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“Nothing in life is to be feared, it is only to be understood.

Now is the time to understand more, so that we may fear less.”

Maria Sklodowska-Curie

“All beings going and remaining not at all.”

Heraclitus
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Abstract

Network science is a rapidly growing field that draws important results

from mathematics, physics, computer science, sociology, and many other

disciplines. There are many problems in nature and man made systems

that involve interactions between large number of agents which take place

over a non-trivial topology. These problems lend themselves naturally

and successfully to a network representation. Of particular interest are

the models that deal with growth and evolution of networks because the

vast majority of the systems represented by them are not static. This

work is concerned about systems with two different types of interacting

constituents known as bipartite networks.

This thesis is structured as follows: In Chapter 1 a network is defined as a

graph and a brief introduction to the concepts used throughout this work

is given. We describe the well-known network growth model of Preferential

Attachment [2] and a model of the evolution of a bipartite network whose

agent quantities are fixed [9]. In Chapter 2 we study data from Netflix,

an online movie rental service whereby users can give ratings to movies

they rent. We show how this system can be represented as a network and

analyse some of its properties. The probability distribution of the num-

ber of ratings of users and movies follows a power-law distribution with

an exponential cutoff, which indicates saturation in the number of ratings

that a movie can receive or a user give. We also found that movies and

users in the system form densely connected neighbourhoods. Chapter 3

is concerned with the development of network growth and evolution mod-

els which attempt to explain the growth and evolution of networks with

saturation and a limited number of agents. We develop a network growth

model in which the agents are drawn from fixed catalogues. An exact ana-

lytical solution to the model can sometimes be found, an approximate one

using asymptotics in other cases and numerically in general. The results

given by this model describe what is observed in simulated networks and

show some of the characteristics observed in the Netflix network.
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Chapter 1

Introduction

1.1 Introduction to networks

Networks and their representation

A network or graph is a collection of items, called nodes or vertices and their relations,

called links or edges. We represent a network G = (V , E), where V = {v1, v2, . . . , vM}
is the set of M vertices and E = {e1, e2, . . . , eE} is the set of E edges. We say that

two nodes are connected or are neighbours if there is an edge between them [22]. A

directed edge is one in which there is a precise direction of the relation, the edge goes

from node vi to node vj. A network that has type of edges is called a directed network,

if it does not then it is called undirected. When the edges between two nodes has

a specific values assigned to them, we say it is a weighted network. An example of

this type of networks might be cities and their distances between them. When the

network is undirected, then the values of the edges are 1 or 0. All of the previous

examples are also known as unipartite networks. A path is an ordered sequence of

nodes in which there is one edge between consecutive nodes and its length is the

number of edges contained in the sequence. A geodesic path from node vj to vi is

the shortest possible of all paths that go from vj to vi. On Figure 1.1 we can see two

graphical representations of networks. Nodes are represented by the circles and the

lines that connect them represent the edges.

The usual way to work with a network is through its adjacency matrix G ∈ R
M×M

[13]. An entry in this matrix G(i, j) represents the value of the edge between nodes

vi and vj. If the network is undirected then G is symmetric. The entries of G2 are

the number of paths of length two between nodes, in general Gn gives the paths of

length n between the nodes [13].
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Figure 1.1: Graphical representation of a network (left), circles represent nodes and
lines connecting them represent edges. (right) A weighted network.

Node Degrees and degree distribution

The degree of a node vj, denoted as kj is the number of edges that have one end

attached to the node [22]. If Nk denotes the number of nodes in a network with

degree k, then pk = Nk/M is the fraction of the nodes of the network with degree k,

or the probability of choosing a node at random with degree k. A histogram of the

values of pk is called the probability distribution function (PDF) or degree distribution

of the network. The form of this function can tell us many things about the network

we are studying. It can tell us if there is a non-trivial structure in the relations of

the nodes, or if there are nodes that are of particular importance, how many. When

one is working with networks, it is usual to use the cumulative distribution function

(CDF):

Pk =
k

∑

j=1

pj,

because it eliminates some of the fluctuations in the tails of the PDF caused by finite

size of the network [22]. Some distributions often found in networks include the

Poisson distribution found in Erdös-Réyni random graphs, power-law distributions,

pk ∼ k−α, found on networks like the World Wide Web and some social networks

and the exponential distribution pk ∼ e−λk which arises in some growing networks

[7]. One can usually detect power-law and exponential distributions by plotting the

CDF in double or single logarithmic scales because the appear as straight lines [22].

Bipartite networks

A bipartite network G = (V1,V2, E) has two different types of nodes: V1 = {v11 , v12 , . . . v1U
}

and V2 = {v21 , v22 , . . . v2M
} of sizes U and M respectively called partite sets and the
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edges only lie between nodes of different type [13]. Figure 1.2 shows the graphical

representation of a bipartite network in which V1 = {1, 2, 3, 4, 5} and V2 = {A,B,C},
and edges only connect letters to numbers. This type of network is used to study

Figure 1.2: A bipartite network where nodes of letters can only be connected to nodes
of numbers and vice versa.

networks of movies and actors, members of boards of directors and companies, or

club membership. A typical example in the social sciences are the so-called affiliation

networks where nodes of individuals are related to nodes of artifacts, which can be

clans, tribes or associations [2, 22]. Bipartite networks have two node degree counts

N1k and N2j, and two degree distributions p1k
= N1k/U and p2j

= N2j/M . As in the

unipartite case we can visualise the degree distribution through the histograms of N1k

and N2j or the cumulative distribution function of each type. A bipartite network

can always be mapped into two unipartite networks, one of each type of node. In

these mapped or projected networks two nodes are connected if they share at least

one neighbour.

We can still represent G through an adjacency matrix G ∈ R
U×M . Though we will

generally not be able to square G, if we multiply it by its transpose GGT or GTG,

we to get two matrices of size U × U and M ×M . These matrices are the adjacency

matrices of the projected weighted networks and their entries give the number of

paths of length 2 between nodes of the same type in G. If we continue to multiply

by G and GT many times over we will get the number of paths of length 2n between

nodes of the same type and the paths of length 2n + 1 between nodes of different

types. An important interpretation of this is that the projection GGT yields the

adjacency matrix of a unipartite network in which nodes connected to each other

3



are the ones that are attached to common nodes in G, for example in an affiliation

network, two persons would be connected in the projected network of individuals if

they have membership to at least one society in common.

Clustering

Earlier we stated that two nodes are neighbours if an edge lies between them. If a

node in a network has two neighbours and those nodes are also connected to each

other, together they form a triangle. Triangles are very important to find out if a

network contains clusters of nodes that are more connected among each other than

with the rest [22]. A measure of this “cliquishness” of the neighbourhood of a node

used by Watts and Strogatz [30] is the clustering coefficient of a node defined as:

C3(i) =
2ti

ki(ki − 1)
, (1.1)

where ti is the number of triangles that contain node vi, and it is divided by the

total number of possible triangles that include vi which is ki(ki−1)/2. The clustering

coefficient of an entire network is defined as the mean of all the individual coefficients:

C3 =
1

M

M
∑

i=1

C3(i). (1.2)

The clustering coefficient can be very useful to detect networks with meaningful social

structures.

There is also a definition of the clustering coefficient which does not use triangles

but squares. A square in a network appears when two neighbours of a node have

a common neighbour different from the node in question. Lind et al [17] define a

clustering coefficient for a node vi using the observed number of squares C4(i) as:

C4(i) =

∑

h,m qimh
∑

m,h [(km − ηimh
)(kh − ηimh

) + qimh
]
. (1.3)

The numerator is the sum of qimh
, the number of squares that include vm, vh and vi

The denominator is the sum of the total possible number of squares that can contain

vm, vh and vi. The degrees of nm, nh are km, kn respectively, and ηimh
= (qimh

+θmn+1)

where θmh = 1 if vm and vh are connected and zero otherwise [17]. As with C3, the

coefficient for the entire network is

C4 =
1

M

M
∑

i=1

C4(i). (1.4)
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Random graphs

A random graph is a network in which the edges are placed randomly between the

nodes. One of the earliest models of random graphs is the one proposed by Erdös

and Réyni. In their model they have a graph G = (V , E), V = {v1, . . . , vM} and every

node ni is connected to any other node with probability p, and not connected with

(1− p). They defined GM,p as the set of all possible graphs of size M and probability

p [2]. Figure 1.3 shows a realisation of a network from GM,p where M = 20 and

p = 0.2. The mean degree z = (M − 1)p of a graph like this is just the probability

Figure 1.3: Random graph generated using the model defined by Erdös and Réyni
with M = 20 and p = 0.2.

of the existence of a node times the number of possible edges that a node can have.

The degree distribution {pk} of a the graph is given by:

pk =

(

M

k

)

pk(1 − p)M−k,

the binomial distribution. As M → ∞ :

pk =
zke−z

k!
, (1.5)

which is the Poisson distribution [22]. The random graph model is important for this

project because it served as a motivation for the development of some of the ideas that

were used in this work, such as random growing networks, preferential attachment,

and the catalogue growth model to name a few [2, 30].
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1.2 Network growth

In many real-life problems, networks do are static: the number of nodes and edges

may be in constant change. The way in which this happens determines the properties

of a network [22]. In the following sections we give a brief introduction to some

important models of network growth and evolution.

1.2.1 Preferential attachment

One of the early models of network growth is the one observed by Derek Price who

in 1965 studied citation networks of scientific papers. These are directed networks

in which nodes are papers and edges are citations among them [26]. Price found

that most papers that get cited are by papers published within a decade of their

publication. There are very few papers that got citations years after being published,

most of them very influential papers or reviews. Those papers cite many of the papers

that will be “dead” after a while, and summarise the research front of the time. Price

hypothesised if the more a paper receives citations, the higher the probability that

it will be cited in the future [26]. He called this conjecture cumulative advantage.

He also wondered if classic papers could be detected in an automatic way just by

the number of citations they receive [26]. One of the key findings in his analysis of

citation networks was that the in-degree (how many times a paper is cited) and the

out-degree (how many papers it cites) of a paper follow power-law distributions [22]

(For a brief introduction to power laws, see Appendix B). The model that Price found

produced these distributions, it started with a directed citation network G with n0

vertices. New vertices were added to the network with an average out-degree of m.

The probability of a node vi of receiving an edge of the new nodes is proportional to

its in-degree ki plus one :

P (vi) =
ki + 1

∑

i[ki + 1]
.

This is so nodes with zero in-degree are able to receive edges. Price justified it saying

that the publication of the paper is equivalent to a citation (by itself) [22].

The idea of cumulative advantage was retaken by Barabási and Albert some years later

in a paper where they analysed the World Wide Web and some other networks, where

they also found power-law degree distributions [3, 22]. In their paper they proposed a

model of network growth in which the probability with which node receives new edges

is proportional to its degree. They renamed the model preferential attachment, which

is the name that is most widely used now for these types of models [3, 4]. There are
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some key differences between the Barabási-Albert (BA) model and Price’s. The BA

model assumes an undirected network, eliminating the need to distinguish between

in and out-degree [22]. In such a network it is unnecessary to add a constant to the

Figure 1.4: Graphical representation of a Barabási-Albert network with 250 nodes
and m = 1.

degrees of the nodes like in Price’s model, because the network is undirected and all

the nodes in the seed network and thereafter have degrees greater than zero. In the

BA model a node is added in every time-step that must have exactly m edges, not

on average like in Price’s model, and as before, the initial network G must have at

least m + 1 nodes. Figure 1.4 shows one realisation of a BA network with 250 nodes

where each new node has one edge.

If Nk(t) is the number of nodes with degree k at a time t (the network grows by one

node at every time-step). The probability that a new edge is attached to a node with

degree k is

Pk =
AkNk(t)

∑

j AkNj(t)
. (1.6)

The “kernel” of the system is Ak is called linear if Ak = k. When Ak = kγ, then we

say that the kernel is sublinear when γ < 1 and superlinear when γ > 1. A master

equation is a set of ODEs that describe the evolution of the probability that Nk(t)

will have a certain value. If we denote by A =
∑

j jNj(t) then the master equation
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for the growth of the network is [15]:

dNk

dt
=

Ak−1

A
Nk−1 −

Ak

A
Nk + δk1, k = 1, 2, . . . (1.7)

The first term in the right hand side is the number of nodes that go from having

degree k− 1 to degree k, the second term is for the nodes that go from k to k +1 and

the third term is the Kronecker delta to take into account the entry of new nodes to

the network. When we use the linear kernel, the denominator of equation (1.6) is just

the total number of endpoints of edges in the network and
∑

j jNj(t) = 2t [15]. We

can solve equation (1.7) using an arbitrary initial condition, this is justified because

the long term behaviour of the network is being modelled so the initial condition is

irrelevant [16]. The solutions are linear in t so we can express them as Nk(t) = nkt

where

n1 =
2

3
, nk = nk−1

k − 1

k + 2
, k ≥ 2. (1.8)

This recursive relation can be solved for all k:

nk =
4

k(k + 1)(k + 2)
, (1.9)

which can be re-written in terms of the Gamma function (see equation (A.7) on

Appendix A):

nk =
4Γ(k)

Γ(k + 3)
. (1.10)

This function is the discrete analog of the power-law f(x) ∼ x−3 [16]. Figure 1.5

shows in log-log coordinates the complement of the CDF P (X ≥ x) = 1 − F (x), of

a network that was allowed to grow following the BA model until it reached 10,000

nodes with one edge per added node. In red we can see the fit of the observed degree

distribution to a power-law. The fit shows shows that the exponent in the power-

law is γ ≈ 3.0082, as the calculations had predicted. The fit was made using the

goodness-of-fit method outlined by Clauset et al. [7] In this case, the exponent in the

power-law is three. However, Krapivsky et al. have shown that it can be tuned to any

value larger than two by means of small adjustments in the attachment probabilities

[15]. For example if we let A1 = α and Ak = k when k > 1 then nk ∼ k−ν where

ν =
3 +

√
1 + 8α

2
.

More general forms of the BA model include the use of sublinear and superlinear

kernels. In the sublinear case we assume that A(t) =
∑

k kγNk(t) is linear in t, e.i.
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Figure 1.5: Degree distribution of a network created according to the BA model.

A(t) = µt, µ ∈ R. Equation (1.7) has the solution Nk(t) = nkt where

nk =
µ

kγ

k
∏

j=1

(

1 +
µ

jγ

)

−1

. (1.11)

The solution to this equation is a stretched exponential [15]

nk ∼ kγeβ,

where β ∈ R [2]. When the superlinear kernel Ak = kγ γ > 1 is used, then a

discretised version of equation (1.7) can be solved. If 1 < γ < 2 there will be a

dominant node with a nonzero probability of having a finite fraction of all links in

the network. When γ ≥ 2 then the dominant has a nonzero probability of being

connected to every other node in the network [2, 22].

1.3 Network rewiring

There are some problems in which the network does not change its size in time, i.e. the

numbers of nodes and edges remain constant but its structure does not. The process

known as wiring is when a new edge that connects two nodes is added to the network.

Node rewiring means that an existing edge changes one of its end points from one node

to another but the other one remains. Networks in which rewiring often occurs are

bipartite affiliation networks. Rewiring represents, for example, when people change

their affiliation from one society or club to a different one.
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1.3.1 A network rewiring model

Network rewiring models have been studied thoroughly by Evans and Plato [9, 10].

Let G = (V1,V2, E) be a bipartite network with two different types of nodes: indi-

viduals V1 = {v11 , v12 , . . . v1E
} and artifacts V2 = {v21 , v22 , . . . v2N

} of sizes E and N

respectively. Each individual holds exactly one edge that is attached to one of the

artifact nodes, so there are always E edges in the network and the mean degree of the

artifacts is E/N at all times. Every time step, an artifact node is chosen at random

with probability ΠR and re-attached to an artifact node with independently chosen

with probability ΠA. The chosen artifact can be the same which was originally de-

tached. Figure 1.6 shows graphically how this process works. The number of artifact

Figure 1.6: Description of the rewiring process of the edges from one artifact to
another. One edge is detached from artifact node D and rewired to B. (Image from
[10], used with permission)

nodes with degree k at any time in the network Nk(t), and the degree probability

distribution pk(t) = Nk(t)/N . The master equation that describes the evolution of

the artifact degree distribution is:

Nk(t + 1) − Nk(t) = Nk+1(t)ΠR(k + 1, t)[1 − ΠA(k + 1, t)]

− Nk(t)ΠR(k, t)[1 − ΠA(k, t)]

− Nk(t)ΠA(k, t)[1 − ΠR(k, t)] (1.12)

+ Nk−1(t)ΠA(k − 1, t)[1 − ΠR(k − 1, t)].

The positive terms in the equations account for the arrival of edges from the artifacts

with degree k + 1 that lose an edge and the ones with degree k − 1 that gain an

edge. The negative terms account for the nodes with degree k that have either gained

or lost an edge. The terms (1 − Π) represent the edges that are removed from one

10



artifact and re-attached back to it. The probability with which edges are chosen for

removal and attachment are:

ΠR(k, t) =
k

E
, ΠA(k, t) =

p

N
+ (1 − p)

k

N
. (1.13)

Nodes are chosen to have an edge removed with probability ΠR proportional to their

degree. The arrival probabilities ΠA involve a parameter p ∈ (0, 1) which means

that an edge is re-wired using uniform attachment with probability p and preferential

attachment with probability (1 − p).

Evans and Plato show that equation (1.12) has an exact solution for the probabilities

(1.13) [10]. This equation represents a Markov process for Nk(t) and its solutions are

given in terms of the eigenfunctions of the system ω(m)(k) and generating functions

G(m)(x). The solution is:

Nk(t) =
E

∑

k=0

cm(λm)tω(m)(k). (1.14)

The generating function G(x, t) is:

G(x, t) =
E

∑

k=0

xkNk(t)

=
E

∑

m=0

cm(λm)tG(m)(x), (1.15)

and the generating functions G(m)(x) are

G(m) =
E

∑

k=0

xkω(m)(k),

which can be written in terms of the 2F1 hypergeometric function (a brief introduction

to the hypergeometric functions and some of its properties are given in Appendix A)

G(m) = (1 − x)m
2F1(a + m, b + m; c; x), (1.16)

where

a =
pE

[(1 − p)N ]
, b = −E, c = 1 + a +

b

1 − p
.

In Appendix A the needed properties of the hypergeometric function are reviewed.

The eigenvalues of the process are:

λm = 1 − m
p

E
− m(m − 1)

(1 − p)

E2
. (1.17)
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One important result is that when p ≤ E−1 we can see from the eigenvalues that

there will be an artifact that will receive all the edges in the network eventually.

When p ≫ E−1 then we get a power-law with cutoff pk ∼ k−1e−ξk [10], which behave

initially like a power-law distribution but show exponential decay in the tails [7].

12



Chapter 2

A bipartite network of movie

ratings

Netflix1 is DVD rental company in the United States that allows its costumers to give

a rating to the movies they rent through their Internet page. Netflix has a system that

uses these ratings to “predict” the ratings their costumers would give to unseen films

and based on that, it makes recommendations [6]. In 2006 Netflix issued a contest

called the Netflix Prize2, in which it challenged the public to develop a system that

can make better predictions than their own. To help the contestants the company

released a dataset consisting of more than 100 million ratings of nearly 18,000 movies

by about one million costumers. In this chapter we describe and analyse this dataset.

2.1 Dataset description

The Netflix dataset consists of 100,480,507 ratings in the integers from 1 to 5 of 17,770

movies made by 480,189 system users from late 1999 to the end of 2005. Each entry

in the dataset consists of a movie ID, a user ID, the value of the rating and the date

it was entered into the system.

The users of the system form a set that grows as more people become costumers. This

is important to keep in mind to normalise data whenever necessary to avoid biases

in the results. On the left image of Figure 2.1 we can see how the number of users

active in the system grows. On the right image we see the average number of ratings

entered to the system.

The dataset displays recurring behaviour. The number of ratings introduced into

the system shows strong dependence on the day of the week. This is probably a

1http://www.netflix.com
2http://www.netflixprize.com
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Figure 2.1: Monthly average number daily ratings and total number of users in the
Netflix dataset from January 2000 to December 2005.

consequence of the work and leisure habits of people that normally follow weekly

patterns. Tuesdays and Wednesdays were the days in which the system received the

most ratings. In Figure 2.2 we can see how the number of ratings received a day for an

0

0.5

1

1.5

2

2.5

July 2003 August 2003

d
a

ily
 a

ve
ra

g
e

Movie Ratings per day in July−August 2003

Figure 2.2: Ratings per day divided by the daily average for July and August 2003.

interval of two months in 2003 follows a . Similar patterns are observed throughout

the whole dataset.
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2.2 The Netflix dataset as a network

The Netflix dataset can be described as a bipartite network with users and movies

as different node types, and weighted edges to represent the ratings. If the set of U

users is U = {u1, u2, . . . , uU}, the set of M movies is M = {m1,m2, . . . ,mM} and

the set of ratings E = {e(1,1), e(1,2), . . . , e(U,M)}, then we can represent the dataset as

the network N = (U ,M, E). The adjacency matrix of the network is G ∈ R
U×M ,

where G(i, j) is the rating of user i to movie j and zero if it does not exist. As a

weighted bipartite network, N has two degree distributions, one for the users and

one for the movies. Most of the analysis done in this chapter will be done on subsets

of the original data. This is done for two reasons: To see how the structure of the

network is and changes at different times and because it is a very large dataset it can

take a computer a very long time to compute results.

With the adjacency matrix G of the network or subsets of it, we can also construct

the projected networks of movies and users. These unipartite networks will have, for

example in the projected network of movies, an edge between any two movies that

have been rated by the same user. In the projected network of users, two of them

will be connected if they have rated at least one movie in common. We can construct

these networks simply by multiplying the adjacency matrix by its transpose GGT to

get the network of users and GTG for the network of movies. The value of an edge

in any of the projected networks is the sum of the products of the ratings.

2.2.1 Degree distributions

In this section we will look the degree distributions of the different node types found

in the network. Figure 2.3 shows the degree distributions observed in a subset of the

data corresponding to one day. In this subset there were 33,528 ratings of 4,819 movies

by 6,671 users and the average user rated 5 movies. In the plots, we that the degree

distribution looks like a power-law that gets disrupted in the lower end by alterations

due to of the finite size of the network [29]. Accordingly, in this project we will use

CDFs instead, in which the effects of finite size networks are not as prominent as in

the PDFs. A legitimate claim of a power-law cannot be based on graphical evidence

alone because it can lead to serious errors in the interpretations [5]. The method we

will use to confirm the shape of the distributions is the one outlined by Clauset et al

[7], which relies maximum likelihood estimators. In Figure 2.4 we see the CDF of the

degree distributions from the same date as in Figure 2.3 and their power-law fits. The

fit seems reasonably agree with the data for about a decade (a power of 10) and a half
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Figure 2.3: Probability distribution functions of user (left) and movie (right) degrees
from the subset of data from August 15, 2003.

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

1
−

F
(x

)

node degree

User cumulative distribution function and power−law fit

 

 
User Data
Power−law Fit

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

1
−

F
(x

)

node degree

Movie cumulative distribution function and power−law fit

 

 
Movie Data
Power−law Fit
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of data, but the tails decay much faster as they would in a power-law distribution.

There appears to be some a cut-off which bounds the degree of the nodes. There are

a number of CDFs that display that behaviour, such as like the power-law with a

cut-off,

F (x) ∼ cx−ae−bx, (2.1)

the stretched exponential

F (x) ∼ xb−1e−λxb

,

and the general power-law with two crossover points:

F (x) ∼







x−a
1 1 ≤ x < x1,

x−a x1 ≤ x < x2,
x−a

2 e−b(x−x2) x2 ≤ x.

The crossover points x1 and x2 can be determined using maximum likelihood estima-

tors [5] or the Kolmogorov-Smirnov statistic which measures maximum discrepancies

between CDFs [7]. The distribution that we found was a better fit of the Netflix data

snapshot from August 15, 2002 was the power-law with cut-off defined in equation

(2.1). Figure 2.5 shows the fits to the user and movie CDFs. The fit for the user nodes
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Figure 2.5: Power-law with cut-off fit to user and movie degree distributions.

looks closer to a normal power-law rather than one with cut-off. This is confirmed by

the fitting parameters that have values of a and b from equation (2.1) are: a = 1.063

and b = 5.055× 10−7. The movie node degree distribution in the plot showed a good

agreement to the fit with coefficient values a = 0.7968 and b = 0.01089. However,

tests done on several days of the data do not rule out the power-law with exponential
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Figure 2.6: Fits of user degree distributions for three different days during week 35
of years 2002-2005.
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Figure 2.7: Fits of movie degree distributions for three different days during week 19
of years 2002-2005
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hypothesis. In Figures 2.6 and 2.7 we show a few examples of the results obtained

from fitting the CDFs of the movies and the users respectively to the power-law with

cut-off distribution. These images show a few of the results obtained from the sub-

sets of the data from different dates. Each column belongs to one day of the week

and each column to a year. Something curious that we noted in the movie degree

distribution from the data, is that around weeks 18-20 (about the end of April and

beginning of May), the degree distribution has a deformation, a “kick” in the nodes

higher degrees. This can be clearly seen in the bottom left image of Figure 2.7 that

corresponds to the Tuesday of week 19 of 2005. This was also observed in the data

at other dates, but around these weeks it was particularly prominent.

As mentioned in the previous section and is expressed in Figure 2.2, the dataset dis-

plays recurrent behaviour in the number of ratings in the database depending on the

day of the week. We will look for differences in the degree distributions of movies

and users on all weekdays that will allow us to distinguish one day from the other

just by looking at the distributions. In Tables 2.2 and 2.1 we show the mean and

variance fitting parameters of movie and user CDFs to the form of equation (2.1) by

day of the week for the all the ratings between January 2000 and December 2005,

Although there is not too much variation in the values for the different days of the

week, we do note what we had already seen in the description of the data (Figure

2.2). Tuesdays and Wednesdays, the days that have more ratings, have their movie

degree distributions closer to each other than to the rest of the weekdays. Mondays,

Thursdays and Fridays, that have similar number of ratings per day, also have degree

distributions closer to each other. While in the days with less activity, Saturday and

Sunday the degree distributions are also close. See Figure 2.8 for a plot of these dis-

tributions using the mean values of the fits. In the users’ data from Table 2.2 we can

also see some differences in the coefficients. As with the movie degree distribution,

Tuesday and Wednesday are closer together than the to rest of the days. Saturday

and Sunday also appear together. To see the degree distributions of the users and

the movies follow weekly patterns is something that was to be expected given the

previous data descriptions.

2.2.2 Clustering coefficients

To understand better the structure of the network, we now turn to clustering coeffi-

cients to find out how well connected are nodes in their neighbourhoods and what is

the impact of highly connected nodes. As explained in Section 1.1, bipartite networks

cannot have triangles because two nodes of the same type cannot be neighbours. For
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Movie degree distribution fit parameters
a b c

mean var mean var mean var
Monday 0.6616 0.0285 0.0707 0.0093 1.0843 0.012
Tuesday 0.6481 0.0276 0.0553 0.006 1.0651 0.0073
Wednesday 0.6458 0.0205 0.0596 0.0082 1.0698 0.0112
Thursday 0.6436 0.0235 0.0688 0.0107 1.0789 0.0155
Friday 0.6544 0.0239 0.0695 0.0101 1.0789 0.0146
Saturday 0.6775 0.0262 0.074 0.0123 1.0822 0.0226
Sunday 0.6748 0.0335 0.0822 0.0137 1.0937 0.0211

Table 2.1: Fitting parameters of movie degree distribution per weekday from 2000 to
2005 to a power-law with cut-off model.

User degree distribution fit parameters
a b c

mean var mean var mean var
Monday 0.8426 0.0672 0.0123 0.00019842 1.0159 0.00064487
Tuesday 0.8789 0.0600 0.0118 0.00038765 1.0139 0.00090404
Wednesday 0.8769 0.0694 0.0119 0.00035937 1.0124 0.00086279
Thursday 0.8681 0.0664 0.0102 0.00015413 1.0071 0.00064731
Friday 0.8661 0.0626 0.0097 0.00012747 1.0046 0.00063994
Saturday 0.7838 0.0387 0.0122 0.0002455 1.0126 0.00082575
Sunday 0.7497 0.0368 0.0132 0.00010061 1.0194 0.00076648

Table 2.2: Fitting parameters of user degree distribution per weekday from 2000 to
2005 to a power-law with cut-off model.
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that reason we cannot calculate the clustering coefficients C3(i) or C3 on G. Squares

do exist in a bipartite network, so we can calculate C4(i) and C4. We remember the

definition of C4(i) for a node vi:

C4(i) =

∑

h,m qimh
∑

m,h [(km − ηimh
)(kh − ηimh

) + qimh
]
,

where qimh
is the observed number of squares for two neighbours vn, vm of vi, and the

denominator is the possible number of squares. In this case we will never have an

edge between two neighbours of vi so θ = 0 and ηimh
= qimh

+ 1. In Figure 2.9 we
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Figure 2.9: Clustering coefficients C4 for the users (left) and movies (right) in the
bipartite network of ratings on August 9, 2003.

can see the values of C4(i) attained by the nodes of movies and users in the bipartite

network. Although the nodes are in the same network, they are shown separately so

we can compare users to users and movies to movies. The values of C4(i) we observe

are quite small. This is because there may be, for example, a movie watched by many

people who have not other movies in common but that one. This can happen when

a movie is so popular that people with normally incompatible taste in films (or no

common neighbours) rate it. Such films are not part of many squares but the number

of possible squares that could include them is quite high because of its degree, so the

value of their C4(i) and its neighbours’ will be lower. This makes the value of the

clustering coefficient of the whole network on that day be C4 = 0.0014.

We also look at the clustering coefficient of the projected networks of users GGT and
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movies GTG . Here triangles do form and we can calculate C3(i) for all nodes and

C3 for the projected networks. In Chapter 1 we gave the definition of C3(i):

C3(i) =
2ti

ki(ki − 1)
,

where ki is the degree of vi and ti is the maximum possible number of triangles that

include vi. The coefficient of the entire network is

C3 =
1

M

M
∑

i=1

C3(i).

Users in their projected network GGT go from having as degree the number of movies

seen by them, to have a degree that is equal to the number of all users who have seen

at least one of their movies . A zero degree, which was nonexistent in G, is possible

when a node has degree 1 and its neighbour has also degree 1 in the bipartite network.

Although the degrees of the nodes change and normally the number of connections

increases greatly in the projected networks, the graph remains sparse. For example,

in the daily snapshots of year 2003 we found that the fraction of entries used in the

matrix goes from 0.001015 in G to 0.01681 in GGT for the users, and to 0.05413 in

GTG for the movies. In Figure 2.10 we show an example of the clustering coefficient
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Figure 2.10: Clustering coefficient C3 for projected networks of users (left) and movies
(right) on August 9, 2003

of all the users and movies in the subset of Netflix ratings corresponding to August

9, 2003. The value of the coefficient for the entire network of users is C3 = 0.7904
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and the value of the coefficient of a random graph of similar size (5,073 nodes and

507,368 edges) is C3Rand = 0.01943. This is sign that there is an underlying structure

in the network that is very different from random. There are many nodes up to degree

200 that are completely connected, and many more that are in very highly connected

neighbourhoods. The value of the coefficient for the network of movies on the same

day is C3 = 0.7195, and for a random graph of the same size (3,694 nodes and 587,560

edges) is C3Rand = 0.0430. In here we can also appreciate many movies that are very

connected, up to degree 300 with C3(i) = 1.0.

In the plot of the users’ C3 in Figure 2.10 we can see a separate set of nodes that stand

apart from their peers and have visible higher values of C3(i) than all the other nodes

with the same degree, this may be the effect of a dominant movie in the network.

On the day of the example shown, the movie with the highest degree in the bipartite

network was The Bourne Identity with 303 ratings. Removing that movie’s entries

from G, changes the clustering coefficient of the users network GGt to C3 = 0.7737

(0.0167 lower than the original value observed in the original network). If we plot the

values of C3 for the projected network without this film, the group of nodes that had

a higher value of C3(i) has been integrated to the rest of the nodes (see Figure 2.11),

which means that The Bourne Identity is responsible for a great deal of triangles in

the projected network. This behaviour was not observed in the network of movies,

because it is very unlikely to find a user who has rated a significant proportion of the

films enough to alter the structure of the projected network of movies.
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Figure 2.11: Clustering coefficients C3 of the projected network of users without the
top film on August 9, 2003.
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Degree Title Year

1 232,944 Miss Congeniality. 2000
2 216,596 Independence Day. 1996
3 200,832 The Patriot. 2000
4 196,397 The Day After Tomorrow. 2004
5 193,941 Pirates of the Caribbean: The Curse of the Black Pearl. 2003
6 193,295 Pretty Woman. 1990
7 181,508 Forrest Gump. 1994
8 181,426 The Green Mile. 1999
9 178,068 Con Air. 1997
10 177,556 Twister. 1996

Table 2.3: The 10 most rated movies in the Netflix dataset.

2.2.3 Ratings of movies

In networks grown using preferential attachment, nodes that have many more edges

than the rest have a higher probability of receiving more edges from new incoming

nodes. These networks have been subject of much study in recent years [3, 4, 22, 26].

Given that the Netflix data can be viewed as a social network (or more properly, an

affiliation network) and that we have observed power-law distributions with cut-off

in the movie degrees, we want to see how does the degree of a movie grow in time.

In the information of the ratings we also have the date in which the user rated the

movie, this is very valuable information because we can use it to tell the age of a node

and we are able describe the evolution of every node as the network develops.

We begin looking at some of the movies with the highest degrees. The highest ten are

shown in Table 2.3. To see how does the degree of a movie grows, we sort the ratings

chronologically and see how the degree of the movies grow in time. To make a correct

assessment of how this growth is, we must work within the context of how fast is the

network growing and put our measurements in this scales. Let lt be the number of

links that entered the network on day t, ki,t the degree of the movie node mi on day

t and li,t the number of links from lt that belong to movie mi. We define the relative

popularity of a film on a day t as li,t/lt, and the degree of a movie relative to the

growth of the network as ki;t/lt. For example, the film Pirates of the Caribbean: The

Curse of the Black Pearl, which is one of the most rated movies in the database, has

its release date in the during the dataset’s time-span. This allows us to see its degree

evolution from the first rating it received. In Figure 2.12 are the plots of the relative

popularity and growth of the film throughout its history in the dataset. We can see in

the plot on the left if the figure how the film had a sudden rise of popularity between
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Figure 2.12: Relative popularity (left) and relative growth (right) of the film Pirates

of the Caribbean: The Curse of the Black Pearl throughout its history in the Netflix
dataset.

November 2003 and April 2004. After this period it remains a popular film with an

essentially steady influx of ratings. In the plot on the right we see its relative growth.

Between November 2003 and April 2004, just after its much anticipated release on

DVD, the degree of the movie grows dramatically, then it continues to grow but at

a slower rate. On the other hand, Pretty Woman was released in 1990, nine years

before the start of Netflix. It also is one of the most-rated films but does not have a

breakthrough like in the case of The Curse of the Black Pearl. This is a movie that

has been a constant popular choice of the costumers and in Figure 2.13 we see that,

although there are some oscillations, the relative popularity of the film remains. This

could imply that once the degree of a film has reached a the status of a dominant film,

it does not acquire every time a bigger share of the new edges but grows steady pace

which can help to explain the saturation seed in the degree distributions. This tells

us that although the degree of a node plays an important role on the number of new

edges that it gets, there are other processes influencing the attachment of the edges.

As we know, in the film industry there are very intense promotional campaigns of

movies intended to introduce them into the market. This, from the networks point

of view, can be understood as making a movie node artificially more attractive.
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Figure 2.13: Relative popularity the film Pretty Woman throughout its history in the
Netflix dataset. The red line indicates the mean.

Values of the ratings

During the course of this project a paper was posted on the arXiv3 pre-print server by

Lorenz [18] in which he showed that the histograms of film ratings from the Internet

Movie Database4 (imdb) have two or three peaks. Moreover, he showed that these

characteristics can be approximated by Lévy skew α-stable distributions. In the

Netflix dataset the ratings are single peaked. This can be because the values that a

rating can assume are only integers from 1 to 5, while in imdb the ratings are also

integers but go from 1 to 10, which allows users to be more specific when they enter

a rating for a film. In Figure 2.14 we show a few individual-movie histograms and

the histogram of all the ratings in the dataset.

3http:/.arxiv.org
4 http://www.imdb.com
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Figure 2.14: Histograms of the ratings of some of the movies from all dates in the
database (top and bottom left) and of the average ratings of all films in the Netflix
dataset (bottom right).
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Chapter 3

Catalogue and logistic network

growth

3.1 Logistic attachment

In the Netflix that we discussed in Chapter 2, we saw that the degree distribution

of the movies exhibits exponential decay in its tails. This can indicate saturation

in the degrees of the nodes. For example, a movie that is a big hit acquires many

ratings at the time of its release (i.e. when it is added to the network), but once most

people who have interest have seen it, it acquires ratings (edges) at a slower pace. In

this section we will explore some growth mechanism ideas that could reproduce these

observations. We borrow the concept of carrying capacity from population dynamics

and use it to describe the network’s “bound” on the attractiveness of a film.

Logistic growth

There are many examples of saturation in nature. One of the best known examples

comes from population dynamics where the population of a species grows for as long

as the resources allow it. If y(t) is the population of a species at a time t, Verlhulst

suggested that its change was described by the equation [20, 14]:

dy

dt
= ry

(

1 − y

c

)

, y(t0) = y0. (3.1)

The constant c > 0 is the carrying capacity of the environment and r > 0 is the

reproductive parameter. The idea behind this equation is that a population will grow

as long as the environment can sustain it. We can see from the negative term of

equation (3.1) that the change in the population limited by its size relative to the

capacity of the environment. When y is close to zero, we can neglect the quadratic

term in the equation and we will observe exponential growth of the population. When
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y = c then dy
dt

= 0 and it is a steady equilibrium, which means that the population

will settle [20]. The logistic equation has solution:

y(t) =
y0ce

rt

c + y0 (ert − 1)
. (3.2)

This function is plotted in Figure 3.1. We can see how it grows exponentially for
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Figure 3.1: Example of logistic growth. Different values of the reproductive parameter
r in equation (3.2).

early values of t and it grows every time slower as y(t) approaches c, which in this

case is 1.

Logistic attachment mechanism

Self-limiting behaviour is not alien to networks science, it has been observed empir-

ically by Newman in networks of collaborations in scientific journals [21]. Scientists

are connected if they have collaborated in at least one paper. Newman asserted that

the probability of collaboration between two scientists Pm is a function of the number

of common co-authors m and has the form:

Pm = A − Be−m/m0 ,

where A, B and m0 are constants [21], and displays saturation as m grows.

As it was mentioned before, in the Netflix network we saw some nodes that appeared

to be saturated with edges. This motivates us to develop an attachment mechanism

which combines preferential attachment with the ideas behind self-limiting growth of
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the logistic equation. Let G be a unipartite network with M nodes. Every time-step

we add a new node that will have an edge connecting it to one of the pre-existing

nodes in the graph. We define the probability Pvi
that a new edge in the network

connects to a node vi to be logistic function y in equation (3.2), evaluated at its degree

ki:

Pvi
=

f(ki)
∑M

j=1 f(kj)
. (3.3)

The idea behind this attachment mechanism is to have the attractiveness of a node be

the result of applying the solution to the logistic equation to its degree. This way, the

attractiveness will behave like the function on Figure 3.1, where it grows exponentially

for the first few edges that the node receives. After some more edges the attractiveness

does not grow as fast, and eventually stops growing. The carrying capacity of the

network c will determine the maximum attractiveness of the nodes. The reproductive

parameter r determines how fast will the nodes get to their maximum attractiveness.

Higher values of r will mean faster ascent (see the image on the right of Figure 3.1).

The initial condition y0 is also important. A small value of y0 will make the function

grow very fast initially. A large value of y0 (closer to c) will bring slower growth.

A value of y0 greater than c is unphysical because it would imply that a node loses

edges which doesn’t happen in our model.

To get the solution of the logistic equation into a more suitable form, it is best to

nondimensionalise equation (3.1). Take y = cŷ and t = t̂. In this particular case we

wish to keep the time-scale (or more properly, the degree-scale), so we leave r as a

parameter whose value we can change to see its effect on the system. Equation (3.1)

now becomes:
dŷ

dt̂
= rŷ(1 − ŷ), ŷ(0) = ŷ0, (3.4)

which has solution (dropping hats):

y(t) =
y0e

rt

1 + y0(ert − 1)
. (3.5)

Now we can rewrite equation (3.3) as:

Pvi
=

y0e
rki

1 + y0(erki − 1)

[

M
∑

j=1

y0e
rkj

1 + y0(erkj − 1)

]−1

. (3.6)

The carrying capacity used, without loss of generality, for our tests and simulations

was c = 1. This is because any value of c can be rescaled back into 1. The initial

condition y0 is also kept as a parameter of the model. On the left of Figure 3.2
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Figure 3.2: Comparison of CDFs of simulated networks using different values of y0

(left) and r (right) in the logistic attachment model.

we see the cumulative distribution functions of the mean degree distribution of 1000

simulations of a network. Each simulated network contained 1000 nodes, and each

node had one edge to attach to the pre-existing nodes. Different values of the initial

condition y0 were used. One network was generated through uniform attachment

(i.e. Pvi
= 1/M) for the sake of comparison. The degree distribution for y0 = 1

(blue crosses) was the same as the uniform attachment (magenta circles). This not

surprising as equation (3.5) is always 1 in this case. Networks generated through

uniform attachment have exponential degree distributions [4]. For the other values of

the initial condition we observed different results. When 0 < y0 ≪ 1 the first nodes

that got edges took off very quickly and got a high degree very fast, but a dominant

node did not appear here as it does in networks with superlinear attachment. This is

because as a node gains edges the change in its attractiveness is every time less. So

a node with a high degree might be much more attractive compared to those nodes

with degree 1 but not too different from those who have, say 10 edges more. For

example, when y0 = 0.01 and r = 1, we have y(1) = 0.0267 and y(5) = 0.5998. This

means that a node with degree 5 is 22 times more attractive than a node with degree

1. But y(10) = 0.9955, so a node with degree 10 is only 1.65 times more attractive

than one with degree 5. This is why when y0 is very low we get the fat tails we see

on the plot. The image on the right of Figure 3.2 shows a similar experiment, using

logistic attachment with an initial value y0 = 0.1 and several values of r we simulated

1000 networks of 1000 nodes each. None of the networks showed a degree distribution
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very different from the exponential of the uniform attachment model.

The aim of logistic attachment was to reproduce the saturation effect observed in the

degree distributions of some networks. As we saw from the results, logistic attachment

produces networks that are similar to the ones produced by uniform attachment or

with unusually fat tails that, however, if the network is let to grow for a very long

time will eventually converge to a uniform network. This is in part due to the bound

that the carrying capacity imposes on the attractiveness of the nodes. After some

time, most nodes eventually “catch up” and become equally attractive. Alternative

attempts to reproduce self-limiting behaviour might include the use of other functions

that, while expressing saturation, do not bound the attractiveness like the logarithm

of the degree. This is a topic that could yield interesting results in future research.

3.2 Catalogue growth networks

The Netflix dataset described in Chapter 2 motivated the development of growth and

evolution mechanisms of bipartite networks in which the nodes come from predefined

lists or catalogues.

3.2.1 Decreasing node-fitness

Suppose we have two sets of nodes, individuals I = {u1, u2, . . . , uU}, artifacts A =

{m1,m2, . . . mM}, an empty graph G and two constants a, b > 0. We define the

vectors Du and Dm as:

Du =











a + ku1

a + ku2

...
a + kuU











, Dm =











b + km1

b + km2

...
b + kmM











. (3.7)

Each entry in the vectors is the degree of the node plus a constant. The mechanism

starts with an empty network at t = 0. Every time-step two nodes, one individual

and one artifact, are chosen from the catalogues and a binary edge is placed between

them. Each individual and artifact are chosen with probabilities

Pui
=

a + kui

||Du||1
, Pmj

=
b + kmj

||Dm||1
. (3.8)

The constants a and b are the initial attractiveness of the individuals and artifacts

as defined in Price’s model and in the BA with shifted linear kernel [2, 22]. In this

section when we talk about the degree ki of any node, we will be referring to the
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degree of the node at the time t, or ki(t) to simplify notation. This is why at any

time t the norms of the catalogue vectors (3.7) are:

||Du||1 =
U

∑

i=1

[a + kui
] = aU + t,

||Dm||1 =
M

∑

i=1

[b + kmj
] = bM + t,

because only one edge is added at every time step and there are no duplicate edges.

If Nk(t) denotes the number of individuals with degree k, then the probability of

choosing at random an individual with degree k is

Pk(t) =
a + k

aU + t
Nk(t). (3.9)

All the equations and calculations that follow will be done on the nodes of individuals

unless stated otherwise. The results for the artifacts are analogous, one has just got

to change a for b, U for M and vice-versa.

A master equation approach to this mechanism is similar to the one employed by

Krapivsky and Redner to study the growth of unipartite networks with a shifted

linear kernel [15].

dN0

dt
= −

[

a

aU + t

]

N0, N0(0) = U,

dNk

dt
=

[

a + (k − 1)

aU + t

]

Nk−1 −
[

a + k

aU + t

]

Nk Nk(0) = 0, (3.10)

k = 1, . . . ,M − 1,

dNM

dt
=

[

a + (M − 1)

aU + t

]

NM−1 NM(0) = 0.

The negative terms in the equations account for the loss of nodes that acquire an

edge and stop having degree 0 or k. There is no loss term for dNM

dt
because M is

the maximum degree that a node can attain (i.e. there only exist M artifacts). The

positive terms represent the gain of nodes. There is no gain term in dN0

dt
because a

node cannot lose edges and therefore its degree cannot decrease.

The set of individuals active in the network at a time t is I>0 = {u ∈ I : ku > 0},
and has size

|I>0| =
M

∑

k=1

Nk(t) = U − N0(t). (3.11)

There is a fixed number of individuals and artifacts available from the catalogues, so

at time t = UM the network becomes fully connected, i.e. NM(MU) = U .
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Nondimensionalisation

To nondimensionalise the model, let Nk = AN̂k for k = 0, 1, . . . ,M and t = Bt̂.

Substituting in the master equations, for example when k = 0 we get :

dN̂0

dt̂
= −

[

a

1 + Bt̂

]

BN̂0,

which suggests that we use A = U , although it gets canceled but seems reasonable to

have N̂k(t) go from 0 to 1, and B = aU . Now equations (3.10) become:

dN̂0

dt̂
= −

[

a

1 + t̂

]

N̂0, N̂0(0) = 1.

dN̂k

dt̂
=

[

a + (k − 1)

1 + t̂

]

N̂k−1 −
[

a + k

1 + t̂

]

N̂k, N̂k(0) = 0, k = 1, . . . ,M − 1 (3.12)

dN̂M

dt̂
=

[

a + (M − 1)

1 + t̂

]

N̂M−1, N̂M(0) = 0.

Solution

The model can be solved exactly for all t and k. The solutions are (dropping hats

from the nondimensional form):

N0(t) =
1

(1 + t)a
,

Nk(t) =
(a)k

k!(1 + t)a+k
tk, k = 1, 2, . . . ,M − 1, (3.13)

NM(t) =
(a)M

M !
tM 2F1(M,a + M ; M + 1;−t),

where Pochhammer’s symbol (a)n is defined as

(a)n =
Γ(a + n)

Γ(a)
=

n−1
∏

i=0

(a + i),

and 2F1(M,a + M ; M + 1;−t) is the hypergeometric function

2F1(a, b; c; z) =
∞

∑

n=0

(a)n(b)n

(c)n

zn

n!

=
Γ(c)

Γ(a)Γ(b)

∞
∑

n=0

Γ(a + n)Γ(b + n)

Γ(c + n)

zn

n!
. (3.14)
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the functions Ni(t) i = 0, 1, . . . ,M can be very difficult to compute [11], but some

properties of Pochhammer’s symbol and the hypergeometric function as well as other

mathematical techniques like asymptotic expansions may yield simpler expressions

for certain values of a. For example, if a = 1, Pochhammer’s symbol is (1)n = n!, and

properties of the hypergeometric function (see equation (A.8) on Appendix A) The

equations in (3.13) now become

N0(t) =
1

(1 + t)
,

Nk(t) =
tk

(1 + t)k+1
k = 1, 2, . . . ,M − 1, (3.15)

NM(t) =

(

t

1 + t

)M

Figures 3.3 and 3.4 show numerical simulations of a network plotted along with
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Figure 3.3: Plots of N0(t) (left) and N1(t) (right) from 1000 simulations and analytics
of a bipartite network in which U = 500 and a = 1.

evaluations of the analytic solutions outlined by the equations in (3.15), the vertical

bars in the plots are the maximum and minimum values observed in the simulations.

Asymptotics

If 0 < a ≪ 1, we can use the expansion Nk(t) = Nk0(t) + aNk1(t) + a2Nk2(t) + . . . to

get approximate solutions to the differential equations (3.12) which can be rewritten
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Figure 3.4: Plot of N2(t) from 1000 simulations and the analytic solution from equa-
tion (3.15) of a bipartite network in which U = 500 and a = 1.

using these expansions as:

d(N00(t) + aN01(t) + . . .)

dt
= −

[

a

1 + t

]

(N00(t) + aN01(t) + . . .),

N00(0) + aN01(0) + . . . = 1. (3.16)

d(Nk0(t) + aNk1(t) + . . .)

dt
=

[

a + (k − 1)

1 + t

]

(Nk−10
(t) + aNk−11

(t) + . . .)

−
[

a + k

1 + t

]

(Nk0(t) + aNk1(t) + . . .),

Nk0(0) + aNk1(0) + . . . = 0. (3.17)

d(NM0(t) + aNM1(t) + . . .)

dt
=

[

a + (M − 1)

1 + t

]

(NM−10
(t) + aNM−11

(t) + . . .),

NM0(0) + aNM1(0) + . . . = 0. (3.18)
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To solve this equations for terms with the same power of a. The solutions are

N0(t) ≈
∞

∑

r=0

[−a log (1 + t)]r

r!
(3.19)

N1(t) ≈ a
t

1 + t
+ a2 log (1 + t) − t log (t)

1 + t
+ . . . (3.20)

N2(t) ≈ a
t2

2(1 + t)2
+ a2

(

log (1 + t)

1 + t
− t

1 + t
− 1

4
t2(2 log (t) − 1)

− (t − 2)t

2(1 + t)2
− log (1 + t)

(1 + t)2

)

+ . . . (3.21)

...

NM(t) ≈ aΓ(M)tM 2F̃1(M,M ; M + 1;−t) + ... (3.22)

In equation (3.22) the term 2F̃1(a, b; c; z) is the regularized hypergeometric function

defined in equation A.18 in Appendix A (see also equation (C.2) in Appendix C),

and Γ(x) is the gamma function. The order of each approximation is the highest

power of a that is used, for example equation (3.20) shows an order 2 approximation.

The purpose of asymptotic expansions is to take advantage of small parameters in

the models to get approximate analytic solutions. In this particular case it is only

useful for the lower degrees (i.e. k = 0, 1). Computing the regularised hypergeometric

function is more or less the same work than computing the normal one. In this case

an approximation to NM(t) does not simplify calculations and is therefore of little

practical use. We can see some comparisons between the analytic solutions of the

model with approximations and numerical simulations of the network in Figure 3.5.

The model outlined in equations (3.12) seems to capture some of the behaviour of the

evolution of the network. However it is evident from Figures 3.3, 3.4 and 3.5 that it

does not agree well enough with the simulations, in particular for small values of a.

When a is larger, the analytical solutions are much more accurate, as shown in Figure

3.6. This model is called a decreasing node-fitness model. This is because nodes

start with an initial attractiveness a, and its relative value to the network catalogues

decreases as the system evolves. Individuals that do not receive edges soon enough

will have their attractiveness decreasing as a/(aU + t). This is particularly evident

when a is small. When a is larger, say a ≈ O(1), the network grows at a faster

rate because nodes with no edges have comparable probabilities of receiving edges

to those with nonzero degree, at least in the early stages of the process. Figure 3.7
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Figure 3.5: Plot of N0(t) (left) and N1(t) (right) from 1000 simulations, analytical
solution and asymptotic approximations when U = 500 and a = 0.1.
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Figure 3.6: Plot of N2(t) from equation (3.13) when k = 2 to 1000 simulations of a
network using U = 500 and a = 10.
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Figure 3.7: (left) Decreasing fitness of nodes according to the value of parameter a.
(right) Different realisations of N0(t) for values of a.

shows the relative value of the initial fitness a of the nodes as the network grows and

how it influences this growth. Another way to understand this is to think about a as

a nominal value that stays constant and due to some phenomenon (e.g. inflation), its

real value decreases in time.

3.2.2 Constant node-fitness

In the previous model, we saw that the initial attractiveness of individuals and arti-

facts decrease in time. While it is an interesting mathematical model in its own right,

it fails to capture the true behaviour of the system from which it was motivated. The

model was inspired by the Netflix system, where a list of all movies is available to

the users at all times. It still sounds like a reasonable assumption that more popular

movies get chosen more often, but there is no reason to believe that movies that have

not been rated at a time t have an ever-decreasing chance of being chosen. Users

can browse through online catalogues and rent whatever movie they find interesting,

regardless of its popularity. With this in mind, in the following model we let all nodes

have some probability of receiving an edge that is independent of their degree. We

use a similar approach to the one by Evans and Plato in their network rewiring model

[9]. In the model, an edge is assigned using preferential attachment with probability

p and using uniform attachment with probability 1 − p.

We have the two sets of nodes, individuals I and artifacts A, an empty graph G and
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two constants p, q ∈ [0, 1]. The catalogue vectors Du and Dm are now simply the

degree vectors of the nodes

Du =











ku1

ku2

...
kuU











, Dm =











km1

km2

...
kmM











. (3.23)

The initial conditions of the model must be different as in the previous model. If we

started with a completely empty graph at t = 0, we would have ||Dm||1 = ||Du||1 = 0,

which would result in division by zero in the probabilities and subsequent equations,

and no nodes ever being able to be chosen for connections. To overcome this problem,

we let the system begin with two randomly chosen nodes connected as a seed. This

is not uncommon in other growth models such as Price’s and the BA model which

must also start from a non-empty seed network [8, 22, 25]. This is equivalent to

a shift in the time variable and a change in the initial conditions so we can have

||Dm||1 = ||Du||1 = 1 at t = 0. Every time step a new edge is added to the network.

The individual and artifact nodes are chosen with probabilities

Pui
=

[

1 − p

U
+

pkui

1 + t

]

,

(3.24)

Pmj
=

[

1 − q

M
+

qkmj

1 + t

]

.

Now there is no danger of division by zero and we can move on to the model of the

system. The rate equations for the individuals in the network are

dN0

dt
= −

[

1 − p

U

]

N0, N0(0) = U − 1,

dNk

dt
=

[

1 − p

U
+

p(k − 1)

1 + t

]

Nk−1 N1(0) = 1

−
[

1 − p

U
+

pk

1 + t

]

Nk, Nk(0) = 0 k > 1, (3.25)

k = 1, . . . ,M − 1

dNM

dt
=

[

1 − p

U
+

p(M − 1)

1 + t

]

NM−1 NM(0) = 0.

Again, the negative terms account for the loss of nodes and the positive terms, for

the gain of nodes. The number of individuals in the network is still given by equation

(3.11). Let us not forget that the calculations for the artifact nodes are analogous

with the adequate change of terms.
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Nondimesionalisation

To nondimensionalise equations (3.25) we take Nk = UN̂k and t+1 = Ut̂. The model

then becomes:

dN̂0

dt̂
= −(1 + p)N̂0, N̂0

(

1

U

)

= 1 − 1

U
,

dN̂k

dt̂
=

[

(1 − p) +
p(k − 1)

t̂

]

N̂k−1 N̂1

(

1

U

)

=
1

U

−
[

(1 − p) +
pk

t̂

]

N̂k, N̂k

(

1

U

)

= 0 k > 1, (3.26)

k = 1, . . . ,M − 1

dN̂M

dt̂
=

[

(1 − p) +
p(M − 1)

t̂

]

N̂M−1, N̂M

(

1

U

)

= 0.

Solution

The solutions for the nondimensional model are (dropping hats)

N0(t) = a exp

{

−(1 − p)

(

t − 1

U

)}

, (3.27)

N1(t) =
[

b + U−(p+1)(1 − b)t−(p+1)
]

t exp

{

−(1 − p)t +
1 − p

U

}

. (3.28)

...

The values of a and b are

a =

(

1 − 1

U

)

, b = a
1 − p

1 + p
.

One can obtain analytical expressions for Nk(t) when k > 1, however they become

increasingly tedious to calculate and, the expressions become very large. Asymptotic

expansions or a numerical scheme may be a better way to solve this model.

Asymptotics

When p has values close to its extremes, we can obtain approximate solutions to the

model in equations (3.26) using asymptotic expansions. If 0 < p ≪ 1 we use the
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expansion Nk(t) = Nk0(t) + pNk1(t) + p2Nk2(t) + . . . and rewrite equations (3.26) to

obtain:

d(N00 + pN01 + . . . )

dt
= −(1 + p)(N00 + pN01 + . . . ),

N0

(

1

U

)

= 1 − 1

U
, (3.29)

d(Nk0 + pNk1 + . . . )

dt
=

[

(1 − p) +
p(k − 1)

t

]

(N(k−1)0 + pN(k−1)1 + . . . )

−
[

(1 − p) +
pk

t

]

(Nk0 + pNk1 + . . . ), (3.30)

N1

(

1

U

)

=
1

U
, Nk

(

1

U

)

= 0, k > 1, k = 1, . . . ,M − 1,

d(NM0 + pNM1 + . . . )

dt̂
=

[

(1 − p) +
p(M − 1)

t

]

(N(M−1)0 + pN(M−1)1 + . . . ), (3.31)

NM

(

1

U

)

= 0.

After solving for the terms that have with the same power of p we get

N0(t) = e−(t− 1
U )

(

1 − 1

U

) ∞
∑

k=0

pk
(

t − 1
U

)k

k!
. (3.32)

N1(t) ≈ e−(t− 1
U )

{(

1 − 1

U

)

t +
1

U2

+p

[(

1 − 1

U

)

t2 +

(

2

U2
+

1

U
− 2

)

t +
log t

U2
+

2

U
− 1

U3
+

log U

U2

]}

, (3.33)

N2(t) ≈ e−(t− 1
U )

[(

1 − 1

U

)

t2

2
+

t

U2

(

1 +
1

U

)

1

2U2

]

. (3.34)

...

Note that equation (3.32) is equal to equation (3.27) which is why the former is

written not as an approximation, but as an equality.

If 0 < (1− p) ≪ 1, we make a change of variables w = (1− p) and use the expansion

Nk(t) = Nk0(t) + wNk1(t) + w2Nk2(t) + . . .. As before, we have to express equations

(3.26) in terms of w (see equations (C.3), (C.4) and (C.5) in Appendix C). The

43



approximate solutions are

N0(t) =
∞

∑

k=0

(−1)k
(

1 − 1
U

) (

t − 1
U

)k

k!
, (3.35)

N1(t) ≈
1

U2t
+ w

{(

1 − 1

U

)

t

2
− 1

U2
+

1

U2t

[

log t − 1

2
− 3

2U
− log U

]}

, (3.36)

N2(t) ≈
−1

2U4t2
+

1

2U2
, (3.37)

N3(t) ≈
−1

4U2t
+

t

8U2
+

2U3 − 1

8U6t3
. (3.38)

...

These solutions are complicated to obtain and not very informative. For example the

expression for N1(t) in equation (3.36) is already difficult to read and is only an order

1 approximation of N1(t). Perhaps only the approximation to N0(t) is of use. For

example, when an approximate size of the network is needed.

Numerical solutions

Given the difficulty of obtaining analytical solutions for all degree values in our model,

we must rely on numerical methods to compute solutions. In this work we used the

standard four-step Runge-Kutta method [27]. Let y(t) = [N0, . . . , NM ]T , and f(t,y)

be the right-hand side of equations (3.26):

f(t,y) =



















−(1 − p)N0
...

(

(1 − p) + p(k−1)
t

)

Nk−1 −
(

(1 − p) + pk
t

)

Nk

...
(

(1 − p) + p(M−1)
t

)

NM−1



















. (3.39)

At the initial time t0 = 1
U
, the initial conditions are y0 = y(t0) =

[

1 − 1
U
, 1

U
, 0, . . . , 0

]T
.

We calculate yn+1 in the following way

yn+1 = yn +
1

6
[k1 + 2k2 + 2k3 + k4] , (3.40)
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where:
k1 = f(tn,yn),

k2 = f(tn, +
1
2
h,yn + 1

2
hk1),

k3 = f(tn, +
1
2
h,yn + 1

2
hk2),

k4 = f(tn + h,yn + hk3).

(3.41)

Figure 3.8 shows values of log(Nk(t)) for all t and k obtained using the model and

the values obtained by the simulation of 1000 networks. We have taken the logarithm

of the solution so we have a clearer picture of the solutions because all of its values

lie between 0 and 1. The plot has time in the x-axis and node-degree in the y-axis,

the colour indicates the value of Nk(t). Red indicates areas where Nk(t) is very

close to one and dark blue, where Nk(t) = 0. This comparison of the solution of the

model with the simulations of the network suggests that there is something missing in

the model as it fails to reproduce the behaviour observed in the simulated networks,

especially as t (dimensional) approaches UM = 3000. The network that we are trying

to model becomes fully connected at t = UM , and in the solution of the model on

the left image of Figure 3.8 we see that at the final time there still are plenty of nodes

whose degree is lower than 100. In the simulated networks we can see clearly that this

is not the case, all nodes are fully connected at the final time as expected. We need

to improve this model so the values of Nk(t) go to zero as they should and NM(t) = 1

at the final time.

3.2.3 Constant node-fitness with catalogue update

In networks from catalogues, once a node is fully connected it cannot receive any

new edges. In particular, if an artifact is connected to every single individual, it

means that there is one less artifact to choose from. This was not accounted for in

the previous models and led to serious flaws. To incorporate this behaviour into the

model, we must reconsider the probabilities that the individuals and artifacts have

of receiving an edge. When an edge is added to the network, its probability of being

attached to an individual of degree k using uniform attachment is Nk/(U − NM),

because there are NM individuals incapable of receiving new edges so it must choose

from the rest. The probability of the edge to connect to an individual of degree k

using preferential attachment is kNk/(1 + t−MNM). The denominator accounts for

the number of edges (the sum of all degrees) of the nodes in the catalogue 1 + t, as
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Figure 3.8: Comparison of results obtained by the model of equations (3.26) (left)
and the mean values of Nk(t) after 1000 simulations (right) when M = 100, U = 30
and p = 0.8.

in the previous minus the edges of the nodes that are now fully connected MNm(t).

The analog also holds for the probabilities that an edge has of connecting to artifact

nodes, which is obtained changing M for U and vice-versa. With these adjustments

in the probabilities, we now reformulate the model of catalogue growth:

dN0

dt
= −

[

1 − p

U − NM

]

N0, N0(0) = U − 1,

dNk

dt
=

[

1 − p

U − NM

+
p(k − 1)

(1 + t) − MNM

]

Nk−1 N1(0) = 1,

−
[

1 − p

U − NM

+
pk

(1 + t) − MNM

]

Nk, Nk(0) = 0 k > 1, (3.42)

k = 1, . . . ,M − 1,

dNM

dt
=

[

1 − p

U − NM

+
p(M − 1)

(1 + t) − MNM

]

NM−1, NM(0) = 0.

Nondimensionalisation

To nondimensionalise equations (3.42) we scale the degree distribution (as before)

Nk = UN̂k and unlike previous occasions we shift and rescale the time variable
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(1 + t) = Ut̂. Now the model becomes:

dN̂0

dt̂
= −

[

1 − p

1 − N̂M

]

N̂0, N̂0

(

1

U

)

= 1 − 1

U
,

dN̂k

dt̂
=

[

1 − p

1 − N̂M

+
p(k − 1)

t̂ − MN̂M

]

N̂k−1 N̂1

(

1

U

)

=
1

U
,

−
[

1 − p

1 − N̂M

+
pk

t̂ − MN̂M

]

N̂k, N̂k

(

1

U

)

= 0 k > 1, (3.43)

k = 1, . . . ,M − 1,

dN̂M

dt̂
=

[

1 − p

1 − N̂M

+
p(M − 1)

t̂ − MN̂M

]

N̂M−1, N̂M

(

1

U

)

= 0.

Solution

This model consists of M +1 coupled nonlinear differential equations. This makes an

analytical solution very difficult to obtain specially because all equations depend on

N̂M(t). A numerical method is more appropriate to find the solutions of the model,

but we cannot use and explicit finite differences scheme because it is unsuitable for

a problem like this. The denominators in equations (3.43) will become very small as

t̂ → M , so the values of the equations, specially for high k as we will later see, will

have abrupt changes in very small timescales. Instead of the explicit Runge-Kutta

method we used in the previous section, we will use the implicit Euler which is more

adequate for a stiff problem like this [28].

Let y(t) = [N0, . . . , NM ]T , and f(t,y) be the right hand side of equations (3.43) so

that:

ẏ = f(t,y), (3.44)

where:

f(t,y) =





















− (1−p)
1−NM

N0

...
(

(1−p)
1−NM

+ p(k−1)
t−MNM

)

Nk−1 −
(

(1−p)
1−NM

+ pk
t−MNM

)

Nk

...
(

(1−p)
1−NM

+ p(M−1)
t−MNM

)

NM−1





















, (3.45)
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and initial conditions:

y0 =















1 − 1
U

1
U

0
...
0















.

The implicit Euler finite differences scheme is [28]:

yn+1 − hf(t,yn+1) − yn = 0. (3.46)

At every iteration we must solve a system of M + 1 equations. We will use Newton’s

method to find the value of yn+1, for it we will need the Jacobian of equation (3.46):

J(t,yn+1) =

















1 − h ∂f0

∂N0
1 − h ∂f0

∂N1
. . . 1 − h ∂f0

∂NM

...
...

...
...

1 − h ∂fk

∂N0
1 − h ∂fk

∂N1
. . . 1 − h ∂fk

∂NM

...
...

...
...

1 − h∂fM

∂N0
1 − h∂fM

∂N1
. . . 1 − h ∂fM

∂NM

















. (3.47)

The Jacobian has a bidiagonal structure were the (M + 1)th column can be nonzero.

Figure 3.9 shows the structure of the Jacobian of equation (3.46). As we mentioned,
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Figure 3.9: Structure of the Jacobian matrix (left) of the backward Euler scheme.
Plot of N90(t) (right) computed numerically.

the stiff problem yields solutions that change abruptly in short periods of time. One

example is shown on the right of Figure 3.9, where N90(t) is plotted, this solution

corresponds to a network where U = 30, M = 100 and p = 0.3. The higher the value
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of k, the later Nk(t) = 0 reaches its maximum and the faster it must decrease to get

to zero at the final time.

To show the solutions for all Nk(t) we use the same colour plots where red indicates

high values of Nk(t) and dark blue indicates zero. Figure 3.10 shows solutions of

equations (3.43). Each image has a different value for parameter p, the one on the

left corresponds to p = 0.2, where uniform attachment is dominant over preferential

attachment. We can see in this case that there are no nodes whose degree grows

much faster than the rest. This is because the probability of preferential attachment

is small enough to have most nodes getting edges at a similar rate. This contrasts

with the image on the right which corresponds to p = 0.8, where preferential attach-

ment is dominant. Here we can see how a few nodes get edges much faster than

the rest (the lines that go down very quickly), and the majority of the nodes remain

with low degrees for a longer time until finally (when the dominant nodes are fully

connected) they also begin to receive edges and become ultimately connected at the

final time. We can see how the plot of a simulation with p = 0.8 on the right of Figure

3.8 displays the same behaviour that we see in our solution. Dominant preferential

Figure 3.10: Solutions of Nk(t) with p = 0.2 (left) and p = 0.8 (right) where U = 30
and M = 100.

attachment leads to a larger number of fully connected nodes earlier than dominant

uniform attachment. Both images of Figure 3.10 show the row corresponding to

k = M that does not follow the same colouring patterns as the rest of the image. In

Figure 3.11 we show a closer look at this row. The reason for this line is that the

maximum degree M can be understood like an attractor state in which nodes upon
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arrival do not leave. We can see in the images how NM attracts all the nodes, because

as t approaches M all other the Nk(t) must become empty really fast, which acts like

a de facto implicit boundary condition.

The results given by this model are much more accurate than the ones given by the

previous models. We saw it for p = 0.8, and we can see it in Figure 3.12that shows

the results for p = 0.6 compared to the simulated networks, which also show good

agreement. More images with solutions of different values of p are shown on Figures

C.1-C.3 in Appendix C. A different comparison of how accurate the model is for

Figure 3.11: Detail of rows 90 to 100 and times 1800 to 3000 from the solution of
Nk(t) when p = 0.2 in Figure 3.10.

different values of p is shown in Figure 3.13, where we see two plots of N45(t) for

p = 0.6 and p = 0.2. The images on the left are a close-up of the images on the right.

The model showed better accuracy for smaller values of p than for larger values, which

can also be appreciated from Table 3.1, where we show the mean and maximum error

of Nk(t) calculated by the model for k = 15, 45, 90, against the result observed from

1000 simulations of networks.

The model described in equations (3.42) captures the behaviour of the time-dependent

degree-distribution Nk(t) as seen from the images and plots. The update of the de-

nominator in the master equations was what made the Nk(t) go to zero as t → MU

like it happens on the simulated networks. However, it made all equations dNk

dt
depend

not only on Nk−1 and Nk, but also on NM , which depends on NM−1 and so on. All

equations depend on each other thus making it very difficult to obtain an analytical

expression for the solutions. The numerical computations were also affected by the
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Figure 3.12: Comparison of results obtained by the model (left) and the mean values
of Nk(t) after 1000 simulations (right) when M = 100, U = 30 and p = 0.6.

Figure 3.13: Comparisons of N45(t) from the model and the mean from 1000 simulated
Networks when p = 0.6 (top) and p = 0.2 (bottom).

51



N15(t) N45(t) N90(t)
p max error mean error max error mean error max error mean error

0.2 0.0014 0.0137 0.0013 0.0083 0.000983 0.0070
0.4 0.0026 0.0202 0.0025 0.0115 0.0015 0.0102
0.6 0.00035 0.0163 0.0025 0.017 0.0016 0.0217
0.8 0.0037 0.0124 0.0018 0.0064 0.0015 0.030

Table 3.1: Mean and maximum error of solutions to the model and realisations of the
network for values of Nk and p.

update in the denominator because it made equations very stiff which makes solutions

more computationally expensive to obtain, this is also true for large U and M .

3.2.4 Comparison to the Netflix dataset

In this section we compare the catalogue growth model with the Netflix dataset to see

how well it reproduces its main features. Although we cannot visualise the complete

process in the Netflix dataset as we did on the example networks of the previous

sections (i.e. the data available to us is not from a fully connected network), we can

see how it evolves until all the nodes have at least degree one. On the left of Figure

Figure 3.14: Values of Nk(t) from the Netflix dataset on Sept 12, 2004 (left) and May
13, 2004 (right).

3.14 we show the values of the users’ Nk(t) from September 12, 2004. On this day

there were 16,164 users, 7,546 movies and 82,460 ratings. The highest user degree

was 593 and we can see that there are already some nodes that get edges at a faster
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rate than the majority. This can be appreciated in greater detail on the image in the

right of the Figure. Here we display Nk(t) from May 13, 2004. On that day there

were 12,996 users, 6,938 movies and 69,288 ratings, the highest degree of the users

was 767. The image shows a closeup of the evolution of Nk(t) from k = 0 to 200 and

all values of t. On Figure 3.15 we show on the left image the values of Nk(t) obtained
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Figure 3.15: Values of Nk(t) obtained using the constant node-fitness model (left)
and a fit of N0(t) (right) with parameters M = 1300, U = 500 and p = 0.99

using the model of growth with constant node-fitness without catalogue update of

equations (3.42) with parameters M = 1300, U = 500, p = 0.99 and t from 0 to

80,000. The reason why we used this model and not the one with catalogue update

is because there are no fully-connected nodes up to t = 80, 000 in the examples, so

there is no need to update the denominator in the equations which means that in this

regime both models are equivalent. The result obtained by the model does look like it

could represent what goes on in the Netflix dataset and the fit for N0(t) on the image

of the right confirms it, but the fit for the rest of the solutions is considerably less

accurate. This suggests that the catalogue growth model does not explain completely

the structure of the Netflix dataset.
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Chapter 4

Conclusions

In this project we worked with a large dataset of ratings of movies entered into the

Netflix database by its costumers in a period of over five years. We analysed the

data to try to understand its main characteristics, and get an understanding of the

mechanisms that produce such data structures. The ultimate goal was to make a

mathematical model that describes the processes that shape the network.

The analysis in the Netflix dataset showed us that the degree distributions of the

nodes followed power-law with exponential cutoff in the tails. This indicated that

processes other than preferential attachment were also present in the development

of the network. The cutoff in the tails hinted that nodes could get saturated with

links and their attractiveness. Calculations on the number of ratings that some of

the very popular films receive per day seem to confirm this findings. These movies,

when they first become very popular receive a lot of links in short periods of time.

After this breakthrough their income of ratings settle at a more or less stable level,

which means that although the degree keeps growing, the fraction of new links that

the movie gets, does not. This can be a combined effect of competition, another film

taking over as dominant, and saturation, e.g. the public has seen the movie enough

times.

We also showed through the clustering coefficient C3 of the projected networks of

users and movies, that there were strongly connected neighbourhoods of users who

had rated the same movies, as well as in the projected network of films. It was also

seen that individual nodes can have significant effects on the cliquishness of the pro-

jected networks. As we saw in the example of the projected network of users, one

very prominent film can have very noticeable effects on the clustering coefficient of the

complete projected network. We also calculated a clustering coefficient C4 suitable

for bipartite graphs that is based on the number of squares that include a node. The

value of C4 was found to be much lower than C3 in the projected networks. Lower
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values of C4 are a direct consequence of the diverse preferences of films that the users

showed in the dataset in which two users, in many cases, had only one movie in

common, which reduced the number of squares. In the Netflix dataset we observed

power-law degree distributions with exponential tails, which were an indication that

the attractiveness of the nodes, saturated. A first attempt to develop a model that

could reproduce this saturation and yield a similar network structure, borrowed the

concept of carrying capacity from population dynamics. The carrying capacity of

an environment was interpreted in a network as the maximum attractiveness that a

node could attain. The model we proposed had the attractiveness of the node grow

logistically, that is, exponential growth in the beginning and zero growth as k → ∞.

Networks grown using this mechanism showed, depending on the initial condition

which is a parameter of the model, exponential degree distributions just as networks

grown using uniform attachment. In some cases when the initial value was very small,

the CDF showed a few nodes with exceptionally large degrees in early stages of the

growth of the network. As more nodes are added to the network, the distribution

slowly approached an exponential. This attachment mechanism did not reflect any

of the characteristics observed in the Netflix dataset.

A different type of model was proposed in which the nodes that were to be joined by

an edge were chosen from predefined catalogues or lists of fixed size. The probability

by which a node was chosen would depend on its degree. If allowed to evolve for a

long time, this type of networks eventually became fully connected, i.e. all users have

rated all movies. The first attempt of this type of models used shifted preferential

attachment in the probabilities of the nodes. It was found that the value of the initial

attractiveness parameter of the nodes was decreasing relative to the growth of the

network. While it may be true for other type of networks [26], it was not the case

in the Netflix dataset. The attractiveness of an un-rated film by this model, goes

to zero as the network evolves. The master equations of this model were solved for

all times and degree values, the resulting functions were expressed in terms of the

Pochhammer’s symbol and the hypergeometric function.

A second mechanism was proposed in which the fitness of the nodes was non-decreasing.

To achieve this we used similar attachment probabilities as in the network rewiring

model shown in Chapter 1 [9, 10]. With a fixed probability p we would choose the

node using preferential attachment and with probability (1 − p), with uniform at-

tachment. With this mechanism we assured that all nodes in the catalogues would

have a non-decreasing probability to receive an edge. Analytical solutions, both exact

and approximate, can be calculated for this model. However, their expressions were
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very long and complicated to obtain, so a numerical approach was favoured. As we

mentioned, catalogue networks become fully connected in a finite time. This model

did not account for fully-connected nodes that were no longer eligible for new edges,

and as a result we got some serious inaccuracies for large values of t and k. When

the size of the catalogues is very large and there is no need to compute Nk(t) for

high k, these models can be a useful tool. Compared to the Netflix data captured

some of the behaviour of the dataset at early times. This model was improved so

it could show the behaviour of Nk(t) for high k and t. When a node becomes fully

connected, the probabilities of attachment change for the rest of the nodes, because

there is one less node to compete against. Incorporating this into the model makes

the solutions reproduce what we observed in the simulations, and at the final time

all Nk were correctly zero except NM , which was 1. This improvement came at a

cost, for all equations in the model were now coupled to the others, which makes

an analytical solution very difficult to compute. The correction in the probabilities

created a de-facto boundary condition which made the equations very stiff, requiring

us to resort to more expensive numerical algorithms to find a solution. This method

compared to the Netflix data did just as well as the model without catalogue update,

because the difference between the two models is only evident as nodes start to be

completely connected, which was not the case in the Netflix dataset.

In this model we have assumed fixed-sized catalogues, whereas in reality networks

of this type may have variable-size catalogues. Further developments of this model

could include a catalogue-size function M(t) so that the model goes from having the

form :
dNk

dt
= f(Nk−1, Nk, NM ,M, t),

to:

dNk

dt
= f(Nk−1, Nk, NM ,M, t),

dM

dt
= g(M, t).

Where the size of the catalogues could be chosen according to the models studied.

In conclusion, our analysis of the Netflix dataset provided us with the motivation to

develop network growth and evolution models in which characteristics of real net-

works such as saturation of edges and emergence of temporal dominant nodes would

be explained. In doing so, the concept of a catalogue network was developed.
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Catalogue networks, because of their characteristics, can benefit from different mathe-

matical techniques such as differential equations, numerical analysis and asymptotics.

We believe that the models we developed in this work to study both real and simu-

lated networks, can be studied and further improved to be useful in a wide range of

problems and applications.
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Appendix A

The hypergeometric function

In this appendix we show some of the properties of the hypergeometric function that

were used throughout this work. Most of the results shown here can be found in

Abramowitz-Stegun [1], Forrey [11], and Olver [24].

The hypergeometric equation is the second order differential equation:

z(1 − z)
d2w

dz2
+ [c − (a + b + 1)z]

dw

dz
− abw = 0, (A.1)

where a, n, c, z ∈ C, and has regular singular points at 0, 1,∞. This equation is very

important as any second order homogeneous ODE whose singularities are regular and

no more than three can be transformed into it [24]. The solution to equation (A.1)

is the 2F1 hypergeometric function:

2F1(a, b; c; z) =
∞

∑

n=0

a(a + 1) . . . (a + n − 1)b(b + 1) . . . (b + n − 1)

c(c + 1) . . . (c + n − 1)

zn

n!
, (A.2)

=
∞

∑

n=0

(a)n(b)n

(c)n

zn

n!
, (A.3)

=
Γ(c)

Γ(a)Γ(b)

∞
∑

n=0

Γ(a + n)Γ(b + n)

Γ(c + n)

zn

n!
. (A.4)

The function has the notation 2F1, because it has two parameters in the numerator

and one in the denominator. The symbol (a)n in equation (A.3), denotes Pochham-

mer’s symbol:

(x)n =
n−1
∏

i=0

(x + i), (A.5)

=
Γ(x + n)

Γ(x)
, (A.6)
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and Γ(x) is the gamma function:

Γ(x) =

∫

∞

0

tx−1e−tdt. (A.7)

From equation A.2 it is clear that 2F1(a, b; c; z) = 2F1(b, a; c; z). The 2F1 hypergeo-

metric function has some special cases depending on the value of its parameters and

argument. On case specially useful for this work is [1]:

2F1(a, b; b; z) = (1 − z)−a. (A.8)

The functions 2F1(a± 1, b; c; z), 2F1(a, b± 1; c; z) and 2F1(a, b; c± 1; z) are called the

contiguous functions of 2F1(a, b; c; z), and are all related to it through Gauss’ relations

for contiguous functions [24]. Some of them are:

c(c − 1)(z − 1)2F1(a, b − 1; c; z)

+ (2b − b − bz + az)2F1(a, b; c; z)

+ b(z − 1)2F1(a, b + 1; c; z) = 0, (A.9)

c(c − 1)(z − 1)2F1(a, b; c − 1; z)

+ c[c − 1 − (2c − a − b − 1)z]2F1(a, b; c; z)

+ (c − a)(c − b)z2F1(a, b; c + 1; z) = 0, (A.10)

[c − 2a − (b − a)z]2F1(a, b; c; z)

+ a(1 − z)2F1(a + 1, b; c; z)

− (c − a)2F1(a, b + 1; c; z) = 0. (A.11)

These properties can be used to show some other properties:

2F1(b, a + b; b + 1; z) = U
∞

∑

n=0

(b + a)n

b + n

zn

n!
, (A.12)

2F1(a + 1, b; c; z) = 2F1(a, b; c; z) +
Γ(c)

aΓ(a)Γ(b)
z

∞
∑

n=1

[

Γ(a + n)Γ(b + n)

Γ(c + n)(n − 1)!
zn−1

]

. (A.13)
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2F1(b, b + a; b + 1; z) = b
∞

∑

n=0

[

(b + a)n

b + n

zn

n!

]

(A.14)

= b

∞
∑

n=0

(

b + a + n − 1

n

)

zn

b + n
(A.15)

2F1(a, b; a − 1; z) =
[a − 1 − (a − b − 1)z]

(a − z)b−1
. (A.16)

The general form of the hypergeometric function is:

pFq(a1, a2, . . . , ap; b1, . . . bq; z) =
∞

∑

n=0

(a1)n(a2)n . . . (ap)n

(b1)n . . . (bq)n

zn

n!
. (A.17)

The regularised pF̃q hypergeometric function is:

pF̃q(a1, a2, . . . , ap; b1, . . . bq; z) =
pFq(a1, a2, . . . , ap; b1, . . . bq; z)

Γ(b1)Γ(b2) . . . Γ(bq)
. (A.18)
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Appendix B

Power-law distributions

In this appendix we give a very brief description of power-law degree distributions.

The content discussed here can be found in Clauset et al [7] and Newman [23].

When the probability of the measurement of a random event is inversely proportional

to its value, we say that it follows a power-law distribution [23]. One of the first

examples of a power law was given by linguist George Zipf [19], who observed that

the frequency of any word from a large enough collection of text (corpus) was inversely

proportional to its rank in a table of ordered frequencies of all words.

Power-laws tend to arise in data in which measurements do not fluctuate around a

mean value, for example, the population of cities, the intensity of earthquakes and the

distances travelled by humans in a day, seem to follow power-law behaviour [7, 12, 23].

The basic form of the degree distribution of a power-law is:

f(x) = Cx−γ , (B.1)

where C ∈ R, C > 0. We can see from the form equation (B.1) one key property

that will help us detect a power law. If we take the logarithm of both sides of the

equation, we get:

log f(x) = −γ log x + log C. (B.2)

This indicates that in double logarithmic scales equation (B.1) must be a straight line

with slope −γ. On the left of Figure B.1 we can see the histogram of measurements

of a power-law distributed random variable with γ = 3, on the right we see the same

measurements in a log-log scale. A straight line in a log-log scale does not assure

a power law, it doesn’t dismiss it and that is as far as it goes. There are other

probability distributions that may look like a straight line on a log-log plot such as

the Log-normal and exponential distributions. One way to determine if some data

collection follows a power-law is by using maximum-likelihood estimators and the
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Figure B.1: Histogram of a power-law distributed variable with γ = 3 on normal scale
(left) and log-log scale (right).
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Figure B.2: Histogram of a power-law with cutoff distributed variable with γ = 0.6
and λ = 0.0088 on normal scale (left) and log-log scale (right).
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Kolmogorov-Smirnoff statistic, described in [7].

There are other degree distributions that are often mistaken for a power-law, but

are not quite so. A common example is the power-law with cutoff, which follows a

distribution g(x):

g(x) = Cx−γe−λx. (B.3)

This type of distribution behaves like a power-law for early values of x because of

the dominance of x−γ, but as x gets larger, e−λx dominates and brings down the

tail, hence the cutoff. On Figure B.2 we see an example of a power-law with cutoff

distributed variable with γ = 0.6 and λ = 0.0088. The image on the right was created

using natural scales, the one on the left uses double-logarithmic scales.
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Appendix C

Catalogue growth calculations

C.1 Decreasing node-fitness

C.1.1 Asymptotics

Equations (3.16) show the expansion of Nk(t) in powers of a for k = 0, . . . , U . Here

we show with more detail the calculations we used to solve the differential equations:.

• N0(t):

d(N00(t) + aN01(t) + . . .)

dt
= −

[

a

1 + t

]

(N00(t) + aN01(t) + . . .),

N00(0) + aN01(0) + . . . = 1.

Compare terms with the same power of a to get

dN00

dt
= 0 N00(0) = 1 ⇒ N00(t) = 1,

dN01

dt
=

−N00

1 + t
N01(0) = 0 ⇒ N01(t) = − log (1 + t),

dN02

dt
=

−N01

1 + t
N02(0) = 0 ⇒ N02(t) =

log (1 + t)2

2
,

...

dN0r

dt
=

−N0r

1 + t
N0r

(0) = 0 ⇒ N0r
(t) =

(−1)r log (1 + t)r

r!
.

• Nk(t):
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d(Nk0 + aNk1 + a2Nk2 + . . .)

dt
=

a + k + 1

1 + t
(N(k−1)0 + aN(k−1)1 + . . .)

− a + k

1 + t
(Nk0 + aNk1 + . . .),

Nk0(0) + aNk1(0) + . . . = 0.

Comparing terms with the same power of a we get

dNk0

dt
=

k − 1

1 + t
N(k−1)0 −

k

1 + t
Nk0 Nk0(0) = 0 ⇒ Nk0(t) = 0,

dNk1

dt
=

t(k − 1)

(1 + t)k
− k

(1 + t)
Nk1 Nk1(0) = 0 ⇒ Nk1(t) =

tk

k(1 + t)k
.

...

For greater powers of a, analytic expressions are possible to obtain in a me-

chanical but rather tedious way. As an example, here are some examples of the

results that can be obtained

N1(t) = a
t

1 + t
+ a2 log (1 + t) − t log (t)

1 + t

+ a3

(

(log (1 + t) − 2) log (1 + t) + 2 − log (1 + t)

2(1 + t)
+

t(log (t) − 1)

1 + t

− log (t) log (1 + t)

1 + t
− Li2(−t)

1 + t

)

+ . . . .

N2(t) = a
t2

2(1 + t)2
+ a2

(

log (1 + t)

1 + t
− t

1 + t
− 1

4
t2(2 log (t) − 1)

− (t − 2)t

2(1 + t)2
− log (1 + t)

(1 + t)2

)

+ . . .

N3(t) = a
t3

3(1 + t)3
+ . . . ,

Where Li2(t) is the polylogarithm function

Lin(z) =
∞

∑

k=1

zk

kn
. (C.1)

• NM(t):

d(NM0 + aNM1 + . . .)

dt
=

a + M − 1

1 + t
(N(M−1)0 + aN(M−1)1 + . . .),

NM0(0) + aNM1(0) + . . . = 0.
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As before, compare terms with the same power of a and solve

dNM0

dt
= 0 NM0(0) = 0 ⇒ NM0(t) = 0

dNM1

dt
=

tM−1

(1 + t)M
NM1(0) = 0 ⇒ NM1(t) = Γ(M)tM 2F̃1(M,M ; M + 1;−t)

...

Where 2F̃1(a, b; c; z) is the regularized hypergeometric function

2F̃1(a, b; c; z) =
2F1(a, b; c; z)

Γ(c)
. (C.2)

And 2F1 is the hypergeometric function defined in equation (A.2).

C.2 Constant node-fitness

C.2.1 Asymptotics

When 0 < p ≪ 1, we expand Nk(t) as shown in equations (3.31). The solutions are

calculated as follows:

• N0(t):

d(N00 + pN01 + . . . )

dt
= −(1 + p)(N00 + pN01 + . . . ),

N00

(

1

U

)

+ pN01

(

1

U

)

+ · · · = 1 − 1

U
.

Compare same powers of p and solve

dN00

dt
= −N00 , N00

(

1

U

)

= 1 − 1

U
⇒N00(t) =

(

1 − 1

U

)

e−(t− 1
U ),

dN01

dt
= −N01 + N00 , N01

(

1

U

)

= 0 ⇒N01(t) =

(

1 − 1

U

) (

t − 1

U

)

e−(t− 1
U ),

dN02

dt
= −N02 + N02 , N02

(

1

U

)

= 0 ⇒N02(t) =

(

1 − 1

U

)

(

t − 1
U

)2

2
e−(t− 1

U ),

...

dN0k

dt
= −N0k

+ N0(k−1)
, N0k

(

1

U

)

= 0 ⇒N0k
(t) =

(

1 − 1

U

)

(

t − 1
U

)k

k!
e−(t− 1

U ),
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• N1(t):

d(N10 + pN11 + . . . )

dt
= (1 − p)[N00 + pN01 + . . . ] −

[

(1 − p) +
p

t

]

[N10 + pN11 + . . . ],

N10

(

1

U

)

+ pN11

(

1

U

)

+ · · · =
1

U
.

Compare powers of p and solve

dN10

dt
= N00 − N10 N10

(

1

U

)

=
1

U
⇒N10(t) =

(

1 − 1

U

)

te−(t− 1
U )

+
e−(t− 1

U )

U2
.

dN11

dt
= N01 − N00

−
[

N11 −
(

1 − 1

t

)

N10

]

, N11

(

1

U

)

= 0 ⇒N11(t) =

[(

1 − 1

U

)

t2

+

(

2

U2
+

1

U
− 2

)

t

+
log t

U2
+

2

U
− 1

U3
+

log U

U2

]

.

• N2(t):

d(N20 + pN21 + . . . )

dt
=

[

(1 − p)
p

t

]

[N10 + pN11 + . . . ] −
[

(1 − p) +
2p

t

]

[N20 + . . . ],

N20

(

1

U

)

+ pN21

(

1

U

)

+ · · · = 0.

Compare the powers of p and solve:

dN20

dt
= N10 − N20 , N20

(

1

U

)

= 0 ⇒N20(t) =

[(

1 − 1

U

)

t2

2

+
t

U2
−

(

1 +
1

U

)

1

2U2

]

e−(t− 1
U ).

...

When 0 < (1 − p) ≪ 1, an asymptotic expansion is still possible. However, we must

change variables w = (1− p) and expand in powers of w, Nk(t) = Nk0(t) + wNk1(t) +
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w2Nk2(t) + . . . . The resulting equations are

d(N00 + wN01 + . . . )

dt
= −w(N00 + pN01 + . . . ),

N0

(

1

U

)

= 1 − 1

U
. (C.3)

d(Nk0 + wNk1 + . . . )

dt
=

[

w +
(1 − w)(k − 1)

t

]

(N(k−1)0 + wN(k−1)1 + . . . )

−
[

w +
(1 − w)k

t

]

(Nk0 + wNk1 + . . . ), (C.4)

N1

(

1

U

)

=
1

U
, Nk

(

1

U

)

= 0, k > 1, k = 1, . . . ,M − 1.

d(NM0 + wNM1 + . . . )

dt̂
=

[

w +
(1 − w)(M − 1)

t

]

(N(M−1)0 + wN(M−1)1 + . . . ),

(C.5)

NM

(

1

U

)

= 0.

The solutions are:

• N0(t):

dN00

dt
= 0 N00

(

1

U

)

= 1 − 1

U
⇒N00(t) =

(

1 − 1

U

)

dN01

dt
= −N00 N01

(

1

U

)

= 0 ⇒N01(t) = −
(

1 − 1

U

) (

t − 1

U

)

,

dN02

dt
= −N01 N02

(

1

U

)

= 0 ⇒N02(t) =

(

1 − 1
U

) (

t − 1
U

)2

2
,

...

dN0k

dt
= −N0(k−1)

N0k

(

1

U

)

= 0 ⇒N0k
(t) =

(−1)k
(

1 − 1
U

) (

t − 1
U

)k

k!
.

• N1(t):

dN10

dt
= −N10

t
N10

(

1

U

)

=
1

U
⇒ N10(t) =

1

U2t
,

dN11

dt
= N00 −

[

N11

t
+

(

1 − 1

t

)

N10

]

N11

(

1

U

)

= 0

⇒ N11(t) =

(

1 − 1

U

)

t

2
− 1

U2
+

1

U2t

[

log t − 1

2
+

3

2U
+ log U

]

.
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• N2(t):

dN20

dt
= N10 −

2N20

t
N20

(

1

U

)

= 0 ⇒ N20(t) =
−1

2U4t2
+

1

2U2
.

• N3(t):

dN30

dt
= N20 −

3N30

t
N30

(

1

U

)

= 0 ⇒ N30(t) =
−1

4U2t
+

t

8U2
+

2U3 − 1

8U6t3
.

...

C.3 Constant node-fitness with catalogue update

C.3.1 Solutions

Some comparisons of simulations of networks with the solutions of the model are

shown in Figures C.1, C.2, 3.12 and C.3. The results are compared to 1000 simulated

networks with M = 100, U = 30 and different values of p.

Figure C.1: Solutions of the model and simulations when p = 0.2.
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Figure C.2: Solutions of the model and simulations when p = 0.4.

Figure C.3: Solutions of the model and simulations when p = 0.8.
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