn
Kn− 3

2R
≥ n/2γn
Kn− δ′′n

≥ n/2γ/n
Kn

≥ 2c1n+ o(n).

for some constant c1 > 0. The expected number of triples containing two copies of B is:

≥ γn γn

Kn− 3
2R
≥ γn γn

Kn
= 2c2n+ o(n).

for some constant c2 > 0. Finally, using Chernoff’s inequality we get that the number of such
pairs is less than half their expected values with a probability (z4)n for some 0 < z4 < 1. So,
with high probability we have at least c1n vertices with at least c2n back-edges in the component
being exposed at step R .

Lemma 7. Given a configuration F as described in the first case of theorem (2), then who F
has at most one component with more than T log(n) vertices for an appropriate choice of the
constant T .

Proof. We have already shown that F has at least one component of size c1n for some constant
c1 > 0. We have also shown that there exist an R, R ≤ Rc1n such that XR > γn where
γ = min ( εc14 , δ

′′).
We will look at pairs of vertices (u, v) and show that the probability that u and v belong to

different components of size at least c1n and T log(n) respectively is very small. We call these
components C1 and C2 respectively. We will show that this happens with probability o(n−2)
and therefore the expected number of such pairs is zero.

We suppose that such a pair exists and we start algorithm (2) with any copy of vertex u.
If after R ≤ c1n steps of algorithm (2), we are no longer exposing C1 then u does not lie on a
component of size at least c1n, and if we have exposed a copy of v then u and v are in the same
component. So we will assume neither event happens.

We modify our exploration algorithm slightly, by stopping the exploration of C1 after R
steps, and starting to explore v’s component. This is legitimate because u and v are in different
components and process this still produces a random configuration.

We will show that with high probability one of the vertices of C2 will be matched with one
of the XR open copies created by the exploration of C1. Since Xr > γn, and the number of
available copies to be matched with at any point during the exploration of C2 is at most Kn,
we get that the probability of choosing one the Xr open copies during the exploration of C2 is
at least(γ/K).
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Because C2 has at least T log(n) vertices. The probability of matching a vertex of C2 with
one of the XR open copies from the open exploration of C1 is at most(

1− γ

K

)T log(n)

=
(
e−c
)T log(n)

.

for some constant c. Taking T > 2c give:(
1− γ

K

)T log(n)

= o(n−2).

Therefore the expected number of pairs (u, v) that lie on components of size at c1n and
T log(n) respectively is o(1), so with high probability none exist.

Lemma 8. Given a configuration F as described in the conditions of the first case of theorem
(2), then whp F no components of size at most T log(n) with more than one cycle.

Proof. We have shown that a configuration F satisfying the conditions of the first case of theorem
(2) has exactly one component of size at least c1n for some 0 < c1 < 1, and that all other
components have size at most T log(n).

Suppose there exists one such component with at least two cycles. Let v be a vertex in such
a component. We start algorithm (2) at vertex v. We will show that the probability of having
two back edges is o(n−1) and therefore no such vertices are expected to exist.

Because the size of the component of v is at most T log(n), each vertex in it has degree
at most T log(n) as well. We therefore have that Xr ≤ T 2 log(n)2 at any step r, because
the maximum number of copies of vertices consumed in the exposure of this component is the
maximum number of edges, which is at most the number of vertices times the maximum degree.
For the same reason we have that the component is entirely exposed in at most T 2 log(n)2 steps.

The probability that a back edge is formed at any step r is at most:

Xr

Kn− 3
2r
≤ T 2 log(n)2

Kn− 3
2r
≤ T 2 log(n)2

Kn− 3
2T

2 log(n)2
= o(n−1/4).

The probability of forming at least 2 back edges is at most:(
T log(n)

2

)
(n−1/4)2 = o(n−1).

Therefore, the expected number of vertices in components of size at most T log(n) and with
more than one cycle is o(1). Therefore with high probability none exist.

In conclusion, we have shown that for random graph that consists solely of triangles under-
takes a similar qualitative behaviour as the classical random graph with a fixed edge degree
sequence. We have shown that there is a criterion for the formation of the giant component
namely

∑
j jdj(j −

3
2 ) > 0. When this sum is less than zero, the graph consists only of small

components and each component has at most one cycle. Above zero we have a giant component
that contains a fixed fraction of vertices of the graph and has a large number of cycles. Moreover,
this component is unique and all other components are small with size at most O(log(n)) and
have at most one configuration cycle. This means that all small components whether before or
after the threshold have a tree like structure if one ignores the small cycles formed explicitly
through the triangles distribution.
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Generalisation

We deduce from this result, that if a random graph that contains only triangles in its degree
sequence behaves as described below and above a certain threshold, and that a random graph
with a fixed single edge degree sequence behaves similarly but according to a different threshold,
then a random graph that contains a mixture of edges and triangles in its degree sequence such as
the one introduced by Newman [29] also behaves in the same way but for a different threshold.
More specifically, we expect that below a certain point depending on the degree sequence all
components are small and tree like. Above this point, we have a giant component with many
cycles and all remaining components are small and tree like as well. The question that remains
to be answered is how to find and prove what this threshold is.

We hope that the next section will give us a hint of what this criterion is for the case of
a graph with mixed single edges and triangles degree sequence. As mentioned previously, the
generating function formalism introduced by Newman [26] relies on the locally tree like structure
of these random graphs to make computing certain key properties very easy. In his new model
with mixed single edges and triangles he uses the same method and by doing so he is assuming
the same tree like structure in this type of random graphs, assuming that we ignore the cycles
formed explicitly by the triangle degree sequence. The proof presented in this chapter justifies
these assumptions.

Before we move on to discussing how Newman uses the probability generating formalism to
compute key properties of random graphs with fixed single edge and triangle degree sequences, we
would like to discuss the possibilities of generalising the above result to structures more complex
than triangles. It should be fairly intuitive to see that by simply modifying our configuration
construction algorithm (2) we can adapt the Molloy and Reed proof to cliques of size 4 and
beyond. Step 2 of the new algorithm would look something like

1. Repeat the following until there are no open copies left.

• Select an open copy x1 from S uniformly at random. Then, select another copy x2

from S (open or non open) uniformly at random. If x2 is not an open copy, expose
its corresponding vertex by opening all its remaining copies. Remove x2 and (1/k)th
of x1 from S.

• Select a copy x3 from S uniformly at random. Remove x3 and an other (1/k)th of
x1 from S. If x3 is a copy of an unexposed vertex, open all its remaining copies.

•
•
•
• Select a copy xk from S uniformly at random and open its corresponding vertex.

Remove xk and an other 1/kth of x1 from S and add the k-tuple (x1, . . . , xk) to F .

for the case with a random graph with a k-clique degree sequence. Furthermore, the degree
sequence can specify any motif and not just cliques as long as this motif is connected. In fact,
this type of degree sequences can be thought as a degree sequence of hyperedges where each
hyperedge joins k vertices. We are then free to fill in every hyperedge with any motif we like.

A random graph with fixed hyperedge degree sequence can be constructed with the above
algorithm. We conjecture that a random graph with a fixed k hyperedge degree sequence will
have as a criterion for the formation of the giant component:∑

i

i[(k − 1)i− (k − 1)]pi > 0, (4.3.1)

where pi is the probability that random vertex is attached to i hyperedges. Note that the case of
single edge and triangle degree sequences correspond to the cases k = 2 and k = 3 respectively.
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We expect that such a graph will have only small components below this threshold and that
these components are locally tree like if one ignores the cycles explicitly formed by the motifs
that we use to fill these hyperedges. Above this threshold we expect to see a giant component
with many configuration cycles and that all remaining components are small and tree like if
again we ignore cycles formed explicitly.

The difficulty now remains in attempting to generalise such degree sequences even further by
having a mixture of hyperedges of different size i.e. hyperedges that join groups of vertices of
different size. It seems that we cannot easily adapt the Molloy and Reed proof of the classical
configuration model to this type of degree sequences. This seems to be due to the fact we cannot
estimate the rate of increase of open copies of vertices as we explore the components of the
graph. However, we do expect the same type of behaviour i.e. locally tree like small components
and a threshold above which a giant component forms. This must be the case since we can show
that for any k sized hyperedge degree sequence, random graphs all behave in this same way.
Therefore so must a random graph with a mixture of hyperedges of sizes at most k.

This is a very powerful result as it says that regardless of what the graph looks like locally
the global structure of a random graph in a configuration model looks the same. However, it
remains an open problem to determine the criterion for the formation of the giant component
and prove it. We hope that the next section will give us some clues as what this criterion might
be.

37



Chapter 5

Properties with generating
functions

In this chapter, we give few examples how the generating function formalism can be applied to
Newman’s random graph model with clustering. The size of the percolating giant component and
the distribution of the sizes of small components, have been demonstrated with few intermediate
steps in his paper [29], we derive them here in full detail. The average distance between vertices
in the graph and the percolation thresholds are not shown in his paper. We deriving them here
for the first time by generalising the concepts of the generating function formalism of the classical
configuration model.

We assume that we are given the number of single edges si and triangles ti attached to each
vertex i. We take pst to be joint degree distribution of our graph i.e. the probability that a
randomly chosen vertex is connected to s single edges and t triangles.

Definition 21. We define the excess degree distribution qst to be the probability that a vertex,
reached by following a randomly selected edge in the graph, is attached to s single edges, not
counting the one we used to reach it, and t triangles:

qst = ps+1,t
(s+ 1)∑
s,t spst

(5.0.1)

This is because such a vertex will have s + 1 single edges out of
∑
s,t spst in total. The

excess degree distribution will be very useful in computations that we do later. Another that
the probability of reaching a vertex of degree (s, t) by selecting a random edge and following it
is equivalent to the probability reaching the same vertex, by first selecting a random vertex in
the graph then randomly choosing one of its attached edges and following it to the other end.

Definition 22. Similarly we define rst to be the excess distribution with respect to triangles i.e.
the probability of reaching a vertex of single degree s and triangle degree t by selecting a vertex
in the graph then following the triangle to either of the two opposite vertices, not counting the
triangle we used to reach it. This is given by:

rst = ps,t+1
(t+ 1)∑
s,t spst

. (5.0.2)

Definition 23. We also define the corresponding probability generating functions
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gp(x, y) =
∞∑

s,t=0

pstx
syt (5.0.3)

gq(x, y) =
∞∑

s,t=0

qstx
syt =

1∑
s,t spst

∑
s,t

sps,tx
s−1yt =

(gp)x(x, y)
(gp)x(1, 1)

(5.0.4)

gr(x, y) =
∞∑

s,t=0

rstx
syt =

1∑
s,t tpst

∑
s,t

tps,tx
syt−1 =

(gp)y(x, y)
(gp)y(1, 1)

(5.0.5)

By (gp)x and (gp)y, we mean the derivative of gp with respect to x and y respectively.

Clustering

Before we begin proving properties about this model. Let us first show that assuming a tree
like structure that justifies using the generating function method, this model is indeed useful by
having a non zero clustering coefficient in the limit of large graph size. Recall that the clustering
coefficient is defined as:

3×Number of triangle
Number of connected triples

Let us assume the number of triangles formed by single edges is negligible. This is a fair
assumption because the clustering coefficient of the configuration model with single edges is
zero. This gives that the number of triangles in the graph is:∑

s,t

tnpst = n〈t〉

If we assume that pk is the probability that a random vertex has total degree k i.e. that s+2t = k.
Then, the number of connected triples is:∑

k

(
k

2

)
npk =

n

2

∑
k

k(k − 1)pk = n
〈k2〉 − 〈k〉

2

So for a non zero average triangle degree, we have a sparse graph with a non zero clustering
coefficient in the limit of large graph size given by:

2〈t〉
〈k2〉 − 〈k〉

where k = s+ 2t.

5.1 The size of the giant component

We will derive an estimate of the size of the percolating giant component. The following deriva-
tion is justified by properties discussed in Molloy and Reed’s paper on the size of the giant
component [23].

We denote by φ the probability that a random edge is occupied in the bond percolation
process. We define u to be mean the probability that a vertex reached by traversing a randomly
selected edge is not in the percolating giant component. Equivalently let v be the mean prob-
ability that a vertex reached by traversing a randomly selected triangle is not a member of the
giant component.
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Let us first consider the case where we have no percolation (i.e. φ = 1). If a vertex reached
by following a randomly selected edge is not in the giant component, then all of the vertices to
which it is connected (via single edges or triangles) are also not in the giant component. If this
vertex is connected to s single edges and t triangles then this happens with probability usv2t.
Because u is the mean probability that this happens, we get the relation

u =
∑
s,t

qstu
sv2t = gq(u, v2). (5.1.1)

Similarly if a vertex reached by following a random triangle is not in the giant percolating
component, then all of the vertices connected to it are not either. This yields

v =
∑
s,t

rstu
sv2t = gr(u, v2). (5.1.2)

Consequently the probability that a randomly chosen vertex is not in the giant component is∑
s,t

pstu
sv2t = gp(u, v2) (5.1.3)

This probability can be computed by first finding u and v using equations (5.1.1) and (5.1.1).
If this can’t be done analytically then it can be achieved numerically through iteration starting
from an initial condition. Finally, the probability that a random vertex is in the giant component
gives the fraction S of the vertices in it, which is:

S = 1− gp(u, v2) (5.1.4)

The idea here is that given that we know what the degree distribution pst is, we can compute
the generating functions gp, gq and gr given in equations (5.0.3, 5.0.4, 5.0.5) to get S.

Suppose now that we have a percolating giant component. Let u be the probability that a
vertex reached via a given single edge is not in the giant component. Then either this single
edge is not occupied, which happens with probability (1 − φ), or it is occupied and all other
vertices connected to it (via single edges or triangles) are not connected to the percolating giant
component. Hence

u = (1− φ) + φ
∑
s,t

qstu
sv2t = (1− φ) + φgq(u, v2) (5.1.5)

Similarly, if both vertices reached by following a random triangle are both not connected to
the giant component, then either:

• The two edges leading to the opposite corners are not occupied, which happens with
probability (1− φ)2.

• Only one edge leading to the opposite corners is occupied and the other two edges are not
occupied which happens with probability 2φ(1−φ2). In this case the one reachable vertex
must have that all of its neighbours are not in th giant component.

• Any two edges in the triangle are occupied and the neighbours of both reachable vertices
are not connected to the giant component. This happens with probability [φ3 +3φ2(1−φ)].
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This implies that

v2 = (1− φ)2 + 2φ(1− φ2)gr(u, v2) + [φ3 + 3φ2(1− φ)]g2
r(x, y). (5.1.6)

Using equations (5.1.5,5.1.5) for u and v we get that the size of the giant component nS =
n(1− gp(u, v2)).

Note that in the case where we have no percolation (i.e. φ = 1) we get

u = gq(u, v2) , v = gr(x, y), , S = 1− gp(u, v2).

Which is consistent with the previous results in (5.1.1) and (5.1.2).

5.2 Small components and the phase transition

We will now try to approximate the mean size of small components (that is all components
excluding the giant component). We saw from the previous chapter that for any degree sequence
satisfying fairly weak conditions, a random graph almost surely has no short configuration cycles,
a property that we called locally tree like. We will use this fact to estimate the size of small
components using the probability generating function formalism.

Suppose we pick a random vertex v and explore its component. The shape of this component
expands in a tree like fashion as in figure(5.1).

We define hq(z) to be the probability generating function for the number of vertices accessible
from a vertex reached by traversing a random edge not in the giant component. Similarly, we
define hr(z) to be the generating function for the number of vertices accessible from a vertex
reached by traversing a random triangle, and finally hp(x) for the number of vertices accessible
from a random vertex not in the giant component.

Here we will proceed similarly to the argument in [24] which we will adapt for this model.
Firstly, we have that

hq(z) =
∑
k

P (k vertices are accessible from end of edge)zk

There are no cycles in the component, the vertices are independent. Therefore, by the power
property of probability generating functions:

hq(z) = q0,0z + q1,0zhq(z) + q0,1zhr(z)2 + q1,1zhq(z)hr(z) + q2,0zhq(z)2

+ q0,2zhr(z)2 + q2,1zhq(z)2hr(z) + q1,2zhq(z)hr(z)2 + . . .

= zgq(hq(z), hr(z)2) (5.2.1)

Note that the extra z factor is because we count the vertex at the end of the edges as an
accessible vertex in our exploration. Using a similar argument we get:

hr(z) = zgr(hq(z), hr(z)2) (5.2.2)

hp(z) = zgp(hq(z), hr(z)2) (5.2.3)

If we solve the above recursive expressions (5.2.1, 5.2.2, 5.2.3 ), we can compute the distri-
bution function of the size of small components. From this we can extract the mean size as
follows:
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Figure 5.1: Exploiting the tree like structure to compute the size of small components using
generating fucntions: The number of vertices accessible by following a randomly selected edge

h′p(1) = 1gp(hq(1), hr(1)) + (gp)x(hq(1), hr(1))h′q(1)

+ (gp)y(hq(1), hr(1))2hr(1)h′r(1)
= 1 + (gp)x(1, 1)h′q(1) + (gp)y(1, 1)2h′r(1)

= 1 + 〈s〉h′q(1) + 〈t〉2h′r(1). (5.2.4)

We can further compute h′q(1) and h′r(1) :

h′q(1) = 1 +
(gp)xx(1, 1)
〈s〉

h′q(1) +
(gp)xy(1, 1)
〈s〉

2h′r(1).

h′r(1) = 1 +
(gp)yx(1, 1)
〈t〉

h′q(1) +
(gp)yy(1, 1)
〈t〉

2h′r(1).

where 〈s〉, 〈t〉 are the respective mean numbers of single edges and triangles per vertex. Note
that (gp)xx = 〈s2〉 − 〈s〉 , (gp)yy = 〈t2〉 − 〈t〉 , (gp)yx = (gp)xy = 〈st〉. This gives:

h′q(1)(2〈s〉 − 〈s2〉) = 〈s〉+ 2〈st〉h′r(1).

h′r(1)(3〈t〉 − 2〈t2〉) = 〈t〉+ 〈st〉h′q(1).

h′q(1)[(3〈t〉 − 2〈t2〉)(2〈s〉 − 〈s2〉)− 2〈st〉2] = 〈s〉(3〈t〉 − 2〈t2〉) + 〈st〉〈t〉. (5.2.5)

h′r(1)[(3〈t〉 − 2〈t2〉)(2〈s〉 − 〈s2〉)− 2〈st〉2] = 〈t〉(2〈s〉 − 〈s2〉) + 〈st〉〈s〉. (5.2.6)

Substituting (5.2.5) and (5.2.6) in equation (5.2.4) for h′p(1) we obtain an expression for the
mean component size.

Most importantly, this expression has [(3〈t〉− 2〈t2〉)(2〈s〉− 〈s2〉)− 2〈st〉] in the denominator,
we conclude that the mean size of small components diverges when this equals zero, i.e. when

(3〈t〉 − 2〈t2〉)(2〈s〉 − 〈s2〉) = 2〈st〉2. (5.2.7)

The above expression forms a criterion for the position where the giant component forms.
We observe that for the case of the classical configuration model (i.e. t = 0), the above criterion
reduces to 2〈s〉 − 〈s2〉 = 0 which is the standard result from [22]. For the case where we have no
single edges the criterion reduces to (3〈t〉− 2〈t2〉) = 0 which is consistent with our findings from
the last chapter.
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5.3 The average distance

Having shown how the tree like structure can simplify the calculation of the size of small com-
ponents, we will apply the same principle again to compute the average distance between the
vertices of the graph. We will achieve this by computing the distribution of the number of
vertices that are a distance d away from a random vertex v.

We know that the number of vertices that are a distance 1 away (immediate neighbours)
from a random vertex is generated by:

f(z) =
∑
k

pkz
k =

∑
k

(∑
s,t

ps,tδs+2t=k

)
zk

=
∑
s,t

ps,tz
s+2t = gp(z, z2). (5.3.1)

In order to compute the number of vertices a distance two away, we define analogously:

fq(z) = gq(z, z2) , fr(z) = gr(z, z2).

to be the generating functions for the number of neighbours of a vertex reached by traversing
a random single edge or a triangle respectively. Let fd(z) be the generating function of the
number of vertices that are a distance d away from a random vertex. Given that vertices are
independent, we have by the power property of generating functions:

f2(z) = p1,0fq(z) + p0,1fr(z)2 + p1,1fq(z)fr(z)2 + . . .

= gp(fq(z), fr(z)2) = gp(gq(z, z2), gr(z, z2)2).

Using a similar argument, we obtain

f3(z) = gp(gq(fq(z), fr(z)2), gr(fq(z), fr(z)2)2)

= gp(gq(gq(z, z2), gr(z, z2)2), gr(gq(z, z2), gr(z, z2)2)2)

More generally, if we define the function Fd(x, y) by :

Fd(x, y) =

{
gp(x, y2) d = 1,
Fd−1(gq(x, y2), gr(x, y2)2) d > 1 .

Then taking fd(z) = Fd(z, z) we get that the generating function for the number of vertices
a distance d away is:

Fd(z, z) =

{
f(z) d = 1,
Fd−1(fq(z), fr(z)2) d > 1 .

Let zd be the mean number of vertices a distance d away from our initial vertex v. Then
zd = f ′d(1) = F ′d(1, 1) and

F ′d(z, z) =

{
f ′(z) d = 1,
F ′d−1(fq(z), fr(z)2)(f ′q(z) + 2fr(z)f ′r(z)) d > 1 .

zd =

{
f ′(1) d = 1,
zd−1 × (f ′q(1) + 2f ′r(1)) d > 1 .
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Hence, the average number of vertices a distance d is just a constant a = (f ′q(1) + 2f ′r(1))
multiple of the average of those a distance d− 1 away. We can then write :

zd = (f ′q(1) + 2f ′r(1))d−1f ′(1) =
(
z2

z1

)d−1

z1.

Now, if we approximate the average shortest path l between any two given vertices to be the
distance d where we would expect to reach all the reachable vertices in the graph i.e. those in
the giant component which is SN given by equation 5.1.4. In other words l is the distance where
SN of the vertices are at most l away. Since z0 = 1, we get the approximation

1 +
l∑

d=1

zd = SN.

This is a geometric series, which gives

1 +
l-1∑
d=0

(
z2

z1

)d
z1 = SN

We then get

z1
(z2/z1)l − 1
(z2/z1)− 1

= (SN − 1) (5.3.2)

l =
log (1 + (SN − 1)(z2 − z1)/z2

1)
log (z2/z1)

(5.3.3)

If N is much larger than z1 and z2, then l behaves asymptotically like

l ∼ log (NS)a/z1

log a
Note that because the structure of the giant component is not very tree like this result is a

mere rough approximation.

5.4 Percolation thresholds

We will now use the generating function formalism again to study the behaviour of the random
graph under the effect of bond and site percolation. We first look at generalised site percolation,
then we will look at combined uniform site and bond percolation.

In a site percolation process, we keep vertices and all edges connected to them with a certain
probability, this probability could be uniform φ or any other function. We say that the vertex
is occupied with probability φ.

It is often useful to have this probability as a function of the degree of the given vertex, we
denote this function by φk where k is the degree of the vertex. This type of percolation is useful
in simulating a targeted attack where only highly connected vertices are removed for instance,
to study the effect this has on the connectivity of the network.

Suppose we have an occupation function φs,t of the degree of single vertices and triangles.
We define

Gp(x, y) =
∑
s,t

φs,t ps,t x
syt
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to be the generating function for a vertex to have degree s, t and be occupied. We similarly
define the generating functions for a vertex reached by traversing a random edge or a random
triangle to have degree s, t and be occupied:

Gq(x, y) =
∑
s,t

φs,t qs,t x
syt,

Gr(x, y) =
∑
s,t

φs,t rs,t x
syt.

We will now look at the size of small components as we did in the previous section. We will
use the approximation that these small components are tree-like and contain no cycles. As in the
previous argument, suppose we traverse a random edge or triangle. Then, the generating func-
tions for the number of accessible and occupied vertices excluding those in the giant component
are:

Hq(z) = (1−Gq(1, 1)) + zGq(Hq(z), Hr(z)2),

Hr(z) = (1−Gr(1, 1)) + zGr(Hq(z), Hr(z)2).

respetively. Note that the first term is there because if a vertex reached is not occupied, the
total number of reachable vertices is 0, and the mean probability that a random vertex is not
occupied is Gq(1, 1) =

∑
s,t φs,t qs,t. The number of reachable vertices from a randomly selected

vertex is

Hp(z) = (1−Gp(1, 1)) + zGp(Hq(z), Hr(z)2). (5.4.1)

Using equation (5.4.1) we can compute the expected size of small components H ′p(1). The
idea is that given a certain degree distribution function ps,t and vertex occupation function φs,t,
one can compute Hq(z) and Hq(z), if not analytically then numerically. Then we can compute
Hp and the average component size H ′p(1).

Finally, we can deduce the percolation threshold as the point where H ′p(1) diverges, i.e the
point where the expected size of components becomes infinite.

To illustrate this further, we consider the special case of uniform vertex occupation φs,t = φ.
In this case, we have:

Gp(x, y) = φgp(x, y) , Hp(z) = (1− φ) + φzgp(Hq(z), Hr(z)2)

Gq(x, y) = φgq(x, y) , Hq(z) = (1− φ) + φzgq(Hq(z), Hr(z)2)

Gr(x, y) = φgr(x, y) , Hr(z) = (1− φ) + φzgr(Hq(z), Hr(z)2)

Proceeding as in the calculations in section (5.2) :

H ′q(1)(〈s〉+ φ〈s〉 − φ〈s2〉) = φ〈s〉+ 2φ〈st〉H ′r(1)

H ′r(1)(〈t〉+ 2φ〈t〉 − 2φ〈t2〉) = φ〈t〉+ φ〈st〉H ′q(1)

Solving simultaneously we get:

H ′q(1) =
φ〈s〉(〈t〉+ 2φ〈t〉 − 2φ〈t2〉) + 2φ2〈st〉

[(〈s〉+ φ〈s〉 − φ〈s2〉)(〈t〉+ 2φ〈t〉 − 2φ〈t2〉)− 2φ2〈st〉2]

H ′r(1) =
φ〈t〉(〈s〉+ φ〈s〉 − φ〈s2〉) + φ2〈st〉

(〈s〉+ φ〈s〉 − φ〈s2〉)(〈t〉+ 2φ〈t〉 − 2φ〈t2〉)− 2φ2〈st〉2
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The expected component size is

H ′p(1) = φ+ φ〈s〉H ′q(1) + φ〈t〉2H ′r(1),

which diverges when the denominators above are zero i.e.

(〈s〉+ φ〈s〉 − φ〈s2〉)(〈t〉+ 2φ〈t〉 − 2φ〈t2〉) = 2φ2〈st〉2

In the case of the classical configuration model (i.e. with no triangles), the above condition
gives a percolation threshold of:

φ =
〈s〉

〈s2〉 − 〈s〉
.

which is a result previously derived by [10] using other methods.

46



Now consider the case of mixed uniform bond and site percolation. Denote by φs and φb the
probabilities that a random vertex and edge are occupied respectively. Proceeding as before, we
obtain generating functions of the degree of a vertex reached by traversing a random edge and
triangle:

Gq(x, y) = φsφbgq(x, y) , Gr(x, y) = φs(φb + φ2
b)gr(x, y) , Gp(x, y) = φsgp(x, y)

The generating function of the number of reachable and occupied vertices in a small compo-
nent:

Hp(z) = (1− φs) + φszgp(Hq(z), Hr(z)2).

Hq(z) = (1− φsφb) + φsφbzgq(Hq(z), Hr(z)2).

Hr(z)2 = (1− φs)2 + φ2
s(1− φb)2 + 2φs(1− φs)2(1− φb)2

+ [2φsφb(1− φsφb)]zgr(Hq(z), Hr(z)2)

+ [φ2
s(φ

3
b + φ2(1− φb))]z2gr(Hq(z), Hr(z)2)2.

Computing the expected size of a component gives:

H ′p(z) = φs + φszg
′
p(Hq(z), Hr(z)2)H ′q(z) + φszg

′
p(Hq(z), Hr(z)2)2Hr(z)H ′r(z)

H ′p(1) = φs + φs〈s〉H ′q(1) + φs〈s〉2H ′r(1) (5.4.2)

And the value of H ′q(1), H ′r(1) are given by:

H ′q(1) = φsφb + φsφb
〈s2〉 − 〈s〉
〈s〉

H ′q(1) + φsφb
〈st〉
〈s〉

2H ′r(1)

2H ′r(1) = [2φsφb(1− φsφb)] + [2φsφb(1− φsφb)]
〈st〉
〈t〉

H ′q(1)

+ [2φsφb(1− φsφb)]
〈t2〉 − 〈t〉
〈t〉

2H ′r(1) + 2φsφb(3φsφb − 2φsφ2
b)

+ 2φsφb(3φsφb − 2φsφ2
b)
〈st〉
〈t〉

H ′q(1)

+ 2φsφb(3φsφb − 2φsφ2
b)
〈t2〉 − 〈t〉
〈t〉

2H ′r(1)

H ′r(1) = [φsφb(1 + 2φsφb − 2φsφ2
b)]

+ [φsφb(1 + 2φsφb − 2φsφ2
b)]
〈st〉
〈t〉

H ′q(1)

+ [φsφb(1 + 2φsφb − 2φsφ2
b)]
〈t2〉 − 〈t〉
〈t〉

2H ′r(1)

Solving simultaneously we get:
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H ′q(1)(〈s〉+ φsφb(〈s〉 − 〈s2〉))
= 〈s〉φsφb + φsφb〈st〉2H ′r(1)

H ′r(1)(〈t〉+ 2[φsφb(1 + 2φsφb − 2φsφ2
b)]〈t〉 − 〈t2〉)

= [φsφb(1 + 2φsφb − 2φsφ2
b)]〈t〉+ [φsφb(1 + 2φsφb − 2φsφ2

b)]〈st〉H ′q(1)

H ′q(1)[(〈s〉+ φsφb(〈s〉 − 〈s2〉))(〈t〉+ 2[φsφb(1 + 2φsφb − 2φsφ2
b)]〈t〉 − 〈t2〉)

− 2φsφb[φsφb(1 + 2φsφb − 2φsφ2
b)]〈st〉2]

= (〈t〉+ 2[φsφb(1 + 2φsφb − 2φsφ2
b)]〈t〉 − 〈t2〉)〈s〉φsφb

+ φsφb〈st〉2[φsφb(1 + 2φsφb − 2φsφ2
b)]〈t〉

H ′r(1)[(〈s〉+ φsφb(〈s〉 − 〈s2〉))(〈t〉+ 2[φsφb(1 + 2φsφb − 2φsφ2
b)]〈t〉 − 〈t2〉)

− 2φsφb[φsφb(1 + 2φsφb − 2φsφ2
b)]〈st〉2]

= (〈s〉+ φsφb(〈s〉 − 〈s2〉))[φsφb(1 + 2φsφb − 2φsφ2
b)]〈t〉+ φsφb〈st〉〈s〉φsφb

Substituting H ′q(1) and H ′r(1) into H ′p(1) in equation (5.4.2), we obtain an expression that
diverges as before when the denominator is zero i.e.,

(〈s〉+ φsφb(〈s〉 − 〈s2〉))(〈t〉+ 2[φsφb(1 + 2φsφb − 2φsφ2
b)]〈t〉 − 〈t2〉)

= 2φsφb[φsφb(1 + 2φsφb − 2φsφ2
b)]〈st〉2,

Note that for the case where we have no bond and or site percolation (i.e. φs = 1 and or
φb = 1) the expression reduces the previous result in (5.2.7).

For example, the case where we have no site percolation (i.e. φs = 1) we get a criterion of
divergence of

(〈s〉+ φb〈s〉 − φb〈s2〉)(〈t〉+ (2φb + 4φ2
b − 4φ3

b)〈t〉 − (2φb + 4φ2
b − 4φ3

b)〈t2〉)

= (2φb + 4φ2
b − 4φ3

b)〈st〉2.

In the case of the classical configuration model with no triangles, this reduces to

〈s〉+ φb〈s〉 − φb〈s2〉 = 0

Solving this gives a bond percolation threshold of φb = 〈s〉
〈s2〉−〈s〉 .

48



Chapter 6

Criticism and future models

In this chapter we will discuss the limitation of Newman’s model in terms of applications, and
how we can improve on them by generalising it to models of several degree distributions and
higher order motifs.

6.1 Limited clustering

We have shown previously that for a sparse degree sequence, a Newman random graph has a
non zero clustering coefficient in the limit of large graph size.

To maximise the clustering in Newman’s model, we would like our vertices to be connected
to triangles only. In this case, the degree of a vertex is two times the number of triangles i.e
〈k〉 = 2〈t〉. The total clustering coefficient is by given by the previously derived formula:

2〈(k/2)〉
〈k2〉 − 〈k〉

=
〈k〉

〈k2〉 − 〈k〉
.

So when 〈k2〉 is very close to 〈k〉, we have a high clustering coefficient but how does this
restrict the degree of vertices ?

Let us now look more closely at the local clustering coefficient defined previously:

Ci =
3× number of triangles connected to vertex i
number of connected triples around vertex i

We will consider Ck, the local clustering coefficient as a function of a vertex of degree k. In this
case a vertex of degree k is connected to k/2 triangles, this gives a local clustering coefficient as
a function of degree of:

Ck =
k/2(
k
2

) =
1

k − 1
.

So the maximum clustering coefficient of a vertex of degree k is (1/k − 1).

6.2 Gleeson’s model

In order to provide some contrast to Newman’s model, we briefly introduce another model also
very recently published that has non zero clustering in the limit of large graph size and that is
tractable. Gleeon’s model [14], is very similar to Newman’s model in that it is a generalisation of
the classical configuration by specifying a joint degree sequence for single edges and other higher
order motifs.
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In this model, vertices are connected to singles edges and/or to cliques of variables size c.
However, every vertex can only be part of one clique. We are given a joint degree distribution
γk,c that specifies the probability that a randomly chosen vertex has degree k and is part of a
clique of c vertices. This illustrated by figure (6.1).

Figure 6.1: Single edges and cliques, Gleeson’s Model.

If a node is is not part of any clique then it is said to be a member of a 1-clique. By having
cliques as large as we want we can tune the clustering coefficient. One way to visualise this
random graph is that cliques are super-nodes connected to each other via singles edges, see
[14] and figure (6.1). Viewed this way, the graph of super-nodes is simply a graph constructed
using the classical configuration model. It therefore has the same tree like structure and zero
clustering.

Let us try to compute the global clustering coefficient C. Given that the graph of super-nodes
is tree like, there are no triangles except inside the cliques. The clustering coefficient is therefore:

3n
∑
ck γck

(
c
3

)
n
∑
kc γkc

(
k
2

) =
〈c3〉 − 3〈c2〉+ 2〈c〉
〈k2〉 − 〈k〉

Suppose that a vertex i has degree k and is connected to a c clique. The local clustering
coefficient therefore is:

Ck =

(
c−1

2

)(
k
2

)
We can see that contrarily to Newman’s model, the clustering coefficient is not as restricted

by the degree k. We can in fact tune it to be high as 1 up to any degree k′ by taking c = k′+ 1,
as a vertex with degree k can take part in a cliques of size up to k + 1.

6.2.1 Key properties

In his paper [14], Gleeson prefers a cascade method to prove the size of a percolating giant
component for a random graph with degree sequence γkc. We have attempted to apply the
generating function method to calculate certain properties like the size of small components.
However this does not seem possible because the lack of independence between vertices of the
same cliques.

Indeed, one can easily compute the excess distribution of single edges as is done in Newman’s
model, but one cannot compute an excess distribution for cliques because if we select a random
vertex x and traverse the clique to reach another vertex y, then y must have the same c clique
size as x.
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One may also be tempted to reduce this model to the classical configuration model by looking
at it as a graph of super-nodes. To do this we will need to compute the degree distribution of
the graph of the super-nodes from the distribution γkc but it is impossible to compute such a
fixed degree distribution because the degree distribution of the super nodes will vary from one
configuration to another. All configurations are equally likely. We could however compute an
expected degree distribution for the super-nodes in certain cases. The easiest of such cases is
when the number of single edges and clique sizes are independent.

6.3 Generalisations and open problems

We will now analyse the pros and cons of these two models and some generalisations that would
improve these. Both of the models that we have seen so far are generalisations of the classical
configuration model. In other words, the random graph with a fixed degree sequence are a special
case of both models. They also both have provable non zero clustering coefficients in the limit
of large graph size for sparse graphs.

Newman’s model provides a intuitive way to create a non zero clustering coefficient by placing
triangles directly on vertices. It also offers flexibility by specifying exactly the number of singles
edges and triangles each vertex has. The main drawback is that for a given degree k the local
clustering coefficient is at most 1/(k − 1).

Gleeson’s model improves on the clustering limitation, by allowing cliques of variable size
and not just triangles. It also improves on the local clustering by allowing any value of the local
clustering coefficient regardless of the degree. However it is not very flexible in that it allows
only one clique per vertex. It is however flexible in tuning the clustering coefficient as Gleeson
shows with an example in his paper [14]. One can choose an appropriate γkc distribution to
obtain any distribution for the clustering coefficient Ck as a function of the degree.

6.3.1 Tractability

We have shown through chapter 4, that the Molloy and Reed proof can be adapted and gen-
eralised to any type of random graphs with a fixed degree distribution of fixed size motif. We
concluded from this that for any random graph with fixed distribution of these motifs will behave
qualitatively like the classical configuration model. It will have a threshold for appearance of a
unique multi-cyclic giant component, otherwise it has only tree like small components. Further-
more, we argued that the same qualitative behaviour applies to any fixed distribution of mixed
motifs like Newman’s mixed single edges and triangles model.

This result implies that both a Newman or a Gleeson random graph has a locally tree like
structure in its small components and has a threshold for the formation of the giant component.
This property can be exploited by using methods like probability generating function in the case
of Newman’s model and tree cascades in the case of Gleeson to compute certain key properties
of these graphs.

We comment however, that Newman’s model seems easier to work with and that the gen-
erating functions methods seems more powerful in deriving many key properties for any degree
distribution. In our attempts to apply this method to Gleeson’s model, we believe that this is not
possible because the size of cliques is variable and vertices within a clique are not independent
which prohibits the formulation of an excess degree distribution for cliques as Newman does for
his new model and the classical configuration model.

6.3.2 Applications

In terms of applications, Newman’s model is very good as it provides a natural and intuitive way
to implement clustering. The degree distribution of triangles can easily be measured in networks
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taken from the real world and then implemented into the model. Placing triangles directly onto
vertices is also an intuitively justifiable way to incorporate clustering into a network under the
triadic closure definition of the clustering coefficient.

On the other hand, the maximum local clustering coefficient is bounded above by 1/(k− 1).
This is very low and unlike real world networks who tend to have much higher clustering. Social
networks for examples tend to have high degrees, and clustering coefficients of the order of tens
of percents simultaneously, see [25]. This seriously limits the prospects of applications of this
model.

Gleeson’s model has a tunable clustering coefficient, which as demonstrated by Gleeson in
his paper [14] can be easily made to match any distribution of the clustering coefficient Ck and
therefore model many of real life networks. However, it is quite artificial in its restriction to have
only one clique per vertex. It is very hard to justify for instance why an individual in a social
network is a member of no more than one community.

6.4 Generalisations

Given the success of the two models presented in this dissertation in solving a long standing
problem in the study of network by creating simple, flexible and tractable models of random
graphs with provable non zero clustering in the limit of large graphs size, it is very exciting to
ask the question how far can we generalise these two models to make them more flexible and
powerful whilst still tractable.

6.4.1 Newman’s model

The main con of this model is that it has limited local clustering for a given degree which is much
lower than what we find in real world networks. A simple way to improve on the local clustering
coefficient is to have higher order cliques in our degree distribution. Suppose we generalise this
model by having a joint degree sequence pc,s for the number of single edges s and cliques of size
c attached to each vertex. Then, for a vertex of degree k the local clustering coefficient is:

Ck =
k/(c− 1)

(
c−1

2

)(
k
2

) =
c− 2
k − 1

So by choosing a value of c large enough we can have a large clustering coefficient up to a certain
degree k. However, having a distribution of cliques of size c is very artificial and cannot be
justified in terms of applications.

It would be natural to specify a distribution of different sized cliques. For example, we could
specify a distribution pstuv which represents the probability that a random vertex is connected
to s single edges, t triangles, u 4 cliques and v 5 cliques. This type of distribution can be easily
measured from a real world network and is intuitively justifiable in a real life network.

Of course, we do not have to limit ourselves to cliques but we can have any connected
motifs. Ultimately we can have a degree distribution of the form pk1...km specifying the number
ki of each connected motif i. This type of model will still be tractable in the usual way using
generating functions at the expense of heavier calculations: We would have m different excess
degree distributions and m generating functions. The maximum clustering would depend on the
motif with largest number of triangles.

6.4.2 Gleeson’s model

The most obvious way to generalise this model would be to allow vertices to take part in multiple
cliques. From the perspective of applications it is natural that an entity belongs to a variable
number of communities. It is also very natural to assume that this variable number can be
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bounded by a certain value m. We would obtain a distribution of the form γkc1...cm , which we
could define in a way such that if a node is a member of less than m cliques the corresponding
ci values will have values 1. Furthermore, we do not have to be restricted to cliques, but we can
use any connected motifs that grow in a specified fashion. For example ci can specify a cycle of
size ci and cj can specify a binary tree of a certain size etc.

Again this generalised model will still be solvable using the same tree cascade method used
by Gleeson [14] at the expense of more calculations.

6.4.3 Molloy and Reed proofs

As stated previously, we have omitted an adapted proof for the Newman model, which was
aimed to show that this model has the same qualitative behaviour as the classical configuration
model. Instead we presented an adapted version of the special case where we have only triangles
in our degree distribution. We argued that consequently this implied that the mixed single
edges and triangles model behaved in the same away because it was kind of sandwished between
the classical configuration model and the triangle configuration model. Because of this, one
might argue that the first proof is not required. However, these proofs not only provide us with
qualitative descriptions of the behaviour of the graph but they also specify criteria for the point
where the giant components forms. We also think that if one can succeed in proving this result
for Newman’s model, we can very easily adapt it to a more general mix of different motifs.

As we argued in chapter 4, we can adapt the Molloy and Reed proof to any random graph
with fixed distribution for any fixed size connected motif and show a result analogeous to theorem
(2). We described how we could adapt the configuration construction algorithm to construct a
random graph with a fixed hyperedge distribution as long as the hyperedges include the same
number of vertices. We can then fill these hyperedges with any connected motif we like. The
difficulty seems to arise when we have hyperedges with different sizes (include different numbers
of vertices). More specifically, we find it hard to estimate the initial rate of increase of the
number of open vertices as we explore component. This rate of increase seems to define, in all
the cases we could solve, the criterion of the formation of the giant component.

We saw however, using Newman’s generating functions method that computing this criterion
is possible. These criterions must be true since we argued that for any distribution of mixed
single edges and triangles, the components of the graph are tree like and therefore the generating
function results provide good approximations. All this provides good reasons to believe that
adapting the Molloy and Reed proof to Newman’s model of single edges and triangles is a
possible target.

We believe that once we do this for the simplest case of single edges and triangles we could
adapt it to the most general form of Newman’s model described in this chapter, where we have
random graphs of fixed mixed distribution of any finitely sized connected motifs.

Finally, if we would like to adapt the Molloy and Reed proof for the Gleeson model, things
seem less obvious. There is an added difficulty here in that hyperedges have an arbitrary size
making the calculation of the expected increase even less straightforward. Furthermore, the key
properties calculated by Gleeson in his paper does not include the critical point where the giant
component forms.
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Conclusion

In this dissertation, we were motivated by the publication of two very recent and promising
papers, that claimed they had solved one of the long standing problems in network theory, by
presenting two tractable random graph models with a non zero clustering coefficient in the limit
of large graph size. These papers were written by physicists who used heuristic methods and
approximations that were justified by more rigorous work done by other people like Molloy and
Reed [22] but for different random graph models. We set out to study these models and make the
results of these authors more rigorous by providing proofs for the global structure and qualitative
behaviour of graphs in their new models.

In the first few chapters we presented the background theory of this field. These chapters
reflect the learning curve of this dissertation. Network theory is a very vast topic that is discussed
in different types of literature written by people from different disciplines who use different
methods, some more rigorous than others.

Chapters 4, 5 and 6 represent the more creative part of this dissertation. We gave a proof
for the qualitative behaviour of a random graph with a fixed triangle sequence. We defined a
criterion of the formation of the giant component. We showed that all small components were
tree like and we also gave bounds on the size of these components. In the process of this, we
corrected some mistakes found in the paper by Molloy and Reed [22]. We then showed how this
proof can be generalised to any random graph model with a fixed hyperedges degree distribution
that could then be used to form random graphs with fixed motif distributions. We Argued that
this result implied that a random graph with mixed single edge and triangle distribution must
have the same qualitative behaviour as it is sandwiched between the classical configuration model
and the triangles model that we looked at. Therefore, the same also applied to any random graph
with a mixed distribution of different size motifs.

We then claimed that we could use these results to justify the use of the generating function
method for computing key properties for Newman’s model as he does in his paper [29]. We
derived some key results that were briefly discussed in his paper as well as some new results.
We showed that the results derived using these methods were consistent with results derived by
other people using more rigorous methods. Most importantly, the criterion of the formation of
the giant component in a graph with only triangles was consistent with the one we show in our
proof of theorem (2).

We then looked at the strengths and weaknesses of the models that we presented. We
proposed many generalisations of these models and discussed their relevance to applications and
how we could go about computing their properties.

Having achieved all this, we feel that there are many more problems that, given more time,
we would have liked to attempt. The most important of these are:

• Prove a result equivalent to Janson’s [18], on the condition required that the probability
that a random configuration creates a simple graph is positive. We would like to derive
and prove a similar result for the more general case of a configuration of hyperedges. This
is an important intermediate result for proofs on generalised configuration models.

• Look at and Molloy and Reed’s second paper [23] on the size of the giant component.
Generalising their results in this paper as we did here can help justify the use the generating
function method for properties of the giant component.

• Research more properties of the configuration model that were shown using more rigorous
methods and check for their consistency with the predictions of the generating functions
method.

• Compute more key properties of Gleeson’s model and check they are consistent with pre-
vious results.
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• Study the generalised models proposed in chapter 6 in more detail to see how the choice
of different types of motifs and degree sequences affect their key properties as we did with
the clustering coefficient.

• Prove the result that we could not show here, namely an equivalent of theorem (2) for
Newman’s model of joint degree distribution of single edges and triangles. We believe
that this is possible if we use Newman’s criterion for the formation of the giant derived
in chapter 5, as a basis for future investigations. Having achieved this, we would like to
carry on and do the same for the general case of models with hyperedges degree sequences
where hyperedges have different size.

We believe that Newman’s joint edge and triangle degree distributions and Gleeson’s degree
and clique participation distributions, are the first of few models that will have very powerful
applications in real life networks that exhibit high clustering such as social networks. The
generalisations that we discussed here are only few examples of further work that could be done
in this area. Newman and Gleeson’s papers have opened new doors in the research of network
theory and random graphs, a subject that continues to be very dynamic and exciting.
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Appendix A

A proof for the new model

The following is the omitted proof of Newman’s model of single edge and triangle
degree configuration. We have decided to put this proof here after discovering that
the criterion of the formation of the giant component, derived using Newman’s gen-
erating functions (5.2.7) is not equivalent to the result that we arrive at here (A.1.2).
We did not have the time to investigate what mistakes may have been made, but
we suspect that this is probably due to our approximation that on average we select
a blue copy with probability s and a red copy with probability t see algorithm (3)
and definitions (31).

We will start by defining a few concepts, we will then state our result in the form of a theorem,
which we will split into several lemmas which we will then prove.

Definition 24. A joint degree sequence is a sequence of pairs of non negative integers (s, t)1 . . . (s, t)n
that represents the number of single edges s and triangles t attached to a vertex i. We will usually
denote this by (si, ti).

Definition 25. We say that a joint degree sequence is feasible if the set of all possible graphs
with that sequence is non-empty.

Definition 26. An asymptotic joint degree sequence is a sequence of pairs of integer valued
function (s, t)1(n), (s, t)2(n) . . . , such that for a fixed graph size n we obtain a fixed joint degree
sequence (si, ti). Note that this definition is not similar to the degree sequence of the classical
model in 9.

Definition 27. Throughout the following chapters, we will use the terms

• Joint degree to refer to the pair (si, ti) denoting the number of single edges si and triangles
ti attached to a vertex i.

• Sum degree to denote the value (si + ti) for a vertex i with joint degree (si, ti), we denote
this value by deg(i).

• Total degree to denote the actual number of edges attached to a vertex. This is given by
si + 2ti for a vertex with joint degree (si, ti).

A.1 A configuration model with triangles

Suppose we are given a joint degree sequence (s1, t1), (s2, t2), . . . representing the number of
single edges and triangles respectively for a each vertex i in a graph of n vertices.
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Using this sequence, we construct the matrix di,j or d(i, j), where each entry represents the
number of vertices in the graph with exactly i single edges and j triangles.

Firstly, We Construct a set S of red and blue copies of vertices for our graph, by creating s
blue copies for every vertex with s single edges and t red copies for every vertex with t triangles
attached to it. In total we have si + ti copies for each vertex i.

Definition 28. A random configuration is a partition of S that consists of a set of pairings of
the blue copies of S and triples of the red copies of S. this partition is selected uniformly at
random from the set of all possible partitions.

Definition 29. An configuration cycle is a cycle that is not created explicitly by a triangle in
the degree sequence.

We will construct a random graph G with the above degree sequences by constructing a
random configuration using the following algorithm.

Algorithm 3. We construct our configuration F by pairing the blue copies and tripling the red
copies of the set S. We say that a vertex is exposed if any of its copies has been added to F , and
we say that the copies of an exposed vertex that remains in S are open.

Repeat the following until S is empty:

1. Expose a random vertex v in G by selecting a random element or copy in S then exposing
all the remaining copies of the same vertex.

2. Select an open copy x from S uniformly at random.

• If this copy x is blue we uniformly select another blue element y from S and pair it
with x, we add the pair to F and delete it from S. If the vertex corresponding to y is
not exposed, we expose it and open all its remaining copies.

• If this copy is a red copy, We uniformly select one more copy y choosing uniformly
from L, we say we pair y with half of x, if the vertex corresponding to y is unexposed
we open all its other copies, we remove y and x half of x from S.

• If the copy selected is half a red copy, we pair it with a randomly selected red copy from
S and expose its other copies. We remove these from S and add the triple composed
of x, y and the copy paired with the other half of x to F .

Repeat step 2 as long as there any open copies left. otherwise go to step 1.

We can see that using this algorithm, we construct any configuration with the specified joint
degree sequences uniformly at random from the set of all possibilities. The action of pairing two
blue copies corresponds to connecting two vertices with a single edge. The action of tripling
three red copies corresponds to connecting three vertices in a triangle. Hence, the algorithm is
exposing the components of G one at a time, a component is fully exposed when there are no
more open copies and a new component is started we go back to step 1. Note also that in step
1, the vertex did not have to be selected at random, it could be any vertex whose component we
would like to expose.

Of course, the above algorithm essentially constructs a multi-graph, but for the case of
the classical configuration model Janson [17] showed that for the classical model, given certain
conditions, there is a positive probability that the graph is simple. Although we do not show an
equivalent results here, in what follows we condition on the fact that graph we obtain is simple.

Definition 30. We say that a joint degree sequence is sparse if the sum of all sum degrees of
the vertices of the graph is linear in the size of the graph∑

i≥0

si + ti =
∑
i≥0

(i+ j)di,j = Kn+ o(n).
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Definition 31. We say that a joint degree sequence is well-behaved if it is feasible and there
exist constants pi,j , s, t such that

1.

lim
n→∞

di,j(n)
n

= pi,j .

2.

lim
n→∞

∑
i,j idi,j(n)∑

i,j(i+ j)di,j(n)
= lim
n→∞

∑
i,j ipi,j∑

i,j(i+ j)pi,j
= s.

3.

lim
n→∞

∑
i,j jdi,j(n)∑

i,j(i+ j)di,j(n)
= lim
n→∞

∑
i,j jpi,j∑

i,j(i+ j)pi,j
= t.

4.

lim
n→∞

∑
i,j

(i+ j)(i+ j − 2s− 3
2
t)
di,j
n

=
∑
i,j

(i+ j)(i+ j − 2s− 3
2
t)pi,j .

Note that s and t represent the ratio of the blue and red copies in S respectively. We define

D =
∑
i,j

(i+ j)(i+ j − 2s− 3
2
t)pi,j (A.1.1)

Q =

∑
i,j(i+ j)di,j(i+ j − 2s− 3

2 t)∑
i,j(i+ j)di,j

=
D

K
(A.1.2)

Theorem 3. Let (s1, t1)(n), (s2, t2)(n), . . . be a sparse, well-behaved asymptotic joint degree
sequence such that the probability that a random configuration with this sequence constructs a
simple graph is positive. Let G be a graph with n vertices and the above joint degree sequence
chosen uniformly at random from the set of all graphs with such sequence, then

• If D > 0 and if Q is finite and if there exists a constant 0 < β < 1 such the number
of vertices attached to both single edges and triangles is at least βn. Then, there exist
constants c1, c2, c3 > 0 such that G a.s. has one component with at least c1n vertices and
c2n configuration cycles. Furthermore, G a.s. has exactly no other component with size
greater than c3 log(n) and more than one configuration cycle.

• If D < 0 and there exists an ε > 0 and a function w(n) such that if 0 ≤ w(n) ≤ n1/8−ε and
the maximum sum degree of the sequence is at most w(n) for all n. Then there exists a
constant R such that G almost surely has no component with size greater than Rw(n)2 log n
vertices and more than one configuration cycle.

A.2 The rate of growth

We motivate the main idea behind the proof as follows: If the initial rate of increase of open
copies is positive, then we are likely to expose many vertices and form a giant component. If it
is negative the number of open copies runs to zero and we expose a small component. Let us
first we define few variables that will be useful later.

Definition 32. We define the following variables :

58



• Let Xr be the number of open copies after the rth pair has been formed. Note that a triple
here is counted as two pairings.

• Let Cr be the number of components fully or partially exposed when the rth pair has been
exposed, again counting a triple as two pairs.

• We say that a back-edge has been formed when we pair an open copy of S with another
open copy of S in step 2. This in fact corresponds to forming a configuration cycle.

• Let Yr be the number of back-edges formed by pairing two open blue copies, when the rth
pair has been exposed.

• Let Y ′r be the number of back edges formed by pairing an open red copy in step 2 with an
other (half) open red copy.

We will now motivate the remainder of our proof by looking at the initial rate of increase of
open copies Xr.

Remark 12. Let us compute the expected increase in number of red copies. We will do this by
conditioning on the colour of the first vertex chosen.

• If the first open copy selected in step two is a blue copy, the expected increase is

∑
i,j

di,j∑
i,j di,j

i(i+ j − 2).

This is because every blue copy in S is selected with a probability (idi,j/
∑
i,j idi,j), and

by doing so we add (i+ j) new open copies and remove two.

• If the open copy selected is a red copy, then we expose one new vertex and the expected
initial increase is

=
∑
i,j

di,j∑
i,j jdi,j

j

(
i+ j − 3

2

)
.

Recall from definition 31 that

s =
∑
idi,j∑

di,j(i+ j)
, t =

∑
jdi,j∑

di,j(i+ j)
.

Initially, these constants correspond to the probability that a randomly chosen copy in S is
either a blue or red copy. Now, given that the vertex chosen in step 2 of algorithm 2 is chosen
uniformly at random out of all copies in S. By conditioning on the colour of this first vertex, we
obtain an expected number of open copies given by
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s
∑
i,j

di,j∑
i,j idi,j

i(i+ j − 2) + t
∑
i,j

di,j∑
i,j jdi,j

j(i+ j − 3
2

)

=
∑
i,j

di,j∑
i,j di,j(i+ j)

i(i+ j − 2) +
∑
i,j

di,j∑
i,j di,j(i+ j)

j(i+ j − 3
2

)

=
∑
i,j

di,j∑
i,j di,j(i+ j)

i(i+ j − 2) + j(i+ j − 3
2

)

=
∑
i,j

di,j∑
i,j di,j(i+ j)

(i+ j)(i+ j)− 2
∑
i,j

di,ji∑
i,j di,j(i+ j)

− 3
2

∑
i,j

di,jj∑
i,j di,j(i+ j)

.

Using the fact that
∑
idi,j = s

∑
di,j(i+ j) and

∑
jdi,j = t

∑
di,j(i+ j), we get∑

i,j

di,j(i+ j)∑
i,j di,j(i+ j)

(i+ j − 2s− 3
2
t) (A.2.1)

Definition 33. We define the following useful variables :

• We define the variable Zq to be the sum of (i+ j−2s− 3
2 t) over the first q exposed vertices.

• We also define the analogous variable Wr to be the sum over (i + j − 2s − 3
2 t) over all

vertices exposed by the time rth pair has been exposed, counting a triple as two pairs.

Remark 13. The reason we introduce Zq is that it has the same rate of increase as Xr but
behaves much more nicely in that it only increases by (i+ j − 2s− 3

2 t) every time a vertex with
i single edges and j triangles is exposed. Hence, it is easy to put a bound on it’s expected value
when a fixed number of vertices have been exposed as we shall see later.

We now relate all the variables defined previously. We define the variable Rq to be the num-
ber of pairs exposed by the time we expose the qth vertex i.e. WRq = Zq.

Remark 14. Note that Xr is (roughly) the same as Wr except when we form a back edge. In
which case Xr decreases, note also that when we form our first pair or triple, Wr is already less
than Xr by either 3

2 or 2. Hence we obtain

Wr = Xr + 2Yr +
3
2
Y ′r − (2s+

3
2
t)Cr. (A.2.2)

Remark 15. We can also relate Wr to Zq. If no back edges are formed we would have exposed
Rr = r vertices. Consequently we would get Wr = Zr, but given that we get some back edges we
get r = Rr − Yr − Y ′r , so

Wr = Z(r−Yr−Y ′r ). (A.2.3)

Remark 16. Zr changes by at most 1−2s− 3
2 t = −(s+ t

2 ) > −1 every time a vertex is exposed.
This happens when we expose a vertex with sum degree 1 (i.e i+ j = 1)
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Zr ≥ Z(r−Yr−Y ′r ) − (s+
t

2
)(Yr + Y ′r )

= Wr − (s+
t

2
)(Yr + Y ′r )

= Xr + (
t

2
+ 1)Yr +

t

2
Y ′r − (2s+

3
2
t)Cr

≥ Xr − 2.

A.3 Small components

We now show that if the conditions of the second case of theorem (3) are satisfied, the graph
has no components of size larger than α = Sw(n)2log(n) vertices.

Lemma 9. Let G be a graph that satisfies the conditions of the second case of the theorem. Let
v be any vertex then the probability that v lies in a component of size α = Sw(n)2log(n) is less
than n−2.

Proof. Suppose that we start our algorithm by choosing v at step 1. We have that

Q =
D

K
=
∑
i,j

di,j(i+ j)∑
i,j di,j(i+ j)

(i+ j − 2s− 3
2
t) < 0.

The probability that a given component has size at least α is at most the probability that
Xα > 0, which is consequently at most the probability that Zr > −2 from remark (16). This is
because if Xr = 0 then we would have exposed the whole component.

Initially the rate of increase of Zr is∑
i,j

di,j(i+ j)∑
i,j di,j(i+ j)

(i+ j − 2s− 3
2
t).

After exposing q ≤ α vertices, the rate of growth of Z is highest if the first q vertices that
were exposed have sum degree 1(i.e. i+ j = 1). Hence the rate of increase of Zq is at most

−(s+ t
2 )(d1 − q) +

∑
i+j≥2 di,j(i+ j)(i+ j − 2s− 3

2 t)
(d1 − q) +

∑
i+j≥2 di,j(i+ j)

. (A.3.1)

where d1 refers to the number of vertices connected to either one edge or one triangle (i+j =
1), (A.3.1) is at most

≤
∑
i,j di,j(i+ j)(i+ j − 2s− 3

2 t)∑
i+j≥2 di,j(i+ j) − q

+
(s+ t

2 )q∑
i+j≥2 di,j(i+ j)− q

≤
∑
i,j di,j(i+ j)(i+ j − 2s− 3

2 t)∑
i+j≥2 di,j(i+ j)

+
(s+ t

2 )q∑
i+j≥2 di,j(i+ j)− q

.

Because q ≤ α = o(n) and
∑
i+j≥2 di,j(i+ j) ∼ Kn = θ(n), we get

≤ Q+ o(1) ≤ 3Q
4
< 0.
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The expected increase in Zq is still negative, indicating that the process should die out
quickly. Given that the degree of the the first chosen vertex v is at most w(n), we get that after
α vertices the expected value of Zα is at most

Initial value + (Rate × α) ≤ (3Q/4)α+ w(n).

Because α = Sw(n)2log(n), for n large enough it follows that

3Q
4
α+ w(n) ≤ Q

2
α.

We now introduce an important result known as Azuma’s inequality that will help bound
the probability of Z deviating too far from its mean.

Azuma’s inequality

Let X0, . . . , Xn be a martingale with |Xi−Xi−1| ≤ 1, for all 0 ≤ i < n, with Let λ > 0 it follows
that

Pr(|Xn| > λ
√
n) < e−λ

2/2.

Azuma’s inequality yields the following standard corollary.

Corollary 2. Let Σ = Σ1, . . . ,Σn be a sequence of random events. Let f(Σ) = f(Σ1,Σ2, . . . ,Σn)
be a random variable defined over these events. Then if E(f |Σ1,Σ2, . . . ,Σi) is c−Lipshtiz, that
is if there exists constants ci , c = (c1, . . . , cn) such that for all i :

max|E(f(Σ)|Σ1, . . . ,Σi+1)− E(f(Σ)|Σ1, . . . ,Σi)| ≤ ci
Then

Pr(|f − E(f)| > t) ≤ 2 exp
(
−t2

2
∑
i c

2
i

)
.

We will make use of Azuma’s inequality by defining Σi to indicate the ith vertex to be
exposed, for i = 1, . . . , α and f(Σ) = Zα. We also define Ei+1(x) = E(Zα|Σ1, . . . ,Σi+1), where
Σi+1 is the event that the (i+ 1)th vertex is x. We would like to bound

|E(f(Σ)|Σ1, . . . ,Σi+1)− E(f(Σ)|Σ1, . . . ,Σi)|

We will do this by first bounding |Ei+1(x)−Ei+1(y)| for any x, y. Let u, v be any two vertices.
Suppose that we are choosing the (i+ 1)st vertex. We are therefore left with n− i vertices. Note
that by ignoring u, v, the distribution of the order in which the remaining vertices are exposed
is unaffacted by the positions of u and v.

Let Ω be the set of the first remaining α− i− 3 vertices in this order,

Zα = Zi +
∑
Ω

(i+ j − 2s− 2
3
t) + deg(y1)−

(
2s+

2
3
t
)

+ deg(y2)−
(
2s

2
3
t
)
.

where y1 is either u or v and y2 is either u, v or the next vertex in the order. Hence we see
that the choice between u and v can only change Zα by an amount equal to the maximum degree
which is w(n). Hence,
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maxx,y|Ei+1(x)− Ei+1(y)| ≤ w(n).

Given the fact that

E(f(Σ)|Σ1, . . . ,Σi) =
∑
x

Pr(x is chosen) Ei+1(x) ≤ maxx Ei+1(x),

we get that

|E(f(Σ)|Σ1, . . . ,Σi+1)− E(f(Σ)|Σ1, . . . ,Σi)|

≤ maxxy |Ei+1(x)− Ei+1(y)| ≤ w(n).

Therefore, the probability that Zα > −2 is at most Zα > 0 which is

Pr(|Zα − E(Zα)|) > E(Zα).

By Azuma’s inequality, this is at most

2 exp(− (Q/2α)2

2
∑
w(n)2

) = 2 exp(− (Q/2α)2

2αw(n)2
)

Substituting α = Sw(n)2log(n), we get

2exp(− (Q2/4Slog(n))
2

= 2n−Q
2/8S < n−2.

The last inequality holds by substituting S = 17
Q2 and working through.

Hence the probability that a randomly chosen vertex lies on a component of size at least α
is o(n−1) and hence the expected number of such vertices is o(1), so asymptotically none are
expected to exist.

A.3.1 Very few configuration cycles

We we will now show that there is asymptotically no component with more than one configura-
tion cycle, when the conditions of the second case of the theorem are satisfied. We will do this
by showing that asymptotically we have very few back-edges.

Remark 17. Looking at our algorithm, we see that Xr the number of open vertices decreases
by at most 2 at every execution of step 2. Therefore by lemma (9), the size of any component
is at most α implies that Xr < 2α at any step r during the execution of our algorithm. More
precisely, at step r we must have that Xr < 2(α− r).

Lemma 10. Let G be a graph satisfying the conditions of the second case of the theorem. Then
G almost sure has no components with 2 cycles.

Proof. Fix any vertex v. We start our algorithm at step 1 with this vertex. We suppose that v
lies in a component with more than one cycle. We will show that this happens with a very small
probability and therefore asymptotically no such vertices are expected to es

Because at every iteration in our algorithm we either expose a new vertex or form a back-
edge, we must have that the second back-edge is formed before (α + 2) steps or else we would
have exposed more than α vertices which we saw by lemma (9) has a probability less than n−2.
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Suppose the first and second back edges are formed at step A and B respectively such that
0 ≤ A ≤ B ≤ α+ 2. The probability that we form two backedges is at most

α+1∑
A=0

α+2∑
B=A

(
2(α−A)

Kn− 2(α−A)− 3

)(
2(α−B)

Kn− 2(α−B)− 3

)
.

This is because the number of open vertices is less than 2(α−A) or 2(α−B) and the number
of elements left in S is more than Kn− 2(α−A)− 3 or Kn− 2(α−B)− 3. This probability is
at most

α+1∑
A=0

α+2∑
B=A

(
2(α−B)

Kn− 2(α−B)− 3

)2

≤
α+2∑
A=0

α+2∑
B=0

(
2(α−B)

Kn− 2(α−B)− 3

)2

≤ (α+ 2)
α+2∑
B=0

(
2(α−B)

Kn− 2(α−B)− 3

)2

≤ (α+ 2)
1

(Kn− 2(α+ 2)− 3)2

α+2∑
B=0

(2(α−B))2

= (α+ 2)
1

(Kn− 2(α+ 2)− 3)2

α+2∑
B=0

(2B)2

≤ (α+ 2)
4

(Kn− 2(α+ 2))2
(α+ 2)3.

Because α = Sw(n)2log(n), if we take w(n) = n1/8−ε for any ε > 0, we get

1
(Kn− 2(α+ 2))2

(α+ 2)4 = o(n−1)

So the probability that a random vertex v lies in a component with two cycles is at most
o(n−1). Therefore the expected number of these is o(1). So with high probability there no
components with more than once cycle as n tends to infinity.

A.4 A giant component

In this section, we will consider the first case of theorem (3). We will show that given that
D,Q > 0, then with high probability our graph has a giant component and at least a linear
number of cycles.

We will proceed as follows: First, we start our configuration building algorithm with any given
vertex, and we show that after a certain number of step, Zq very large with high probability. We
will then use relation (A.2.2) to show that Xr is also very large with high probability. Having
shown that the number of open vertices Xr is very large, we will deduce that that with high
probability our configuration building algorithm will form a large number of back-edges and
exposes a large number of new vertices, hence forming a giant component and a large number
of cycles.

Lemma 11. If Q > 0, then there exists 0 < ε < 1 and 0 < ∆ < min(β2 ,
K
2 ) such that for all

0 < δ < ∆, then a.s. Zδn > εδn. The probability of the converse is zn1 for some 0 < z1 < 1.
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Proof. In what follows, we will assume for simplicity that δn is an integer.
Recall that in the proof of lemma (9), we bounded the expected increase in Zq after a number

of steps of α = o(n). We then used this to have a bound on the expected value of Zq itself. Then
we showed using Azuma’s inequality that with high probability we cannot deviate too far from
the mean.

We will proceed similarly. However, the problem here is that we want to bound the expected
increase in Zq after a linear number of steps δn. This causes the probability of choosing a copy
of a vertex of a certain degree to shift significantly.

To get around this, we will define a new variable Z∗q that behaves much more nicely than Zq
such that Zq majorises Z∗q , i.e. that:

Pr(Zq ≥ x) ≤ Pr(Z∗q ≥ x).

Define qst to be the initial probability that that we choose a copy of a vertex of degree (s, t).
We have that:

qi,j =
(i+ j)di,j∑
i,j(i+ j)di,j

= (i+ j)
pi,j
K

.

This probability is likely to shift after δn steps. We define Z∗q by fixing a number k∗ and a
sequence of probability values φ1,0, φ0,1, . . . , φi+j=k∗ . Such that Z∗q is the sum of all (i+j−2s− 3

2 t)
by the time the qth vertex is exposed, with the difference that every vertex of joint degree (i, j)
is chosen with probability φi,j at every step, and that if we select a vertex of sum degree greater
than k∗ we treat as having sum degree 1 i.e. subtract 2s+ 3

2 t.
Clearly, if after q steps qi,j ≥ φi,j for 2 ≤ i+ j ≤ k∗, then:

Pr(Zq ≥ x) ≤ Pr(Z∗q ≥ x).

for any x. Therefore, it suffices to find such k∗ and φi,j such that after δn steps Z∗q is at least
εδn, this will be achieved by finding Z∗q that has a positive expected increase.

Given that Q > 0, we have that:

Q =
∑
i,j

(i+ j − 2s− 3
2
t)

(i+ j)di,j∑
i,j(i+ j)di,j

=
∑
i,j

(i+ j − 2s− 3
2
t)qi,j

=
∑
i,j

(i+ j − s− 1
2
t− 1)qi,j =

∑
i,j

(i+ j − s− 1)−
∑
i,j

(s+
1
2
t)qi,j

=
∑
i+j≥2

(i+ j − 1)qi,j − (s+
1
2
t) > 0

Because the asymptotic degree sequence is well behaved, see definition (31). We can find a
k∗ such that: ∑

i,j≥2

(i+ j − 1)qi,j > (s+
1
2
t) + ε′.

Therefore we can also find a sequence φi,j of joint probability values such that:

• φi,j < qi,j , for 2 ≤ (i+ j) ≤ k∗.

• φ0,1 + φ1,0 = φ1,1 + · · ·+ φi+j=k∗ .

•
∑
i,j≥2(i+ j − 1)φi,j = (s+ 1

2 t) + ε′

2 .
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This gives that: ∑
i,j≥2

(i+ j − 2s− 3
2
t)φi,j =

ε′

2
.

We construct such a joint probability sequence as follows: Given that qi,j = (i + j)pi,jK , for
(i+ j) ≥ 2, choose any ∆i,j > 0 such that:

φi,j ≥< (i+ j −∆i,j)
pi,j
K

< qi,j

Taking ∆ = mini,j{∆1,1,∆2,0 . . .∆i+j=k∗ ,
β
2 ,

K
2 }, then after exposing up to ∆n vertices, the

probability of choosing a copy of a vertex of sum degree 2 ≤ (i + j) ≤ k∗ is at least φi,j .
Therefore for 0 ≤ q ≤ ∆n:

Pr(Zq ≥ x) ≤ Pr(Z∗q ≥ x).

Let us now consider the variable Z∗q with the following properties:

• Z∗0 = 0.

• Z∗q+1 = Z∗q + (i+ j − 2s− 3
2 t) , with probability φi,j for 2 ≤ (i+ j) ≤ k∗.

This variables has expected increase ε′

2 at every step q. Therefore, after δn steps, for delta <
Delta, its expected value is ε′

2 δn. By Chernoff’s inequality, see [8], we get that:

Pr(Z∗δn ≤
1
2
E(Z∗δn)) ≤ exp

(
−E(Z∗δn)

4

)
Pr(Z∗δn >

ε′

4
δn) ≥ 1− exp

(
−ε
′δn

8

)
Therefore, if take ε = ε′

4 we get that with high probability Zδn > εδn.

Having shown that Zq is very large for q large enough. We will now show that Xr also
becomes very large at some point before ∆n.

Lemma 12. If Q > 0 and Q finite, then there exists δ′ such that for all 0 < δ ≤ δ′ , there a.s.
exists 0 < η < 1 such that Zδn ≤ ηn where η = min{ sK4 ,

tK
4 }. The probability of the converse is

at most (z2)n for some 0 < z2 < 1.

Proof. The initial expected increase in Zq is given by Q. We will show that even after δn steps
this expected increase is not that large. We will the use an upper bound on the expected increase
to bound E(Zq) and then Chernoff’s inequality to bound Zq itself.

The initial expected increase in Zq is given by Q:

Q =
∑
i,j

(i+ j − 2s− 3t
2

)qi,j

=
∑
i,j

(i+ j − 2s− 3t
2

)(i+ j)
pi,j
K

.

In the worst case, the first δn exposed vertices are all of sum degree i+ j = 1. After δn steps
the probability of choosing a copy of a vertex of sum degree i+ j ≥ 2 is :
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qi,j = (i+ j)
pi,j
K − δ

≤ pi,j
K/2

≤ 2qi,j .

This implies that for all q ≤ δn the expected increase in Zq is at most 2Q. Therefore:

E(Zq) ≤ 2Qδn.

If we take δ ≤ min{ 1
2
sK
4 ,

1
2
tK
4 } = δ′, then by Chernoff’s inequality:

Zδn ≤ min{sK
4
,
tK

4
}

with a probability exponential in n.

Corollary 3. Using equation (A.2.2) we obtain that because Zδn ≤ ηn for any 0 < δ ≤ δ′, we
must have that XIδn≤ηn.

Lemma 13. If Q > 0, then there exists 0 < δ′′ < δ′ such that for any 0 < δ ≤ δ′′, there a.s.
exist an R, 0 < R < Rδn such that XR > γn where γ = εδ

4 . The probability of the converse is
(z2)n for some 0 < z2 < 1.

Proof. We will bound Xr using relation (A.2.2):

Zq ≤ XRq + 2YRq +
3
2
Y ′Rq −

3
2

Zq ≤ XRq + 2YRq +
3
2
Y ′Rq

XRq ≥ Zq − 2YRq −
3
2
Y ′Rq

XRq ≥ Zq − 2(YRq + Y ′Rq ). (A.4.1)

We also have that because Xr ≥ 0 :

Zq ≥ 2YRq +
3
2
Y ′Rq − 2

≥ 3
2

(YRq + Y ′Rq )− 2 (A.4.2)

Therefore if we want to bound XRq , we will have to bound the number of back edges formed
(YRq + Y ′Rq ) from above. We will do this by counting the number of back edges formed before
Xr > γn, or Rδn pairs have been formed.

At any step r, 1 ≤ r < Rδn, the probability that we form a back edge is the probability of
choosing an open vertex in step 2 of algorithm (2), which is at most Xr

Kn−2r . Let us now bound
Rq the number of steps required to expose q vertices:

Rq ≤ q + YRq + Y ′Rq ≤ q +
2
3
Zq +

4
3

Using the result of lemma (12), we have that Zq ≤ K
4 . This gives:

Rq ≤ q +
K

6
n+

4
3
≤ δn+

K

6
n

for n large enough. The probability p of forming a back-edge when Xr ≤ γn is at most:

p =
Xr

Kn− 2K6 n− 2δn
≤ εδ/16

2K
3 − 2δ
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Consequently, the number of back edges formed has an expected value of at most:

E(YRq + Y ′Rq ) ≤ pIδn ≤
εδ/16

2K
3 − 2δ

(δ +
K

6
)n

We would like this expected value to be less than εδ
8 n i.e. :

εδ/4
2K
3 − 2δ

(δ +
K

6
)n <

εδ

8
n

δ + K
6

2K
6 − δ

<
1
2

δ +
K

6
<
K

3
− δ

2δ <
K

6

If we take δ < K
12 = δ′′, we get by Chernoff’s inequality:

Pr(YRq + Y ′Rq >
εδ

4
n) ≤ (z3)n

for some 0 < z3 < 1.
Therefore, if for all 1 ≤ r < Rδn, Xr ≤ εδ

4 , we get that with high probability:

YRq + Y ′Rq ≤
εδ

4
n.

Using inequality (A.4.1) we obtain

XRδn ≥ Zδn − 2(YRδn + Y ′Rδn)

≥ εδ − εδ

2
=
εδ

2
>
εδ

4
.

Lemma 14. If Q > 0, there exists constants c1, c2 such that the component being exposed at
step R ≤ Rδ′′n has a.s. at least c1n vertices and c2 cycles. The probability of the converse is
(z4)n for some 0 < z4 < 1.

Proof. We have shown that there exists a step R ≤ δ′′n such that XR > γn, 0 < γ < 1. We will
show with high probability c1n of the XR open copies will be matched with unexposed vertices
and that c2n will be matched with other open copies.

Among the XR open copies at step I, at least half of these must be of the same colour C. We
construct a set B containing all open copies of colour C. This set has size at least γ

2n.
Also, qt step Iδn, we have only exposed δn vertices. From lemma (11), δ is at most β

2 this
implies there is at least β

2 remaining vertices that have copies of both colours. We create a set
A containing one copy of each of these vertices with colour C.

After I steps there at least (Kn−2R) copies left to be matched. We will show that c1n copies
will be matched with members of A and c2n copies will be matched with members of B. Our
configuration building algorithm pairs up, these (Kn− 2R) open copies of vertices uniformly. It
essentially creates (Kn− 2R)/2 pairs, with each pair created with an equal probability.

In general, given any two sets A and B which are subsets of a set C , the probability we
create a pair containing a copy from A and a copy from B from a set C is

|A||B|(|C|
2

)
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where |A| denotes the size of set A, and the expected number of these is:

|A| |B|(|C|
2

) |C|
2
≤ |A| |B|

|C|
.

Therefore, the expected number of pairs containing one copy from A and one copy from B
in our configuration is:

≤ β/2 γ/2 n
Kn− 2R

≤ β/2γ/2n
Kn− 2δn− K

3 n
= 2c1n+ o(n).

for some constant c1 > 0. The expected number of pairs containing two copies of B is:

≤ γ/2n γ/2n
Kn− 2R

≤ γ/2n γ/2n
Kn− 2δn− K

3 n
= 2c2n+ o(n).

for some constant c2 > 0. Finally, using Chernoff’s inequality we get that the number of such
pairs is less than half their expected values with a probability (z4)n for some 0 < z4 < 1. So,
with high probability we have at least c1n vertices in our component being exposed and at least
c2n back-edges.

Lemma 15. Given a configuration F as described in the first case of theorem (3), then F a.s.
has at most one component with more than T log(n) vertices for an appropriate choice of constant
T .

Proof. We have already shown that F has at least one component of size c1n for some constant
c1 > 0. We have also shown that there exist an R, R ≤ Rc1n such that XR > γn where
γ = min εc1

4 , δ
′′.

We will look at pairs of vertices (u, v) and show that the probability that u and v belong to
different components of size at least c1n and T log(n) respectively. We call these components C1

and C2 respectively. We will show that this happens with probability o(n−2) and therefore the
expected number of such pairs is zero.

We suppose that such a pair exists and we start algorithm (2) with any copy of vertex u. If
after R steps of algorithm (2), we are no longer exposing C1 then u does not lie on a component
of size at c1n, and if we have exposed a copy of v then u and v are in the same component so
we will assume neither event happens.

We modify our exploration algorithm slightly, by stopping the exploration of C1 after R
steps, and starting to explore v’s component. This is legitimate because u and v are in different
components and this still produces a random configuration.

We will show that with high probability one of the vertices of C2 will be matched with one
of the XR open copies of the exploration of C1. Since Xr > γn), and the number of available
copies to be matched with at any point during the exploration of C2 is at most Kn, we get that
the probability of choosing one the Xr open copies during the exploration of C− 2 is at least: γK .

Because C2 has at least T log(n) vertices. The probability of matching a vertex of C2 with
one of the XR open copies from the open exploration of C1 is at most(

1− γ

K

)T log(n)

=
(
e−c
)T log(n)

.

for some constant c. Taking T > 2c give:(
1− γ

K

)T log(n)

= o(n−2).

Therefore the expected number of pairs (u, v) that lie on components of size at c1n and
T log(n) respectively is o(1), so a.s. none exist.
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Lemma 16. Given a configuration F as described in the conditions of the first case of theorem
(3), then F a.s. no components of size at most T log(n) wih more than one cycle.

Proof. We have shown that a configuration F satisfying conditions of the first case of theorem
(3 has a.s. exactly one component of size at least c1n for some 0 < c1 < 1, and that all other
components have size at most T log(n).

Suppose there exists one such a component with at least two cycles. Let v be a vertex in
such a component. We start algorithm (2) at vertex v. We will show that the probability of
having two back edges o(n−1 and therefore no such vertices are expected to exist.

Because the size if the component of v is at most T log(n), each vertex in it has degree
at most T log(n) as well. We therefore have that Xr ≤ T 2 log(n)2 at any step r, because the
maximum number of copies of vertices of this component it at most the number of vertices times
the maximum degree. For the same reason we have that the component is entirely exposed in
at most T 2 log(n)2 steps.

The probability that a back edge is formed at any step r is at most:

Xr

Kn− 2r
≤ T 2 log(n)2

Kn− 2r
≤ T 2 log(n)2

Kn− 2T 2 log(n)2
= o(n−1/2).

The probability of forming at least 2 back edges is at most:(
T log(n)

2

)
(n−1/2)2 = o(n−1).

Therefore, the expected number of vertices in components of size at most T log(n) and more
than one cycle is o(1) and therefore a.s. none exist.
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[12] P.Erdős and A.Rényi, On Random graphs, publicationes mathematicae 6, 290-297 (1959).

[13] A.Fronczak, J.A.Holyst, M.Jedynak, J. Sienkiewicz, Higher order clustering coefficients in
Barabasi-Albert networks, Physica A 316, 688-694 (2002).

[14] J.P.Gleeson, Bond percolation on a class of clustered random graphs, preprint (2009),
arXiv:0904:4292.

[15] G.Grimmett, Percolation, Springer (1999).

[16] P.Holme , B.J.Kim, Growing scale free networks with tunable clustering, Phys. Rev. E 65
036133 (2005).

[17] S. Janson, The probability that a random multigraph is simple. Combinatorics, Probability
and Computing 18, 205-225, 2009.

71



[18] S.Janson, M.Luczak, A new approach to the giant component, Random Structures and
Algorithms 34, 197-216 (2009).

[19] H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, A.-L. Barabs. The large-scale organization of
metabolic networks. Nature 407 651 (2000).

[20] B. Jiang, C. Claramunt, Topological Analysis of Urban Street Networks, Environ. Plann. B
31 151 (2004).

[21] S.Milgram , The small world problem, psychology today 2 60-67 (1967).

[22] M.Molloy and B.Reed, A critical point for random graphs with a given degree sequence,
Random structures and algorithms 6 161-179 (1995).

[23] M.Molloy and B.Reed, The size of the giant component of a random graph with a given
degree sequence, Combinatorics probability and computing 7, 295-305 (1998).

[24] M.E.J.Newman, S.H.Strogatz, D.J.Watts, Random graphs with arbitrary degree distributions
and their applications, Phys. Rev E 64, 026118 (2001).

[25] M. E. J. Newman, The structure and function of complex networks, SIAM Review 45,
167256 (2003).

[26] M.E.J.Newman, S.H.Strogatz, D.J.Watts, Random graphs with arbitrary degree distributions
and their applications, Phys. Rev. E 64, 026118 (2001).

[27] M.E.J.Newman, The structure and function of complex networks, Phys. Rev. E 67, 026126
(2003).

[28] M.E.J.Newman, Juyong Park. Phys. Rev. E 68, 036122 (2003).

[29] M.E.J.Newman, Random graphs with clustering, Physical review letters, 103, 058701 (2009).

[30] M. E. J. Newman, in Handbook of Graphs and Networks, S. Bornholdt and H. G. Schuster
(eds.), Wiley-VCH, Berlin (2003)

[31] M.A.Porter, P.J.Mucha, , M.E.J.Newman, A.J.Friend. Community Structure in the United
States House of Representatives. Physica A, Vol. 386, No. 1: 414-438 (2007).

[32] A.L.Traud, E.D.Kelsic, P.J.Mucha, M.A.Porter. Community Structure in Online Collegiate
Social Networks. Submitted to SIAM Review, arXiv:0809.0690 (2008).

[33] D.Price, A general theory of bibliometric and other cumulative advantage processes, Journal
of the American Society for Information Science 27 292-307 (1976).

[34] D.J.Watts, S.H.Strogatz, Collective dynamics of small world networks, Nature 393, 440-442
(1998).

[35] T.Yu-Song, A.O.Sousa, K.Ling-Jiang, L.Mu-Ren, Combined update scheme in the Sznajd
model, Physica A, Volume 370, Issue 2, 727-733 (2006).

[36] S. R.Broadbent, J.M.Hammersley Percolation processes. I. Crystals and Mazes, Proc Camb
Philos Soc, vol. 53, no. 3, pp. 629-641 (1957).

72


