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Abstract

In this thesis, we investigate threshold models for information cascades

in time-dependent networks. This entails the modelling of temporal net-

works, the numerical implementation of social contagion dynamics cou-

pled with networks dynamically evolving in time due to edge activation

and deactivation rules, the basic implementation of mean-field and pair-

approximation theories, and the interdependence of these concepts.

We first introduce networks in general, and then discuss some of their

structural properties, dynamical processes on networks, and synthetic net-

works given by random graphs. We then turn to various threshold models,

describe them, and connect them with real phenomena, before focusing

on the Watts threshold model and its generalisations. We introduce the

emergent field of temporal networks, and we extend the Watts threshold

model to account for some temporal activity and run simulations on ran-

dom graphs. We present our numerical results while trying to get some

insight into how edge activation patterns affect information spreading and

cascades. Finally, we take a step back to introduce analytical approxi-

mations techniques that could prove useful in analytically investigating

cascades in temporal networks.
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Chapter 1

Introduction

1.1 An Introduction to Networks

Networks represent collections of entities and the interactions between them [23].

They consist of a set of items (vertices) called nodes, and a set of connections (lines)

called edges [20]. A multitude of systems–both natural and man-made–can be rep-

resented as networks, and the great interest in studying them has given rise to a

new discipline that is often called network science. Examples of systems that can

be represented by networks include technological and information networks–the In-

ternet, the World Wide Web, or telephone networks–, social networks of connec-

tions between individuals, networks of business relations, biological networks–neural

networks, metabolic networks, delivery networks of blood vessels, protein networks,

networks of interactions between species–, and other networks such as networks of

citations between papers or networks of words in a language [20,21,28].

A network can be written mathematically as G = (S, E), where S = {s1, . . . , sN}
is a set of N nodes, and E = {ε1, . . . , εM} is a set of M edges connecting these nodes.

Such objects are also called graphs, and they have been studied primarily in graph

theory, which is an area of discrete mathematics [18]. Real systems, however, are large

and complex–often consisting of millions or even billions of nodes–and studying very

large networks requires additional tools (e.g. summary statistics) to determine their

structure and behaviour, because analysing the role of each node and edge individ-

ually is prohibitive. Therefore, networks are often characterised using methods from

statistics to complement analytical methods from graph theory and other subjects,

as well as using numerical computation.
To begin characterising networks, we define the adjacency matrix. The adjacency
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matrix is a matrix A ∈ RN×N where N is the number of nodes

Aij =

{
1, if i is connected to j,

0, otherwise .
(1.1)

This matrix encodes the information of the nodes and edges in the simplest type of

network, where there is no direction in the connections between nodes and there are no

weights assigned to the edges. Such a network is called undirected and unweighted.

On the contrary, a directed network differentiates between edges going into nodes,

and edges coming out of nodes. We represent an edge going from i to j by i → j.

In undirected networks, i → j is equivalent to j → i, while directed networks can

have i → j, j → i, neither of the two, or both edges between node i and node j.

Additionally, in a weighted network, each edge is assigned a number, typically posi-

tive, representing the strength of connection or some other property, and Aij ∈ R+

accordingly. The matrix A in Equation 1.1 corresponds to an unweighted, undirected

network. As can be easily seen, it is symmetric, which need not be the case for

directed networks. We illustrate these ideas with two examples in Figure 1.1.

Figure 1.1: An undirected (left) and a directed (right) network with 5 nodes each.

On the left we have an undirected unweighted network with adjacency matrix

A =


0 1 1 0 1
1 0 0 1 1
1 0 0 0 1
0 1 0 0 0
1 1 1 0 0


and on the right a directed unweighted network with adjacency matrix

B =


0 1 0 1 1
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 1 0 1 0

 .
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Note that A is symmetric, whereas B is not. We can use these examples to illus-

trate two more important ideas. These are the degree of a node, and the degree

distribution of a network. The degree of node i in an undirected network is the

number of its neighbours (i.e., the number of edges connected to it). In the case of

directed networks, the out-degree is the number of edges emanating from node i, and

the in-degree is the number of edges directed towards node i. We will denote the

degree in the case of an undirected network by ki and it can be simply computed by

ki =
∑N

j=1 Aij. As we can see in Figure 1.1, in the undirected network on the left,

node number 2 is connected to nodes 1, 5 and 4. Therefore, its degree is 3. We can

also add the second row or column of matrix A (because it is symmetric), to deduce

the same result.

Collecting the degrees of all N nodes leads to the concept of a degree distribution.

The degree distribution is the probability distribution of the degrees of the nodes

over the whole network. Let K be a random variable denoting the degree and P (K)

be the degree distribution of an undirected network. Then for a specific degree k∗,

P (K = k∗) can be thought of either as the fraction of nodes with degree k∗ [23] or as

the probability that a randomly chosen node has degree k∗ [5]. We usually just write

pk with k denoting the degree, although this is an abuse of notation.

There are many other properties that are important when studying networks, but

the aforementioned concepts are enough to proceed. While we can use properties such

as the degree distribution to understand the structure of networks, in order to capture

and predict the behaviour of complex systems, we have to consider the processes and

dynamics taking place on networks which may assign rules dictating the behaviour

of nodes and edges, and which depend on the underlying structure.

1.2 Dynamical Processes on Networks

The aim of much of the recent research done in network science is to understand

systems built upon networks [20] and the interplay between the network structure

and the evolution of the system. These systems can be described using dynamical

processes taking place on networks, and we would like to capture the dynamics with

a model using deterministic or stochastic local dynamic rules. For example, we might

want to study surfing on the World Wide Web, voting behaviour in a population, the

spread of a disease or (as in our case) the spread of information in a social network.

Relevant examples could include almost anything, but only in some cases it has been

possible to derive some analytical or otherwise predictive descriptions of such systems.
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In one possible type of description, a dynamical process on a network is specified
using a differential equation of some kind for each node that represents the time
evolution of this node in terms of some quantity of interest. If we assume that there
is only 1 variable per node and that each node depends only on its neighbours (which
need not be the case) [23], we can write a general formula for the dynamics of node
i with respect to a variable x

ẋi = fi(xi) +
∑
j

Aijgij(xi, xj), (1.2)

where fi represents the intrinsic dynamics of node i, and the second term repre-

sents the dynamics resulting from the interaction of i with its neighbours. Because

the dynamics are usually very complex, one typically needs to derive approximate

equations using various techniques to obtain analytical results. Relevant techniques

include mean-field theory and pair-approximation theory, which we will explore in

Chapter 5.

It is also very useful to numerically investigate these dynamical systems. This

can be done, for example, by analysing empirical data from real networks and then

computing various quantities of interest and how they behave as a system evolves.

A serious complication, however, is that real networks change in time as well, and

a dynamical system on a network and the dynamics of a network itself affect one

another in nontrivial ways. Additionally, it is useful to construct artificial networks

and then perform numerical simulations following some set of rules that define the

dynamics. With this approach, one hopes that the studied networks and processes

are sufficiently related to the (much more complicated) real networks and processes

on them, in order to be able to derive useful insights about the system of interest.

1.3 Random Networks

Random networks or are graphs constructed by a certain stochastic rule. More for-

mally, they are families or ensembles of graphs with this rule or with some probabilis-

tic property. We will use random graphs to investigate the behaviour of dynamical

processes and how the topology (i.e., connectivity) of a specific ensemble influences

the dynamics in question. Random graphs are also sometimes used as “null models”

to real networks [23], aiming to capture a property encountered in various real net-

works, even if the corresponding real network is significantly different in other ways.

For example, certain random graphs display the small-world effect, which means that

one could transverse a small number of edges to get from any node to any other node,

and that this number of edges scales sufficiently slowly as the size of the network
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increases (e.g., logarithmically) [16]. Some real networks also display the small-world

effect, as demonstrated by Milgram in his famous “six degrees of separation” exper-

iment [17]. Here we will present the two random graph ensembles which are used in

this thesis.
A simple random graph is the Erdős-Rényi or Poisson random graph. This actually

refers to two closely related ensembles, which are denoted G(N,M) and G(N, p). A
G(N, p) graph can be constructed by the following simple rule. Take N nodes and
connect each pair of nodes independently with probability p. Another characterisation
of the ensemble is that each graph with exactly M edges appears with probability
pM(1 − p)µ−M over the whole ensemble, where µ = 1

2
N(N − 1) is the maximum

possible number of edges [20]. We can construct a G(N,M) graph in the following
way. Consider N nodes and M edges and choose uniformly at random among all
networks with such N , M fixed. If we hold the mean degree z constant and take the
limit as N →∞ in the G(N, p) ensemble, we can derive that the degree distribution
is Poisson [20]

pk =
zke−z

k!
, (1.3)

which is why such a graph is sometimes called a Poisson random graph.

Various generalisations have been developed that can account for many different

degree distributions. A certain generalisation that we are going to use in our numerical

simulations in Chapter 4 is the configuration model. We use the following algorithm

to construct such an unweighted, undirected network [23]. Suppose there are N

nodes. We specify a given degree sequence {ki}. This fixes the number of edges

M = 1
2

∑N
i=1 ki, because each node has ki edges emanating from it and we have to

divide by 2 to eliminate double counting. The half-ends of edges attached to nodes

are called stubs, and there are 2M stubs in the network. Choose two stubs uniformly

at random and connect them with an unweighted, undirected edge. Then choose

a pair among the remaining stubs and repeat the same process. The ensemble of

graphs produced in this way is called the configuration model. Note that self-edges

are allowed, but we are going to artificially remove any self-edges when constructing

random networks with the configuration model in the following chapters.
Random graphs can be characterised in ways other than the degree distribution.

This role can be performed by the probability generating function g(w), defined by

g(w) =
∞∑
k=0

pkw
k. (1.4)

This function encodes all the moments of the degree distribution. These are computed
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by evaluating the derivatives of g(w) in the following way [23]

g(1) =
∞∑
k=0

pk = 1,

g′(w) =
∞∑
k=0

kpkw
k−1 ⇒ g′(1) =

∞∑
k=0

kpk = 〈k〉 = z,

dmg

d(lnw)m

∣∣∣∣
w=1

= 〈km〉.

In this and other ways, generating functions are a powerful analytical tool. Many of

the techniques that use generating functions, however, rely on the assumption that

the network is locally tree-like, i.e. that there are no, or almost no triangles of edges.

Moreover, most of these techniques consider fixed degree distributions.
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Chapter 2

Threshold Models and Cascades

2.1 Introduction to Threshold Models

Many dynamical systems consist of some process that spreads through a network,

where nodes can affect each other via the transfer of some quantity or by altering each

other’s state. When local interactions among a small set of nodes cause propagation

to the whole network or at least to a large part of it, we say that there has been a

cascade [8]. The term originates from the study of social networks, but a similar effect

is observed and described with different terminology in other networks as well. In

biological networks, when considering the spread of a disease, there is the possibility

of an epidemic which quickly leads to the infection of a large part of the whole

network [1]. Similar events could occur in the spread of computer viruses through

e-mail networks or the Internet [10], in the critical failure of a technological network

such as the power failure of a power distribution network [30], or when considering

the crash of a financial network [35].

We are often interested in the spread of information, ideas, or opinions on social

networks. In the context of modelling the spread of social influence, we can model

the spread of rumours, the collective adoption of ideas, and the adoption of fads as

cascades in a social network. Inspired by biological epidemic models, the spread of

social influence is sometimes called social contagion [26]. By considering the nodes

of the networks as having states and letting these states change according to the

states of each node’s neighbours’ states, we can study these problems using threshold

models. Threshold models, in the most common case, state that the rule for changing

the states of nodes is that a state change occurs when the fraction or the number of

a node’s neighbours with a certain state is above a given threshold. Consider, for

example, a situation in which the nodes of a network have one of two states: state

0 or state 1. State 1 might correspond to “adopted” and state 0 to “unadopted”,
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which could model the adoption of ideas, the purchase of a product or service, or

the spreading of a rumour, where an “adopted” node adopts the role of gossiper and

spreads the rumour, and an “unadopted” node ignores or rejects it. Because nodes can

only be in two possible states, these are examples of binary-state threshold models.

If a node of state 0 switches to state 1 when the fraction of its neighbours with state

1 exceeds a certain threshold, the model is a fractional threshold model. Accordingly,

when we consider the number of neighbours, we refer to an absolute threshold model

instead. Another distinction is between monotonic and non-monotonic dynamics.

The former refers to models where any node with state 1 can never switch to state

0 and thus the dynamics always move from state 0 to state 1 (or not at all). In the

latter case we consider both directions, having nodes which can switch from state 1

to state 0.
A convenient way to formulate a threshold model is by defining a response

function. A response function allows one to write the possible transitions in a cu-
mulative way with respect to some variables. Let σ(i) denote the state of node i, so
σ is either 1 or 0. Also let Γ(i) be the set of neighbours of node i. The number of
neighbours of node i with state 1 is l =

∑
j∈Γ(i) σ(j). Consider a monotonic fractional

threshold model in which all of the nodes have a common threshold R. We can then
write the response function F (l, k), where k is the degree, as

F (l, k) =

{
0, l ≤ Rk,

1, l > Rk.
(2.1)

This can be thought of as the probability that a node of degree k with l state 1

neighbours adopts state 1 in time dt (if we consider the network to be updated in

continuous time) or in time t (if we consider discrete updates–e.g., one at time t

and the next at t + 1). Note that a state-1 node cannot change states because the

dynamics are monotonic. We can use this formulation to distinguish between different

social influence models and even consider models of biological epidemics, as we show

in Section 2.2.

2.2 Examples of Threshold Models

First, let us briefly consider a family of epidemiological models, which constitute

some of the most widely studied dynamical systems in network science. Many results

that apply elsewhere have been formulated in terms of these models, and although

they are typically presented in another fashion, some of them can be written using

the language of threshold models. Two of these are the SI and the SIS models

of disease dynamics. Consider a network comprised of a population of individuals
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and the connections between them. There is a disease that divides the population in

two camps: the infected (i.e., individuals that have contracted the disease) and the

susceptible (i.e., the individuals that do not have the disease but can get it in the

future). More complicated models extend this by including immune and recovered

individuals, by considering a changing populations with births and deaths, or by

incorporating other factors. Here, S stands for the fraction of susceptible individuals

among the population and I stands for the fraction of infected individuals. In the case

of the SI model, the dynamics are monotonic because the immunity is permanent; in

the SIS model, however, an infected individual can revert back to being susceptible.
Consider the SI model. The simplest (although naive) way to approach the prob-

lem is to consider a simple rate of infection β and assume that the population is
well-mixed so that every node contributes equally and independently to the trans-
mission of the disease [23]. This is a type of mean-field assumption, as we will see
in Chapter 5. In this case, the nodes in S and I–the sets of susceptible and infected
nodes–are only affected by S, I and β. We can thus write the ordinary differential
equations

Ṡ = −βSI,
İ = βSI. (2.2)

As S + I = 1, the second equation becomes İ = β(1 − I)I, which can be solved

analytically (it is the logistic equation) [23].
Another, more realistic, way to approach the dynamics of epidemics is to consider

the interactions of neighbouring nodes. We can then still consider a uniform infection
rate β, but now a susceptible node is affected only by its infected neighbours. Let the
number of infected neighours be denoted by l. We see that a node will be affected by
its infected neighbours independent of any thresholds, but this is the same as having
a fractional threshold of 1. Therefore we can write a response function for susceptible
individuals

F (l) = βl. (2.3)

Deriving a differential equation ruling global dynamics is more difficult in this case,

but it is possible (see Chapter 5).

We now turn to threshold models of social influence. Here, the response function

is a step function, reflecting the assumption that nodes will change state if a threshold

is reached. Various models have been developed and they have been connected to

various social phenomena in different ways.

The Watts threshold model [34] was developed to model cascades in the transmis-

sion of rumours, innovations, or cultural fads. It is a binary-state model, with state

1 corresponding to “adopted”, and state 0 corresponding to “unadopted”. As argued
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in [34], a binary-state framework covers a surprising range of social situations. A

decision is often made between just two options, where although there are many com-

plex factors involved in the decision itself, in the end an individual chooses between

two options according to the decisions of other individuals. This reflects situations in

which people are influenced heavily by the decisions of others and do not act and think

independently. Various relevant social phenomena have been proposed, although this

binary behaviour might not fully describe the phenomena sociologically [6]. For ex-

ample, someone who hears a rumour might not try to independently verify the truth,

and instead rely on the person telling him about it. One can think of more examples,

such as choosing a restaurant or buying a popular product. In the Watts model, each

node is assigned a threshold Ri taken from a probability distribution of thresholds.

All nodes have state 0. A single node then adopts state 1. This constitutes the initial

condition of the model, where one node has state 1 and all other nodes have state 0.

Each node looks at its neighbours, and if the fraction li
ki

of its neighbours in state 1

exceeds its threshold Ri then it adopts. A node with state 1 keeps its state forever,

thus the dynamics are monotonic. If we consider a uniform threshold R, the response

function is given by Equation 2.1.
We can also formulate an absolute threshold variant of the above model, as has

been studied in [2] and [8] and discussed in [6]. In this case, a node adopts when
a number of its state-1 neighbours (instead of a fraction) exceeds a threshold. This
reflects a situation in which the “unadopted” neighbours exert no influence on an
individual, contrary to the Watts model, in which a larger number of state-0 neigh-
bours lowers the fraction li

ki
. One can imagine various situations in which this would

be appropriate. For example, in spontaneous street riots, individuals might be en-
couraged by others taking part, but they might not be discouraged if others do not.
Other examples could be urban legends or conspiracy theories, where, sometimes, it
is the number of people that mention them that matters, and not the people who do
not [6]. Assuming that there is a uniform threshold of number of state 1 neighbours
Θ, and denoting the number of state 1 neighbours by l, the response function for this
model is

F (l) =

{
0, l ≤ Θ,

1, l > Θ.
(2.4)

Another threshold model is the multi-stage complex contagion model developed
in [26]. Simple contagion refers to a process where the effect of a single neighbouring
node is enough to change the state of another node, while complex contagion refers
to systems where a node has to interact with multiple neighbours to evolve. Our
previous two examples constitute cases of such complex contagion models, while dis-
ease epidemics correspond to simple contagion, because a single infected node infects
a susceptible neighbour. In the case of multi-stage complex contagion, we consider
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three possible influence levels for each node of the network (although the model can
be extended to any finite number of levels). The nodes are divided to “inactive”
(state S0), “active” (state S1) and “hyperactive” (state S2) nodes. This is a natural
extension to the binary-state framework we have examined thus far, and it makes
the model more realistic, as it accounts for varying levels of influence, interest, and
commitment that is often present in social influence in real networks. For example,
a dedicated proponent of a social movement plays a different role in that movement
than someone who has merely adopted its ideas, and regular users of a product spread
a product more enthusiastically than casual users (or we could say that advertisers
promote the product to users more than users do to other users), and so on [26]. We
can then consider individual response functions for each of the N nodes of a network
as the probability that a degree-k node switches to state Si, i = 1, 2, given that the
number of its neighbours in state S1 is l1 and the number of its neighbours in state
S2 is l2. We then define P = (l1 +αl2)/k as the “peer pressure” corresponding to the
total amount of influence received by a node of degree k by its neighbours in S1 and
S2. The parameter α measures the bonus influence exerted by “hyperactive” nodes
and increases the probability of adoption. For a uniform threshold R, we have the
response function

F (l1, l2, k) =

{
1, if (l1 + αl2)/k ≥ R,

0, otherwise.
(2.5)

As investigated in [26], the presence of different levels of social influence can have a

significant effect on network cascades.

2.3 Watts Model

In this section, we focus on the Watts threshold model to hopefully gain some gen-

eral insight on cascades. In the original Watts paper [34], the model is applied on

random graphs and this is the approach that we will follow as well, although one

could apply the model on real networks drawn from empirical data. We follow this

approach in order to be able to control a dynamically changing random network in

later investigations of time-dependent networks.

To apply the Watts model on random networks, we have to express it as a numer-

ical algorithm. We present pseudo-code in Algorithm 1, which we will explain. The

network we use is the Poisson random graph. Additionally, we consider only uniform

thresholds.
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Algorithm 1 Watts Threshold Model

1: procedure WattsModel(N , z, R) % N : number of nodes. z: mean
degree. R: uniform threshold

2: Construct Poisson random graph
3: Compute ki for i = 1, . . . , N % compute the degrees of all the nodes
4: Set all node states σ to σ(i) = 0 for i = 1, . . . , N % set all initial states

to 0
5: Choose a node j at random and set σ(j) = 1 % set a random node’s state

to 1
6: Change state to 1 if σ(i) = 0 and if

∑
j∈Γ(i) σ(j)/ki > R for i = 1, . . . , N

% update states according to threshold rule
7: Save new states in a new vector σnew % keeping the old states in σ
8: while σ 6= σnew do % while new nodes have adopted
9: Set σ = σnew % update the state vector
10: Change state to 1 if σ(i) = 0 and if

∑
j∈Γ(i) σ(j)/ki ≥ R for i = 1, . . . , N

% update states according to threshold rule
11: Save new states in a new vector σnew % keeping the old states in σ
12: end while
13: end procedure

First, to construct a Poisson random graph, we connect any pair of the N nodes

with an edge with a probability p = z/N , where z is the mean degree. The graph can

also be constructed by specifying the Poisson degree distribution pk = zke−z/k! on

the configuration model (through the degree sequence {ki}), as described in Chapter

1. We then set all nodes to state 0, flip a random node to state 1, and update the

network according to the threshold rule. The updating is done in a synchronous

fashion, as all N nodes are updated simultaneously (i.e., on the same update loop).

The process continues until the states of nodes stop changing. Note that Γ(i) denotes

the set of neighbours of node i.

We now turn to some of the arguments and analytical results that Watts pre-

sented in his paper [34]. The following is taken directly from his paper and does not

constitute our own work. Our purpose is to present it along with some explanations

to help convey some interesting facts about cascades. Watts distinguished nodes in

the network between vulnerable and stable nodes. These are defined in terms of the

growth of the initial seed (consisting of one state-1 node). In a large, sparsely con-

nected (with a relatively low mean degree) random graph such as the Poisson random

graph, there are approximately no short cycles or triangles (i.e., any edges between

any three nodes never form a triangle), and thus the graph has a locally tree-like

structure. Therefore, the initial seed grows (changing the state of its neighbours) if
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at least one of its neighbours has a degree k ≤ 1/R. Nodes with this property are

vulnerable, and those without it are stable. In fact, the structure of the community

of these vulnerable nodes is crucial to whether a cascade occurs or not. Watts con-

jectured that the largest connected cluster of vulnerable nodes has to occupy a finite

fraction of an infinite network (i.e. as N →∞) in order for a cascade to occur. This

means that the fraction of vulnerable nodes has to diverge to infinity as N →∞. In

this case, we say that the vulnerable cluster percolates, so the conjecture states that

the vulnerable cluster needs to percolate for a global cascade to be possible. Using

this and the following calculations, one can derive a necessary condition for a cascade

to occur. This condition is, of course, related to the connectivity of the network.
Watts uses a generating function approach. We know that the probability that any

node has degree k is given by the degree distribution pk. Similarly, the probability
that a node with degree k is a vulnerable node is ρk = P (R ≤ 1/k). Assuming
independence, the probability that some node u has degree k and is vulnerable is
ρkpk. Therefore, we can write the corresponding generating function

G0(x) =
∑
k

ρkpkx
k, (2.6)

which encodes all of the information of the degree distribution of vulnerable nodes.
To derive results for vulnerable clusters, we have to determine the degree distribution
of a vulnerable node v that is a random neighbour to the initially chosen node u [34].
The probability of choosing v is proportional to kpk, where k is the degree of v. This is
because the larger the degree of v, the greater the probability that v is a neighbour of
u, and thus the more likely that v is chosen. The corresponding normalised generating
function for a random neighbour of u is

G1(x) =

∑
k ρkpkx

k−1∑
k kpk

=
G′0(x)

z
. (2.7)

By introducing analogous generating functions for vulnerable clusters, denoted by
H0(x) for the generating function corresponding to a randomly chosen node belonging
to vulnerable cluster of size n, and by H1(x) for the one corresponding to the neigh-
bour of that chosen node, it is stated in [34] that the average cluster size 〈n〉 = H ′0(1)
is given by

〈n〉 = G0(1) + (G′0(1))2/(z −G′′0(1)), (2.8)

which diverges when G′′0(1) = z. The condition requires that the vulnerable cluster
reaches a finite size of an infinite network, which yields a cascade condition:

G′′0(1) =
∑
k

k(k − 1)ρkpk = z. (2.9)

This equation thus distinguishes between two regimes: one in which G′′0(1) < z, the

vulnerable clusters are small, and the “adopted” nodes become isolated; and one
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in which G′′0(1) > z and the size and structure of the vulnerable clusters allow the

possibility of a cascade. Therefore, an important consequence of this model is the

presence of a phase transition in terms of the mean degree z.

We also consider some numerical results from Watts’ paper [34]. To investigate

the relationship between the frequency and the size of cascades to the connectivity of

the network, we consider a figure from that paper, namely Figure 2(b). This figure

depicts the fraction of “adopted” nodes versus z, with R = 0.18. We refer to this

fraction as the cascade size. The cascade size depends on the mean degree of the

network, with a sudden transition occuring when z reaches a certain large value.

The cascade size is constrained when the mean degree is low in the initial values of z,

which is to be expected because, even if the initial seed causes its neighbours to switch

states, the nodes that have adopted become isolated due to the low connectivity. More

interesting is the fact that a large mean degree prohibits the occurence of cascades.

A possible explanation, as discussed in [34], is that when the mean degree becomes

larger, there are two phenomena that are occuring simultaneously. Firstly, some

nodes in the network have many neighbours. Because only one seed node has state

1 initially, even if it spreads to some nodes, these nodes with high degree will never

change their state. Thus, the spreading process dies out and the cascade size is small.

Secondly, if the initial seed hits the percolating vulnerable cluster, a cascade might

occur, and its size will be large (perhaps covering the whole network). This event,

however, becomes rarer as the connectivity gets higher, and the first scenario becomes

more probable, until at some point, global cascades become impossible. This sudden

transition was actually shown to be discontinuous and was shown to happen due to

a certain transcritical bifurcation [11]; we will come back to this in later chapters.

The implementation of the Watts threshold model on random graphs depends

on the type of random graph, the initial conditions, the distribution of thresholds,

and, of course, the update rule of the model. As was already done in [34], one could

consider different random graphs and consider probability distributions of thresholds.

Random graphs with degree heterogeneity seem to constitute a network more stable

to cascades, while threshold heterogeneity makes the network less stable and the

cascades more likely. Although both have a cascade-promoting effect on the local

switching of states due to the fractional threshold condition, low mean degrees in

graphs with heterogeneous degree distributions have an inhibiting effect on cascades

because nodes become isolated, while low thresholds can only be positive towards

cascades.
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Studying the effects of different initial seed sizes [11] leads to new results, which

we will replicate and discuss in Chapter 4. Another variation that has been studied [9]

is that of considering random networks with community structure or degree-degree

correlations. Degree-degree correlations describe the situation of nodes having pos-

itive or negative correlations with respect to the connections between each other.

Such correlations in terms of degree mean that nodes connect to other nodes of sim-

ilar degree in the case of positive correlations, and connect to nodes of dissimilar

degree in the case of negative correlations. The former is an example of assortative

mixing (or “homophily”), and the latter is an example of disassortative mixing (or

“heterophily”) [19]. Moreover, many networks are observed to be divided in com-

munitites, and some network features might vary from one community to another.

Communities are groups of nodes with dense connections between them but sparse

connections with nodes of other groups [23]. An extension to the investigation we

perform in this thesis would be to consider random graphs that exhibit some of the

aforementioned properties.

Another interesting extension was done in [32], where a model of history-dependent

contagion was considered. Instead of just having states of 0 and 1, they also assign

a variable vi to each node whose value increases every time node i has state 0 and

interacts with a state 1 node. When the value of vi reaches a certain threshold vthr,

the state 0 node i (assuming it is still a state-0 node) becomes an “adopted” (i.e.,

state-1) node. In the absence of interactions between state 1 and state 0 nodes, how-

ever, vi decays exponentially in time. This framework, for example, could model the

interest of an individual in a certain topic, and the decay would represented the loss of

interest in the absence of interactions. This bursty nature of information spreading–

using periods of interactions followed by periods of inactivity–was found to facilitate

spreading and the occurence of cascades.
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Chapter 3

Temporal Networks

3.1 Introduction to Temporal Networks

All of the examples we have considered thus far, have been static networks. Static

networks retain the same network topology and edge weights in time, but many real

complex systems change in time and the network itself evolves. In static networks,

the explicit time-dependence of networks is usually discarded or only partially in-

corporated in some way. Traditionally, when studying empirical networks, the time

dimension of network structure has been accounted for by using static networks in

various ways. For example, the interactions in time between nodes can be aggre-

gated in weighted edges of a weighted static network, where, if we assume that we

are looking at the time evolution of a network up to a certain time, a larger weight

might correspond to more interactions (in either number or duration) during the time

interval under consideration [22]. Such aggregation, however, implicitly assumes that

the evolution of the edges (the activation and deactivation in time) follows a Poisson

process, where an edge appears at some time chosen uniformly at random in a time

interval [31]. However, numerous complex systems, especially social and economic

networks, exhibit non-Poisson temporal statistics, and thus such an aggregation and

depiction in a weighted static network is problematic and inaccurate [31].

Another problem with static networks with aggregated edges is that they do not

account for various characteristics of temporal network structure. For example, edges

do not have to be transitive. Let i → j denote an undirected, unweighted edge be-

tween node i and node j. In static networks, edges are always transitive, i.e. if i→ j

and j → k, then it is true that i→ k. In a static network with aggregated edges we

might encounter a situation in which two such edges are present and thus transitive,

but in the actual corresponding time-evolving network, they are actually not tran-
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sitive. If i → j and j → k are active at two non-overlapping time intervals, then i

cannot be connected to k, and the static depiction ignores this lack of transitivity [22].

Temporal networks are networks in which time-dependence is build into the net-

work itself. Such networks, therefore, have an explicit temporal structure in addition

to the topological structure and edge weights of static networks. The study of tempo-

ral networks is an emerging field of network science that is being developed to model

complex systems with a temporal structure which are ubiquitous in reality. There is a

tradeoff between the complexity that is added when trying to analyse a network that

has both topological and temporal network structure and the loss incurred when col-

lapsing the time-dependence to construct a static network [22]. Therefore, a system

should have suitable temporal structure in order for a temporal network approach

to be valuable. To understand what this structure could be, let us consider some

examples. As mentioned above, networks where the occurence of connections or node

behaviour does not follow Poisson statistics could benefit from a temporal network

approach. This is the case in e-mail and online communication networks [4,24], where

bursty behaviour can occur whereby people send e-mails or communicate online for

a certain relatively short period of time and then become inactive for some period

of time, and so on. Another example in which it is important to consider temporal

patterns is epidemic dynamics, where individuals staying at home because they have

contacted a disease correspond to nodes in the network becoming inactive, and we

would expect this behaviour to influence the contagion of the disease. Whenever

the interactions between nodes or the activity of nodes in time are not too random

or too regular, temporal network modelling could prove particularly useful. In gen-

eral, however, we would like to model the temporal patterns of any system that has

time-dependence, and this is the purpose of studying temporal networks.
A possible representation of a temporal network is G(S, E , T ), where T is the set

of all sets Tε = {(t1, t′1), . . . , (tn, t
′
n)}, which is the set of intervals over which an edge

ε ∈ E is active, for all M edges. As before, the set S denotes the set of nodes and the
set E denotes the set of edges. Most of the tools used in static networks have to be
updated, for instance we would define an adjacency index

a(i, j, t) =

{
1 if i and j are connected at time t

0 otherwise.

We could also define time-respecting paths as sequences of contacts with non-decreasing

times (i.e. there are no paths to the past) that connect set of vertices. Using these

paths, one can in principle determine which nodes can be reached from which other

nodes within a time interval [t0, T ]. One can also define the set of influence of a
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node i as the set of nodes that can be reached by time-respecting paths from node i.

Such ideas generalise the concept of paths to account for temporal structure. We can

also consider the latency (or temporal distance [25]) of two nodes, which is defined

as the shortest time within which node i can reach node j through time-respecting

paths. This extends the concept of distance by measuring time in addition to space.

Other quantities can also be generalised [22], and they can be used in analysing the

temporal structure of real networks drawn from empirical data. We expect that these

ideas will prove useful in investigating social cascades in temporal networks starting

from the temporal network framework and proceeding analytically, but we are not

going to do this in this thesis. Instead, we are going to consider time-dependence in

the sense of a dynamically changing network, as we will explain in Chapter 4.

3.2 Approach to Temporal Networks

3.2.1 General Considerations

Our aim is to investigate how the temporal structure of a network affects dynamical

processes on the network and vice versa. In Chapter 4, we will do this by simulating

social influence threshold models (specifically the Watts model with varying seed

sizes) on random networks that evolve in time, and we will compare the spread

of influence and the occurence or size of cascades with corresponding results from

static networks. The feedback loop between dynamics of networks and dynamics on

networks amounts to a temporal network structure which is directly dependent on the

dynamical system on top of the network and not on an external activity pattern of

nodes or edges. For example, someone might have a long-term connection to another

person (e.g., a family tie), independently of the dynamical process of social influence

between him and other individuals. On the contrary, a friendship or acquaintance

might be damaged or terminated because of a difference of opinion which might be

caused by the spread of opinions on a social network, thus rendering an edge inactive.

This would in turn affect the process of opinion formation, and so on.

3.2.2 How Should One Model Temporal Networks?

Modelling temporal networks entails expressing the temporal structure of a network.

One might attempt to do this by considering various temporal properties of a net-

work, such as the aforementioned concepts of temporal distance or time-respecting

paths. Alternatively, one might attempt to replicate some temporal behaviour of
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nodes and edges encountered in real networks from scratch, i.e., by constructing a

time-dependent random network. These approaches can then be used to explain

the emergence or describe the function of network characteristics encountered in real

temporal networks, or to provide the synthetic networks on which various dynamical

processes take place, and investigate these systems numerically. We are interested

in modelling cascade dynamics in social networks and we will thus have the latter

modelling aim in mind. Although the process of modelling temporal networks is

still in its infancy [22], we will briefly describe some contributions that have been

made before considering the specific characteristics of social networks that can pro-

vide some insight on the mechanisms that we will propose to model this temporal

network structure in Chapter 4.

One approach is to start with N nodes and build a network from scratch according

to some stochastic rule that drives both network topology, edge weights, and the

activation pattern of nodes and edges, which determines the temporal structure of

the network. This could be done in conjuction with a dynamical process running on

a network, as in a model proposed for generating temporal graphs to model sexual

contact networks and sexually transmitted diseases [14], where we start with N nodes

and follow the following rules [22]:

1. Create edges in the following way:

(a) Form an edge with probability ρ between nodes chosen according to a

mixing function φ:

i. Choose two nodes i and j uniformly at random;

ii. Decide whether they can form an edge according to φ(i, j);

iii. If yes, done; else go to step i.

(b) Repeat the step 1(a) N/2− P number of times.

2. In every edge between susceptible and infected nodes, transmit the disease with

probability η.

3. Break every edge with probability σ.

The function φ(i, j) is used to generate mixing by degree in the network, accounting

for assortative and disassortative mixing, which has been found to be an important

property of sexual contact networks [14]. In this case, mixing by degree means that,

for the assortative case for instance, individuals with many sexual contacts are more

likely to have sexual contacts with other individuals who have many sexual contacts
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themselves, and likewise for individuals with few sexual contacts. In the case of assor-

tative mixing, φ(i, j) = 1− ξ + ξ
kikj
k2max

, where ξ is a parameter measuring the strength

of assortativity, and kmax is the maximum degree. Moreover, P is the number of pairs,

as the population is divided into single nodes, and nodes belonging to pairs. Another

class of models for temporal networks are randomised reference models [22]. These

models are, in a way, extensions of the configuration model in a temporal sense. In-

tead of only assigning a degree sequence {ki}, we also assign an event sequence of

edge or node activation times and then construct a network. Furthermore, a configu-

ration model with a Poisson degree distribution removes the topological correlations

between nodes and edges and thus the connectivity in the network is random. In the

same way, we might want to remove temporal correlations between nodes or edges

to create a temporal network that would serve as a null model with no correlations.

To do this, we randomise either contact times, nodes, edges, or combinations of the

three. For example, the randomised edges model (RE) is the following [22] (note

that i→ j denotes an unweighted undirected edge):

1. Specify a degree sequence and a contact sequence and construct the network.

2. Go over all edges one by one.

3. For every edge i→ j, pick another edge n→ m.

4. Replace i→ j and n→ m by i→ m and j → n with probability 1
2
. Otherwise,

replace them by i→ n and j → m.

5. If there are any self-edges or multi-edges, created by step 4, then destroy them

and go back to step 2.

Thus, the edges are randomised in terms of the contact-time distribution, while the

initial contact times (i.e. the distribution itself) are kept constant. Note that this

accounts for edges but not for nodes being activated and de-activated in time.

Another approach, as done in [7], is to consider empirical data drawn from real

temporal networks, and assign the time stamps taken from these data to the nodes

and edges of a random network. This method has the advantage that it considers

realistic temporal patterns, but the disadvantage that it offers no explanation of how

or why the temporal network structure might arise.

In the next chapter, we will use a different method in our numerical simulations

to generate temporal patterns. We will start from a random network and consider

different rules for creating, breaking, or rewiring edges. These rules then give rise to
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contact time patterns as the network evolves. The way that this happens depends

on the dynamical process being considered, and the temporal structure arises due to

this process, while the changing topological and temporal structure in turn affects the

evolution of the dynamics on top of the network. As we are considering cascades in

social networks, we wish to determine how the evolving structure affects the cascade

dynamics. Before that, however, we have to think about a real system and see what

the aforementioned rules might be.
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Chapter 4

Numerics

4.1 Watts Threshold Model with Network Dynam-

ics

As previously discussed, we want to propose a new model, based on the Watts thresh-

old model, that generates temporal network patterns. We present it in this section,

starting from the Watts threshold model and considering different rules for the acti-

vation or deactivation of edges.

Consider the Watts threshold model, where nodes have states 0 or 1. Imagine we

have a social communication network, where a viral marketing or other advertising

campaign for a product is taking place. State 1 corresponds to someone who has

bought the product, and state 0 corresponds to someone who has not. Any individual

who bought the product instantly becomes an advertiser and tries to make anyone

he is connected with buy the product as well. Whether a node adopts state 1 or not

depends on the local threshold dynamics. We assume, however, that a node that has

not adopted after an interaction with its neighbours has a probability of breaking the

edge with any of its state-1 neighbours. This might correspond to an individual who

becomes annoyed at people trying to sell him/her a product and breaks the connection

between them. We could additionally assume that edges between two state 0 or two

state 1 nodes have a probability of being rewired after the local interactions take place.

This could correspond to ephemeral connections such as “face-to-face” encounters or

online activity. On the contrary, any edges between a state-0 node and a state-1

node (i.e. 1-0 edges) are not broken or rewired unless the breaking is initiated by the

state-0 node after not adopting state 1. One could imagine that this might happen

due to advertisers choosing to retain the connection in order to sell a product, or in

general due to an individual continuously urging someone to buy or use a product or
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service. There are many extensions and modifications that one might consider, such

as creating edges or assigning some memory function to nodes, but we start with this

model as a starting point. We will denote the probability of breaking edges by τ b

and the probability of rewiring edges by τ r, and turn to numerical investigations on

random networks in the next section.

4.2 Formulation and Implementation of Numerical

Models

Our aim is to investigate the model proposed in the preceeding section, where we

combine the Watts threshold model to a dynamically evolving network structure,

in order to examine cascades on temporal networks. We run simulations of this

dynamical process using MATLAB (see Appendix A for the code), on configuration-

model networks. First, however, we have to test our code against known results to

establish its validity. To do this, we will try to replicate a figure from [34], using

the original Watts model on a Poisson random graph. The algorithm for this model

is given by Algorithm 1 in Chapter 2. As we will see, there are some issues with

replicating this figure, therefore we will turn to [11], where the Watts threshold model

is extended by considering various seed sizes instead of a single initial seed as in

[34], and replicate one of their results. After succesfully doing this, we will consider

a network evolving in time according to certain rules and we will investigate the

dynamics by producing various plots and comparing them with the corresponding

results in static networks.

We can implement Algorithm 1 numerically in a straightforward way. The large

size of the networks involved (e.g. the network used in [11] is comprised of N = 105

nodes), however, make the implementation computationally expensive and thus re-

quire some consideration of how to optimise the code. The most computationally

expensive parts of the code are the construction of the random network and the loops

required to update the network according to the dynamics. The most important

measure we can take that significantly reduces the computational complexity is vec-

torisation. For example, the degree of a node ki can be computed by ki =
∑N

j=1 Aij,

where A is the adjacency matrix given by Equation 1.1. Equivalently, we can com-

pute the degrees for all the nodes and store them in a vector k = [k1, . . . , kN ]T by

multiplying the matrix A with the vector of ones [1, . . . , 1]T . After fully vectorising

our code, however, most functions that we want to perform are quite computation-

ally expensive. In particular, the construction of the network is still computationally
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expensive, whereas updating the network itself requires us to find types of edges

using the adjacency matrix, and rewire or break edges by changing the adjacency

matrix itself. Therefore, the size of the network and the corresponding size of the

adjacency matrix makes it computationally expensive to construct and update this

matrix. This is why, in producing some of the later results, we will also reduce the

size of the network, considering networks of N = 104 or N = 103 nodes.

Extending the numerical algorithm to account for varying seed sizes is trivial.

To include edge breaking and rewiring mechanisms, however, we have to modify

Algorithm 1 at the stage where node states are updated according to the threshold

rule. We present pseudo-code for this modified algorithm where both edge breaking

and edge rewiring is included in Algorithm 2.

Algorithm 2 Watts Threshold Model with Network Dynamics

1: procedure DynamicModel(N , z, R, τ b, τ r) % N : number of nodes. z:
mean degree. R: uniform threshold, τb: breaking probability. τr: rewiring prob-
ability.

2: Construct random graph % Poisson or configuration model
3: Compute ki for i = 1, . . . , N % compute the degrees of all the nodes
4: Set all node states σ to σ(i) = 0 for i = 1, . . . , N % set all initial states

to 0
5: Choose a set of random nodes S and set σ(j) = 1 ∀j ∈ S % set a fraction

of nodes’ state to 1
6: Change state to 1 if σ(i) = 0 and if

∑
j∈Γ(i) σ(j)/ki ≥ R for i = 1, . . . , N

% update states according to threshold rule
7: Save new states in a new vector σnew % keeping the old states in σ
8: while σ 6= σnew do % while new nodes have adopted
9: Set σ = σnew % update the state vector
10: Change state to 1 if σ(i) = 0 and if

∑
j∈Γ(i) σ(j)/ki ≥ R for i = 1, . . . , N

% update states according to threshold rule
11: Break any 1-0 edge with probability τb
12: Find all 1-1 and all 0-0 edges
13: Re-wire a node at a random end of these edges to a randomly chosen node

with probability τ r
14: Save new states in a new vector σnew % keeping the old states in σ
15: end while
16: end procedure

Here we consider breaking edges between state-1 nodes and nodes that have

not adopted state 1 after interacting with their neighbours, i.e. any i such that∑
j∈Γ(i) σ(j)/ki < R, and rewiring edges between unadopted state-0 nodes as well

(also rewiring 1-1 edges). We stop the algorithm when the system reaches a steady
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state with respect to the states, although a further perturbation due to rewiring and

breaking edges might cause the process to continue. Note that the whole network is

updated at once (i.e., we do not update each node or each edge at a time). This is

a case of synchronous rather than asynchronous updating, both of which we briefly

describe in the following section.

4.3 Synchronous and Asynchronous Updating

Synchronous and asynchronous updating refer to the way in which nodes and edges of

a network are updated in time due to a dynamical process taking place on the network.

We treat time either as discrete, in the case of synchronous updating, or continuous,

in the case of asynchronous updating. In the synchronous case, the whole network

is updated at some discrete time step, say tn, and the next update happens at tn+1.

That is, we are considering a discrete dynamical system, as the temporal evolution

of a quantity is expressed as an iterative equation x(tn+1) = F (x(tn)). Conversely, in

asynchronous updating, time is divided into infinitesimal time intervals dt, and parts

of the updating happen continuously, so one can write a differential equation for some

quantity x, such as Equation 1.2. Numerically, this regime can be approximated by

defining a time interval ∆t, say ∆t = 1/N , updating at each consecutive ∆t + i
N

,

i = 0, . . . , N − 1.

The crucial difference is that for synchronous updating, at each tn, each node

behaves according to the dynamics but independently of the other nodes’ dynamics,

with no knowledge of what the other nodes are going to do [13]. Therefore, all

the nodes are synchronised. Conversely, in the asynhronous case, nodes are updated

according to some sequential update process that takes place between two time points

tn and tn+1, with the time interval tn+1 − tn divided into steps of size ∆t. At each

step, a node is updated, and at the next step the node to be updated takes into

account the update that just happened for the previous node. For example, nodes

could be picked at random from the N nodes and updated, then placed back into

the group of N nodes that the next node is picked from, and the process repeated N

times [13]. There are other ways for asynchronous updating to happen, though. For

instance, at each time step ∆t, we can choose a node at random without replacement,

i.e. the next node is chosen among the remaining N − 1 nodes. In this way, all nodes

are updated before the next time point tn+1 [15]. In another version of asynchronous

updating, a fixed random order is assigned to the N nodes of the network. This is

the order that the nodes are going to be chosen with, for every time point between
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tn and tn+1 [15]. These different asynchronous updatings have different effects on

the evolution of the dynamical process at hand, although sometimes these effects are

not closely examined. These and additional types of updating are more extensively

studied in a paper regarding cellular automata [33] and in the modelling of stochastic

processes, for example in the Kinetic Monte Carlo (KMC) method (often used in

statistical physics), which is a type of asynchronous updating [3].

In our system of a social network with information or social influence spreading

according to threshold dynamics, it is not intuitively clear which of the two updating

schemes is more appropriate. It can depend on the relation between the speed of

propagation of information about the states of neighbouring nodes and the speed

of propagation of the dynamical process. If nodes are instantly or almost instantly

aware of the states of other nodes, then it would be appropriate to model this by

using asynchronous updating, where the update of a node affects the decision of

another node an infinitesimal amount of time later. Otherwise, all nodes would be

updated synchronously. In any case, it can be shown that, when considering the

steady state of the system in the Watts threshold model and its extension using

various seed sizes, both synchronous and asynchronous updating produce the same

numerical results [11].

4.4 Numerical Results for Threshold Models on

Static Networks

We start by attempting to replicate “Figure 2(b)” [34] using the Watts threshold

model (Algorithm 1). The random network used is a Poisson (i.e., Erdős Rényi)

random graph (defined in Chapter 1). In Watts’ original paper [34], the network

is defined by considering N nodes and assigning an edge to any pair of nodes with

probability p = z/N , where the mean degree z is given, and while different than the

way we defined an Erdős Rényi random graph, they both have a resulting Poisson

degree distribution, i.e. pk = zke−z

k!
, therefore they are, in effect, equivalent. Thus,

we use Algorithm 1 on a Poisson random graph of N = 104 nodes, and depict the

phase diagram of mean degree z versus thresholds R in Figure 4.1. The term phase

diagram, in this case, refers to two distinct phases of the system. One in which a

cascade occurs, and one in which it does not.
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Figure 4.1: Phase diagram of mean degrees z versus thresholds R. The coloured area
represents the range of values for which cascades occur, and the blank area the range
for which they do not. The results are averaged over 100 realisations (different initial
conditions, same network) and cascades are defined as events for which the ratio of
state 1 nodes over all nodes is greater or equal to 0.3.

Although the results are very similar to those in “Figure 2(b)” in [34], the phase

diagram is not exactly the same, so we have not replicated the results accurately. An

issue we encountered in producing this figure has been the question of how exactly to

define cascades in this context. Although global cascades can be intuitively defined

as situations where the whole network has adopted, or in other words that the ratio

of state 1 nodes over all network nodes is 1, a cascade in general means that a large

enough fraction of the network has adopted due to a small initial perturbation. The

problem is that an actual size was not provided in [34], nor was some other cascade

condition specified. We tried different ratios for the cascade condition in order to

replicate that particular figure, but none of the ones we used produced results that

exactly matched those in [34]. There is the possibility that we did not try enough

ratios, but to try all of them would be very computationally expensive. The natural

question is whether there is something wrong with our code, so we turn to [11] and

attempt to replicate a result therein using the same code, although now accounting

for various initial seed sizes as well.

In [11], the authors extended the Watts threshold model to account for varying
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seed sizes, where ρ0 denotes the fracton of N nodes that are initially activated. They

also denote the fraction of state-1 nodes over the whole network when the steady

state has been reached by ρ. In this context, they derive analytical approximations

for ρ in the infinite network limit N →∞. The Watts model and the results in [34]

are then a limiting case of ρ0 → 0, as a single node that initially adopts corresponds

to ρ0 = 1/N , and N → ∞. It is clear, therefore, that by replicating the simulation

results of [11], we have replicated an extended version of the Watts threshold model,

and thus our code succesfully applies the Watts model in general. We use the Poisson

random graph once more, and we use the configuration model with a Poisson degree

distribution to generate it. We place seed nodes at random, as mentioned in Algorithm

2 (ignoring edge breaking and rewiring processes in that algorithm). In Figure 4.2,

we replicate the figure from [11] labeled “FIG. 1”, which depicts the cascade size ρ

versus mean degree z, for a uniform threshold R = 0.18 and for a Poisson random

graph with N = 105 nodes.
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Figure 4.2: Mean density of adopted nodes (i.e. cascade size) ρ versus mean degree
z. We depict three different seed sizes: ρ0 = 10−3 (red), ρ0 = 5 · 10−3 (black), and
ρ0 = 10−2 (blue). The uniform threshold is R = 0.18. The results are averaged over
100 realisations of the dynamics (different initial seed) on a Poisson random graph
with N = 105 nodes.

The results completely agree with those in [11]. Note that ρ is very sensitive to

the initial seed size ρ0 and that as z increases, there is a sudden drop in ρ which
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appears to be discontinuous. Conversely, there appears to be a continuous transition

between a regime in which there are no cascades when the mean degree is low and ρ

reaching the value of 1, meaning that global cascades occur and the cascade size is

1, as z increases. We see that the larger the number of seed nodes, the higher the

value of z at which the discontinuous transition occurs. We can use the reasoning

provided in Chapter 2 (and by Watts in [34]) that offered a possible explanation to

a figure in [34], in order to gain some intuitive understanding of why this happens.

As the mean degree gets higher, some nodes with many neighbours become isolated

from the spreading process as they never overcome their threshold. As this happens

to more and more nodes, the process has a tendency to die out. There are some

events, however, in which the seed nodes are well-placed enough that the process

spreads; due to the high mean degree, it spreads to the whole network causing a

global cascade. As the seed size gets larger, the probability that the seed nodes are

well-placed gets larger, and the probability of these events occuring gets larger as

well. At some point, however, for some higher z, they are so rare that the spreading

process dies out completely, and this is the transition point.

To compare the speed of the cascades, let us consider Figure 4.3.
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Figure 4.3: Fraction of adopted nodes ρ versus the number of iterations until steady-
state (measuring time to steady-state). The seed size used is ρ0 = 10−2, i.e. 1,000
initial seed nodes in a network of N = 105 nodes. Plots are given for z = 2 (blue
line), z = 4 (black dotted line), and z = 8 (red line). We note that the transition for
this seed size occurs at about z = 9.

We can distinguish the speed of influence until steady-state for the three different

mean degrees z we consider in Figure 4.3. The number of iterations that are needed

is small for all three, so the process reaches steady state very quickly in all cases.

However, we can see that for z = 4, which is right after the continuous transition

to global cascades, the speed of contagion is the highest, while when z = 2, i.e. on

the continuous transition itself, the speed of contagion is slower (if only slightly).

Therefore, we see that the triggering of global cascades increases the speed from the

level that it is during the transition, where state 1 spreads to a significant portion of

the networks and then stops spreading. The high value of the mean degree in the case

of z = 8 causes a slower speed of cascading, because the state-1 nodes first need to
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slowly “reach” a critical portion of the network, which happens at 9 or 10 iterations,

and then the whole network (ρ reaches 1 in this case contrary to the z = 4 case)

adopts. Note that when this happens, the red curve has almost the same slope as the

black dotted line, which suggests that the acceleration of propagation at that portion

is very similar.

In Figure 4.4, we repeat the same calculations but with an initial seed size of

ρ0 = 10−3, corresponding to 100 initial seed nodes, to examine how having less initial

seed nodes affects the speed of propagation.
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Figure 4.4: Fraction of adopted nodes ρ versus the number of iterations until steady-
state for ρ0 = 10−3 (N = 105). We give plots for z = 2 (blue line), z = 4 (black
dotted line), and z = 6 (red line). We note that the transition for this seed size occurs
at about z = 6.5.

We observe a very similar pattern, but we can see that all three cases need more

time to reach cascades or the steady state. This makes sense, as a smaller number of
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initial seed nodes than before are trying to influence a network of the same size.

Having established a working code and having investigated some aspects of thresh-

old dynamics on static networks, we consider dynamically evolving networks and the

effect they have on the dynamical process (and vice versa).

4.5 Numerical Results for Threshold Models on

Dynamic Networks

We consider the edge-breaking and rewiring rules for updating network structure in

time as described in Section 4.1. We will use Algorithm 2 in our numerical simulations,

use a configuration model with a Poisson degree distribution as the random graph on

which the dynamical process occurs, and choose to use some combination of the edge-

breaking and the edge rewiring mechanisms to examine the dynamics numerically.

The main result we are going to present is given in Figure 4.5, where we have

computed the fraction of adopted nodes ρ versus the mean degree z for various values

of the breaking probability τ b (in particular, τb = 0, 0.1, 0.2, . . . , 1). The aim is to see

how the results in Figure 4.2 change due to the breaking of edges, and examine how

this mechanism might be affecting the contagion process.
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Figure 4.5: Fraction of adopted nodes ρ versus mean degree z with N = 105 and
R = 0.18. The seed sizes are ρ0 = 10−3 (red lines), ρ0 = 5 · 10−3 (black lines), and
ρ0 = 10−2 (blue lines). We plot results for breaking probabilities τb = 0, 0.1, 0.2, . . . , 1.
The three curves reaching a cascade size close or equal to 1 correspond to τb = 0, the
three curves reaching a lower cascade size (around 0.45) correspond to τb = 0.1, and
so on.

Above, we see the results for τb = 0, 0.1, 0.2, . . . , 1. The case of τb = 0 is the

same as and coincides with Figure 4.2, as required by construction. Each triplet of

coloured curves corresponds to another breaking probability, with τb increasing as

the curves are “moving” downwards. The breaking of 1-0 edges, where the node with

state 0 did not adopt in the previous time step, severely restricts the spread of state

1, causing the cascade size to fall. As we will see shortly, every node in a network can

reach state 1 even with edge breaking, assuming that the network size is relatively

small and the initial seed size is larger than what we have been considering thus far.

This, however, would not be called a cascade, since a relatively large portion of the

network would initially have state 1 instead of a small seed that triggers a global

cascade. Returning to Figure 4.5, we see that the behaviour of the curves as they
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decrease towards the equilibrium ρ ≈ ρ0 is interesting, as, instead of displaying a

discontinuous transition for high z as in the static case, they seem to instead display

a series of discontinuous transitions. We take a closer look in Figure 4.6, where we

depict the curve corresponding to ρ0 = 10−2 (blue) and τb = 0.1.
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Figure 4.6: The curve corresponding to τb = 0.1 and ρ0 = 10−2 from Figure 4.5.

Here we can see more clearly the discontinuous jumps that occur as z increases.

The reasoning that we used to explain the discontinuous transition in Figure 4.2,

suggests a breaking mechanism in which nodes become isolated, in the sense of being

unable to change their state due to the local threshold dynamics, more quickly (i.e.

for lower connectivities), thus moving the overall transition to ρ = ρ0 to the left.

The fact that these transitions happen one after the other might be explained in the

following way. As the edges that are being broken are 1-0 edges, this causes the

state-1 nodes of those edges to lose connections with neighbouring nodes and thus

they become isolated. This reduces the spread of contagion, but only locally, for

those neighbourhoods where the state-1 nodes have had their links with other state-0
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nodes broken. Therefore, the fraction of adopted nodes ρ decreases but does not

immediately drop to ρ0; instead, it only drops to a lower level. As the connectivity

increases further and the local threshold conditions become harder to overcome for

state 0 nodes, the breaking mechanism isolates even more state 1 nodes, resulting in

even reduced contagion, with a sudden drop happening at some critical z value. This

process continues until finally ρ drops to ρ0. The question that remains, however,

is why these drops have to be discontinuous, and how is this related to the manner

in which the breaking mechanism alters the network topology? Let us present some

analytical results from [11] to suggest a possible research direction. Note that these

results are taken straight out of [11] and we do not duplicate their derivation but only

present them due to their result to the aforementioned problem.
In [11], considering the Watts threshold model with varying seed sizes ρ0 on static

networks, analytical results for the fraction of adopted nodes ρ have been derived and
the following approximate equation for ρ was found:

ρ = ρ0 + (1− ρ0)
∞∑
k=1

pk

k∑
m=0

(
k

m

)
qm∞(1− q∞)k−mF

(
m

k

)
, (4.1)

where F (m/k) is the response function for the Watts model given by Equation 2.1,
and q∞ is the fixed point of the equation

qn+1 = ρ0 + (1− ρ0)G(qn) for n = 0, 1, 2, . . . , (4.2)

with q0 = ρ0, and G is a nonlinear function defined by

G(q) =
∞∑
k=1

k

z
pk

k−1∑
m=0

(
k − 1

m

)
qm(1− q)k−1−mF

(
m

k

)
. (4.3)

What was found in [11], was that the fixed point q∞ of Equation 4.2, has a discontin-

uous transition from q∞ ≈ 1 to q∞ ≈ 0 that drives the transition of ρ and is caused by

a saddle-node bifurcation [29]. This suggests that there might be a series of similar

saddle-node bifurcations that drive the transitions in Figure 4.6.

Lastly, we consider a simple effect of breaking and rewiring edges. In Figure 4.7,

we consider a case in which edge breaking occurs with breaking probability τb = 0.1

(without rewiring), a case in which edge rewiring occurs with rewiring probability

τr = 0.1 (but with no edge breaking), and a static case with neither rewiring nor

breaking of edges. We then plot the fraction of adopted nodes ρ versus the number

of iterations until a steady state is reached.
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Figure 4.7: Fraction of adopted nodes ρ versus the number of iterations until steady
state for ρ0 = 10−2 and N = 104. Only breaking with probability τb = 0.1 (black
line), only rewiring with probability τr = 0.1 (red line), no breaking or rewiring (blue
line). The uniform threshold used is R = 0.18 and the mean degree is z = 6.

We choose a smaller network of N = 104 edges, high connectivity (z = 6), and a

large seed size ρ0 = 10−2, so that–even if edges are broken according to the breaking

mechanism–a large portion of the network can be influenced by state 1. We see

that edge breaking both reduces the speed of social contagion, and limits its size.

Conversely, rewiring edges seems to speed up the process.
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Chapter 5

Analytics

5.1 Motivation and Initial Theory

Most of the time when studying dynamical systems on networks, it is not possible in

practice to derive exact analytical equations governing the evolution of the system

we are considering. This is due to the complexity of the interactions in networks, as

the interdependence and connectivity of nodes usually makes it impossible to keep

track of all the effects a dynamical system has on a network and the effect that the

network itself has on the dynamical system. Therefore, one has to look for analytical

approximations of various kinds. Two common such approximating methods are

mean-field theories and pair-approximation theories.

Mean-field theories were most prominently developed in statistical physics, where

they are used in studying many-body problems [23]. If we consider a large number of

particles, we pretend that are all in a bath, in which each particle interacts with the

bath instead of interacting with all the other particles individually. The properties of

this bath arise from the average quantities derived from all of the particles collectively,

and each particle is coupled with other particles only via these average quantities.

Similarly, if particles are replaced by nodes and interactions by edges, mean-field

theories consider the interaction of nodes with the average state of the network as a

whole. Pair-approximation theories are generalisations of mean-field theories that try

to include pairwise dynamical interactions by considering the states of the nodes at

the ends of an edge and the joint distributions of states of nodes in random edges [23].

There are, however, certain assumptions that need to hold in order for mean-field

or pair-approximation theories to be valid (although, mean-field theories, for example,

sometimes perform well even in systems where condition (1) below is violated [12]

[27]). The typical assumptions used in deriving mean-field theories in networks are

the following [12]:
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1. Absence of local clustering. When changing the state of some node i, it is

assumed that the states of its neighbours are independent of each other. This

is true, for example, for locally tree-like networks, where if we look at the local

neighbourhood of a node i and see that it is connected to nodes k and j, then

nodes k and j are not connected to each other. In other words, the edges do

not form triangles between neighbouring nodes (more precisely, the probability

of having triangles tends to 0 as N →∞).

2. Absence of modularity. It is assumed that we can accurately describe nodes

of degree k by the average state of k-degree nodes. This assumption is vio-

lated in the presence of modularity. For example, when a network has distinct

communities, the k-degree nodes of a certain community might have different

properties than the k-degree nodes of another community.

3. Absence of dynamical correlations. When updating the states of nodes, we as-

sume that we can consider the state of a node i and the states of its neighbours

to be independent from each other. This thus refers to dynamical correlations

and not structural correlations that have to do with statistical network proper-

ties, such as degree-degree correlations.

The third assumption is relaxed in the case of pair-approximation theories. We do

this by considering the states of nodes connected by edges and how they are dynam-

ically correlated. We can see that the dynamical correlations of node states plays

an important role in the Watts threshold model with network dynamics proposed in

the previous chapter. As 1-0 edges have a probability of breaking, and 0-0 or 1-1

edges have a probability to be rewired, the relative states between two nodes are the

essential characteristic that drives the network dynamics. Therefore, we would have

to include dynamical correlations in an analytical approximation of the model, and

we could use pair-approximation theories to do this. In pair-approximation theories,

we usually express the dynamics in terms of fractions of pair of nodes in certain

states [36]. To do this, one includes correlations of a higher-order, such as triplets of

nodes in various states, and then try to approximate these higher-order correlations

in terms of lower-order ones, i.e. using pairs of nodes in certain states or individual

nodes and their states. In this sense, mean-field theories are a simplified version of

such a procedure in which pairwise state correlations are approximated by individual

node states using some averaging over the whole network.

We will now briefly present two simple examples, one of mean-field theory and

one of pair-approximation theory. They will both be in the context of epidemiological
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models, such as the SI or the SIR models. As we saw in Chapter 2, some such models

can be formulated as threshold models as well.

5.2 Mean-Field Approximations: An Example

We follow the discussion in [1] and present an example where a mean-field theory

approximation is used to derive a differential equation for a simple class of models of

biological epidemics. Note that this is not our derivation but merely a duplication of

the derivation in [1].

Consider a population of N individuals comprising a network on which a disease

is spreading. Assume that the population can be divided into discrete compartments

according to their state with respect to the disease. We could, for example, divide the

population into susceptible S individuals, infectious I, or recoveredR. We also assume

that within every compartment, the individuals are well-mixed and homogeneous,

while, if we take a node i, then the more neighbours in state I (infected) this node

has, the higher the probability that it will get infected as well. To be as general as

possible, consider compartments as classes denoted by [m], and denote the number

of individuals in class [m] at time t by X [m](t). As every individual in the population

is in exactly one compartment, N =
∑

mX
[m](t). Note that the notation used here

corresponds to the notation used in Chapter 2 in the discussion of SI and SIS models

by considering two comparments, X [h] = S and X [m] = I, and a rate of infection β

that corresponds to vmh , a variable which will be defined below.
Consider the processes in which nodes can be transferred from one compartment

to another. One class of such processes is the spontaneous transition of a node from
class [m] to class [h]. Such a transition can be written as

X [m] → X [m] − 1 (5.1)

X [h] → X [h] + 1. (5.2)

An example of such a transition is the spontaneous recovery of an infected individual
(I → R). We calculate the change in the number of individuals X [m] as

∂tX
[m] =

∑
h

vmh ahX
[h], (5.3)

where ah is the rate of transition from class [h], and vmh = 1, 0 or −1 is the change in

the number of X [m] due to the spontaneous transition either from or to the class [h].
A second process by which a transition can occur is the binary interactions between

nodes, such as the contagion of a disease by a node in S from a node in I (S+I → 2I).
These are interactions that we will approximate in a mean-field theory sense. Consider
an individual in class [h]. Assume that all nodes are in a homogeneous bath, so that
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the probability of a node in class [h] to interact with a node in class [g] is the density
X [g]/N of class [g] individuals in the population. In this case, the change of X [m] is

∂tX
[m] =

∑
h,g

vmh,gah,gN
−1X [h]X [g], (5.4)

where ah,g is the transition rate and vmh,g is the change in the number of X [m] due
to the interaction. We can add the two equations to write the general reaction-rate
equations for the mean number of individuals in class [m]:

∂tX
[m] =

∑
h,g

vmh,gah,gN
−1X [h]X [g] +

∑
h,g

vmh,gah,gN
−1X [h]X [g], (5.5)

where X [m] are continuous variables representing the mean number of individuals in
class [m]. Assuming that the total number of individuals in the network remains
constant, we can also write ∑

m

∂tX
[m] = 0. (5.6)

This constitutes an example of the application of mean-field theory method to derive

an approximate master equation for the temporal evolution of a dynamical system

on a network.

5.3 Pair-Approximation: An Example

In this section, we present an example of a pair-approximation (following [23]). Note

that we duly follow the discussion in [23], which in turn is a modification of the

discussion in [21], and that this is not our derivation.
Consider the SI model as presented in Chapter 2, and add dynamical correlations

to Equation 2.2. To do this, we first write

Ṡi = −βSi
∑
j

AijIj = −βSi
∑
j

Aij(1− Sj)

İi = βSi
∑
j

AijIj = β(1− Ii)
∑
j

AijIj. (5.7)

This ignores dynamical correlations between the states of node i and its neighbours.
To add those, we write the quantities Si and Ii explicitly as expected values (as that
is what they are), or mean probabilities that a node i is susceptible and infected,
respectively. That is, Si = 〈Si〉, Ii = 〈Ii〉, and 〈SiIj〉 is then the mean probability
that i is susceptible and j is infected at the same time. We can take some dynamical
correlations into account by writing the following analog of Equation 5.7:

d〈Si〉
dt

= −β
∑
j

Aij〈SiIj〉. (5.8)
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As an aside, a mean-field assumption could be made on this equation, namely that

〈SiIj〉 ≈ 〈Si〉〈Ij〉, which ignores the dynamical correlations and gives back Equation

2.2 from Equation 5.8. This is a moment-closure approximation.

As we don’t yet have an expression for the temporal evolution of 〈SiIj〉, Equation

5.8 is not closed. To do this, we will need higher-order dynamical correlations. Thus,

let us figure out the ways that 〈SiIj〉 can change in time.

1. To reach a state in which node i is susceptible and node j is infected, we could

have started with both nodes i and j in a susceptible state.The interaction of j

with its neighbours other than i might have then caused j to become infected.

The total rate that this can happen is β
∑

k 6=iAjk〈SiSjIk〉.

2. 〈SiIj〉 can decrease if i becomes infected. This can happen either due to its

neighbour j or due to one of its other neighbours l 6= j. Adding these two

contributions gives the total rate for 〈SiIj〉 to decrease: β
∑

l 6=j Ail〈IlSiIj〉 +

β〈SiIj〉. The first term refers to the neighbours l 6= j and the second term

refers to node j infecting i.

Therefore, the rate of change of 〈SiIj〉 is

d〈SiIj〉
dt

= β
∑
k 6=i

Ajk〈SiSjIk〉 − β
∑
l 6=j

Ail〈IlSiIj〉 − β〈SiIj〉. (5.9)

The problem, however, is that now we do not know the temporal evolution of the

3-node correlations we now appear on the right-hand side. Therefore, we need to

do a moment closure, and we do this by approximating these 3-node correlations.

Just as mean-field considerations give a moment closure in 2-node correlations by

approximating them in terms of single node states (by assuming independence), the

pair-approximation method provides a moment closure in 3-node correlations by ap-

proximating them in terms of the states of individual nodes and of pairs of nodes.
To do this, we are going to use Bayes’ theorem to express joint probabilities in

terms of conditional probabilities. We have

〈SiSjIk〉 = P (i, j ∈ S; k ∈ I) = P (i, j ∈ S)P (k ∈ I‖i, j ∈ S). (5.10)

At this point, we will make a simplifying assumption: we assume that the state of
node k is independent of the state of i. This would be actually true in the case in
which any path between k and i goes through j, as then the state of k would depend
only on the state of j, because it would have to interact with it before interacting
with i anyway. We can then write

P (k ∈ I‖i, j ∈ S) ≈ P (k ∈ I‖j ∈ S) =
P (j ∈ S, k ∈ I)

P (j ∈ S)
=
〈SjIk〉
〈Sj〉

,
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which implies that

〈SiSjIk〉 ≈
〈SiSj〉〈SjIk〉
〈Sj〉

. (5.11)

Similarly,

〈IlSiIj〉 ≈
〈IlSi〉〈SiIj〉
〈Si〉

. (5.12)

Therefore, the approximation to the temporal evolution of 〈SiIj〉 is

d〈SiIj〉
dt

≈ β
〈SiSj〉
〈Sj〉

∑
k 6=i

Ajk〈SjIk〉 − β
〈Si〉〈Ij〉
〈Si〉

∑
l 6=j

Ail〈SiIj〉 − β〈SiIj〉. (5.13)

In this way, we have reduced 3-node correlations to 2-node correlations, but we still
have to express things in terms of 〈SiIj〉 instead of other 2-node correlations. We can
write

〈SiSj〉 = 〈Si(1− Ij)〉 = 〈Si〉 − 〈SiIj〉.

We then define pij = P (j ∈ I‖i ∈ S) = P (i∈S,j∈I)
P (i∈S)

=
〈SiIj〉
〈Si〉 , and write a differential

equation for pij

ṗij =
d

dt

(
〈SiIj〉
〈Si〉

)
=

= β(1− pij)
∑
k 6=i

Ajkpjk − βpij
∑
l 6=j

Ailpil − βpij + βpij
∑
l

Ailpil

= β(1− pij)(−pij +
∑
k 6=i

Ajkpjk), (5.14)

which allows us to write

d〈Si〉
dt

= −β〈Si〉
∑
j

Aijpij. (5.15)

Therefore, through this pair-approximation method, we have derived an approximate

analytic equation for the dynamics, and Equation 5.15 can be solved to give a com-

plete time-dependent approximate solution to the problem. We see here that the

correlations between infected and susceptible nodes (e.g., 〈SiIj〉) are important in

deriving an approximate equation. In the model we have proposed in Chapter 4, the

correlations between state-1 and state-0 nodes are the building blocks for the rules

for changing the network and pair-approximations such as the above would take these

correlations into account, thus providing a more accurate picture of the system.
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5.4 General Considerations

There are tradeoffs between mean-field and pair-approximation methods on the prob-

lem at hand. In our case, as we are concerned with social-influence threshold dynamics

on dynamically evolving networks, there are a few things we can consider about the

methods. Because we have not been able to produce our own analytical approxima-

tions to the problem, we can only assume how well (or not well) these methods would

fit, as well as make an educated guess based on the work we’ve done in trying to

derive such approximations. Firstly, the pair-approximation method adds complexity

by adding 3-node correlations and then trying to approximate them, while mean-field

methods rely on simpler approximations to get rid of 2-node correlations. Therefore

mean-field theories are simpler, while pair-approximations could be more accurate.

Because we are considering breaking and rewiring edges, the states between two nodes

connected by an edge are crucial to the problem, and they could constitute a building

block of the dynamics if a pair-approximation method that could approximate the

state-edge time evolution could be determined. We have failed to do this, but it seems

like a natural way forward. However, a simpler mean-field assumption might provide

a first approximation to the problem and reveal some analytic behaviour which would

be valuable since analytics have been completely absent from the numerical investi-

gations of our dynamic model.
Lastly, we present our attempt at deriving some analytical approximations. Con-

sider the Watts threshold model with network dynamics presented in Chapter 4. Let
N0 denote the fraction of nodes in state 0, N1 denote the fraction of nodes in state
1, N00 denote the fraction of edges where both nodes have state 0, N11 denote the
fraction of 1-1 edges, and N01 denote the fraction of 0-1 edges. Our aim is to derive
differential equations for each of these quantities, describing how these fractions of
states change in time. We can describe these equations in the following way

Ṅ1 = (0→ 1),

Ṅ00 = −(00→ 01)− (00→ 10)− (00 edge breaking) + (00 edge forming),

Ṅ01 = −(01→ 11) + (00→ 01) + (01 edge forming)− (01 edge breaking),

Ṅ11 = (01→ 11) + (10→ 11)− (11 edge breaking) + (11 edge forming).

Here, (. → .) denotes all the possible ways that nodes can change from one state to

another (or from a pair of states to a different pair of states). For example, a way for

the fraction of 0-0 edges to go down is that 0-0 edges become 0-1 edges, and all the

ways this can be done is denoted by (00 → 01). The challenge is to determine and

count all these ways, and derive expressions for the probabilities of these transitions.
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Another set of quantities for which one could seek governing equations is the fol-
lowing. ConsiderN0,k to be the fraction of nodes in state 0 with degree k. Accordingly,
consider N1,k, N00,k,j, N01,k,j, and N11,k,j, where, for example, N11,k,j is the fraction
of edges connecting nodes with states 1 and 1 and degrees k and j, respectively. By
explicitly including the degrees, we could more easily include the response functions.
For example, let S0,k and S1,k be the set of nodes with state 0 and degree k and the
set of nodes with state 1 and degree k, respectively. Then, considering asynchronous
updating, we can express the change in N1,k as

N1,k(t+ dt) = N1,k(t) + P (S0,k → S1,k)N0,kdt

= N1,k(t) +
k∑
l=0

F (l, k)P (state 0; degree k; l state 1 neighbours)N0,kdt,

where F (l, k) is the response function given by Equation 2.1. Therefore

Ṅ1,k =
k∑
l=0

F (l, k)P (state 0; degree k; l state 1 neighbours)N0,k. (5.16)

In the same way, one can express the change of N00,k,j, N01,k,j, and N11,k,j as well, but

then one must include more complicated probabilities, as well as the edge breaking

and edge rewiring mechanisms of our model.
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Chapter 6

Conclusion

6.1 Summary

We have approached the topic of cascades on temporal networks mainly from a com-

putational perspective. We started by introducing the field of network science in

general, we explained some important concepts of network properties, examples and

the formulation of dynamical systems on networks, as well as random graphs, namely

the Erdős Rényi random graph and the configuration model. We then proceeded by

describing various threshold models, explaining their usage. Drawing from examples

of real networks and real dynamical processes, we considered the significance and the

applications of such models. We then focused on the Watts threshold model and some

of its extensions. We presented some of the analytical and numerical results of this

model, in order to use it as the cornerstone on which to build and compare against

in later stages of the thesis.

Afterwards, we concerned ourselves with describing the emerging field of tem-

poral networks. We considered some of the various issues and questions related to

modelling the temporal structure of such networks and the issues with combining

both a dynamical system on top of the network, and the topology already present

in static networks. To this effect, we mentioned different modelling techniques that

have been proposed in the study of temporal networks, before settling on a numer-

ical approach that aims to account for temporal patterns in the case of information

cascades in evolving social networks, such as the viral marketing of products on an

online communications network.

We continued by performing numerical simulations on random networks using

MATLAB. We described algorithms for implementing the Watts threshold model and

its extensions, including our dynamic model which combines threshold dynamics with

edge activation patterns. We briefly considered the choice between synchronous and
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asynchronous network updating, before presenting our numerical examples, noting

any issues or insights where appropriate. We found that our breaking mechanism

creates an interesting pattern of a series of seemingly discontinuous drops in the

spread of information in relation to network connectivity, and we speculated on the

reasons for this behaviour by using previous related work as a guideline.

Lastly, we considered two analytical approximating techniques, mainly mean-field

theory and pair-approximation theory, and applied them on two specific examples

drawn from a class of threshold models, namely models of biological epidemics. We

derived analytical approximations for these examples, presented some of our own

efforts at analysing our proposed model, and we briefly reflected on the advantages

and disadvantages of mean-field and pair-approximation theories and how they relate

to our main topic of information cascades on social networks.

6.2 Futher Work

This thesis leaves an incredible amount of further study to be desired. We have

only scratched the surface of social influence spreading in temporal networks, and in

general of dynamical systems applied on networks with an explicit temporal structure.

Since this is a young and emerging field, there are already various directions that one

can take, and this thesis probably provides even more directions for further work

rather than proposing a certain direction to follow.

There is, especially, a need for analytical results that could accompany the model

of coupling threshold models and dynamically changing network edges and provide

some insight into the effects that the dynamic model has both on the spreading

dynamics as well as on the network topological and temporal structures. In particular,

it would be interesting to see some analytics that could explain the behaviour observed

in Figure 4.6. A possible suggestion is to look for saddle-node bifurcations in an analog

of Equation 4.2 for a network evolving according to the breaking rule proposed in this

thesis. This is motivated by previous work [11], but we cannot rule out that the effect

might be happening due to some completely different process.

Another direction of future work is the investigation of other approaches for mod-

elling dynamical processes coupled with temporal networks, such as creating new

edges, assigning a memory function to node states, considering a function that de-

termines time intervals of edge activation, or, in general, looking at real temporal

networks and the patterns in which the network changes in time for inspiration. It
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has not been possible for us to follow any of these lines of thought in this thesis, but

they seem like interesting directions for further work.
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Appendix A

MATLAB Code

MATLAB code for constructing a random network according to the con-

figuration model

f unc t i on [ Adj DEGREE LIST]= FConfMod( Pk , P0 , N )
% Generates random network accord ing to i t s degree d i s t r i b u t i o n
% Pk − degree d i s t r i b u t i o n (1 s t element conta in s degree 1 ) ;
% P0 − f r a c t i o n o f 0−degree nodes in the network .

% Pk = Pk / ( sum(Pk)+P0) % Normal izat ion : Pk i s normal ized to 1−P0 . . .
. . . ( i . e . sum(Pk) + P0 = 1 ) ;

Nk = round ( N .∗ Pk ) ; % number o f nodes o f degree k
[ c , imax ] = max(Nk ) ; Nk( imax ) = Nk( imax ) + (N − sum(Nk) − round (N∗P0 ) ) ; . . .

...%% adjus t Nk so that sum(Nk) = N
kmax = length (Pk ) ;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%...
...%%%%%%%%
%% Need to f i l l NodePairs with node numbers accord ing to Pk , . . .
. . . then s h u f f l e and s p l i t i n to two columns

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%...
...%%%%%%%%%%
i f mod(sum(Nk . ∗ ( 1 : kmax ) ’ ) , 2 ) % i f the number o f s tubs i s odd , . . .
. . . make i t even

Nk( imax ) = Nk( imax)−1; % dec rea s e peak nodes
i f ( imax + 1 < kmax )

Nk( imax+1) = Nk( imax+1)+1; % i n c r e a s e number o f nea r e s t . . .
. . . degree nodes

e l s e Nk( imax−1) = Nk( imax−1)+1; end % i n c r e a s e number o f . . .
. . . n ea r e s t degree nodes ( other s i d e )
end
%%
NodeN cur = 0 ;
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i dx cu r = 1 ; % cur rent index in NodePairs vec to r
NodePairs = −ones (sum(Nk . ∗ ( 1 : kmax ) ’ ) , 1 ) ; % a l l o c a t e memory f o r . . .
. . . NodePairs

f o r k = 1 : kmax % loop f o r a l l p o s s i b l e degree s
d r a f t = NodeN cur+1 : NodeN cur+Nk( k ) ; % generate node numbers . . .
. . . f o r nodes o f degree k
NodeN cur = NodeN cur + Nk( k ) ; % update cur r ent node counter
s tubs deg k = reshape ( repmat ( dra f t , k , 1 ) , 1 , Nk( k )∗k ) ; % c r e a t e . . .
. . . s tubs f o r a l l nodes o f degree k
NodePairs ( i dx cu r : ( i dx cu r + Nk( k )∗k − 1 ) ) = stubs deg k ; . . .
. . . % i n s e r t them in to ha l f−edges array
idx cu r = idx cu r + Nk( k )∗k ; % update index f o r i n s e r t i o n

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%...
...%%%%%%%%%%
%% S h u f f l i n g NodePairs be f o r e s p l i t t i n g in to two columns
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%...
...%%%%%%%%%%
[ NodePairs , IX ] = s h u f f l e a l t ( NodePairs ) ; % s h u f f l e the degree . . .
. . . v ec to r kk
NodePairs = reshape ( NodePairs , l ength ( NodePairs ) / 2 , 2 ) ; % s p l i t . . .
. . . i n t o two equal columns

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%...
...%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%...
...%%%%%%%%

%% Remove s e l f− and multi−connect ions
NodePairs ( f i n d ( NodePairs ( : , 1 ) == NodePairs ( : , 2 ) ) , : ) = [ ] ; . . .

. . . % remove s e l f−connect ions
NodePairs = s o r t ( NodePairs , 2 ) ; % s o r t so that sma l l e r node number . . .
. . . comes 1 s t in a pa i r
NodePairs = unique ( NodePairs , ’ rows ’ ) ; % take only unique p a i r s . . .
. . . ( The r e s u l t i n g vec to r i s so r t ed in ascending order (1 s t column ) )

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% ARTIFICIALLY INCLUDE RIGHT AMOUNT OF ZERO DEGREE NODES ! ! ! ! !
Nk0 = round (N∗P0 ) ;
[ Adj , NnodesTot ] = FNodePairs2Adj ( NodePairs , Nk0 ) ;

%% This c a l c u l a t e s a degree f o r each node %%%%%%%%%%%%%%%%%%%
DEGREE LIST = sum( Adj ) ;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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MATLAB code corresponding to Algorithm 1

c l e a r
t i c

c l e a r
t i c

N=10ˆ5;
z=l i n s p a c e ( 0 . 0 5 , 1 0 , 1 0 0 ) ;

rho0 =[10ˆ(−2) ,10ˆ(−3) , 5∗10ˆ(−3) ] ; % f r a c t i o n o f s eeds wanted
Runiform=0.18;% assuming uniform t h r e s h o l d s here
f o r w=1:3
f o r l =1:100

p=z ( l )/ (N−1);
y=random ( ’ po i s s ’ , z ( l ) , [N, 1 ] ) ;
unv = unique ( y ) ;
a = [ unv h i s t c (y , unv ) ] ;
a1=a ( 2 : end , : ) ;

Pk = a1 ( : , 2 ) / sum( a ( : , 2 ) ) ;
A = FConfMod( Pk,1−sum(Pk) , N) ;

degree=A∗ones (N, 1 ) ; % degree ( i ) i s the degree o f node i
a c tua l z=mean( degree ) ;
[ deg , indx ]=max( degree ) ;
thre sh=Runiform∗ones (N, 1 ) ; % thresh ( i ) i s the th r e sho ld o f node i
rho0N=f l o o r ( rho0 (w)∗N) ;

f o r q=1:100

v=ze ro s (N, 1 ) ; % i n i t i a l i s e s t a t e vec to r ( v ( i ) i s s t a t e o f node i )
s h u f f l e d i n d i c e s=randperm (N) ;
v ( s h u f f l e d i n d i c e s ( 1 : rho0N))= ones ( rho0N , 1 ) ;
vuln v=A∗v>degree .∗ thresh ; % s e t s vuln v ( i ) to 1 i f number . . .
. . . o f a c t i v e ne ighbours exceeeds thresh ( i )∗ degree ( i )
new v=max( vuln v , v ) ; % assumes always on , so cannot turn o f f nodes

whi l e max( new v˜=v)>0 % whi le new nodes have j u s t been ac t i va t ed . . .
v=new v ;
vuln v=A∗v>degree .∗ thresh ;
new v=max( vuln v , v ) ;

end
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num on=sum( v ) ;
f r a c o n ( q)=(num on/N) ;
f r a c o f f ( q)=( l ength ( v)−sum( v ) ) ;

end
Density (w, l )=mean( f r a c o n ) ;
end
end
p lo t ( z , Density ( 1 , : ) , ’ b ’ )
hold on ;
p l o t ( z , Density ( 2 , : ) , ’ r ’ )
hold on ;
p l o t ( z , Density ( 3 , : ) , ’ g ’ )
toc

MATLAB code corresponding to Algorithm 2

c l e a r
t i c

N=10ˆ5;
z=l i n s p a c e ( 0 . 2 , 1 2 , 1 0 0 ) ;
tau b =0.1;
t au r =0.4 ;
%breaking p r o b a b i l i t y i s tau b
%c r e a t i n g p r o b a b i l i t y i s t au r

rho0 =10ˆ(−2); % f r a c t i o n o f s eeds wanted
Runiform=0.18;% assuming uniform t h r e s h o l d s here
Density=ze ro s ( 1 , 1 0 0 ) ;
f o r l =1:100

p=z ( l )/ (N−1);
y=random ( ’ po i s s ’ , z ( l ) , [N, 1 ] ) ;
unv = unique ( y ) ;
a = [ unv h i s t c (y , unv ) ] ;
a1=a ( 2 : end , : ) ;

Pk = a1 ( : , 2 ) / sum( a ( : , 2 ) ) ;
A = FConfMod( Pk,1−sum(Pk) , N) ;

degree=A∗ones (N, 1 ) ; % degree ( i ) i s the degree o f node i
a c tua l z=mean( degree ) ;
[ deg , indx ]=max( degree ) ;
thre sh=Runiform∗ones (N, 1 ) ; % thresh ( i ) i s the th r e sho ld o f node i
rho0N=f l o o r ( rho0∗N) ;
[ l e f t r i g h t ]= f i n d (A) ;
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f r a c o n=ze ro s ( 1 0 0 , 1 ) ;
f r a c o f f=ze ro s ( 1 0 0 , 1 ) ;
f o r q=1:100

v=ze ro s (N, 1 ) ; % i n i t i a l i s e s t a t e vec to r ( v ( i ) i s s t a t e o f node i )
s h u f f l e d i n d i c e s=randperm (N) ;
v ( s h u f f l e d i n d i c e s ( 1 : rho0N))= ones ( rho0N , 1 ) ;
vuln v=A∗v>degree .∗ thresh ; % s e t s vuln v ( i ) to 1 i f number o f a c t i v e . . .
. . . ne ighbours exceeeds thresh ( i )∗ degree ( i )
new v=max( vuln v , v ) ; % assumes always on , so cannot turn o f f nodes

whi l e max( new v˜=v)>0 % whi le new nodes have j u s t been ac t i va t ed . . .
v=new v ;
vuln v=A∗v>degree .∗ thresh ;
new v=max( vuln v , v ) ;

% Update network accord ing to breaking r u l e
ju=f i n d ( new v ( l e f t )+new v ( r i g h t ) == 1 ) ;
f o r k=1: l ength ( ju )

i f ( rand <= tau b )
B=spar s e ( l e f t ( ju ( k ) ) , r i g h t ( ju ( k ) ) , 1 ,N,N) ;
A=A−B;

end
end

[ l e f t r i g h t ]= f i n d (A) ;

%Update network accord ing to re−wir ing r u l e f o r 1−1 and 0−0 edges
mu=f i n d ( new v ( l e f t )−new v ( r i g h t ) == 0 ) ;
f o r k=1: l ength (mu)

i f ( rand <= tau r )
r i g h t (mu( k))= randi (N) ;

end
end

[ l e f t r i g h t ]= f i n d (A) ;
end
toc
num on=sum( v ) ;
f r a c o n ( q)=(num on/N) ;
f r a c o f f ( q)=( l ength ( v)−sum( v ) ) ;

end
Density (1 , l )=mean( f r a c o n ) ;
end
p lo t ( z , Density ( 1 , : ) )
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