An Investigation of Federal Election
Donation Networks from 1980 to 2010

Candidate 130530

March 30, 2012

Contents

[I__Introduction

11 Graphs|
[1.1 Theadjacency matrix|. oo ovv e v o e ..
[1.2 Network properties|

E.Z.l Degree|
1

2.2 Neighborhood ofavertex|
1.2.3 Transitivity and Reciprocity|
[[24 Projections|.
[[25 Communities

[3 The Ball-Karrer-Newman (BKN) algorithm|

B1 Introduction|
B2 Derivation|
3.2.1 Naive BKN algorithm|
3.2.2 Expectation-Maximization|.
3.2.3 Practical Improvements|
3.2.4 Drawbacks of the BKN algorithm|
3.3 Computational Constraints|

4 Discussion]

4.1 Changes in transitivity over time|
4.2 Changes in reciprocity over time|
4.3 Degree and Clustering Coefficient|

5__Conclusionl

1 FutureWork|

A" Python Code: Processing Raw Text Files|

(B Python Code: Creating Projections|

22

27

30

[D Codebook for FEC Edgelist Files|
[E Codebook for FEC Nodelist Files

34

38

Abstract

The study of American politics has increasingly turned to both quantitative
and qualitative analyses of political networks to understand voting patterns
and behavior, policy ideas, public opinion, impacts on legislation, interest
group influences and coalitions, and other political practices. The goal of
this project is to understand and analyze the network structure of election
donation data from the Federal Election Commission as it changes over three
decades. We see differences in transitivity and reciprocity between presidential
and midterm cycles, suggesting that the two have different structure. We
also observe a large jump in transitivity between 1986 and 1988, reflecting
the increase in the use of soft-money in the 1988 presidential campaign. We
implement an algorithm published by Ball, Karrer and Newman in 2011 that
detects overlapping communities, and we run this against a modified projection
onto the candidates.

Acknowledgments

I'would like to thank, in no particular order, Andrew Waugh for curating and
supplying the data; my supervisor for his wisdom, guidance and critical eye;
Lucas Jeub for visualization code and providing help and coding improvements;
and my parents, for all their support, pecuniary and otherwise.

I must also thank former President Richard Milhous Nixon-without Tricky
Dick’s creative campaign financing, the FEC might not have existed.

Chapter 1

Introduction

One of the main issues of political science is that of campaign finance by which
political candidates fund their campaigns. In the United States, the issue regu-
larly enters the news. In the 1970s, the US congress passed the Federal Election
Campaign Act to regulate campaigns(Mann, |[2003). The act was later amended
to establish the Federal Election Commission (FEC), a bipartisan committee that
enforces campaign rules(Mann), 2003).

The disclosure of donations is important to show how politicians are influ-
enced, especially when donations to relevant elected officials are an integral part
of modern lobbying. The raw data collected by the FEC is available to the public
for analysis. However, I used data that Andrew Waugh, a political scientist and
collaborator from U. C. San Diego, supplied. The supplied data is a proprietary
version of what is available to the public, which he has amalgamated, formatted
and parsed for use in network analysis. The goal of my investigation is to see
how network properties like transitivity, reciprocity and community structure
have changed over the years and if they reflect changes in electoral laws.

Sections(l.1]and [1.2|focus on the mathematical background to the analysis.
Chapter 2| gives an overview of political networks and more information about
how I used the data in this investigation. Chapter [3|describes the algorithm I
implemented, re-derived and used in my analysis. Chapters 4 and [f| provides
discussion and conclusions, respectively. Python and MATLAB code I wrote is
given in Appendices|A|through|C] Codebooks describing the structure of the
supplied data are in Appendices|E|and [D]

1.1 Graphs

The usual representation of a network is a graph G := (V,E) with a set of
vertices V = {v;}1<j<n and a collection of edges E C V x V. The connections
between vertices are represented as ordered pairs of vertices (v;, v;) € E in these
directed graphs, as shown in Figure When the direction of the connection is
unimportant, the order of the pair does not matter. In such undirected graphs
(as shown in Figure[1.1b), only the existence of a connection matters(Newman),
2010).

A particularly large network is the World Wide Web, with webpages as
vertices and hyperlinks as edges. The edges of a graph representing this network

must be directed because a hyperlink connects in only one direction. Because a
webpage may link to itself, the graph representing it can have self-edges— edges
of the form (v;, v;). In Figure[1.1a] vertex 1 has a self-edge.

In certain networks (including the World Wide Web) multiple edges can exist
between two vertices(Newman, 2010). In such graphs, known as multigraphs,
an edge can be labeled to distinguish it from the others. For example, the edges
in a temporal network are of the form (v;, v;, t), where t is the time of edge’s
occurrence. In Figure the multiple edges between vertices 0 and 2 are
distinguished by their color. Graphs without multiple or self edges are called
simple.

If a graph’s set of vertices can be split into two disjoint sets U and W where
every edge connects a vertex in U to one in W and vice versa, then the graph is
said to be bipartite, as depicted in Figure For example, consider a network
of consumers and products where an edge exists between a consumer and
product if the consumer purchased the product. Because we can split the set
of vertices into the disjoint sets of consumers and products, this network is
bipartite.

Edges in any type of graph may also be weighted by a real number to represent
the strength of the interaction between two vertices (Newman,[2010). The graphs
described previously are unweighted. How to weight an edge depends on the
context of the analysis. For example, consider a graph where the vertices are
countries and the edges represent shipping lanes. A weighting by total value of
goods shipped across each lane could be one choice; another could be by total
number of ships.

1.1.1 The adjacency matrix

A convenient representation of a simple, unweighted graph is by using an
adjacency matrix A;; defined as

A e 1 if (Ui,U]') €E (1.1)
v 0 otherwise '

In graphs with weighted edges and without self-edges, the adjacency matrix

is defined as
Weight((v;, v; if (v;,v;) € E
0 otherwise

The adjacency matrix of a graph encodes the graph in a form suitable for
calculations. Many network algorithms require the ability to quickly check the
existence of an edge between two vertices and the weight of that edge, if the
graph is weighted. Representing a graph as a full adjacency matrix allows the
retrieval of this information within O(1) time. However, if the adjacency matrix
has many entries equal to 0, then representing it in a sparse matrix format
can save memory. Unfortunately, checking for the existence of an edge in an
adjacency matrix in a sparse format is slower than O(1).

Other properties may be ascertained quickly from the adjacency matrix.
For example, undirected graphs have a symmetric adjacency matrix because
the existence of the edge (v;, v;) requires the existence of the edge (v}, v;), so
Ajj = Aji. In an undirected graph, a self-loop is encoded by setting A;; equal to

0“0

(a) A directed triangle graph (b) An undirected graph
with a self-edge in orange

(c) A multigraph(d) A bipartite graph, with
with multiplegroups labeled by colors.
edges between

vertices 0 and 2

Figure 1.1: Various types of unweighted graphs

2. In a directed graph, a self-loop is encoded by setting A;; equal to 1(Newman),
2010).

1.2 Network properties

1.2.1 Degree

In an undirected graph without self-edges, the degree of a vertex is the number
of edges emanating from that vertex. The degree must be non-negative as
well as less than the total number of vertices minus one(Newman, |[2010). In a
directed graph, we must consider the in-degree, which is the number of edges
pointing into a vertex, as well as the out-degree, the number of edges emanating
from that vertex.

The cumulative degree distribution of a graph G is defined as

of nodes with degree > d
Cg(d) : e =

= 1.3
total number of vertices in G (1.3)

This gives an insight into how often vertices with high or low degrees appear in
the graph. Generating a graph with a fixed number of vertices, by sampling the
degree of a vertex from a known distribution such as Poisson or power law, is
a common way of creating null models against which to compare real-world
networks.

1.2.2 Neighborhood of a vertex

In a network, the neighborhood of a vertex are the other vertices that connect to it.
The neighborhood in an undirected graph of vertex v; is defined I' = {u € V :
(u,v;) € E}. The degree of vertex i is then |T;].

In a directed graph, there is a distinction between the in-neighborhood I'" =
{u € V: (u,v;) € E} and the out-neighborhood T?"* = {u € V : (v;,u) € E},
which are, respectively, the vertices that have an edge pointing at v; and vertices
for which v; is in their in-neighborhood. The in-degree of vertex i is then |T™"|
and the out-degree is |T9"|.

1.2.3 Transitivity and Reciprocity

The transitivity or global clustering coefficient is defined as three times the ratio of
the number of triangles to the number of connected triples. A triangle occurs
between vertices u, v, and w if the edges (u,v), (v, w), and (w, u) are present in
the graph, whereas a connected triple occurs if any two of those three edges
exist. The local clustering coeffcient is defined for each vertex as the ratio of the
number of connected triangles containing that vertex to the number of triples
containing that vertex.

In undirected graphs, a triangle is the smallest loop that can occur, so graphs
with a high clustering coefficient represent situations where the "friends of my
friends are also my friends." Because undirected graphs formally represent a
relation on the set of their vertices, this quantity measures the degree to which
the relation is transitive. For example, an undirected graph that represents an

equivalence relation has a transitivity of 1. In contrast, the transitivity of a tree
is 0.

In directed graphs, the loop between two vertices is the smallest that can
occur. One can then measure how often a vertex reciprocates an edge. In other
words, how often A;; equals Aj; when either equals 1. The reciprocity is

r:= (#of edges)71 Z AjjAji (1.4)
if

Graphs with weighted edges are treated as if they were unweighted. A;; €
{0,1}) is the ratio of reciprocated edges to the total number of edges present in
the graph, and it lies between 0 and 1. A high reciprocity occurs when vertices
are likely to link back to each other, if one links to the other. An undirected
graph has a reciprocity of 1.

1.2.4 Projections

In bipartite networks, one can construct a graph onto one of the subsets of
vertices, creating a unipartite graph. Let U be the set of vertices of one of
the two distinct groups of vertices of the graph and let W be the other. The
projected graph P has vertices U and adjacency matrix that is equivalent to
computing AAT, keeping the rows and columns corresponding to U and setting
the diagonal elements to O(Newman), 2010). It is equivalent to a projection
in linear algebra, whence the name. The projected graph P is an undirected,
weighted network.

However, the reduction in vertices comes at a price: the constructed graph
does not encode the same information. Most of the information in the vertices
that were not projected upon (vertices in W) is lost. Furthermore, if the graph is
weighted, then it is not straightforward as to how to incorporate the weightings
of the original graph into the projected one. A more complex issue is how to
relate the network properties of the constructed graph to those of the original.
There is no straightforward way to interpret those properties in the context of
the original, because the information encoded in the projected graph differs
from the information encoded in the original.

1.2.5 Communities

One of the main areas of study in network science is the algorithmic detection
of a community of vertices, intuitively a subset of the vertices where there
are more links within the subset than to vertices outside of the subset(Porter
et al., [2009). Communities may be distinct, where a vertex belongs to one
and only one community, or overlap, where a vertex could belong to two or
more communities simultaneously. If communities overlap, then a vertex may
belong more strongly to one community than another. The extent to which a
vertex belongs to a particular community is derived from the placement of the
network’s edges. There is no consensus on the precise definition of community.

For example, in a network with vertices representing US Senators where
an edge exists between two senators if they co-sponsored a bill, one might
expect to see communities corresponding to party affiliation. Conversely, if a
community detection algorithm shows the presence of a community for which

there is no previously known identification, further investigation may be worth-
while(Porter et al.,2005).

There are various approaches to detecting communities. One approach
maximizes a quantity called modularity, which assigns vertices to a community
based upon how different the distribution of edges are to the expected distribu-
tion of edges of a specific random null-model of a graph(Newman), 2006; Porter
et al.,2009). Other algorithms work by partitioning the graph by selectively re-
moving edges, thereby splitting a graph into unconnected components through
a function such as geodesic betweenness, which measures how frequently an
edge occurs on the shortest paths between two vertices(Newman, 2010).

In Zachary’s Karate Club network, which links members of a university
karate club if they interacted outside of club sessions, one can find the existence
of multiple communities as depicted in Figure 3.1(Zachary) [1977). These could
signify the existence of separate groups within the club, and in fact the club split
into two due to disputes between two factions over club administration(Zachary,
1977). However, one of the members joined the opposing faction’s club after
the split. This person could therefore reasonably belong to more than one
community—assigning him or her membership in a particular community would
ignore the ties to other communities.

In order to deal with ambiguities in assigning a vertex to a particular com-
munity, an issue that is common in real-world networks, an algorithm that
allows communities to overlap is preferred. This means that a vertex can belong
to multiple communities, and certain algorithms can compute the degree to
which the vertex belongs to a particular community.

The runtimes of these algorithms vary, but any algorithm that runs in
time greater than linear time (i.e., not in time directly proportional to the
number edges or vertices) becomes impractical as the number of vertices or
edges grows large. Real-world networks frequently consist of millions of ver-
tices and edges, so an algorithm that can detect communities in a reasonable
amount of time (minutes to hours, or less) is preferred to one that takes days or
months(Newman), 2010).

Chapter 2

Political Networks

2.1 Context

The analysis of political networks quantifies relationships between and within
political entities and seeks to reveal structure from these relationships. Re-
searchers studying these relationships seek insights into their strength, how
they affect decision-making, and how influence and information travels through
them. A wide array of data has been studied, including the committee relation-
ships in the House of Representatives, the treaty, trade and military alliances
between countries, and the personal relationships between politically important
people(Lazer, [2011). Studying the pattern of wars between nations has led to
the observation that democracies rarely go to war with each other,(Ward et al.|
2011) and the analysis of the personal communication between the 9/11 plotters
showed that lead hijacker Mohammed Atta had direct ties to most of the other
terrorists(Ward et al., 2011).

Finding previously unknown structure in networks has also been a focus
of network research. When Porter, Mucha, Newman and Warmbrand applied
community detection algorithms to co-sponsorships of bills in the House of
Representatives, the community structure found therein reflected the committee
assignments of members and showed strong ties between committees with
disparate remits(Porter et al., 2005).

In summary, network methods allow the relationships between political
entities to be quantified—for example, one can see the extent to which money
flows between people. Because power and influence follow ties between people,
organizations and countries, the structure of political networks can show who
influences whom in national politics.

By applying network methods, political scientists seek to discover structure
that could have political consequences. Knowledge of this structure could then
inform political decision making.

2.2 Data

Poprietary data assembled by Andrew Waugh of U. C. San Diego from public
FEC data and supplied to us, consist of the information reported by campaigns
during the campaign trail of congressional elections conducted in the US from

1980 to 2010. The Federal Election Commission requires that campaigns report
detailed information on donations over $200. This information includes the
amount donated, when the donation took place, how the donation was reported,
the registered FEC identification number (FEC ID) of both the recipient and
donor, and how the money was transferred.

Waugh supplied the data as CSV files and RData images—stored runtimes
of the R statistical programming environment. I then imported the RData
images into the igraph(Csardi and Nepusz, 2006) format to calculate common
network quantities like degree and clustering coefficient. I also constructed
sqlite3 databases from the CSV files.

The resulting directed graph edges (each edge (v;, v},) corresponds to a
reported donation made by v; to v; at time f) encodes all the donations made in
that election cycle. I also constructed an undirected graph, with edges weighted
by total amount donated between v; and v;. In the following, this will be referred
to as the "collapsed graph’ for the cycle.

Metadata describing various personal and professional details about donors
were also supplied by Waugh as a CSV file with structure defined in Appendix|E|
The most important descriptor of a vertex is the FEC ID assigned to it; this
uniquely identifies each vertex and is consistent inside an election cycle. I
uniquely identified a vertex in all of the graphs I constructed by its FEC ID.
Furthermore, the IDs allow us to distinguish candidates from non-candidates.
Donations may occur between any two FEC IDs. A candidate may give to
another candidate, for example, if he or she has retired from the race and has
excess funds. Political committees often donate to each other, as well.

A major goal in analyzing the data was to seek an understanding of how
the community structure of the network changes within an election cycle. A
challenge was the size of the data. There are sixteen cycles, each hacing up
to millions of vertices and edges. Moreover, the BKN algorithm, as originally
described, only works on undirected graphs.

To simplify the collapsed graph before running the BKN algorithm, I re-
moved the candidate-candidate donations and the donations between non-
candidates. Although PAC to PAC donations occur, and some of that money
is forwarded to the candidate, I focused on direct donations. Candidate to
candidate donations were removed because they occur only in exceptional
circumstances. This created a bipartite network, so I could construct a pro-
jection onto the candidates. I then modified the projected graph by ignoring
the weights, because the BKN algorithm cannot handle weights, creating an
unweighted, undirected graph with edges between candidates that share a com-
mon donor. Because there are 1000 to 4000 candidates in any year, the projected
graph was much smaller than the original (reducing the number of edges by a
factor of 4 or more).

Chapter 3

The Ball-Karrer-Newman
(BKN) algorithm

3.1 Introduction

The algorithm that I implemented to detect communities in the FEC data (code
in Appendix|C) was published by Ball, Karrer and Newman in 2011 and ad-
dresses many of the shortcomings, such as speed and memory usage, of pre-
vious approaches to detecting overlapping communities in undirected graphs.
Specifically, it is a generalized expectation-maximization procedure that requires
time and space directly proportional to the number of edges in the network.
For simplicity, the derivation allows the existence of self-edges and multiple
edges between vertices, though this may not be realistic(Ball et al., 2011). This
derivation follows the one described in their paper(Ball et al., 2011).

3.2 Derivation

The algorithm is derived from considering the statistical likelihood of generating
the adjacency matrix of a given graph from a graph with n vertices and K
communities, where the propensity of vertex i to have an edge in community z
is 0;;. In particular, the number of edges of community z between two distinct
vertices i and j is independently Poisson-distributed with mean 6;,6;,, and the

number of self-edges of vertex i of community z is %9122 Therefore, because the
sum of Poisson distributions is also a Poisson distribution, the total number of
edges between distinct vertices i and j is Poisson distributed with mean

pij =Y 6:i-6; 3.1)
z
and the total number of self-edges of vertex i satisfies

wi =Y _(1/2)6% 3.2)

z

Thus the likelihood, given the nK propensities 8, of generating the adjacency
matrix A = (A;j) of the given graph is

1 A;i/2
n i],[z/ n]/l””

A|9 HH exp .ui]') X H ()/2| exp(_}”ii)- (3.3)
i=1 ii :

11]1

The procedure then attempts to find the value of the 6 such that this quantity
is maximized. A few simplifications are needed to sidestep having to optimize
a coupled non-linear function of the 8. Maximizing the likelihood is equivalent
to maximizing the logarithm of the likelihood, because log increases monotoni-
cally.

Furthermore, since the value of the (log-)likelihood is unimportant, we can
shift and scale the log-likelihood by positive constants. This does not change the
position of the maximum, hence we can eliminate additive and multiplicative
constants so that maximizing the likelihood is equivalent to maximizing the
simplified log-likelihood

log L(Al6) =) [Ajjlog (uij) — mij] - (3-4)
o)

Unfortunately, differentiating equation [3.4]also results in coupled non-linear
equations for the §. We can bypass this obstacle by applying the conditional
form of Jensen’s inequality to change the equality in to an inequality, by
exploiting the concavity of the logarithm. Specifically, by introducing arbitrary
probabilities g;;(z) satisfying the constraint (for fixed i and j) Y. g;j(z) = 1, the
relation

020,
log(juij) > Y qii(2) log — = (35)
Z qij (z)
holds, with equality holding if and only if
0.0,
qij(z) = —=. (3.6)
Hij
Hence, if we choose the g;;(z) to force equality,
91'26]'2
log L(A|0) =Y | Ajjgij(z)log @) i) (3.7)
ij ij

Now, differentiating with respect to 6;, (holding the g;;(z) fixed) we find,
after rearranging, that the optimal values of 8;, satisfy

02 Y 0s: =) Ajjgij(z). (3.8)
s j

Summing over i then yields
2
(Z 91‘2) =) Aijgij(z) 3.9)
i ij

10

and upon combining [3.8 and 3.9|we get
Y Aijqij(z)

0, = .
Yij Aijgij(z)

(3.10)
3.2.1 Naive BKN algorithm

Now the problem of maximizing the log-likelihood proceeds in the following
manner:

1. Initialize the g;;(z) to random values, making sure they satisfy the con-
straint }_, q;i(z) = 1.

2. Calculate the new values of 8 using equation and the current values
of ql] (Z)

3. Calculate the new values of g;;(z) using equation 3.6/ using the current
values of 6.

4. If the maximum difference € = max;;

qf}ew - q%ld‘ is negligible (less than,
for example, 10’4), then continue to step |5; otherwise discard the current
values of 6 and using the new values of g;;(z) go back to Q Alternatively,

after a set amount of iterations, say 1000, go to step

5. Calculate the log-likelihood (using[3.4) corresponding to the converged 6
and store it and the 6.

6. Repeat steps|(l|to[5|as many times as practical (the authors recommend
between 10 and 100 times, I picked 25 because anything greater did not
improve the results) and keep the 6 corresponding to the greatest calcu-
lated log-likelihood. Because the initialization of the g;;(z) is random,
the algorithm avoids getting caught at a local maximum in the iterative
optimization of steps|2|and (3} this increases the possibility of finding the
global maximum.

Once we have calculated the optimal values of the 6 and g;;(z), we assign
the edges between vertex i and j to community

arg max q;j(z).
1<z<K

The extent to which vertex i belongs to community z is then the proportion
of incident edges (i.e, edges of the form (i, j), for some j) that are assigned to
community z.

The algorithm described in Section although linear in time and space,
consumes a significant amount of memory. The dual optimization procedure
requires that the mK values of the g;;(z) and the nK values of the 6 be tracked,
resulting in high memory usage because virtually all real-world graphs have
more edges than vertices.

11

3.2.2 Expectation-Maximization

The procedure in section is an example of a generalized expectation-
maximization (GEM) technique. A GEM scheme attempts to find optimal
parameters for a model that can be expressed using a log-likelihood function
(equation [3.4)in the case of naive BKN). Steps [2]and [3]in the naive algorithm
guarantee that the log-likelihood monotonically increases—thereby ensuring
convergence(Borman), 2004). These correspond to the maximization phases of
GEM,; the use of a random (in my case sampled from a uniform distribution)
starting point guards against the algorithm getting caught at a local maximum.

3.2.3 Practical Improvements

In order to reduce the amount of memory used by the naive BKN algorithm,
equations[3.6land can be replaced by new equations involving the quantities

kiz =) Aijqij(2) (3.11)
j

and

Kz =) ki (3.12)
i

so that (from equation [3.10)

0. — \’;lKi (3.13)
and (from equation 3.6)
nie) = 2 (2 W) : 614
j e \& K . .

Steps [2l and [3| can then be replaced by a single step wherein only the k;,
are stored and new values kJ*" = } ; Ajjqij(z) are calculated using the values
of g;j(z) from equation Ball et al.,[2011). This requires the storage of only
nK values, a substantial savings in most cases. We still assign edges to their
communities by assigning them to the community that corresponds to the
highest value of g;j(z), and the extent to which vertex i belongs to community z
is again the proportion of edges in community z (Ball et al., 2011).

Other Optimizations

Further optimizations include the J-approximation, where values of k;, that
are less than a small parameter 6 (0 < § < 1/K) are set to zero. Because
ki, = 0 implies that k;; will remain zero for all future iterations, we can avoid
updating this value. Moreover, if a fixed vertex i has only one non-zero k;,,
then that vertex will definitely belong to community z—-it is considered to have

12

converged to a particular community(Ball et al., 2011). If both ends of an edge
(i,7) have converged, then the maximum of the probabilities of that edge being
in a particular community (i.e., the g;;(z)) will not change. Hence, the edge’s
community is fixed and we ignore it in future iterations.

In my runs, ignoring an edge did not result in a speed increase until networks
had more than approximately 16000 edges. The reason that graphs with fewer
edges do not benefit is likely to be the increased bookkeeping required—in my
implementation, I used approximately nK more quantities.

3.2.4 Drawbacks of the BKN algorithm

A significant drawback of the BKN algorithm is the requirement that the number
of communities be pre-specified, even though it may not be known in advance.
In addition, the algorithm cannot handle directed and weighted graphs.

3.3 Computational Constraints

My implementation of the BKN algorithm was limited by my system, a 2011
Macbook Air with an Intel Core i7 processor and 4 GB of RAM. In order to
improve execution time and memory (even after implementing the optimiza-
tions in Section[3.2.3) I chose to construct graphs by modifying a projection onto
the candidates of each cycle, rather than processing the full, directed graphs
that arise from the FEC data. Depending on how many candidates contested
elections, this yielded graphs of 1000 to 4000 vertices.

By focusing on detecting communities in the modified projection, I was able
to run the BKN algorithm in a reasonable amount of time and space-each run
(25 iterations of the core optimization described in Section[3.2.3) took about fifty
seconds and under 25 megabytes of RAM. On small networks, like Zachary’s
Karate Club (shown in Figure B.1)), the BKN algorithm executes much more
quickly — under 100 ms for 25 iterations of the core optimization. Appendix
lists code that I wrote for the projection process, which is a faster version of the
operation described in Section [1.2.4and the modification given in Section[2.2]

13

Figure 3.1: My implementation of the BKN algorithm run on Zachary’s Karate
Club network. Colors represent communities; vertices that belong to more than
one community are represented as a pie chart with sections corresponding to
extent of membership. The visualization was drawn using code from Lucas
Jeub and used position data from a modifed Kamada-Kawaii spring force
layout algortihm that positions communities using the Fruchterman-Reingold
algorithm(Traud et al.,[2009)

14

Chapter 4

Discussion

4.1 Changes in transitivity over time

I calculated both the transitivity and the reciprocity (Section[1.2.3) of the com-
plete graph (including candidate-candidate and donor-donor donations as well
as refunds) but treated as undirected, of all donations in a particular cycle, from
1980 to 2010 (except for 2000 and 2002 due to technical errors in igraph, which
returned spurious NaNs). As can be seen in Figure the transitivity tends
to increase from 1980 until 1990 whereupon it tends to decrease. There is an
oscillating pattern where presidential years have a lower transitivity than the
subsequent midterm election cycle (midterms). The change from an increasing
trend to a decreasing trend in 1990 suggests a change in structure.

Recalling the definition of transitivity (Section , where a connected
triangle would correspond to a loop of donations including one candidate-
candidate or donor-donor edge and an unconnected triple could correspond to
a donor-candidate-donor setup, it is not surprising that midterms have a higher
transitivity than presidential election cycles. Presidential years tend to have
a higher number of donors who donate directly to a single candidate or PAC,
rather than PACs who often donate to allied organizations. This could relate to
the increase in transitivity in midterms, as PACs could donate proportionately
more in midterm elections.

4.2 Changes in reciprocity over time

In the context of the FEC data, reciprocity represents the relative proportion of
donations that have been returned as well as mutual donations between, for
example, PACs. I calculated the reciprocity for the complete graph of each year
from 1980 to 2010 (except 2000 and 2002, again due to the same technical error
in igraph) as shown in Figure In the 1980s, there is an increasing, linear
trend (R? ~ .95 with p ~ .027 for the slope), whereas from 1988 to 1992 it is
decreasing.

After 1992, an oscillatory pattern develops where presidential cycles have
a low, decreasing reciprocity, while midterm years have a reciprocity that de-
creases until 2010, but at a lower rate than midterms. Also interesting is the jump
in reciprocity from 1986 to 1988, which coincides with a change in the structure

15

Transitivity

004 -
0.0002 -

0.0000 -
I U U I I I I
1980 1985 1990 1995 2000 2005 2010
Year

Figure 4.1: Transitivity versus year. A fitted LOESS curve is shown in blue.

(=]

N

(=]
|

Reciprocity

U | | | U U U
1980 1985 1990 1995 2000 2005 2010
Year

Figure 4.2: Plot of reciprocity versus year.

of donations(cfs). A historically high amount of new individual donors do-
nated in 2008, because individuals are unlikely to have their donations refunded,
which could explain why the reciprocity is 0.

4.3 Degree and Clustering Coefficient

I calculated the cumulative in-degree distribution of each election cycle. In the
context of the FEC data, this represents the number of donations received by
a person or organization. As typified by the 1980 cycle (shown in Figure 4.3),
a negative trend appears in the frequency of vertices with a bump around 100.
From degree between 1 and 100, the cumulative degree distribution decreases
rapidly, even on this log scale, suggesting that the number of vertices with high
degree is dramatically lower than those with low degree. This is not surprising
because individual donors, who make up the vast proportion of the vertices,
rarely donate to other individual donors.

At degree equal to 50, there is a noticeable inflection point and the shape
of the distribution straightens while still decreasing. At the higher end of the
graph (around degree > 1000), there is data sparsity. These overall features

16

le+00 -

le-02 -

Distribution 1988

le-04 -

Degree

I I
1 100 10000
Degree

Figure 4.3: Cumulative degree distribution in 1980; note the undulations.

(rapid decrease, inflection point, straightening out and roughness) appear in
the graph for cycles from 1980 to 2010.

I also calculated and plotted the local clustering coefficient (see Section[1.2.3)
versus the (total) degree. Figure[4.4]is a typical example. All of the cycles had
negative trend and a banana-shaped pattern in the 10 to 1000 degree range.
This may show that as donations increase, the fraction of inter-organizational
donations decreases.

To investigate the community structure of the networks, I ran the BKN al-
gorithm on a graph created by ignoring candidate-candidate and donor-donor
edges to create a bipartite network that I then projected onto the candidates
using the process described in Section[1.2.4] This projected graph connects can-
didates if they shared a donor but does not take into account the strength of that
connection, because the BKN algorithm cannot handle weights. Communities in
this graph would group candidates who share donations and thus gain money
from the same people. In order to see if they correspond to binary political
attributes such as party affiliation, I enforced just two communities in the BKN
algorithm to speed execution time. I found the structure depicted in Figure
the colors represent communities, however I found they do not correspond to
party affiliation.

17

Local Clustering Coeff

1e-01

1e-03

e-05

1986

1 10 100 1000 10000

Degree

Figure 4.4: Local clustering coefficient versus degree in 1986.

18

Figure 4.5: I enforced 2 communties in this run of the BKN algorithm on the
modified projection of the 2002 election cycle. Red corresponds to the first
community (grouped on the left) and blue to the second (on the right). The
communities and colors do not correspond to party affiliation.

19

Chapter 5

Conclusion

In conclusion, I analyzed election donation data on US congressional elections
from the 1980 presidential cycle to the 2010 midterm elections. There are three
main features I found after analyzing the data:

1. The transitivity and reciprocity of the full, directed network—comprising
all donations made within a cycle in a presidential cycle—is less than
that of the subsequent midterm cycle. This could reflect differences in
presidential and midterm cycles, particularly in the relative frequency of
inter-organizational donations as compared to individual donors.

2. There is a large jump in reciprocity that occurs between 1986 and 1988.
This corresponds to the discovery and exploitation of a 1979 ruling by
the FEC that allowed more freedom in the use of soft-money, which is
money not directly used by or for a particular candidate. This lead to an
explosion in the number of PACs and non-candidate organizations which
factored heavily into the Bush and Dukakis campaigns in 1988(cfs).

3. The transitivity peaks in 1990, tending to decline until 2010. This occurs
after the 1988 soft-money discovery but could also be related to the greater
use of PACs following 1988.

In order to do this, I wrote Python code, listed in Appendix[A} to import
the code into sqlite3 databases. I also wrote Python code to sanitize the data,
and I created graphs from that data by writing SQL and Python code, also
listed in Appendix|A| In addition, I wrote MATLAB code, listed in Appendix
that implements the Ball-Karrer-Newman (BKN) algorithm described in Sec-
tion 3.1} This is an implementation of a recently published community detection
algorithm for undirected, unweighted graphs that allows for overlapping com-
munities. Because the BKN algorithm cannot handle directed or weighted
graphs (detailed in Section[3.2.4), I ran it on a modified projection of the original
graph onto the candidates.

I wrote Python code to develop a modified projection without weights,
which is detailed in Appendix [B} The number of communities in the BKN al-
gorithm must be pre-specified, I specified 2 communities for simplicity and
increased performance and then ran the BKN algorithm on the modified projec-
tions. The community structure I found does not correspond to party affiliation

(see Figure [£.5).

20

5.1 Future Work

There are more political questions left to answer:

1. How do rule changes in election laws influence community structure in
the full network?

2. Which overall network quantities of the full network correspond to rule
changes, if any?

3. How do other network properties differ between mid-term and presiden-
tial election cycles? I found some differences in transitivity and reciprocity,
but we would like to see how other quantities, such as modularity and
betweenness, change.

4. How does the community structure of the full network change over time?

As an extension to the project, I plan to implement the BKN algorithm
in a language that has lower runtime overhead (such as C++) and explore
approaches to incorporating weighted and directed edges. I also plan on pro-
grammatically selecting the number of communities by first running a different
community detection algorithm and using the number of communities detected
by that algorithm as an input to the BKN algorithm. Other algorithms, such
as the non-negative matrix factorization, do not pre-suppose the number of
communities(Psorakis et al.,[2011).

21

20

21

22

23

24

25

26

27

28

Appendix A

Python Code: Processing Raw
Text Files

I wrote this code to process the raw text files of data supplied by Andrew Waugh.
This involved importing the raw CSV formatted files into a sqlite3 database
followed by significant preprocessing to remove spurious values (for example,
malformed dates often occurred).

import networkx as nx

import csv

import sqlite3

import os

import itertools

import matplotlib.pyplot as plt
import matplotlib

import datetime

def make_db(year):
conn = sqlite3.connect('/Users/Nimish/projects/fec/text/graph' + year + '.db')
¢ = conn.cursor()
c.execute('''CREATE TABLE edgelist’s (sendID text not null, recID text not null,amount

c.execute('''CREATE TABLE nodes’s (nodeid tex,nodetype text,name text,incumb text, dis

conn.commit ()
c.close()

def grouper(n, iterable, fillvalue=None):
"grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx"
args = [iter(iterable)] * n
return itertools.izip_longest(fillvalue=fillvalue, *args)

def parse_amt(amtstr):

factor =1
amtstr = amtstr.lstrip('0').rstrip(']")

22

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

def

if len(amtstr) <= 1:
return O
lastchr = amtstr[-1]
if lastchr in 'Kk':
factor = 1000
elif lastchr in 'Mm':
factor = 1000%x1000
else:
return int(amtstr)
return int(amtstr) * factor

import_year(year):
dbname = 'graph'+year+'.db'

ntn = 'nodes'+year

etn = 'edgelist'+year

nodefilename = 'fec_nodelist_txt_'+year+'.txt'
edgefilename = 'fec_edgelist_txt_'+year+'.txt'

print "Processing year ’%s\n" % year
print "Processing nodes\n"
nf = open(nodefilename, 'rU')
ef = open(edgefilename, 'rU')
conn = sqlite3.connect (dbname)
nr = csv.reader (nf)
print nr.next() # header
for idx,chunk in enumerate(grouper(250000,nr,fillvalue=None)):
#c.execute('BEGIN TRANSACTION')
print 'Processing chunk Ys' % (idx)
¢ = conn.cursor()
for node_line in chunk:
if node_line is not None:
c.execute('insert into %s values (?7,7,7,7,7,7,7,7,72,7,7,7,7,72,72,7,7,7)" n
#c.execute('END TRANSACTION')
conn. commit ()
c.close()
er = csv.reader(ef)
print 'Processing edges'
print er.next() #headers
num_bad_edges = 0
for idx,chunk in enumerate(grouper(250000,er,fillvalue=None)):
#c.execute('BEGIN TRANSACTION')
print "Processing chunk Ys" % (idx)
¢ = conn.cursor()
for edge_line in chunk:
if edge_line is not None:
#edge_line[2:6] = map(int,edge_line[2:6])
try:
edge_line[2] = int(edge_line[2]) # make amount an int
c.execute('insert into %s values (7,7,7,7,7,7,7,7,7,7,7)' Jetn ,tuple(
except ValueError,ve:

23

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

def

def

num_bad_edges += 1
print edge_line
print ve
conn. commit ()
c.close()

print 'End processing %s ; Had %s bad edges.' ’(year,num_bad_edges)

conn.close()
#c.execute('END TRANSACTION')

cleanup_year (year) :

dbname = 'graph'+year+'.db'

ntn = 'nodes'+year

etn = 'edgelist'+year

conn = sqlite3.connect (dbname)

¢ = conn.cursor()

print ("Begin Processing %s"% (year))

print ("Adding edgename")

c.execute('alter table ’s add column edgename text'), etn)
print ("Adding date")

c.execute('alter table %s add column date' %etn)
print ("Updating edgename")

c.execute('update 7s set edgename = sendID || \"->\" || recID' % etn)

print ("Updating date")

c.execute('update s set date = (case when cast(year as integer) >= 60 then \"19\" els

print ("Adding is_candidate")

c.execute('alter table s add column is_candidate integer' ’ntn)

print ("Updating is_candidate")

c.execute('update 7s set is_candidate = case when status != \"NA\" then 1 else O end'

print("Creating collapsed_edges")

c.execute('create table collapsed_edges’s as select sendID,recID,sum(amount) as total_

print ("Committing")

conn. commit ()

c.close()

print ("End Processing 7%s" %(year))
conn.close()

fix_dates(year):

dbname = 'graphls.db'%year

etn = 'edgelist' + year

conn = sqlite3.connect(dbname)

¢ = conn.cursor()

print "Fixing dates for %s" % year

c.execute('update 7s set date = case when length(date) > 10 then substr(date,3) else d

print "Deleting strange dates"

c.execute('delete from edgelist’s where cast(strftime(\"/%Y\",date) as integer) > ’s'

conn.commit ()
c.close()
conn.close()

24

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

def

def

make_collapsed(year) :

dbname = 'graph'+year+'.db'
ntn = 'nodes'+year

etn = 'edgelist'+year

conn = sqlite3.connect (dbname)
¢ = conn.cursor()

#os.system('sqlite3 -separator , Js \".import /s [s\" ' J (dbname,nodefilename,ntn))
#print "Processing edges\n"

#os.system('sqlite3 -separator , /s \".import /s Js\"' J(dbname,edgefilename,etn))
#print "End processing year [s"] year

plot_donations(year) :
dbname = 'graphls.db' 7 year
etn = 'edgelist'+year
conn = sqlite3.connect(dbname)
¢ = conn.cursor()
1 = list(c.execute('select date, count(x) from Js group by date'letn))
conn.close()
dates =[]
nums =[]
for pair in 1:
try:
dates.append(datetime.datetime.strptime(pair[0], '/Y-Ym-%d"))
nums . append (pair[1])
except ValueError,ve:
print pair
plt.plot(dates,nums)
y = int(year)

yl=y -1

y2 = y+1

x1 = datetime.datetime.strptime(str(y1l)+'-11-01"','%Y-Y%m-7%d")
x2 = datetime.datetime.strptime(str(y2)+'-01-01","'%Y-%m-%d")
print x1

print x2

plt.xlim(x1,x2)
plt.savefig('dons_per_day’s.png'’year)

25

179

180

181

182

183

184

if

name__ == '

_ __main

for i in xrange(1982,2010,2):

make_db (year)

26

Appendix B

Python Code: Creating
Projections

I wrote this code to process the data stored in sqlite3 databases into a graph
form handled by the NetworkX(Hagberg et al., |2008) library. In addition, it
contains the projection code for implementing a faster projection algorithm than

20

21

22

23

24

25

26

27

28

matrix multiplication.

import networkx as nx
import csv

#from itertools wmport *
import sqlite3 as sql3
import scipy.io as sio
import fish

import os

def mk_gyear (year):

os.system('sqlite3 -separator , -header graphl,s.db "select * from collapsed_edges/s" >

def process_year_simple(year,filename):

year = str(year)
print 'Making digraph'
dgr,cands = mk_digraph(year)

print 'Projecting (%d candidates)' %len(cands)

pr = simple_pc(dgr,cands)
print 'Outputting'

to_matrix(pr,filename,year,cands=cands)

def mk_digraph(year):
f = open('/Users/nimish/proj
dr = csv.DictReader(f)
gr = nx.DiGraph()
cands = []
for i,de in enumerate(dr):
sid = de['sendID']

ects/projects_old/fec/text/gls.csv' 7 str(year),'rb')

27

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

def

def

def

is_candidate = sid.startswith(('H','S','P"))
if is_candidate:
cands += [sid]

gr.add_node(sid,attr_dict={'is_candidate':is_candidate})
#T0D0O: make sure ints are parsed correctly in attr_dict
gr.add_edge(de['sendID'],de['recID'],attr_dict=de)
fish.animate()

f.close()

return gr,cands

simple_pc(dgr,cands):
g = nx.Graph()
num_cands = len(cands)
p = fish.ProgressFish(total=num_cands)
for i,c in enumerate(cands):
#if (i % 100) == 0:
print 'Processed Jd//d candidates.' [(i,num_cands)
succs = dgr.successors(c)
preds = dgr.predecessors(c)
for pred in preds:
pred_succs = dgr.successors (pred)
for ps in pred_succs:
shared_succs = set(dgr.successors(ps)) & set(succs)
if len(shared_succs) > 0:
g.add_edge(c,ps)
p-animate (amount=i+1)

return g

mp_proj_cand():
pass
project_cands(dgr,cands) :
g = nx.Graph()
num_cands = len(cands)
p = fish.ProgressFish(amount = num_cands)
for i,c in enumerate(cands):
#if (3 4 10) == 0:
print 'Processed Jd//d candtdates.' [(i,num_cands)
succs = dgr.successors(c)
preds = dgr.predecessors(c)
for pred in preds:
pred_succs = dgr.successors (pred)
for ps in pred_succs:
shared_succs = set(dgr.successors(ps)) & set(succs)
num_shared_nbrs = len(shared_succs)
if num_shared_nbrs > O:
tot_shared_dons = 0O
tot_num_shared_dons = 0O

28

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

def

for ss in shared_succs:
for ss_nbr,ss_nbr_info in dgrlss].iteritems():

tot_num_shared_dons += int(ss_nbr_info['num_donations'])
tot_shared_dons += int(ss_nbr_info['total_sum'])

g.add_edge(c,ps,attr_dict=
{'num_shared_nbrs' :num_shared_nbrs

,'tot_shared_dons':tot_shared_dons
, 'tot_num_shared_dons':tot_num_shared_dons})
else:
pass
p-animate (amount=i+1)

return g

to_matrix(g,filename,year,cands = None,weight='weight'):
mat = None
if cands is not None:
mat = nx.to_numpy_matrix(g,nodelist=cands.sort(),weight=weight)
else:
mat = nx.to_numpy_matrix(g)
sio.savemat(filename,{'mat' + str(year):mat})

29

20

21

22

23

24

25

26

27

28

Appendix C

MATLAB Code:
Ball-Karrer-Newman

The following is my implementation of the core optimization of the BKN algo-
rithm, described in Section It is run 25 times and the run with the highest
log-likelihood, called fitness in the code, is chosen as the best assignment of
edges to communities.

function [k,varargout] = BKN(A,K)
/. Returns k, [colors]

A4 = adjacency matriz

AK = number of communities

[r,c] = size(p);

n =r;

Ainitialize q's instead

k = zeros(n,K);

k2 = zeros(n,K);

iter = 0;
max_iter = 50;
tol = .0001;

delta = max(0.1,1/K * .9);
active = sparse(A);
nodes = 1:n;

Aif A is symmetric (as the BKN algo requires), this is fine
[indrow,indcol]=find(A);

edges=[indrow(indcol>indrow) ,indcol (indcol>indrow)];
node_converged = false(n,1);
num_edges = size(edges,1);

Arandomly initialize the q's (enforcing that they are probabilities)
Athen calculate the k's

Afor m=1:num_edges

VA 1 = edges(m,1);

30

29

30

31

32

33

34

35

36

37

38

39

40

41

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

A 7 = edges(m,2);

A qij=rand(1,K);

VA qij=qij/sum(qij);
7 k(i,:)=k(i,:)+qij;
4 k(7,:)=k(g,:)+qi7;
lend

k = rand(n,K) + 1;

mmerr = max(max(abs(k-k2)));

while mmerr > tol && iter < max_iter

kappa = sum(k,1);
k2 = zeros(n,X);

Afind the active edges (edges for which at least one node is

Junconverged)

[ir,ic] = find(active);
active_edges = [ir(ic>ir),ic(ic>ir)];
num_active_edges = size(active_edges,1);

fprintf ('Active edges left:Jd; active nodes left = %d\n',num_active_edges,sum(node_co

Aupdate the k's

for en = 1l:num_active_edges

i = active_edges(en,1);
j = active_edges(en,2);

if node_converged(i) && node_converged(j)

fprintf('i = %d,j=%d\n',i,j);
active(i,j) = 0;

else

qij = (k(i,:) .* k(j,:)) ./ kappa;
D = sum(qij);

qij = qij / D;

Jupdate new values of k

k2(i,:) = k2(i,:) + qij;

k2(j,:) = k2(j,:) + qij;

end
end

Jensure that the converged value of k is preserved

converged_nodes =

nodes (node_converged) ;
k2(converged_nodes) = k(converged_nodes) ;

Afind the converged nodes early

unconverged_nodes

nodes("node_converged) ;

31

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

for i=unconverged_nodes

Jcan't vectorize this for parsing reasons
node_converged(i) = ((sum(k(i,:)>delta)==1));

end

mmerr = max (max(abs(k-k2)));

iter = iter + 1;

m = mod(iter,50);
if m ==

fprintf ('Iter #/d ; Error = %d\n',iter,mmerr);

end

end

fprintf ('Error = %d\n',mmerr);
fprintf ('Iteration stopped at iter
Asum(k) = deg node; initialize q's

Afor z = 1:K
4 kappa(1,z)
Jend

kappa = sum(k,1);
colors=zeros(n,n);
theta = k;

for i = 1:n

theta(i,:) = k(i,:

end
fitness = 0;

for en = 1:num_edges

= sum(k(:,2));

) ./ sqrt(kappa);

i = edges(en,1);
j = edges(en,2);

etn = dot(theta(di,:),theta(j,:));
/ etn is the expected total # of edges between % and j

if etn > 0

fitness = fitness + A(i,j)*log(etn) - etn;

end

32

%d\n',iter);

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

4 calc only <if we need the edge's communities

if nargout > 1
qij = (k(i,:) .* k(j,:)) ./ kappa;

Afollowing two lines unnecessary since we only care about maz
D = sum(qij);
qij = qij / D);

[max_q,idx] = max(qij);
colors(i,j) = idx;

end
end
if nargout > 1
varargout{1} = colors;

end
fprintf ('Log-likelihood is: %d\n',fitness)

33

Appendix D

Codebook for FEC Edgelist
Files

The structure of the files containing edge data is described by the following key,
supplied by Andrew Waugh and adapted from the FEC website (Detailed Files
‘About Candidates, Parties and Other Committees).

1. sendID - ID of the sender (identified in FEC Node List file)
2. recID - ID of the recipient (identified in FEC Node List file)
3. amount - Dollar amount of the transfer

4. month - Month of transfer

5. day - Day of transfer

»

. year - Year of transfer

. amend - Amendment Indicator
Amendment

Consolidated
Multi-Candidate

New

Secondary

Terminated

Hn=a 2=

[00]

. reptyp - Report Type
10D PRE-ELECTION

10G PRE-GENERAL

10P PRE-PRIMARY

10R PRE-RUN-OFF

10S PRE-SPECIAL

12C PRE-CONVENTION

34

12G PRE-GENERAL

12P PRE-PRIMARY

12R PRE-RUN-OFF

12S PRE-SPECIAL

30D POST-ELECTION

30G POST-GENERAL

30P POST-PRIMARY

30R POST-RUN-OFF

30S POST-SPECIAL

60D POST-ELECTION

ADJ COMP ADJUST AMEND
CA COMPREHENSIVE AMEND
M1 JANUARY MONTHLY

M10 OCTOBER MONTHLY
M11 NOVEMBER MONTHLY
M12 DECEMBER MONTHLY
M2 FEBRUARY MONTHLY

M3 MARCH MONTHLY

M4 APRIL MONTHLY

M5 MAY MONTHLY

M6 JUNE MONTHLY

M7 JULY MONTHLY

M8 AUGUST MONTHLY

M9 SEPTEMBER MONTHLY
MY MID-YEAR REPORT

Q1 APRIL QUARTERLY

Q2 JULY QUARTERLY

Q3 OCTOBER QUARTERLY
TER TERMINATION REPORT
YE YEAR-END

90S POST INAUGURAL SUPPLEMENT
90D POST INAUGURAL

48H 48 HOUR NOTIFICATION
24H 24 HOUR NOTIFICATION

9. trnstyp - Transaction Type

10 NON-FEDERAL RECEIPT FROM PERSONS LEVIN (L-14)
11 TRIBAL CONTRIBUTION

12 NON-FEDERAL OTHER RECEIPT LEVIN (L-2)

13 INAUGURAL DONATION ACCEPTED

15 CONTRIBUTION

15C CONTRIBUTION FROM CANDIDATE

15E EARMARKED CONTRIBUTION

15F LOANS FORGIVEN BY CANDIDATE

151 EARMARKED INTERMEDIARY IN

15J MEMO (FILER'S \’% OF CONTRIBUTION GIVEN TO JOIN
15T EARMARKED INTERMEDIARY TREASURY IN

15Z IN-KIND CONTRIBUTION RECEIVED FROM REGISTERED
16C LOANS RECEIVED FROM THE CANDIDATE

16F LOANS RECEIVED FROM BANKS

35

16G
16H
16J
16K
16L
16R
16U
17R
17U
17Y
172
18G
18H
18J
18K
188
18U

LOAN FROM INDIVIDUAL

LOAN FROM CANDIDATE/COMMITTEE

LOAN REPAYMENTS FROM INDIVIDUAL

LOAN REPAYMENTS FROM CANDIDATE/COMMITTEE

LOAN REPAYMENTS RECEIVED FROM UNREGISTERED EN
LOANS RECEIVED FROM REGISTERED FILERS

LOAN RECEIVED FROM UNREGISTERED ENTITY
CONTRIBUTION REFUND RECEIVED FROM REGISTERED
REF/REB/RET RECEIVED FROM UNREGISTERED ENTITY
REF/REB/RET FROM INDIVIDUAL/CORPORATION
REF/REB/RET FROM CANDIDATE/COMMITTEE

TRANSFER IN AFFILIATED

HONORARIUM RECEIVED

MEMO (FILER'S \’ OF CONTRIBUTION GIVEN TO JOIN
CONTRIBUTION RECEIVED FROM REGISTERED FILER
RECEIPTS FROM SECRETARY OF STATE

CONTRIBUTION RECEIVED FROM UNREGISTERED COMMI

19 ELECTIONEERING COMMUNICATION DONATION RECEIVE

193

MEMO (ELECTIONEERING COMMUNICATION \% OF DONAT

20 DISBURSEMENT - EXEMPT FROM LIMITS

20A
20B
20C
20D
20F
20G
20R
20V
22G
22H
227
22K
22L
22R
22U
22X
22Y
227
23Y
24A
24C
24E
24F
24G
24H
241
24K
24N
24p
24R

NON-FEDERAL DISBURSEMENT LEVIN (L-4A) VOTER R
NON-FEDERAL DISBURSEMENT LEVIN (L-4B) VOTER I
LOAN REPAYMENTS MADE TO CANDIDATE

NON-FEDERAL DISBURSEMENT LEVIN (L-4D) GENERIC
LOAN REPAYMENTS MADE TO BANKS

LOAN REPAYMENTS MADE TO INDIVIDUAL

LOAN REPAYMENTS MADE TO REGISTERED FILER
NON-FEDERAL DISBURSEMENT LEVIN (L-4C) GET OUT
LOAN TO INDIVIDUAL

LOAN TO CANDIDATE/COMMITTEE

LOAN REPAYMENT TO INDIVIDUAL

LOAN REPAYMENT TO CANDIDATE/COMMITTEE

LOAN REPAYMENT TO BANK

CONTRIBUTION REFUND TO UNREGISTERED ENTITY
LOAN REPAID TO UNREGISTERED ENTITY

LOAN MADE TO UNREGISTERED ENTITY

CONTRIBUTION REFUND TO INDIVIDUAL
CONTRIBUTION REFUND TO CANDIDATE/COMMITTEE
INAUGURAL DONATION REFUND

INDEPENDENT EXPENDITURE AGAINST

COORDINATED EXPENDITURE

INDEPENDENT EXPENDITURE FOR

COMMUNICATION COST FOR CANDIDATE (CT7)
TRANSFER OUT AFFILIATED

HONORARIUM TO CANDIDATE

EARMARKED INTERMEDIARY OUT

CONTRIBUTION MADE TO NON-AFFILIATED
COMMUNICATION COST AGAINST CANDIDATE (C7)
CONTRIBUTION MADE TO POSSIBLE CANDIDATE
ELECTION RECOUNT DISBURSEMENT

36

24T EARMARKED INTERMEDIARY TREASURY 0OUT

24U CONTRIBUTION MADE TO UNREGISTERED

247 IN-KIND CONTRIBUTION MADE TO REGISTERED FILER
29 ELECTIONEERING COMMUNICATION DISBURSEMENT(S)

10. primgen - Primary-General Indicator
C Convention

G General

P Primary

R Runoff

S Special

11. altrecID - Alternate Recipient ID
(Candidate ID for candidate committees, Committee ID for candidates, if applicable)

37

Appendix E

Codebook for FEC Nodelist
Files

The structure of the files containing node data is described by the following key,
supplied by Andrew Waugh and adapted from the FEC website(Detailed Files
‘About Candidates, Parties and Other Committees).

[ErY

w

oOQ H

aH9Y n@DaQN

. nodeid - Node Identification Number

nodetype - Node Type

Committee

House Candidate

Senate Candidate

Presidential Candidate

Individual

Individual/Other Stored in the Committee-Committee FEC Files

. name - Node Name

incumb - Incumbency Status (for Candidates only)
Incumbent
Challenger

Open Seat

. district - Congressional District (for House Candidates only)
. elecyear - Election Year (for Candidates only)
. party - Primary Political Party Affiliation

. city - City

38

9. state - State
10. zip - Zip Code

11. altid - Altermate ID
(Candidate ID for candidate committees, Committee ID for candidates, if applicable)

12. occup - Occupation (for Individuals)

13. status - Candidate Status (for Candidates only)

C Statutory Candidate

(declared candidate who has raised or spent $5000)

F Statutory Candidate for a future election

N Not yet a Statutory Candidate

(candidate has declared but not raised or spent $5000)
P Statutory candidate for a prior electoral cycle

14. desig - Committee Designation (for Committees)
A Authorized by Candidate

J Joint Fund Raiser

P Principal Campaign Committee of a Candidate

U Unauthorized

B Lobbyist/Registrant PAC

D Leadership PAC

15. ctype - Committee Type (for Committees)
Communication Cost

Delegate

House

Independent Expenditure

Non-party Non-qualified

Presidential

Qualified Non-Party

Senate

Non-qualified Party

Qualified Party

National Party Organization, Non Federal Account.
Electioneering Communications

ON<MXWnoY=aH+HImoao

16. filefreq - Filing frequency with the FEC (for Committees)
A Administratively Terminated

D Debt

M Monthly Filer

Q Quarterly Filer

T Terminated

W Waived

17. intcat - Interest Group Category

(for Committee types N and Q only)
C Corporation

39

L Labor Organization

M Membership Organization

T Trade Association

V Cooperative

W Corporation without Capital Stock

18. sponsor - The Reported Name of a Committee's Sponsor (for Committees)

40

Bibliography

Brian Ball, Brian Karrer, and M. E.]. Newman. Efficient and principled method
for detecting communities in networks. Phys. Rev. E, 84, 2011.

Sean Borman. The expectation maximization algorithm — a short tutorial.
July 2004. URLhttp://www.seanborman.com/publications/EM_algorithm,
pdf.

Gabor Csardi and Tamas Nepusz. The igraph software package for complex
network research. InterJournal, Complex Systems:1695, 2006. URL http:
//igraph.sf .net,

Detailed Files About Candidates, Parties and Other Committees. Detailed
files about candidates, parties and other committees. November 2011. URL
http://www.fec.gov/finance/disclosure/ftpdet.shtmll

Aric A. Hagberg, Daniel A. Schult, and Pieter]J. Swart. Exploring network
structure, dynamics, and function using NetworkX. In Proceedings of the 7th
Python in Science Conference (5ciPy2008), pages 11-15, Pasadena, CA USA,
2008.

D. Lazer. Networks in political science: Back to the future. PS: Political Science &
Politics, 44(01):61-68, 2011.

Thomas E. Mann. Linking knowledge and action: Political science and campaign
finance reform. Perspectives on Politics, 1(1):pp. 69-83, 2003. ISSN 15375927.
URL http://www. jstor.org/stable/3687813.

Mark E. J. Newman. Networks: An Introduction. Oxford University Press, Inc.,
New York, NY, USA, 2010.

M.E.J. Newman. Modularity and community structure in networks. Proceedings
of the National Academy of Sciences, 103(23):8577-8582, 2006.

M.A. Porter, PJ. Mucha, M.E.J. Newman, and C.M. Warmbrand. A network
analysis of committees in the us house of representatives. Proceedings of the
National Academy of Sciences of the United States of America, 102(20):7057, 2005.

M.A. Porter,].-P. Onnela, and P.J. Mucha. Communities in networks. Notices of
the AMS, 56(9):1082-1097, 2009.

41

http://www.seanborman.com/publications/EM_algorithm.pdf
http://www.seanborman.com/publications/EM_algorithm.pdf
http://igraph.sf.net
http://igraph.sf.net
http://www.fec.gov/finance/disclosure/ftpdet.shtml
http://www.jstor.org/stable/3687813

Ioannis Psorakis, Stephen Roberts, Mark Ebden, and Ben Sheldon. Overlapping
community detection using bayesian non-negative matrix factorization. Phys.
Rev. E, 83, 2011.

A.L. Traud, C. Frost, PJ. Mucha, and M.A. Porter. Visualization of communities
in networks. Chaos, 19(4), 2009.

M. D. Ward, K. Stovel, and A. Sacks. Network analysis and political science.
Annual Review of Political Science, 14:245-264, 2011.

Wayne W. Zachary. An information flow model for conflict and fission in small
groups. Journal of Anthropological Research, 33(4):pp. 452-473, 1977.

42

	Abstract
	Acknowledgments
	Introduction
	Graphs
	The adjacency matrix

	Network properties
	Degree
	Neighborhood of a vertex
	Transitivity and Reciprocity
	Projections
	Communities

	Political Networks
	Context
	Data

	The Ball-Karrer-Newman (BKN) algorithm
	Introduction
	Derivation
	Naïve BKN algorithm
	Expectation-Maximization
	Practical Improvements
	Drawbacks of the BKN algorithm

	Computational Constraints

	Discussion
	Changes in transitivity over time
	Changes in reciprocity over time
	Degree and Clustering Coefficient

	Conclusion
	Future Work

	Python Code: Processing Raw Text Files
	Python Code: Creating Projections
	MATLAB Code: Ball-Karrer-Newman
	Codebook for FEC Edgelist Files
	Codebook for FEC Nodelist Files

