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ABSTRACT OF THE DISSERTATION

Topics in Network Science:

Modeling of Microbiome Populations in

Interacting Hosts and an Application of

Persistent Homology to Resource Coverage

by

Michael Christopher Johnson

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2025

Professor Mason Alexander Porter, Chair

In many scientific disciplines, it is important to study networks of interconnected agents. In

this dissertation, we discuss two research projects in network science.

In the first project, we introduce a novel modeling framework for the microbiome dy-

namics of interacting hosts. The microbiomes of humans and animals play a critical role in

their functioning and health. Researchers have studied the dynamics of microbiomes using

models in the form of dynamical systems. Many classical ecological models are suitable only

for modeling the microbiome of one isolated host. However, there is strong evidence that in-

teractions between hosts significantly impact their microbiome compositions. In the study of

microbiome dynamics, researchers employ metacommunity-theory models to investigate the

effects of multiple-scale interactions. These models commonly assume a continuous dispersal

of microbes between interacting hosts. However, many living hosts (such as humans) do not

interact continuously and thus do not sustain a continuous dispersal of microbes. In this
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dissertation, we introduce a novel modeling framework that considers the discrete nature of

host interactions by using two parameters to separately control the interaction frequencies

between hosts and the amount of microbiome exchange during each interaction. We derive

analytical approximations for our modeling framework in three different regimes, and we

compare the resulting approximate dynamics to simulations of our modeling framework for

an illustrative model.

In the second project, we use persistent homology (PH) to identify holes in resource

coverage. The geographical distribution of resources such as polling sites (i.e., locations

where people vote), hospitals, COVID-19 vaccination sites, Department of Motor Vehicles

(DMV) locations, and Planned Parenthood clinics is a significant factor in the equitability

of access to those resources. Consequently, given the locations of a set of resource sites, it is

important to quantify their geographical coverage and to identify underserved geographical

regions. The information from PH allows us to infer holes in the distribution of polling sites.

In our PH approach, we construct a distance function d that is based on the travel times to

a resource. This distance function represents the costs of accessing a resource better than

geographical distance. We apply our methodology to a case study of polling-site access in

the 2016 United States presidential election. We analyze and compare the coverage of polling

sites in Los Angeles County and five cities (Atlanta, Chicago, Jacksonville, New York City,

and Salt Lake City).

The first project employs a theory-driven approach, and the second project employs a

data-driven approach, yielding distinct insights into their respective applications.
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CHAPTER 1

Introduction

In many scientific disciplines, it is important to study networks of interconnected agents

[New18]. In this dissertation, we discuss two research projects in network science. In the

first project, we introduce a novel modeling framework to study the dynamics of microbiomes

of interacting hosts. Using our framework, we investigate the impact of discrete microbiome

exchange between hosts on their microbiomes. In the second project, we use a tool from

topological data analysis (TDA) called persistent homology (PH) to classify the coverage of

resources. We apply our methodology to a case study of polling-site coverage during the

2016 United States presidential election.

1.1 Interacting Hosts with Microbiome Exchange

The microbiomes of humans and other animals play a critical role in their functioning and

health [HWC22, VWS18,WYL17]. A classical approach to study such populations is to

analyze phenomenological dynamical-systems models [Ede05], such as the generalized Lotka–

Volterra model [CIM24]. In these models, one tracks the abundances Nk(t) of different

microbe species. These abundances are collected into an abundance vector N (t), and one

assumes that the dynamics of each abundance is a function of the abundance vector N (t).

Therefore, the dynamics are governed by a dynamical system

dN

dt
= g (N ) . (1.1)
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These models assume that all microbe species exist in a single environment. Therefore, we

refer to these ecological models as models of local dynamics.

The specification of local ecological dynamics provides a necessary starting point to

study microbiomes, but it is also necessary to account for interactions across different en-

vironments, which are essential to understand microbiome composition in many settings

[RAT21,SHJ20,TBB15]. Researchers employ metacommunity theory [HLH05,LHM04] to in-

vestigate the effects of multiple-scale interactions that include both local ecological dynamics

and interactions across distinct environments. One relevant framework in metacommunity

theory is the mass-effects paradigm [LRR23, LMG03, ML02, ML03, TGD20], in which re-

searchers study systems with local ecological dynamics and dispersal between environmental

patches. Models in this framework are often coupled differential equations of the form

dN (i)

dt
= g(i)(N (i)) +

∑
j

σij
(
N (j) −N (i)

)
, (1.2)

where N (i)(t) is a vector that encodes the microbe species abundances in patch i at time t.

The autonomous function g(i) encodes the local dynamics in patch i, and the parameter σij

governs the dispersal between patches i and j.

Mass-effects models (e.g., see (1.2)) fail to capture an essential aspect of the microbiomes

of many living hosts. Many living hosts (such as humans) do not interact continuously

[MHJ08] and thus do not sustain a continuous dispersal of microbes. Instead, they interact

in discrete time intervals. In Chapter 3, we develop a framework that considers the discrete

nature of host interactions. In this framework, when two hosts interact with each other, they

instantaneously exchange some of their microbiomes.

We derive analytical approximations of models in our framework in three parameter

regimes and prove that they are accurate in those regimes. We also compare these ap-

proximations to numerical simulations for an illustrative model. We demonstrate that both

parameters in our modeling framework are necessary to determine microbiome dynamics.

Key features of the dynamics, such as microbiome convergence across hosts, depend sensi-

2



tively on the interplay between interaction frequency and strength.

1.2 Persistent Homology for Resource Coverage

The geographical distribution of resources such as polling sites (i.e., locations where people

vote), hospitals, COVID-19 vaccination sites, Department of Motor Vehicles (DMV) loca-

tions, and Planned Parenthood clinics is a significant factor in the equitability of access to

those resources. Consequently, given the locations of a set of resource sites, it is important

to quantify their geographical coverage and to identify underserved geographical regions.

One way to study the distribution of these resources is using persistent homology (PH)

[OPT17]. PH is built on the theory of homology [Hat02], a branch of algebraic topology that

characterizes a topological space by its “holes”. PH can be used to extend homology to the

characterization of point clouds. A point cloud is a finite collection X = {xi}ni=1 of points in

a metric space (M,d). To study PH, one starts by constructing a filtered simplicial complex.

A simplicial complex is a collection of vertices, edges, triangles, and higher-dimensional

simplices. A filtered simplicial complex is a nested sequence Kα0 ⊆ Kα1 ⊆ · · · ⊆ Kαn of

simplicial complexes, where α0 < α1 < · · · < αn. One example is a Čech filtration [OPT17].

For r > 0, the Čech complex Čr(X,M, d) at filtration parameter r is the simplicial complex

that has a simplex with vertices [xi0 , . . . , xik ] if the intersection
⋂

j B(xij , r) is nonempty,

where B(x, r) := {y ∈M | d(x, y) ≤ r}. By characterizing the homology of a simplicial

complex at each filtration level r, one can determine the location and persistence of holes in

a point cloud. We discuss background on PH in more detail in Chapter 4.

In Chapter 5, we use PH to identify holes in resource coverage. We construct a distance

function d that is based on the travel times to a resource. This distance function is bet-

ter than geographical distance at encoding the costs of accessing resources. We apply our

methodology to study polling-site access for several geographical areas in the 2016 United

States presidential election. We analyze and compare the coverage of polling sites in Los
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Angeles County and five cities (Atlanta, Chicago, Jacksonville, New York City, and Salt

Lake City).

1.3 Organization of the Dissertation

In Chapter 2, we provide background on network-science fundamentals. In Chapter 3, we

present our modeling framework for interacting hosts with microbiome exchange. In Chapter

4, we discuss relevant background on PH. In Chapter 5, we develop our PH methodology for

the classification of resource coverage and examine the coverage of polling sites in the 2016

US presidential election. Chapter 5 is based on research presented in [HJJ24]. In Chapter

6, we give a few concluding remarks.
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CHAPTER 2

Background on Networks

In this chapter, we discuss network-science concepts that are relevant to this dissertation.

In Section 2.1, we give various definitions and terminology for networks. In Section 2.2, we

discuss differences between synthetic networks and networks that one constructs from real-

world data. We also discuss some uses for both synthetic and real-world networks. Finally,

in Section 2.3, we briefly describe the networks that we will use in the later chapters of this

dissertation.

Throughout the chapter, we frequently cite Mark Newman’s textbook Networks [New18]

and Francesco Bullo’s Lectures on Network Systems [Bul24] as introductory sources of infor-

mation.

2.1 Network Fundamentals

The simplest types of networks G = (V,E) consist of a set V of nodes and a set E ⊆ V × V

of edges between those nodes [Bul24]. These networks are also known as graphs ; we will

use the terms “network” and “graph” interchangeably throughout this dissertation. The

nodes of a network can represent agents of some form, and the edges encode ties between

the agents. For example, a network can represent users with Facebook accounts as nodes

and encode whether or not two users are friends on Facebook in the edge set E. Edges can

be either undirected or directed. In a directed network, each edge has a starting node and an

ending node. By convention, we use (i, j) to denote an edge that points from node i to node
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j. In an undirected network, each edge is an unordered pair of nodes; there is no notion of

a starting node or an ending node. In this case, one represents an edge by writing either

(i, j) or (j, i) [New18]. Directed networks are useful when the edges represent asymmetric

relationships, such as Instagram following. It is preferable to use an undirected network

when the edges represent symmetric relationships, such as Facebook friendships.

In many cases, it is useful to consider edges with weights. We refer to a network with

edge weights as a weighted network. A weighted network is a triplet G = (V,E, {we}e∈E),

where we is the associated weight of edge e. For an edge e = (i, j), we equivalently write we

or wij to represent that edge’s associated weight [Bul24]. Weighted edges can encode more

information about a relationship between two nodes than unweighted edges. For example,

one may wish to have a weight that captures how often people interact on Facebook rather

than only tracking whether or not they are friends. Larger weights represent stronger ties

between nodes. If, instead, one wants a larger value to indicate a weaker tie between nodes,

one uses a distance. One can then writeG = (V,E, {de}e∈E), where de ∈ R>0 is the associated

distance of edge e. For an edge e = (i, j), we write equivalently de or dij to represent that

edge’s associated distance.

If there is a directed or undirected edge between nodes i and j, we say that these two

nodes are adjacent. The nodes that are adjacent to i are neighbors of i, and the set of such

neighbors is the neighborhood of i. The number of neighbors of a node i is the degree of

i, which we denote by ki. For a directed network, one also separately tracks the in-degrees

and out-degrees. We denote the number of edges that end at node i by kini . Analogously, we

denote the number of edges that begin at node i by kouti . A useful way to represent a network

is with an adjacency matrix. The adjacency matrix A of a network with node set V is a

|V | × |V | matrix. An entry Aij of the adjacency matrix encodes information about the edge

(i, j). For an unweighted and undirected network, Aij = Aji = 1 if there is an edge between

i and j; otherwise, Aij = Aji = 0. For a weighted and undirected network, Aij = Aji = wij

if there is an edge between i and j; otherwise, Aij = Aji = 0. In a directed network,
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we lose symmetry and typically Aij ̸= Aji. If one uses distances instead of weights, one

constructs a distance matrix D instead of an adjacency matrix. For an undirected network,

Dij = Dji = dij if there is an edge between i and j; otherwise, Dij = Dji = ∞. Analogously

to an adjacency matrix, we no longer have symmetry for a directed network and typically

Dij ̸= Dji [New18].

2.2 Real-World and Synthetic Networks

In many contexts, it is useful to construct a network from real-world data. For exam-

ple, if you are studying Facebook networks, you may want to use the Facebook100 data

set, a collection of Facebook friendship networks of 100 United States universities from fall

2005 [TMP12]. In other contexts, synthetically generated networks are more useful. One

reason for this is that collecting real-world data can be impossible or prohibitively difficult.

For example, there are several obstacles to constructing a social network that accurately

represents the in-person interactions of students at a university [BPP20]. At a large univer-

sity, the surveying effort that is required to construct such a network costs a considerable

amount of both money and time. Even if one is able to survey every student at a university,

inaccuracies will still occur in reported interactions. Different students will have different

interpretations of what interactions are worth reporting, and many students will likely forget

about interactions that they had with other students. Additionally, some pairs of students

will report inconsistent frequencies of interaction with each other. A researcher has to make

decisions about how to conduct such a survey and how to handle inconsistent responses, and

these decisions meaningfully impact the constructed social network. As an alternative, one

can also use a proxy, such as a social-media network, for the social network of a university.

However, such proxies may not accurately represent social structures that are important to

one’s research goals.

Another benefit of using synthetically generated networks is that such networks allow
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researchers to control the structural properties of networks. For example, in many synthetic

network models, one can specify the mean degree of nodes. By varying this parameter,

researchers can develop an understanding of how the mean degree affects a phenomenon of

interest, such as the qualitative behavior of dynamical processes.

2.3 Networks in this Dissertation

In Chapter 3, we study a model of microbial exchange between hosts. The nodes in our

network represent these microbial hosts, and the edges encode which hosts are able to interact

with each other. Edge weights encode the frequencies of interactions between pairs of hosts.

When two hosts interact, each host exchanges some of its microbiome with the other host.

Therefore, we construct the network as an undirected network. We use edge weights to

capture the frequency of interactions between hosts.

In Chapter 5, we analyze the coverage of polling sites in six geographical regions during

the United States 2016 election. That chapter is adapted from [HJJ24], which was led jointly

by Abigail Hickok, Benjamin Jarman, Jiajie Luo, and me and was coauthored with Mason

A. Porter. Each network that we construct for this analysis has a city’s polling sites as

its nodes and an edge between each pair of those nodes. A distance function on the edges

encodes the travel times between pairs of nodes. Because travel times can differ based on

the direction of travel, the edges in this network are directed.
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CHAPTER 3

Interacting Hosts with Microbiome Exchange: An

Extention of Metacommunity Theory for Discrete

Interactions

In this chapter, we develop a modeling framework for the microbiomes of interacting hosts.

This modeling framework is an extension of existing metacommunity frameworks [HLH05,

LHM04] that accounts for the discrete nature of host interactions. This chapter is based on

in-preparation work that is coauthored with Mason A. Porter.1

The chapter proceeds as follows. In Section 3.1, we discuss dynamical-systems models

of microbe populations. We also discuss metacommunity theory, which is a set of frame-

works that accounts for both the interaction of microbes at a local scale and the exchange

of microbes between local environments. These topics provide relevant background nec-

essary for our modeling framework. In Section 3.2, we describe our modeling framework

for interacting microbiome hosts. In Section 3.3, we describe the behavior of models in

our framework in a regime in which hosts interact with low frequency. In Section 3.4,

we describe two distinct regimes in which hosts interact with high frequency. In Sec-

tion 3.5, we present numerical experiments for our framework. In Section 3.6, we discuss

conclusions, limitations, and potential future directions of our work. In Section 3.7, we

1I developed the modeling framework and the three approximations that we present in this chapter. I
also proved the accuracy of these approximations and wrote the code for the numerical experiments. This
work was completed with consistent guidance from and discussions with Mason A. Porter. We are writing
the paper together.
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prove the accuracy of the approximations in Sections 3.3 and 3.4. Our code is available at

https://github.com/mcjcard/Interacting-Hosts-with-Microbe-Exchange.git.

3.1 Introduction

The microbiomes of humans and other animals play a critical role in their functioning and

health [HWC22,VWS18,WYL17], and there is strong evidence that a host’s social interac-

tions significantly impact their microbiome composition [RAT21,SHJ20,TBB15]. Therefore,

it is important to study ecological modeling frameworks that account simultaneously for

microbe-scale dynamics and the effects of host interactions [AD17,MSB18]. For example,

socially determined microbiome signatures are significant indicators of childhood airway de-

velopment [CHT22], communicable-disease resistance [SMH24], and mental health [KSC22].

3.1.1 Models of Local Ecological Dynamics

The dynamics of microbe populations are affected by environmental factors and the abun-

dances of microbe species. A classical approach to study such populations is to analyze phe-

nomenological dynamical-systems models [Ede05], such as the generalized Lotka–Volterra

model [CIM24]

dNk

dt
= rkNk +

m∑
l=1

αklNkNl , (3.1)

which describes the dynamics of the abundances N1(t), . . . , Nm(t) of m coexisting microbe

species. Each species k has an intrinsic birth rate and a death rate, which are combined into

a single parameter rk. A positive rk signifies that the birth rate exceeds the death rate, and

a negative rk signifies that the death rate exceeds the birth rate. Each cross parameter αkl

quantifies the effect of species l on the population of species k. A positive αkl indicates that

species l is beneficial to species k, and a negative αkl indicates that species l is harmful to

species k.
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Researchers also employ mechanistic models, such as consumer–resource models [CIM24],

to describe microbial population dynamics. One class of such models is niche models

dNk

dt
= Nk Ak(R) , (3.2)

dRl

dt
= Bl(R)−

m∑
k=1

Nk Ckl(R) .

In a niche model, one tracks both the microbe species’ abundances N1(t), N2(t), . . . , Nm(t)

and the resource abundances R1(t), R2(t), . . . , Rn(t). The abundance Nk(t) of microbe

species k grows or decays according to a growth rate that is a function Ak(R) of the resource

abundances. The resource abundance Rl(t) is affected both by the resource abundances

and by the consumption of the resource by microbes. The function Bl(R) encodes the in-

trinsic dynamics of the resource abundances. The function Ckl(R) encodes the amount of

resource l that species k consumes per unit abundance of species k. Niche models capture

the fact that microbes indirectly affect one another through resource competition, rather

than interacting directly with each other. Niche models also allow researchers to examine

environment-dependent cross-species effects.

3.1.2 Metacommunity Theory

The phenomenological and mechanistic models in Section 3.1.1 assume that all microbe

species exist in a single environment. Therefore, we refer to these ecological models as

models of local dynamics. The specification of local ecological dynamics provides a nec-

essary starting point, but it is also necessary to account for interactions across differ-

ent environments, which are essential to understand microbiome composition in many set-

tings [RAT21,SHJ20,TBB15]. For example, a coral reef has distinct environmental patches.

Stony coral, sponges, algae, and other biotopes provide different conditions to their respec-

tive microbiomes. However, the microbiomes of these patches are not isolated and thus

impact each other via microbe dispersal [CSC19].

Researchers employ metacommunity theory [HLH05, LHM04] to investigate the effects
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of multiple-scale interactions that include both local ecological dynamics and interactions

across distinct environments. One relevant framework in metacommunity theory is the mass-

effects paradigm [LRR23,LMG03,ML02,ML03,TGD20], in which researchers study systems

with local ecological dynamics and dispersal between environmental patches. Models in this

framework are often coupled differential equations of the form

dN (i)

dt
= g(i)(N (i)) +

∑
j

σij
(
N (j) −N (i)

)
, (3.3)

where N (i)(t) is a vector that encodes the microbe species abundances in patch i at time t.

For consumer–resource models, one can include resources as separate entries of each vector

N (i)(t). The autonomous function g(i) encodes the local dynamics in patch i. The parameter

σij governs the dispersal between patches i and j.

3.1.3 Our Contributions

Mass-effects models (e.g., see (3.3)) fail to capture an essential aspect of the microbiomes of

many living hosts. Many living hosts (such as humans) do not interact continuously [MHJ08]

and thus do not sustain a continuous dispersal of microbes. Instead, they interact in discrete

time intervals. In the present chapter, we develop a framework that considers the discrete

nature of host interactions. In this framework, when two hosts interact with each other, they

instantaneously exchange some of their microbiomes.

3.2 Our Modeling Framework

In Table 3.1, we summarize the key notation that we use throughout this chapter.

3.2.1 Interaction Network

To study the microbiomes of living hosts, we consider networks that encode the interactions

between these hosts. The simplest type of network is a graph G = (H,E), which consists

12



Table 3.1: Glossary of our Key Notation

Symbols Definition

H Node set, which is the set of microbiome hosts (i.e., nodes)

H(i) Microbiome host in H

E Edge set, which is the set of connections (i.e., edges) between hosts

(
H(i), H(j)

)
Edge between H(i) and H(j)

λij Interaction-frequency parameter between hosts H(i) and H(j)

λtot Total-interaction-frequency parameter
(
λtot =

∑|H|
i=1

∑|H|
j=i+1 λij

)
lij Relative interaction-frequency parameter

(
lij =

λij

λtot

)
γ Interaction strength

N (i)(t) Microbiome abundance vector of host H(i)

n Dimension of each microbiome abundance vector N (i)(t)

N Mean microbiome abundance vector
(
N = 1

|H|
∑|H|

j=1N
(j)
)

g(i) Local-dynamics function of host H(i)

ψ(i) Basin probability vector of host H(i)

mi Dimension of the basin probability vector ψ(i)

Ψ Basin probability tensor

Φ(ij) Pairwise interaction operator between hosts H(i) and H(j)

Φ total-interaction operator

t∗ Frequency-scaled time (t∗ = λtott)
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of a set H of nodes and a set E ⊆ H × H of edges between nodes. In the context of our

modeling framework, we refer to each graph as an interaction network. The nodes in the

node set H are microbiome hosts. The edges in the edge set E ⊆ H ×H encode whether or

not two hosts can interact with each other.

Each edge e ∈ E also has an associated weight λe ∈ R+. For an edge e =
(
H(i), H(j)

)
, we

equivalently write λe or λij. If there is no edge between hosts H(i) and H(j), we set λij = 0.

We refer to this weight as the interaction-frequency parameter between hosts H(i) and H(j),

as it determines the frequency of the interactions between those two hosts. The order of the

hosts in indexing is arbitrary, so λji = λij. Throughout this chapter, any symbol with the

index order ij is equivalent to that symbol with the reverse index order ji. In Figure 3.1,

we show an example of an interaction network with ten hosts. We use this network for our

numerical experiments in Section 3.5.

Figure 3.1: An example of an interaction network with 10 hosts. An edge between two hosts

indicates that those two hosts can interact with each other. One can represent heterogeneous

interaction-frequency parameters λij by using different line widths for different edges. In this

example, all λij values are either 0 or 1.
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3.2.2 Exchange Dynamics

Each host H(i) ∈ H supports a microbiome system. We encode the state of this system

with a vector N (i)(t) of microbe species abundances. We refer to N (i)(t) as the microbiome

abundance vector of host H(i). The kth entry N
(i)
k (t) of the microbiome abundance vector

encodes the abundance of microbe species k in host H(i) at time t. We order the microbiome

abundance vector of each host so that its kth entry describes the same microbe species for

each host. The dimension n of all microbiome abundance vectors is the same. If two hosts

H(i) and H(j) interact at time tI , each host instantaneously exchanges a proportion γ of its

microbiome with the other host. That is,

N (i)
(
t+I
)
= (1− γ)N (i)

(
t−I
)
+ γN (j)

(
t−I
)
, (3.4)

N (j)
(
t+I
)
= (1− γ)N (j)

(
t−I
)
+ γN (i)

(
t−I
)
,

where the parameter γ governs the strength of the interaction. At an interaction time tI ,

the microbiome abundance vector of each host H(i) satisfies N (i) (tI) = N (i)
(
t+I
)
. For

simplicity, we use the same value of the interaction strength γ for each pair of hosts. We

model the time between consecutive interactions for a pair of adjacent hosts H(i) and H(j)

as an exponentially distributed random variable Xij ∼ Exp(λij).

For convenience, we review relevant background information about exponential distribu-

tions. For further details, see [Fel68]. The probability density function fij for an exponential

distribution with parameter λij is

fij(t) = λije
−λijt . (3.5)

An exponentially distributed random variable Xij is memoryless. No matter how much

time passes after the most recent interaction between hosts H(i) and H(j), the time that

remains until the next interaction is distributed as Xij. That is,

Pr(Xij > t+ s | Xij > s) = Pr(Xij > t) . (3.6)
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Because Xij is memoryless, it is easy to describe the random variable

X = min
i,j>i

{Xij} , (3.7)

for the time until the next interaction between any pair of hosts. The random variable X is

also exponentially distributed: X ∼ Exp(λtot), where

λtot =

|H|∑
i=1

|H|∑
j=i+1

λij (3.8)

is the total-interaction-frequency parameter. The probability that a given interaction is

between a specified pair, H(i) and H(j), of hosts interacts is the relative interaction-frequency

parameter

lij = Pr(Xij = X) =
λij
λtot

. (3.9)

3.2.3 Local Dynamics

Between interactions, an autonomous local dynamical system

dN (i)

dt
= g(i)

(
N (i)

)
(3.10)

governs the time evolution of the microbiome abundance vector of each host H(i). This

dynamical system encodes the local dynamics of host H(i). We refer to the function g(i) as

the local-dynamics function of host H(i).

Let the flow X(i)(t,x) be the solution of

∂X(i)

∂t
(t,x) = g(i)

(
X(i)(t,x)

)
, (3.11)

X(i)(0,x) = x .

For each g(i), we require that each element of every valid flow is always finite and nonnegative.

Specifically, there is a constant M ∈ R+ such that x ∈ [0,M ]n implies that each flow

X(i)(t,x) ∈ [0,M ]n for all times t ≥ 0. When this condition holds, we say each g(i) is bounded.
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This is a reasonable assumption for microbiome systems because abundances cannot increase

without bound or become negative.

When all g(i) are bounded, local dynamics cannot cause any microbiome abundance

vector N (i)(t) to leave the region [0,M ]n. Interactions also cannot cause any microbiome

abundance vector to leave this region. Consider an interaction at time tI between hosts

H(i) and H(j) with microbiome abundance vectors that satisfy N (i)
(
t−I
)

∈ [0,M ]n and

N (j)
(
t−I
)
∈ [0,M ]n. The microbiome exchange between these hosts is an averaging process.

After the interaction, the microbiome abundance vectors satisfy N (i)
(
t+I
)
∈ [0,M ]n and

N (j)
(
t+I
)
∈ [0,M ]n. Therefore, if each g(i) is bounded and each N (i)(0) ∈ [0,M ]n, it follows

that each N (i)(t) ∈ [0,M ]n for all times t ≥ 0.

We now present an illustrative model of local dynamics that we use repeatedly to illustrate

our framework. For this illustrative model, we assume that each host sustains two microbe

species. Therefore, each microbiome abundance vector has dimension two. We use the

dynamical system

dN
(i)
1

dt
= −N

(i)
1

10

(
N

(i)
1 − 2

)(
N

(i)
1 − 8

)(
N

(i)
1 − 12

)
, (3.12)

dN
(i)
2

dt
= −N

(i)
2

10

(
N

(i)
2 − 2

)(
N

(i)
2 − 11

)(
N

(i)
2 − 12

)
for the local dynamics of each host. In Figure 3.2, we show this dynamical system’s four

stable equilibrium points and their associated basins of attraction. We use the labels 1, 2,

3, and 4 for the basins of attraction of the attractors (2, 2), (12, 2), (2, 12), and (12, 12),

respectively.

Consider an interaction network with two hosts H(1) and H(2) that are connected by

a single edge. Suppose that there is an interaction between the two hosts at time tI and

that N (1)(t−I ) = (2, 2) and N (2)(t−I ) = (12, 12). In Figure 3.3, we show the states of the

two hosts immediately after interacting for three values of the interaction strength γ. This

figure demonstrates that a single interaction can change the basin of attraction of a host’s

microbiome abundance vector for sufficiently large γ.
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Figure 3.2: The four stable equilibrium points for the illustrative model (3.12) of local

dynamics and their basins of attraction. We use the labels 1, 2, 3, and 4 for the basins of

attraction of the attractors (2, 2), (12, 2), (2, 12), and (12, 12), respectively.

Figure 3.3: Two hosts with local dynamics (3.12). Immediately before interacting at time tI ,

the hosts have microbiome abundance vectors N (1)
(
t−I
)
= (2, 2) and N (2)

(
t−I
)
= (12, 12).

We show the microbiome abundance vectors N (1)
(
t+I
)
and N (2)

(
t+I
)
of the two hosts im-

mediately after interacting for interaction strengths γ = 0.05, γ = 0.25, and γ = 0.45.
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If interactions occur in sufficiently quick succession, then smaller values of γ can also

cause transitions in the basin of attraction of a host’s microbiome abundance vector. In

Figure 3.4, we show an example of this phenomenon. We begin with microbiome abundance

vectors N (1)(0) = (2, 2) and N (2)(0) = (12, 12), and we track the microbiome abundance

vectors through five interactions between the hosts. These interactions occur at times 0.1,

0.3, 0.4, 0.7, and 0.73. In this example, the interaction strength is γ = 0.32. The first

interaction is sufficient to move N (2)(t) from basin 4 to basin 2. However, for N (2)(t) to

move from basin 2 to basin 1, two interactions must occur in sufficiently quick succession.

In Figure 3.4, we see that interactions that occur at times 0.3 and 0.4 do not cause this

transition. However, interactions at times 0.7 and 0.73 are close enough in time to cause

N (2)(t) to move from basin 2 to basin 1.

Figure 3.4: Two hosts with local dynamics (3.12). These hosts have initial states N (1)(0) =

(2, 2) and N (2)(0) = (12, 12). We show the abundances of microbe species 1 and 2 in each

host through the course of five interactions at times 0.1, 0.3, 0.4, 0.7, and 0.73.
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3.3 Low-Frequency Approximation (LFA)

In this section, we discuss an approximation that is accurate when all interaction-frequency

parameters λij are sufficiently small. We develop this low-frequency approximation (LFA)

for systems in which the set of stable attractors of each host’s local dynamics is a finite set of

equilibrium points. We believe that it is possible to derive extensions of the LFA for systems

with other types of attractors, and we discuss this possibility in Section 3.6.2. We define

relevant terminology in Sections 3.3.1 and 3.3.2, and we describe the LFA and outline the

proof of its accuracy in Section 3.3.3. We give a complete proof in Section 3.7.1.

3.3.1 Basin State Tensor

We illustrated in Figure 3.3 that interactions can result in transitions of the basin of attrac-

tion of a host’s microbiome abundance vector. Local dynamics cannot cause such a transition

to occur, so interactions between hosts are necessary for such transitions.

Throughout the rest of Section 3.3, we need to be able to track the basin of attraction of

a host’s microbiome abundance vector. To do this, we define a basin probability vector ψ(i)(t)

for each host H(i). An entry ψ
(i)
a (t) of this vector gives the probability that the microbiome

abundance vector of host H(i) is in basin of attraction a at time t. If the local dynamics

of host H(i) has mi basins of attraction, then ψ
(i)(t) has dimension mi. Different hosts can

have different local dynamics, so the basin probability vectors of different hosts can have

different dimensions.

Each local-dynamics function g(i) is bounded, as described in Section 3.2.3. Therefore,

for all times t ≥ 0, each microbiome abundance vector N (i)(t) ∈ [0,M ]n. Because the set of

stable attractors of each host’s local dynamics consists of a finite set of equilibrium points,

the set of points U (i) ⊂ [0,M ]n that are not in the basin of attraction of some equilibrium

point has measure 0. For the LFA to be accurate, we require specific conditions on the

local-dynamics functions g(i) and the interaction strength γ. We describe these conditions in
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the Low-Frequency Approximation Theorem (see Theorem 1). When these conditions on g(i)

and γ are satisfied and the total-interaction-frequency parameter λtot → 0, no microbiome

abundance vector N (i)(t) lies on the border between basins of attraction at any time t in a

finite interval [0, T ] with arbitrarily high probability.

We represent the state of the entire set of hosts using a basin probability tensor Ψ(t). If

each ψ(i)(t) has dimension mi, then Ψ(t) has dimension m1×m2×· · ·×m|H|. An entry of the

basin probability tensor Ψa1,a2,...,a|H|(t) gives the probability that the microbiome abundance

vector of each host H(i) is in basin of attraction ai at time t. If we assume that these

probabilities are independent at time t, then

Ψ(t) =
⊗
i

ψ(i)(t) . (3.13)

Typically, the ψ(i)(t) are not independent after any interaction, and then (3.13) no longer

holds.

3.3.2 Interaction Operators

The basin probability tensor Ψ(t) can change only due to an interaction. Unfortunately,

knowing only Ψ(t) before an interaction and which pair of hosts interacted is insufficient

to determine Ψ(t) after the interaction. One also needs information about the microbiome

abundance vectors of the interacting hosts.

Suppose that an interaction occurs between hosts H(1) and H(2) at time tI and that their

microbiome abundance vectors N (1)
(
t−I
)
and N (2)

(
t−I
)
are at stable equilibrium points

immediately before the interaction. We make this assumption throughout the rest of this

section. If we know that the basins of attraction of N (1)
(
t−I
)
and N (2)

(
t−I
)
are a1 and

a2, respectively, then we are able to determine the basins of attraction of N (1)
(
t+I
)
and

N (2)
(
t+I
)
. We illustrate this in Figure 3.5 for an example in which both hosts have local

dynamics (3.12) and the interaction strength is γ = 0.25. We show N (1)
(
t+I
)
for every

possible combination of N (1)
(
t−I
)
and N (2)

(
t−I
)
. Because N (1)

(
t−I
)
and N (2)

(
t−I
)
are at

21



stable equilibrium points (by assumption), there are 16 such combinations. For example, for

N (1)
(
t−I
)
= (12, 12), there are four possible values of N (1)

(
t+I
)
. The values are (9.5, 9.5),

(12, 9.5), (9.5, 12), and (12, 12); there are four corresponding values ((2, 2), (12, 2), (2, 12),

and (12, 12)) of N (2)
(
t−I
)
. In Figure 3.5, we mark these four possible values of N (1)

(
t+I
)

with the diamonds in the upper-right corner. Because host H(2) has the same local dynamics

as host H(1), the situation is identical for N (2)
(
t+I
)
, except that we exchange the indices 1

and 2 everywhere.

Figure 3.5: Each possible microbiome abundance vector N (1)
(
t+I
)
after an interaction at

time tI between hosts H(1) and H(2) with local dynamics (3.12), assuming that N (1)
(
t−I
)

and N (2)
(
t−I
)
are at stable equilibrium points before the interaction. The marker shapes

indicate the basins of attraction of N (1)
(
t−I
)
, and the marker colors indicate the basins

of attraction of N (2)
(
t−I
)
. For example, for N (1)

(
t−I
)
= (12, 12), there are four possible

values of N (1)
(
t+I
)
. These values are (9.5, 9.5), (12, 9.5), (9.5, 12), and (12, 12); there are

four corresponding values ((2, 2), (12, 2), (2, 12), and (12, 12)) of N (2)
(
t−I
)
. We mark these

four possible values of N (1)
(
t+I
)
with the diamonds in the upper-right corner. The color

indicates the corresponding value of N (2)
(
t−I
)
.
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For some values of the interaction strength γ, an interaction between hosts H(i) and

H(j) can result in either N (i)
(
t+I
)
or N (j)

(
t+I
)
lying on a boundary between basins of

attraction, rather than inside a basin of attraction. That is, after such an interaction, we

have N (i)
(
t+I
)
∈ U (i) or N (j)

(
t+I
)
∈ U (j). We refer to the set of such interaction strengths

as the boundary set Bij for the hosts H(i) and H(j). For the example in Figure 3.5, the

boundary set is B12 = {0.1, 0.4}. If hosts H(i) and H(j) cannot interact, then Bij is the

empty set. The total boundary set is

B =
⋃
i,j

Bij . (3.14)

For the LFA, we require γ ̸∈ B, and we assume that this is the case for the rest of this

section.

Under our assumptions, we need to know only the basins of attraction of N (i)
(
t−I
)
and

N (j)
(
t−I
)
(i.e., before an interaction) to determine the basins of attraction of N (i)

(
t+I
)
and

N (j)
(
t+I
)
(i.e., after the interaction). Therefore, we need to know only the basin probabil-

ity tensor Ψ
(
t−I
)
prior to an interaction to determine the basin probability tensor Ψ

(
t+I
)

after that interaction. To describe such an interaction-induced change, we define a pairwise

interaction operator Φ(ij) with dimension m1 × · · · × m|H| × m1 × · · · × m|H|. Its entry

Φ
(ij)
b1,...,b|H|,a1,...,a|H|

= 1 if bi and bj are the basins of attraction of N (i)
(
t+I
)
and N (j)

(
t+I
)
, re-

spectively, when ai and aj are the respective basins of attraction of N (i)
(
t−I
)
and N (j)

(
t−I
)

and bk = ak for all k ̸∈ {i, j}. Otherwise, Φ
(ij)
b1,...,b|H|,a1,...,a|H|

= 0.

Consider a two-host interaction network in which both hosts have local dynamics (3.12)

and the interaction strength is γ = 0.25. The basin probability tensor of this system has

dimension 4×4. Therefore, the pairwise interaction operator Φ(12) has dimension 4×4×4×4.

In Figure 3.5, we show the results of all possible interactions between these two hosts. For

example, ifN (1)
(
t−I
)
andN (2)

(
t−I
)
are in basins of attraction 1 and 4, respectively, then the

resulting basins of attraction ofN (1)
(
t+I
)
andN (2)

(
t+I
)
are 1 and 2, respectively. Therefore,

Φ
(12)
1,2,1,4 = 1. Because there are 16 possible combinations of N (1)

(
t−I
)
and N (2)

(
t−I
)
, there
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are 16 entries of Φ(12) that equal 1. We list these 16 entries in Figure 3.6.

Φ
(12)
1,1,1,1 Φ

(12)
1,2,1,2 Φ

(12)
1,1,1,3 Φ

(12)
1,2,1,4

Φ
(12)
2,1,2,1 Φ

(12)
2,2,2,2 Φ

(12)
2,1,2,3 Φ

(12)
2,2,2,4

Φ
(12)
1,1,3,1 Φ

(12)
1,2,3,2 Φ

(12)
3,3,3,3 Φ

(12)
3,4,3,4

Φ
(12)
2,1,4,1 Φ

(12)
2,2,4,2 Φ

(12)
4,3,4,3 Φ

(12)
4,4,4,4

Figure 3.6: The 16 entries of the pairwise interaction operator that equal 1 for a two-host

interaction network in which both hosts have local dynamics (3.12) and the interaction

strength is γ = 0.25.

We use the Einstein summation convention [SW] to describe how Φ(ij) operates on the

basin probability tensor. In this convention, one sums over any repeated index that occurs

in a single term. For example, we describe the product

y = Ax (3.15)

of a matrix A and a vector x by writing

yi =
∑
j

Aijxj . (3.16)

Using the Einstein summation convention, we write

yi = Aijxj . (3.17)
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We write the effect of the pairwise interaction operator Φ(ij) on the basin probability tensor

Ψ as

Ψb1,...,b|H|

(
t+I
)
= Φ

(ij)
b1,...,b|H|,a1,...,a|H|

Ψa1,...,a|H|

(
t−I
)
. (3.18)

Each Φ(ij) is a linear operator on the basin probability tensor. At any time, the next

interaction is between hosts H(i) and H(j) with probability lij (see (3.9)). This yields the

total-interaction operator

Φ =

|H|∑
i=1

|H|∑
j=i+1

lijΦ
(ij) . (3.19)

If we now assume that an interaction occurs between some pair of hosts at time tI (with

probabilities lij for each pair) and that all N (i)
(
t−I
)
are at a stable equilibrium point, then

we obtain

Ψb1,...,b|H|

(
t+I
)
= Φb1,...,b|H|,a1,...,a|H|Ψa1,...,a|H|

(
t−I
)
. (3.20)

3.3.3 Low-Frequency-Approximation Theorem

The LFA encodes the evolution of the system (3.4, 3.10) when the local dynamics of each

host is much faster than the exchange dynamics between hosts. In this regime, each micro-

biome abundance vector N (i)(t) becomes close to a stable equilibrium point before the next

interaction that involves host H(i). Therefore, the total-interaction operator Φ accurately

describes the dynamics of the basin probability tensor Ψ(t).

Before we state the LFA Theorem, we introduce some helpful terminology. The expected

number of host interactions in a time interval of duration ∆t is λtot∆t. We refer to t∗ =

λtott as the frequency-scaled time. We say that the local-dynamics function g(i) is inward

pointing at a point x if there exists a constant δ > 0 such that ∥y − x∥2 ≤ δ implies that

g(i)(y) · (x− y) > 0.

Theorem 1 (Low-Frequency-Approximation Theorem). Suppose that the attractors of each

host’s local dynamics consist of a finite set of stable equilibrium points at which the local-
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dynamics function g(i) is inward pointing, and let each g(i) be continuous and bounded (see

Section 3.2.3). Fix γ ̸∈ B, all lij, and a frequency-scaled time T ∗. As λtot → 0, the basin

probability tensor Ψ(t∗) converges uniformly to Ψ̃(t∗) on [0, T ∗], where

d

dt∗
Ψ̃b1,...,b|H|(t

∗) = Φb1,...,b|H|,a1,...,a|H|Ψ̃a1,...,a|H|(t
∗)− Ψ̃b1,...,b|H|(t

∗) , (3.21)

Ψ̃(0) = Ψ(0) .

We provide key steps of the proof of Theorem 1 in this section. We give a full proof in

Section 3.7.1.

As we described in Section 3.3.2, if each N (i)
(
t−I
)
is at a stable equilibrium point, then

the interaction operator Φ describes the update of the basin probability tensor after an

interaction at time tI . We can construct neighborhoods around each stable equilibrium point

of each host’s local dynamics such that if eachN (i)
(
t−I
)
is in one of these neighborhoods, then

Φ perfectly describes the transition of Ψ(t) due to an interaction at time tI . In Figure 3.7,

we show an example of what these neighborhoods can look like around the stable equilibrium

points for our illustrative model (3.12) of local dynamics.

After an interaction, there is an upper bound on the time that it takes for each microbiome

abundance vector to re-enter a neighborhood around a stable equilibrium point. Because

the system is finite, there is an upper bound τ such that if no interactions occur in the

time interval [t, t + τ ], each microbiome abundance vector N (i)(t + τ) is in one of these

neighborhoods. If no two interactions occur within time τ of each other, then successive

applications of the total-interaction operator Φ perfectly describe the evolution of the basin

probability tensor Ψ(t). In the frequency-scaled time interval [0, T ∗], the expected number

of system interactions is T ∗. As λtot → 0, the frequency-scaled time τ ∗ → 0. Therefore, it

becomes vanishingly unlikely that any pair of interactions occurs within a frequency-scaled

time that is less than τ ∗. Consequently, as λtot → 0, the effect on the basin probability tensor

Ψ(t∗) of all interactions in [0, T ∗] is described perfectly by the total-interaction operator Φ

with arbitrarily high probability. Because the interactions are exponentially distributed, the
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Figure 3.7: An illustration of potential neighborhoods around the four stable equilibrium

points for a host with the local dynamics (3.12). These neighborhoods illustrate potential

neighborhoods from Theorem 1; they are not the neighborhoods for any particular value of

the interaction strength γ.
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basin probability tensor Ψ(t∗) converges uniformly to Ψ̃(t∗) (see (3.21)).

3.4 High-Frequency Approximations

In this section, we discuss two approximations that are accurate for different regimes with

large λtot. The first of these approximations is the high-frequency, low-strength approximation

(HFLSA). The HFLSA becomes increasingly accurate as λtot → ∞ and γ → 0 for fixed

relative interaction-frequency parameters lij and fixed λtotγ. This approximation results in a

model that has the same form as the mass-effects model (3.3). The second approximation is

the high-frequency, constant-strength approximation (HFCSA). This approximation becomes

increasingly accurate as λtot → ∞ for fixed relative interaction-frequency parameters lij and

fixed interaction strength γ.

3.4.1 High-Frequency, Low-Strength Approximation (HFLSA)

The HFLSA is accurate when the interactions between hosts are very frequent but very

weak. In this regime, the expectation of the exchange dynamics (3.4) is constant, but the

variance of the exchange dynamics is small. This results in an approximate model for the

dynamics of each microbiome abundance vector N (i)(t) that is deterministic and has terms

that encode the effects of the local dynamics and the exchange dynamics. This approximate

model has the same form as the mass-effects model (3.3).

Theorem 2 (High-Frequency, Low-Strength Approximation Theorem). Fix the relative

interaction-frequency parameters lij, the product λtotγ, and a time T . Let each local-dynamics

function g(i) be continuously differentiable and bounded (see Section 3.2.3), and let ε ∈ (0, 1]

and δ > 0 be arbitrary but fixed. For sufficiently large λtot, each host’s microbiome abundance

vector N (i)(t) satisfies ∥∥∥N (i) − Ñ (i)
∥∥∥
L∞[0,T ]

< δ (3.22)
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with probability larger than 1− ε, where

dÑ (i)

dt
= g(i)(Ñ (i)) +

∑
j

λijγ
(
Ñ (j) − Ñ (i)

)
, (3.23)

Ñ (i)(0) =N (i)(0) .

We provide key steps of the proof of Theorem 2 in this section. We give a full proof in

Section 3.7.2.

Consider the evolution of a microbiome abundance vector N (i)(t) over a short time

interval [t′, t′ + dt]. Without interactions, the effect of the local dynamics over this interval

is (
N (i)(t′ + dt)−N (i)(t′)

)
loc

= g(i)
(
N (i)(t′)

)
dt+O(dt2) . (3.24)

Let

J (i)(tI) =N
(i)
(
t+I
)
−N (i)

(
t−I
)

(3.25)

be the effect of an interaction at time tI on N (i)(t). If the interaction does not involve H(i),

then J (i)(tI) = 0. Otherwise, if the interaction is between H(i) and H(j), then

J (i)(tI) = γ
(
N (j)

(
t−I
)
−N (i)

(
t−I
))
. (3.26)

Suppose that no interactions occur precisely at times t′ or t′+ dt and that L interactions

occur during the interval (t′, t′ + dt). We denote this ordered set of interactions by {tl}Ll=1.

Suppose for all i that the microbiome abundance vector N (i)(t) changes very little over the

interval [t′, t′ + dt] such that each J (i)(tl) is well-approximated by

J̃
(i)
l =


0 if the interaction at tI does not involve host H(i)

γ
(
N (j)(t′)−N (i)(t′)

)
if the interaction at tI is between hosts H(i) and H(j) .

(3.27)

It then follows that the effect of the interactions on the microbiome abundance vectorN (i)(t)

during this interval is well-approximated by(
N (i)(t′ + dt)−N (i)(t′)

)
exch

=
L∑
l=1

J̃
(i)
l , (3.28)
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which we henceforth call the approximate interaction effect.

Each of the approximate interaction effects J̃
(i)
l is vector-valued. We denote entry x of this

vector by
(
J̃
(i)
l

)
x
. The sum (3.28) is also vector-valued, and we denote entry x of this sum

by
(∑L

l=1 J̃
(i)
l

)
x
. We now calculate the expectation and the variance of each entry of (3.28).

The stochasticity in (3.28) arises both from the number L of interactions and from which

pair of hosts interact at each time. The number of interactions follows a Poisson distribution

with mean λtotdt. The approximate interaction effects J̃
(i)
l are independent of one another.

An interaction at time tl is between hosts H(i) and H(j) with probability λij/λtot. Therefore,

E [L] = λtotdt , (3.29)

Var [L] = λtotdt ,

E
[(
J̃
(i)
l

)
x

]
=
∑
j

λij
λtot

γ
(
N (j)(t′)−N (i)(t′)

)
x
,

Var
[(
J̃
(i)
l

)
x

]
= E

[(
J̃
(i)
l

)2
x

]
−
(
E
[(
J̃
(i)
l

)
x

])2
.

The expectation of each entry of the sum is

E

[(
L∑
l=1

J̃
(i)
l

)
x

]
= E

[
E

[(
L∑
l=1

J̃
(i)
l

)
x

∣∣∣∣∣ L
] ]

(3.30)

= E

[
L
∑
j

λij
λtot

γ
(
N (j)(t′)−N (i)(t′)

)
x

]

= λtotdt
∑
j

λij
λtot

γ
(
N (j)(t′)−N (i)(t′)

)
x

=
∑
j

λijγ
(
N (j)(t′)−N (i)(t′)

)
x
dt .
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Applying the law of total variance, the variance of each entry of the sum is

Var

[(
L∑
l=1

J̃
(i)
l

)
x

]
= E

[
Var

[(
L∑
l=1

J̃
(i)
l

)
x

∣∣∣∣∣ L
] ]

+Var

[
E

[(
L∑
l=1

J̃
(i)
l

)
x

∣∣∣∣∣ L
] ]

(3.31)

= E
[
L Var

[(
J̃
(i)
l

)
x

] ]
+Var

[
L E

[(
J̃
(i)
l

)
x

] ]
= λtotdtVar

[(
J̃
(i)
l

)
x

]
+ λtotdt

(
E
[(
J̃
(i)
l

)
x

])2
= λtotdtE

[(
J̃
(i)
l

)2
x

]
= λtotdt

∑
j

λij
λtot

γ2
(
N (j)(t′)−N (i)(t′)

)2
x

=
∑
j

λijγ
2
(
N (j)(t′)−N (i)(t′)

)2
x
dt .

Because λtotγ is fixed, the interaction strength γ → 0 as λtot → ∞. As γ → 0, the

expectation (3.30) of each entry of (3.28) remains fixed, but the variance (3.31) of each

entry decreases to 0. For sufficiently small γ, the effect of interactions on the microbiome

abundance vector N (i)(t) over the interval [t′, t′ + dt] is(
N (i)(t′ + dt)−N (i)(t′)

)
exch

=
∑
j

λijγ
(
N (j)(t′)−N (i)(t′)

)
dt+O(dt2) (3.32)

with arbitrarily high probability.

For sufficiently small γ, the change in the microbiome abundance vector N (i)(t) over the

interval [t′, t′ + dt] is approximately equal to the sum of the effect (3.24) of local dynamics

and the effect (3.32) of interactions. In Section 3.7.2, we show that

N (i)(t′ + dt)−N (i)(t′) =
(
N (i)(t′ + dt)−N (i)(t′)

)
loc

(3.33)

+
(
N (i)(t′ + dt)−N (i)(t′)

)
exch

+O(dt2)

=

[
g(i)
(
N (i)(t′)

)
+
∑
j

λijγ
(
N (j)(t′)−N (i)(t′)

)]
dt+O(dt2)

with arbitrarily high probability. Therefore, N (i)(t) is well-approximated by Ñ (i)(t).

As an example of the HFLSA, consider a two-host system in which each host has local

dynamics (3.12). Let N (1)(0) = (2, 2) and N (2)(0) = (12, 12). In Figure 3.8, we show
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how the approximation improves as we increase the total-interaction-frequency parameter

λtot = λ12 and decrease the interaction strength γ for fixed λtotγ = 8. The error that we

obtain by using the approximate microbiome abundance vector Ñ (i)(t) appears to be largest

near times that the ith abundance vector Ñ (i)(t) transitions between different basins of

attraction. However, for sufficiently large λtot, this error becomes arbitrarily small for all

times t ∈ [0, T ] with arbitrarily high probability.

3.4.2 High-Frequency, Constant-Strength Approximation (HFCSA)

The HFCSA is accurate when interactions are very frequent and have constant strengths.

In this regime, all microbiome abundance vectors converge rapidly to the mean microbiome

abundance vector

N (t) =
1

|H|

|H|∑
j=1

N (j)(t) . (3.34)

Subsequently, these “synchronized” microbiome abundance vectors each follow the mean of

their local dynamics (see (3.38) below).

Theorem 3 (High-Frequency, Constant-Strength Approximation Theorem). Fix the relative

interaction-frequency parameters lij, the interaction strength γ > 0, and a time T . Suppose

that each local-dynamics function g(i) is Lipschitz continuous and bounded (see Section 3.2.3).

Let ε ∈ (0, 1], δ > 0, and η > 0 be arbitrary but fixed constants. For sufficiently large λtot,

each host microbiome abundance vector N (i)(t) satisfies∥∥∥N (i) − Ñ
∥∥∥
L∞[η,T ]

< δ (3.35)

with probability larger than 1− ε, where

dÑ

dt
=

1

|H|

|H|∑
j=1

g(j)
(
Ñ
)
, (3.36)

Ñ (0) =N (0) .
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Figure 3.8: Numerical experiments for a two-host system in which each host has local dynam-

ics (3.12). The three columns show experiments for different values of the total-interaction-

frequency parameter λtot and the interaction strength γ for fixed λtotγ = 8. We show the

microbiome abundances for H(1) in the first row and the microbiome abundances for H(2) in

the second row. We run 500 simulations for each set of parameters. The highlighted region

shows the range between the 5th and 95th percentiles of the simulated host abundances. The

dashed curves show the HFLSAs for these experiments.
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We provide key steps of the proof of Theorem 3 in this section. We give a full proof in

Section 3.7.3.

When two hosts H(i) and H(j) interact at time tI , they exchange portions of their micro-

biome as described in (3.4). This exchange causes no change in the sum

N (i)
(
t+I
)
+N (j)

(
t+I
)
= (1− γ)N (i)

(
t−I
)
+ γN (j)

(
t−I
)
+ (1− γ)N (j)

(
t−I
)
+ γN (i)

(
t−I
)

(3.37)

=N (i)
(
t−I
)
+N (j)

(
t−I
)
.

Therefore, interactions do not cause any direct change in the mean microbiome abundance

vector N (t). The local dynamics drive the evolution

dN

dt
=

1

|H|

|H|∑
j=1

g(j)
(
N (j)

)
. (3.38)

For sufficiently large λtot, interactions occur on a much faster time scale than the local

dynamics. Because of this separation of time scales, all microbiome abundance vectors

N (i)(t) converge rapidly, which entails that

∥∥N (i) −N
∥∥
L∞[η,T ]

< ξ (3.39)

with high probability. For fixed probability, a larger λtot allows a smaller bound ξ. For a

sufficiently small bound ξ, each abundance vector N (i)(t) is close enough to N (t) so that

N (t) is well-approximated by the approximate microbiome abundance vector Ñ (t) (see

(3.36)). For times t ∈ [η, T ], each microbiome abundance vector N (i)(t) is very close to

N (t) and N (t) is very close to Ñ (t). Therefore, on the interval [η, T ], each abundance

vector N (i)(t) is well-approximated by Ñ (t).

As an example of the HFCSA, consider a two-host system in which each host has local

dynamics (3.12). Let N (1)(0) = (2, 2) and N (2)(0) = (12, 12). In Figure 3.9, we show

how the approximation improves as we increase the total-interaction-frequency parameter

λtot = λ12 for fixed interaction strength γ = 0.02.
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Figure 3.9: Numerical experiments for a two-host system in which each host has local dynam-

ics (3.12). The three columns show experiments for different values of the total-interaction-

frequency parameter λtot for fixed interaction strength γ = 0.02. We show the microbiome

abundances for H(1) in the first row and the microbiome abundances for H(2) in the second

row. We run 500 simulations for each set of parameters. The highlighted region shows the

range between the 5th and 95th percentiles of the simulated host abundances. The dashed

curves show the HFCSA for these experiments.
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3.5 Numerical Experiments

In this section, we present simulations for a system of 10 hosts with local dynamics (3.12).

We showed the interaction network for this system in Figure 3.1. This network has 25 edges,

and we suppose that all relative interaction-frequency parameters λij are equal. For each(
H(i), H(j)

)
∈ E, the corresponding relative interaction-frequency parameter is lij = 1/25.

We explore the accuracy of our three approximations for a range of values for the total-

interaction-frequency parameter λtot and the interaction strength γ.

3.5.1 Pair Approximation for the LFA

For the LFA, the approximate basin probability tensor Ψ̃(t) (see (3.21)) has dimension

m1 ×m2 × · · · ×m|H|. In many circumstances, this tensor is too large to analyze directly.

Therefore, we use a pair approximation [PG16, New18] of Ψ̃(t) for our calculations of the

LFA in this subsection.

We approximate Ψ̃(t) by tracking the individual probabilities

ψ̃(i)
a (t) = probability that host N (i)(t) is in basin a (3.40)

and the dyadic (i.e., pair) probabilities

ψ̃
(ij)
ab (t) = probability that host N (i)(t) is in basin a and host N (j)(t) is in basin b .

(3.41)

To obtain a pair approximation, we also need to consider the triadic (i.e., triplet) probabilities

ψ̃
(ijk)
abc (t) = probability that host N (i)(t) is in basin a, host N (j)(t) is in basin b, (3.42)

and host N (k)(t) is in basin c .

In the LFA, if an interaction between hosts H(i) and H(j) causes their microbiome abun-

dance vectors to move from basin d to basin a and from basin e to basin b, respectively, then
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Φ
(ij)
abde = 1. Otherwise, Φ

(ij)
abde = 0. The probability that a given interaction is one between

H(i) and H(j) is lij. Therefore, the change in ψ̃
(i)
a (t) due to an interaction at time tI is

ψ̃(i)
a (t+I )− ψ̃(i)

a (t−I ) =
∑
j,b,e

∑
d̸=a

lijΦ
(ij)
abdeψ̃

(ij)
de (t−I )−

∑
j,b,e

∑
d ̸=a

lijΦ
(ij)
deabψ̃

(ij)
ab (t−I ) . (3.43)

Using frequency-scaled time, the expected number of system interactions during an in-

terval [t∗, t∗ + dt∗] is dt∗. Therefore,

d

dt∗
ψ̃(i)
a =

∑
j,b,e

∑
d̸=a

lij

[
Φ

(ij)
abdeψ̃

(ij)
de − Φ

(ij)
dbaeψ̃

(ij)
ae

]
. (3.44)

For the dyadic probabilities, we have

d

dt∗
ψ̃

(ij)
ab =

∑
e̸=b,d ̸=a

lij

[
Φ

(ij)
abdeψ̃

(ij)
de − Φ

(ij)
deabψ̃

(ij)
ab

]
+
∑
k,c,f

∑
d̸=a

lik

[
Φ

(ik)
acdf ψ̃

(ijk)
dbf − Φ

(ik)
dcaf ψ̃

(ijk)
abf

]
(3.45)

+
∑
k,c,f

∑
e ̸=b

ljk

[
Φ

(jk)
bcef ψ̃

(ijk)
aef − Φ

(jk)
ecbf ψ̃

(ijk)
abf

]
.

The right-hand sides in (3.44) and (3.45) are exact expressions. We form an approximation

by replacing the triadic probabilities in (3.45) with combinations of dyadic probabilities. In

the derivatives of ψ̃(ij)(t∗), when considering the impact of interactions between hosts H(i)

and H(k), we use the approximation

ψ̃
(ijk)
abc (t∗) ≈ ψ̃

(ij)
ab (t∗)ψ̃

(ik)
ac (t∗)

ψ̃
(i)
a (t∗)

, (3.46)

which assumes that ψ̃
(j)
b and ψ̃

(k)
c are independent. Inserting the approximation (3.46) into

(3.45) gives

d

dt∗
ψ̃

(ij)
ab ≈

∑
e ̸=b,d ̸=a

lij

[
Φ

(ij)
abdeψ̃

(ij)
de − Φ

(ij)
deabψ̃

(ij)
ab

]
(3.47)

+
∑
k,c,f

∑
d ̸=a

lik

[
Φ

(ik)
acdf

ψ̃
(ij)
db ψ̃

(ik)
df

ψ̃
(i)
d

− Φ
(ik)
dcaf

ψ̃
(ij)
ab ψ̃

(ik)
af

ψ̃
(i)
a

]

+
∑
k,c,f

∑
e̸=b

ljk

[
Φ

(jk)
bcef

ψ̃
(ij)
ae ψ̃

(jk)
ef

ψ̃
(j)
e

− Φ
(jk)
ecbf

ψ̃
(ij)
ab ψ̃

(jk)
bf

ψ̃
(j)
b

]
.
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Equations (3.44) and (3.47) constitute a pair approximation of the evolution of Ψ̃(t∗). In

our simulations (see Section 3.5.2), we compare the individual probabilities ψ̃
(i)
a (t∗) from our

pair approximation (3.44, 3.47) with the fraction ψ
(i), sim
a (t∗) of simulations in which N (i)(t∗)

is in basin of attraction a.

3.5.2 Simulations for the Low-Frequency Approximation

In this subsection, we show numerical results for the LFA (3.21). We use the pair approx-

imation (3.44, 3.47) to determine the individual probabilities ψ̃
(i)
a (t∗)). As we described in

Section 3.5.1, an individual probability ψ̃
(i)
a (t∗) is an approximation of the probability from

the LFA that N (i)(t∗) is in basin of attraction a. We compare these individual probabilities

to the fraction ψ
(i), sim
a (t∗) of simulations of (3.4, 3.12) in which N (i)(t∗) is in basin of attrac-

tion a. We perform these approximations and simulations for 59 linearly spaced interaction

strengths γ ∈ [0, 0.5] and 13 logarithmically spaced values of the total-interaction-frequency

parameter λtot ∈ [2.5× 10−2, 2.5× 104]. Because B = {0.1, 0.4} for this system, the LFA is

not valid when γ = 0.1 or γ = 0.4, so we exclude these values of γ from our simulations.

Therefore, we perform simulations for values of γ ∈ [0, 0.5] that are multiples of 0.5
60

(except

γ = 0.1 and γ = 0.4). For each pair of γ and λtot values, we select a random four-dimensional

(4D) vector ψ̃(i)(0) from the Dirichlet distribution Dir(1, 1, 1, 1) [Mac05] for each host. The

entries of each of these 4D vectors sum to 1. For each simulation, we set each N (i)(0) to

be the stable equilibrium point in one of the basins of attraction. For each basin of attrac-

tion a, the initial microbiome abundance vector N (i)(0) is in that basin of attraction with

probability ψ̃
(i)
a (0).

We perform 1000 simulations of (3.4, 3.12) for each pair of γ and λtot values, and we

calculate the fraction ψ
(i), sim
a (t∗) of the simulations in whichN (i)(t∗) is in basin of attraction

a. We compare ψ
(i), sim
a (t∗) to ψ̃(i)(t∗), which we calculate using the pair approximation (3.44,

3.47). We calculate ψ(i), sim(t∗) and ψ̃(i)(t∗) for 1001 evenly spaced frequency-scaled times
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t∗k = k/500 in the interval [0, 2]. In Figure 3.10, we plot the error

Error =
2

1001

1001∑
k=1

√√√√ 10∑
i=1

4∑
a=1

(
ψ

(i), sim
a (t∗k)− ψ̃

(i)
a (t∗k)

)2
(3.48)

for each pair of γ and λtot values. The error (3.48) is a discrete approximation of the norm∥∥∥ψ(i), sim − ψ̃(i)
∥∥∥
L2[0,T ∗]

.

Figure 3.10: The error (3.48) between the LFA (see (3.21)) versus means of 1000 simulations

of (3.4, 3.12) for each pair of the interaction strength γ and the total-interaction-frequency

parameter λtot. We plot γ on a linear scale and λtot on a logarithmic scale. We do not plot

errors for γ = 0.1 and γ = 0.4 because the LFA is not valid for these values.

The LFA is most accurate when the total-interaction-frequency parameter λtot is small.

It is also better when the interaction strength γ is not near 0.1 or 0.4. There are two

types of errors in the LFA. The first type of error arises when repeated interactions occur
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in sufficiently quick succession to yield a transition that the LFA misses. For example, for

γ ≈ 0.342, the LFA does not predict that the N (i)(t) can move from basin 2 to basin 1. For

sufficiently large values of λtot, repeated interactions in short succession are common (and

not merely possible), which causes the LFA to overestimate the probability that a host is

in basin 2 and underestimate the probability that a host is in basin 1. In Figure 3.11, we

illustrate this type of error for γ ≈ 0.342 and several values of λtot.

Figure 3.11: The means of the simulated probabilities ψ
(i), sim
a (t∗) over all hosts for interaction

strength γ ≈ 0.342 and several values of the total-interaction-frequency parameter λtot. The

dashed curves indicate the LFA approximation of the mean of the probabilities ψ̃(i)(t∗) over

all hosts.

The second type of error arises when repeated interactions in sufficiently quick succession

cause the LFA to overestimate the impact of the second and subsequent interactions. As an

example, for the interaction strength γ ≈ 0.433, the LFA predicts that N (j)(t) will be in

basin 1 after an interaction whenever H(j) interacts with H(i) andN (i)(t) is in basin 1 before

the interaction. This prediction arises because the LFA assumes that N (i) = (2, 2) before

this interaction. However, if H(i) recently interacted with a different host, then N (i)(t) may

be in basin 1 but not sufficiently close to the equilibrium point (2, 2) to drive a transition
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to the basin of attraction of N (j)(t). Consequently, the LFA overestimates the probability

that a host is in basin 1. In Figure 3.12, we illustrate this type of error for γ ≈ 0.433 and

several values of λtot.

Figure 3.12: The mean of the simulated probabilities ψ
(i), sim
a (t∗) over all hosts for interaction

strength γ ≈ 0.433 and several values of the total-interaction-frequency parameter λtot. The

dashed curves indicate the LFA approximation of the mean of the probabilities ψ̃(i)(t∗) over

all hosts.

3.5.3 Simulations for the High-Frequency Approximations

In this subsection, we show numerical results for the HFLSA (3.23) and the HFCSA (3.36).

We compare the approximate microbiome abundance vectors from these two approximations

to simulations of (3.4, 3.12).

To evaluate the accuracy of the approximate microbiome abundance vectors Ñ (i)(t) that

we obtain from the HFLSA (3.23), we compare them to the microbiome abundance vectors

N (i)(t) from (3.4, 3.12). We perform these simulations for 13 logarithmically spaced values

of the total-interaction-frequency parameter λtot ∈ [25, 2500] and 75 linearly spaced values

of λtotγ ∈ [0.04, 0.3]. We use the product λtotγ as a parameter instead of the interaction
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strength γ on its own to illustrate the improvement of the HFLSA as we increase λtot for

fixed λtotγ. For each pair of λtot and λtotγ values, we perform 1000 simulations over the time

interval [0, 1] with initial conditions

N (1)(0) = (12, 12) , N (2)(0) = (2, 2) , N (3)(0) = (12, 2) , (3.49)

N (4)(0) = (2, 2) , N (5)(0) = (12, 12) , N (6)(0) = (12, 12) ,

N (7)(0) = (2, 2) , N (8)(0) = (12, 2) , N (9)(0) = (2, 12) , N (10)(0) = (2, 12) .

The microbiome abundance vector N (i),l(t) is the lth simulated microbiome abundance vec-

tor for host H(i). For each of these simulations, we calculate the simulated microbiome

abundance vectors N (i),l(t) for 101 evenly spaced times tk = k/100. We compare these sim-

ulations to the approximate microbiome abundance vector Ñ (i)(t) from the HFLSA (3.23).

In Figure 3.13, we plot the error

Error =
1

101× 1000

1000∑
l=1

101∑
k=1

√√√√ 10∑
i=1

2∑
a=1

(
N

(i),l
a (tk)− Ñ (i)

a (tk)
)2

(3.50)

for each pair of λtot and λtotγ values. The error (3.50) is a discrete approximation of the

mean of
∥∥∥N (i),l

a (tk)− Ñ (i)
a (tk)

∥∥∥
L2[0,1]

over all simulations. For any fixed value of λtotγ, the

HFLSA is more accurate for larger λtot. However, for a fixed value of λtot, the error depends

significantly on the value of λtotγ. Each value of λtotγ yields a set
{
Ñ (i)(1)

}
of final ap-

proximate microbiome abundance vectors. For all but a finite set of values of λtotγ, each

final approximate microbiome abundance vector Ñ (i)(1) changes continuously with λtotγ.

However, there are a finite number of λtotγ values for which some final approximate micro-

biome abundance vector Ñ (i)(1) has a discontinuous jump. For the initial set of microbiome

abundance vectors (3.49), these discontinuous jumps occur at

λtotγ ∈ {0.0866, 0.1069, 0.1160, 0.1161, 0.1416, 1.6432, 1.7174, 1.7425, 1.8187, 1.8363} .

(3.51)

The regions in which the HFLSA performs worst in our simulations are near λtotγ ≈ 0.1 and

λtotγ ≈ 1.8, which are very close to several of the values in (3.51).
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Figure 3.13: The mean error (3.50) between the approximate microbiome abundance vectors{
Ñ (i)(t)

}
from the HFLSA (see (3.23)) and the microbiome abundance vectors

{
N (i)(t)

}
for 1000 simulations of (3.4, 3.12). We plot λtot on a logarithmic scale and plot λtotγ on a

linear scale.
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For the HFCSA (3.36), we perform simulations for 61 linearly spaced values of the in-

teraction strength γ ∈ [0, 0.5] and 13 logarithmically spaced values of the total-interaction-

frequency parameter λtot ∈ [2.5×10−1, 2.5×104]. We use the same initial conditions (3.49) as

in our HFLSA simulations. We also again perform 1000 simulations and evaluate each sim-

ulated microbiome abundance vector N (i),l(t) for 101 evenly spaced times tk = k/100 on the

time interval [0, 1]. In Figure 3.14, we show the error (3.50) for each pair of γ and λtot values.

The approximation is accurate for sufficiently large λtot. In general, a larger γ increases the

rate at which each microbiome abundance vector N (i)(t) converges to the mean microbiome

abundance vector N (t). Consequently, the HFCSA yields a better approximation of N (i)(t)

for larger values of γ.

We are currently working on heuristic approximations and experiments for the conver-

gence rates of the microbiome abundance vectors N (i)(t).

3.6 Conclusions and Discussion

3.6.1 Summary

We developed a novel framework to model the microbiome dynamics of living hosts that

incorporates both the local dynamics within an environment and exchanges of microbiomes

between environments. Our framework extends existing metacommunity theory by account-

ing for the discrete nature of host interactions. Unlike classical mass-effects models, our

framework incorporates two distinct parameters that control interaction frequencies and in-

teraction strength. Using both analytical approximations and numerical computations, we

demonstrated that both parameters are necessary to determine microbiome dynamics.

We developed approximations in three parameter regions, and we proved their accu-

racy in those regions. Our low-frequency approximation (LFA) gives a good approximation

of the microbiome dynamics when local dynamics are much faster than host interactions.

Our high-frequency, low-strength approximation (HFLSA) encodes the dynamics of a sys-
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Figure 3.14: The mean error (3.50) between the approximate microbiome abundance vectors{
Ñ (i)(t)

}
from the HFCSA (see (3.36)) and the microbiome abundance vectors

{
N (i)(t)

}
for 1000 simulations of (3.4, 3.12). We plot λtot on a logarithmic scale and plot γ on a linear

scale.
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tem when interactions are frequent but weak, resulting in a model with the same form as

the mass-effects model (3.3). Finally, our high-frequency, constant-strength approximation

(HFCSA) accurately predicts the rapid convergence of all hosts’ microbiome dynamics when

interactions are frequent and have constant interaction strength γ. We validated each of

these approximations through numerical experiments on an illustrative model of microbiome

dynamics for a range of parameter values.

A qualitative example of dynamics in our model involves the probability that all micro-

biome abundance vectors converge in some time interval. This probability depends both

the interaction-frequency parameters and on the interaction strength. Using the LFA, we

showed for sufficiently small interaction-frequency parameters that the convergence proba-

bility depends on whether the interaction strength γ is large enough that a single interaction

between two hosts places their microbiome abundance vectors in the same basin of attrac-

tion. By contrast, using the HFLSA, we showed for sufficiently large interaction-frequency

parameters that the convergence probability depends on the product λtotγ of the total-

interaction-frequency parameter λtot and the interaction strength γ. For intermediate values

of the interaction-frequency parameters, we used numerical simulations of models in our

framework to examine convergence probabilities.

3.6.2 Outlook

Our modeling framework provides a foundation for many promising future research directions

in microbiome dynamics. In our framework’s current form, one can use it to study the

effects of host interactions in many ecological models of local dynamics. One can also use

our framework to study the impact of the structure of interaction networks on microbiome

dynamics.

There are many possible extensions of our modeling framework. For example, we consid-

ered a homogeneous interaction strength γ for simplicity. However, one can allow each pair

of hosts to have heterogeneous interaction strengths γij. Additionally, hosts can exchange
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different microbe species with different exchange strengths, so one can also consider interac-

tion strengths γijk that encode the exchange of different species k when hosts H(i) and H(j)

interact. This seems helpful when using consumer–resource models for the local dynamics. In

this case, it also may be desirable to separately encode the strengths of microbiome exchange

and resource exchange. Another way to extend our framework is to relax our assumption of

instantaneous microbiome exchange by instead employing rapid but continuous functions.

Additionally, in our framework, our LFA assumes that the attractors of each local-

dynamics function g(i) consist of a finite set of stable equilibrium points. We believe that it

is possible to extend the LFA to systems in which the g(i) have more complicated attractors,

such as limit cycles and chaotic attractors. We also believe that it is possible to generalize

the HFLSA and HFCSA to systems in which the times between consecutive interactions for

pairs of adjacent hosts follow a distribution other than an exponential distribution.

3.7 Proofs of our Approximations

3.7.1 Proof of Low-Frequency Approximation Theorem

In this appendix, we prove the LFA Theorem (see Theorem 1).

Theorem 1 (Low-Frequency-Approximation Theorem). Suppose that the attractors of each

host’s local dynamics consist of a finite set of stable equilibrium points at which the local-

dynamics function g(i) is inward pointing, and let each g(i) be continuous and bounded (see

Section 3.2.3). Fix γ ̸∈ B, all lij, and a frequency-scaled time T ∗. As λtot → 0, the basin

probability tensor Ψ(t∗) converges uniformly to Ψ̃(t∗) on [0, T ∗], where

d

dt∗
Ψ̃b1,...,b|H|(t

∗) = Φb1,...,b|H|,a1,...,a|H|Ψ̃a1,...,a|H|(t
∗)− Ψ̃b1,...,b|H|(t

∗) , (3.21)

Ψ̃(0) = Ψ(0) .

Proof. Each g(i) is bounded (see Section 3.2.3) so, there exists a constant M such that each
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entry of N (i)(t) is nonnegative and

∥∥N (i)(t)
∥∥
∞ ≤M (3.52)

for each microbiome abundance vector N (i)(t) and all times t ≥ 0.

Consider an arbitrary but fixed ε > 0. We will show that∥∥∥Ψ(t∗)− Ψ̃(t∗)
∥∥∥
∞
< ε (3.53)

for sufficiently small total-interaction-frequency parameter λtot and all frequency-scaled times

t∗ ∈ [0, T ∗].

For each i, let Ai be the set of stable equilibrium points of the local dynamics of host

H(i). Suppose that adjacent hosts H(i) and H(j) interact at time tI and that N (i)
(
t−I
)

and N (j)
(
t−I
)
are at stable equilibrium points a(i) ∈ Ai and a

(j) ∈ Aj, respectively. For

x,y ∈ [0,M ]n, let

X (x,y) = (1− γ)x+ γy . (3.54)

After the interaction, N (i)
(
t+I
)
= X

(
a(i),a(j)

)
and N (j)

(
t+I
)
= X

(
a(j),a(i)

)
. Because

γ ̸∈ B, it follows that X
(
a(i),a(j)

)
and X

(
a(j),a(i)

)
are in some basins of attraction bi and

bj for the stable equilibrium points b(i) ∈ Ai and b
(j) ∈ Aj, respectively.

Let

B(x, δ) = {y | ∥y − x∥2 < δ and y ∈ [0,M ]n} , (3.55)

B(x, δ) = {y | ∥y − x∥2 ≤ δ and y ∈ [0,M ]n} . (3.56)

The basins of attraction of stable equilibrium points are open sets, so there exists

δ(a(i),a(j)) = δ(a(j),a(i)) such that

B
(
X
(
a(i),a(j)

)
, δ(a(i),a(j))

)
⊆ bi , (3.57)

B
(
X
(
a(j),a(i)

)
, δ(a(i),a(j))

)
⊆ bj .
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All Ai are finite, so there are minima

δij = min
a(i)∈Ai

min
a(j)∈Aj

δ(a(i),a(j)) . (3.58)

Let the flow X(i)(t,x) be the solution of

∂X(i)

∂t
(t,x) = g(i)

(
X(i)(t,x)

)
, (3.59)

X(i)(0,x) = x .

For each local-dynamics function g(i), each a(i) ∈ Ai is a stable equilibrium point at which

g(i) is inward pointing. Therefore, there exists δ
(
a(i)
)
such that g(i)(y)·

(
a(i) − y

)
> 0 for y ∈

B
(
a(i), δ

(
a(i)
))
. If x is in the basin of attraction of a(i), then X(ta,x) ∈ B

(
a(i), δ

(
a(i)
))

for some time ta. We then have[
∂

∂t

∥∥X(i) − a(i)
∥∥2
2

]
(ta,x) =

[
2
∂X(i)

∂t
·
(
X(i) − a(i)

)]
(ta,x) , (3.60)

= −2g(i)
(
X(i)(ta,x)

)
·
(
a(i) −

(
X(i)(ta,x)

))
< 0 .

Consequently,
∥∥X(i)(t,x)− a(i)

∥∥
2
is monotonically decreasing for t ≥ ta. There are only

finitely many hosts, so there exists

δ =
1

2
min {∆1 ∪∆2} , (3.61)

∆1 =
⋃
i

⋃
a(i)∈Ai

{
δ
(
a(i)
)}

,

∆2 =
⋃

{i,j | (H(i),H(j))∈E}

{δij} .

For any x,y ∈ [0,M ]n, let

F (x,y) = B (X (x,y) , δ ) . (3.62)

For each pair of adjacent hosts H(i) and H(j) and each a(i) ∈ Ai and a
(j) ∈ Aj, we have

F
(
a(i),a(j)

)
= B

(
X
(
a(i),a(j)

)
, δ
)
⊂ B

(
X
(
a(i),a(j)

)
, δ(a(i),a(j))

)
⊆ bi , (3.63)

F
(
a(j),a(i)

)
= B

(
X
(
a(j),a(i)

)
, δ
)
⊂ B

(
X
(
a(j),a(i)

)
, δ(a(i),a(j))

)
⊆ bj
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for some basins of attraction bi and bj of the local dynamics of hosts H(i) and H(j), respec-

tively.

Recall that U (i) ∈ [0,M ]n is the set of points that are not in the basin of attraction of

some stable equilibrium point of the local dynamics of host H(i), and let

U =
⋃
i

U (i) . (3.64)

Each U (i) has measure 0, so U also has measure 0. Let x ∈ [0,M ]n \U . For each i, the vector

x is in the basin of attraction of some a(i) ∈ Ai. Therefore, there exists some time ta such

that
∥∥X(i)(ta,x)− a(i)

∥∥
2
= δ. We refer to such a time as a crossing time. Moreover, because

2δ ≤ δ
(
a(i)
)
, it follows from (3.60) that

∥∥X(i)(t,x)− a(i)
∥∥
2
is monotonically decreasing in

t on some interval (ta − η, ta + η) for all t ≥ ta. Therefore, the crossing time ta is the

unique time that satisfies the equality
∥∥X(i)(ta,x)− a(i)

∥∥
2
= δ. Because the crossing time

is unique, we can define a function T (i)(x) such that
∥∥X(i)

(
T (i)(x),x

)
− a(i)

∥∥
2
= δ. This

function T (i)(x) gives the unique crossing time for a flow that starts at x. gives this unique

crossing time.

The local-dynamics function g(i) is continuous, so

S(t,x) =
∥∥X(i)(t,x)− a(i)

∥∥
2
− δ (3.65)

is continuously differentiable with respect to both t and x. Evaluating S(t,x) at t = T (i)(x)

yields S
(
T (i)(x),x

)
= 0. The function S(t,x) is monotonically decreasing in t on some

interval (T (i)(x) − η, T (i)(x) + η). Therefore, by the Implicit Function Theorem, T (i) is a

continuous function on each basin of attraction of g(i).

Because T (i)(x) is continuous and each set F(a(i),a(j)) is compact, there exist times

τij = max
a(i)∈Ai,a(j)∈Aj

{
T (i)(x) for x ∈ F

(
a(i),a(j)

)}
, (3.66)

τ = max
{i,j | (H(i),H(j))∈E}

τij . (3.67)

50



Suppose that an interaction occurs between hosts H(i) and H(j) at time tI,1. Let

N (i)
(
t−I,1
)
∈ B

(
a(i), δ

)
, (3.68)

N (j)
(
t−I,1
)
∈ B

(
a(j), δ

)
for some a(i) ∈ Ai and a

(j) ∈ Aj. We then have

N (i)
(
t+I,1
)
∈ F

(
a(i),a(j)

)
, (3.69)

N (j)
(
t+I,1
)
∈ F

(
a(j),a(i)

)
.

If the next interaction occurs at time tI,2 > tI,1 + τ , then

N (i)
(
t−I,2
)
∈ B

(
b(i), δ

)
, (3.70)

N (j)
(
t−I,2
)
∈ B

(
b(j), δ

)
for some b(i) ∈ Ai and b

(j) ∈ Aj. If no two interactions occur within time τ of each other,

then

N (i)
(
t−I
)
∈ B

(
a(i), δ

)
(3.71)

for all i, all interaction times tI , and some a(i) ∈ Ai. In this case, the effect of each interaction

on the basin probability tensor Ψ is described exactly by the operation of the interaction

operator (
ϕ
(
Ψ
(
t−I
)))

b1,...,b|H|
= Φb1,...,b|H|,a1,...,a|H|Ψa1,...,a|H|

(
t−I
)
. (3.72)

Let I be the set of all possible sets Ω = {t∗l }Ll=1 of frequency-scaled interaction times

in the interval [0, T ∗]. We select a set Ω of interaction times using a Poisson process on

[0, T ∗] with rate parameter 1. Let q : I → R+ be the probability density function for these

interactions. Therefore,

Pr (Ω ∈ J ) =

∫
J
q (Ω′) dΩ′ (3.73)

for any J ⊆ I. We define a counting function

ν(Ω, t∗) =

∣∣∣∣ {t∗l ∈ Ω | t∗l ≤ t∗}
∣∣∣∣ (3.74)
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that tracks the number of interactions that occur in the interval [0, t∗] for the set Ω. The

approximate basin probability tensor Ψ̃(t∗) from the LFA (see (3.21)) conditioned on Ω is

Ψ̃(Ω)(t∗) = ϕν(Ω,t∗) (Ψ(0)) . (3.75)

Therefore,

Ψ̃(t∗) =

∫
I
q(Ω′)Ψ̃(Ω′)(t∗) dΩ′ . (3.76)

Let Ψ(Ω)(t∗) be the basin probability tensor conditioned on Ω. We then have

Ψ(t∗) =

∫
I
q(Ω′)Ψ(Ω′)(t∗) dΩ′ . (3.77)

If Ω = {t∗l }Ll=1 satisfies

min
l∈{2,...,L}

{t∗l − t∗l−1} > τ ∗ , (3.78)

then

Ψ(Ω)(t∗) = Φν(Ω,t∗) (Ψ(0)) . (3.79)

Let I1 ⊂ I be the set of interaction sets Ω = {t∗l }Ll=1 for which (3.78) holds, and let

I2 = I \ I1 ⊂ I. Choose dt∗ such that τ ∗ < dt∗ < 2τ ∗ and T ∗/dt∗ is an integer. For

sufficiently small τ ∗, this is always possible. If two interaction times t∗l and t
∗
l−1 occur within

τ ∗ of each other, then both interactions occur in an interval [k dt∗, (k − 1)dt∗] and/or an

interval
[(
k + 1

2

)
dt∗,

(
k − 1

2

)
dt∗
]
for an integer k. (These two types of intervals overlap.)

All of these intervals have width dt∗. Therefore, the probability that at least two interactions

occur in a specific one of these intervals is

Pr

(
ν (Ω, dt∗) ≥ 2

)
= 1− edt

∗ − dt∗edt
∗

(3.80)

= 1− edt
∗
(1− dt∗)

≤ 1− (1 + dt∗)(1− dt∗)

= (dt∗)2 .
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There are 2 T ∗

dt∗
− 1 such intervals. Therefore, the probability that at least two interactions

occur in at least one of these intervals is less than
(
2 T ∗

dt∗
− 1
)
(dt∗)2. This probability equals

the probability that a set Ω of interactions satisfies Ω ∈ I2. Consequently,

Pr (Ω ∈ I2) ≤
(
2
T ∗

dt∗
− 1

)
(dt∗)2 (3.81)

< 2
T ∗

dt∗
(dt∗)2

= 2T ∗dt∗

≤ 4T ∗τ ∗

= 4T ∗λtotτ .

We choose λtot <
ε

4T ∗τ
, and we then have

Ψ(t∗)− Ψ̃(t∗) =

∫
I
q(Ω′)Ψ(Ω′)(t∗) dΩ′ −

∫
I
q(Ω′)Ψ̃(Ω′)(t∗) dΩ′ (3.82)

=

∫
I
q(Ω′)

[
Ψ(Ω′)(t∗)− Ψ̃(Ω′)(t∗)

]
dΩ′

=

∫
I1
q(Ω′)

[
Ψ(Ω′)(t∗)− Ψ̃(Ω′)(t∗)

]
dΩ′ +

∫
I2
q(Ω′)

[
Ψ(Ω′)(t∗)− Ψ̃(Ω′)(t∗)

]
dΩ′

=

∫
I2
q(Ω′)

[
Ψ(Ω′)(t∗)− Ψ̃(Ω′)(t∗)

]
dΩ′ .

Therefore, ∥∥∥Ψ(t∗)− Ψ̃(t∗)
∥∥∥
∞

≤
∫
I2
q(Ω′)

∥∥∥Ψ(Ω′)(t∗)− Ψ̃(Ω′)(t∗)
∥∥∥
∞
dΩ′ . (3.83)

Each entry of Ψ(t∗) and Ψ̃(t∗) is a probability and hence is in the interval [0, 1], so we know

that
∥∥∥Ψ(t∗)− Ψ̃(t∗)

∥∥∥
∞

≤ 1. Therefore,∥∥∥Ψ(t∗)− Ψ̃(t∗)
∥∥∥
∞

≤
∫
I2
q(Ω′)dΩ′ (3.84)

= Pr (Ω ∈ I2)

≤ 4T ∗λtotτ

< ε .

This bound holds for all t∗ ∈ [0, T ∗]. Because ε > 0 is arbitrary, the basin probability tensor

Ψ(t) converges uniformly to Ψ̃(t∗) on [0, T ∗] as λtot → 0.
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3.7.2 Proof of High-Frequency Low-Strength Approximation Theorem

In this appendix, we prove the HFLSA Theorem (see Theorem 2).

Theorem 2 (High-Frequency, Low-Strength Approximation Theorem). Fix the relative

interaction-frequency parameters lij, the product λtotγ, and a time T . Let each local-dynamics

function g(i) be continuously differentiable and bounded (see Section 3.2.3), and let ε ∈ (0, 1]

and δ > 0 be arbitrary but fixed. For sufficiently large λtot, each host’s microbiome abundance

vector N (i)(t) satisfies ∥∥∥N (i) − Ñ (i)
∥∥∥
L∞[0,T ]

< δ (3.22)

with probability larger than 1− ε, where

dÑ (i)

dt
= g(i)(Ñ (i)) +

∑
j

λijγ
(
Ñ (j) − Ñ (i)

)
, (3.23)

Ñ (i)(0) =N (i)(0) .

Proof. Each local-dynamics function g(i) is bounded (see Section 3.2.3), so there exists a

constant M such that ∥∥N (i)(t)
∥∥
∞ ≤M (3.85)

and each entry of N (i)(t) is nonnegative for each microbiome abundance vector N (i)(t) and

all times t ≥ 0. Each approximate microbiome abundance vector Ñ (i)(t) also satisfies∥∥∥Ñ (i)(t)
∥∥∥
∞

≤M (3.86)

because (∑
j

λijγ
(
Ñ (j) − Ñ (i)

))
x

≥ 0 if Ñ (i)
x = 0 , (3.87)(∑

j

λijγ
(
Ñ (j) − Ñ (i)

))
x

≤ 0 if Ñ (i)
x =M

for each entry x of Ñ (i)(t).
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We also assume that each local-dynamics function g(i) is continuously differentiable and

hence continuous. Each host’s microbiome abundance vectorN (i)(t) is in the region [0,M ]n,

which is compact, so there exist constants G and F such that all N (i)(t) satisfy the bounds∥∥∥∥dN (i)

dt

∥∥∥∥
∞

=
∥∥g(i) (N (i)

)∥∥
∞ ≤ G , (3.88)∥∥∥∥d2N (i)

dt2

∥∥∥∥
∞

=
∥∥Dg(i) (N (i)

)
· g(i)

(
N (i)

)∥∥
∞ ≤ 2F .

For an interaction involving host H(i) that occurs at time tI , we chooseN
(i) (tI) =N

(i)
(
t+I
)
.

Therefore, N (i)(t) is right-continuous at time tI . It is usually not left-continuous at time tI ,

so it is usually not left-differentiable at time tI .
2 In such situations, the derivatives that we

use in (3.88) are right derivatives. By Taylor’s theorem,

∥∥N (i)(t+ dt)−N (i)(t)
∥∥
∞ ≤ Gdt , (3.89)∥∥N (i)(t+ dt)−N (i)(t)− g(i)

(
N i(t)

)
dt
∥∥
∞ ≤ F dt2

for any interval (t, t + dt] in which there are no interactions. Each local-dynamics function

g(i) is also Lipschitz continuous. Therefore, there exists a constant C such that

∥∥g(i) (x)− g(i) (y)
∥∥
∞ ≤ C ∥x− y∥∞ (3.90)

for each g(i) and all x,y ∈ [0,M ]n.

Let G̃ = G+Mλtotγ, which is a constant because λtotγ is fixed. For all host microbiome

abundance vectors Ñ (i)(t), we have∥∥∥∥∥dÑ (i)

dt

∥∥∥∥∥
∞

=

∥∥∥∥∥g(i) (Ñ (i)
)
+
∑
j

λijγ
(
Ñ (j) − Ñ (i)

)∥∥∥∥∥
∞

(3.91)

≤ G+
∑
j

λijγ
∥∥∥Ñ (j) − Ñ (i)

∥∥∥
∞

≤ G+Mλtotγ = G̃ .

2The only situation where N (i)(t) is left-continuous at time tI occurs when the host H(j) with which
H(i) interacts has a microbiome vector N (j)(t−I ) =N

(i)(t−I ).
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Let F̃ = F +Gλtotγ +Mλ2totγ
2. For all Ñ (i)(t), we have

∥∥∥∥∥d2Ñ (i)

dt2

∥∥∥∥∥
∞

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

Dg(i)
(
Ñ (i)

)
· g(i)

(
Ñ (i)

)
+
∑
j

λijγ

[
g(j)

(
Ñ (j)

)
+
∑
k

λjkγ
(
Ñ (k) − Ñ (j)

)]

+
∑
j

λijγ

[
g(i)
(
Ñ (i)

)
+
∑
k

λikγ
(
Ñ (k) − Ñ (i)

)]

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
∞

(3.92)

≤ 2F +Gγ
∑
j

λij +Mγ2
∑
j

∑
k

λijλjk +Gγ
∑
j

λij +Mγ2
∑
j

∑
k

λijλik

≤ 2F + 2Gλtotγ + 2Mλ2totγ
2 = 2F̃ .

By Taylor’s theorem, ∥∥∥ Ñ (i)(t+ dt)− Ñ (i)(t)
∥∥∥
∞

≤ G̃ dt ,

(3.93)∥∥∥∥∥ Ñ (i)(t+ dt)− Ñ (i)(t)−

[
g(i)
(
Ñ (i)(t)

)
+
∑
j

λijγ
(
Ñ (j)(t)− Ñ (i)(t)

)]
dt

∥∥∥∥∥
∞

≤ F̃ dt2

for any times t and t+ dt.

We phrased Theorem 2 in terms of finding a sufficiently large total-interaction-frequency

parameter λtot so that ∥∥∥N (i) − Ñ (i)
∥∥∥
L∞[0,T ]

< δ (3.94)

with probability larger than 1− ε. In Theorem 2, we assume that the product λtotγ is fixed,

so finding a sufficiently large λtot is equivalent to finding a sufficiently small γ. We define

the error term

E(i)(t) =N (i)(t)− Ñ (i)(t) . (3.95)

We will show that one can bound each
∥∥E(i)(t)

∥∥
∞ with probability larger than 1 − ε by a

term that involves γ. For sufficiently small γ, we will show that each

∥∥E(i)(t)
∥∥
∞ ≤ δ (3.96)
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for all t ∈ [0, T ] with probability larger than 1− ε.

Fix a dt such that dt4 ≤ γ ≤ 4 dt4 < 1 and T/dt is an integer. This is always possible

for sufficiently small γ. Let tk = k dt. There are only finitely many tk in the interval [0, T ].

The probability that an interaction occurs precisely at any of these tk is 0. Therefore, for

the remainder of this proof, we only consider interactions that occur at times t ̸= tk for any

k. Under this assumption,

N (i)(t−k ) =N
(i)(tk) (3.97)

for all tk ∈ [0, T ].

We now consider how a microbiome abundance vector N (i)(t) changes over an interval

[tk, tk+1]. Let Lk be the number of interactions that occur in (tk, tk+1). (This interval is

open because no interactions occur at any of the tk.) We denote the associated ordered set

of interactions by {tk,l}Lk
l=1. Additionally, we let tk,0 = tk and tk,Lk+1 = tk+1, and we define

dtk,l = tk,l − tk,l−1. For l ∈ {1, . . . , Lk + 1}, let

A
(i)
k,l =N

(i)
(
t−k,l
)
−N (i)(tk) . (3.98)

For l ∈ {1, . . . , Lk}, let

J
(i)
k,l =N

(i)
(
t+k,l
)
−N (i)

(
t−k,l
)
. (3.99)

The difference J
(i)
k,l indicates the change in N (i)(t) after an interaction at time tk,l. If this

interaction does not involve host H(i), then J
(i)
k,l = 0. Otherwise, for an interaction between

hosts H(i) and H(j), we have

J
(i)
k,l = γ

(
N (j)

(
t−k,l
)
−N (i)

(
t−k,l
))
. (3.100)

In either case,
∥∥∥J (i)

k,l

∥∥∥
∞

≤Mγ. For l ≥ 2, we decompose the difference A
(i)
k,l by writing

A
(i)
k,l =N

(i)
(
t−k,l
)
−N (i)(t+k,l−1) +N

(i)(t+k,l−1)−N
(i)(t−k,l−1) (3.101)

+N (i)(t−k,l−1)−N
(i)(tk)

=N (i)
(
t−k,l
)
−N (i)(t+k,l−1) + J

(i)
k,l−1 + A

(i)
k,l−1 .
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Therefore,∥∥∥A(i)
k,l

∥∥∥
∞

≤
∥∥N (i)

(
t−k,l
)
−N (i)(t+k,l−1)

∥∥
∞ +

∥∥∥J (i)
k,l−1

∥∥∥
∞
+
∥∥∥A(i)

k,l−1

∥∥∥
∞

(3.102)

≤
∥∥∥A(i)

k,l−1

∥∥∥
∞
+Gdtk,l +Mγ .

For l = 1, we have ∥∥∥A(i)
k,1

∥∥∥
∞

≤
∥∥N (i)(t−k,1)−N

(i)(tk)
∥∥
∞ ≤ Gdtk,1 . (3.103)

Therefore,

∥∥∥A(i)
k,l

∥∥∥
∞

≤
l∑

l′=1

Gdtk,l′ + (l − 1)Mγ ≤
Lk+1∑
l′=1

Gdtk,l′ + LkMγ = Gdt+ LkMγ . (3.104)

The error between the actual microbiome abundance vectorN (i)(tk) and the approximate

microbiome abundance vector Ñ (i)(tk) is

E
(i)
k =N (i)(tk)− Ñ (i)(tk) . (3.105)

Consider the difference

E
(i)
k+1 − E

(i)
k =

[
N (i)(tk+1)− Ñ (i)(tk+1)

]
−
[
N (i)(tk)− Ñ (i)(tk)

]
(3.106)

=
[
N (i)(tk+1)−N (i)(tk)

]
−
[
Ñ (i)(tk+1)− Ñ (i)(tk)

]
.

We have

Ñ (i)(tk+1)− Ñ (i)(tk) =

[
g(i)
(
Ñ (i)(tk)

)
+
∑
j

λijγ
(
Ñ (j)(tk)− Ñ (i)(tk)

)]
dt+ η

(i), approx
k ,

(3.107)

where ∥∥∥η(i), approxk

∥∥∥
∞

≤ F̃ dt2 . (3.108)
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The change of the microbiome abundance vector N (i)(t) over the interval [tk, tk+1] is

N (i)(tk+1)−N (i)(tk) =

Lk+1∑
l=1

[
N (i)

(
t−k,l
)
−N (i)

(
t−k,l−1

)]
(3.109)

=

Lk+1∑
l=1

[
N (i)

(
t−k,l
)
−N (i)

(
t+k,l−1

)]
+

Lk+1∑
l=2

[
N (i)

(
t+k,l−1

)
−N (i)

(
t−k,l−1

)]
=

Lk+1∑
l=1

[
g(i)
(
N (i) (tk)

)
dtk,l + η

(i), local
k,l

]
+

Lk∑
l=1

J
(i)
k,l

= g(i)
(
N (i) (tk)

)
dt+

Lk+1∑
l=1

[
η
(i), local
k,l

]
+

Lk∑
l=1

J
(i)
k,l ,

where

η
(i), local
k,l =

[
N (i)

(
t−k,l
)
−N (i)

(
t+k,l−1

)
− g(i)

(
N (i)

(
t−k,l
))
dtk,l

]
(3.110)

+
[
g(i)
(
N (i)

(
t−k,l
))
dtk,l − g(i)

(
N (i) (tk)

)
dtk,l

]
.

Therefore, ∥∥∥η(i), localk,l

∥∥∥
∞

≤ F dt2k,l + C
∥∥N (i)

(
t−k,l
)
−N (i) (tk)

∥∥
∞ dtk,l (3.111)

= F dt2k,l + C
∥∥∥A(i)

k,l

∥∥∥
∞
dtk,l

≤ F dt2k,l + CGdt dtk,l + CLkMγ dtk,l

≤ (F dt+ CGdt+ CLkMγ) dtk,l .

We now consider
Lk∑
l=1

J
(i)
k,l , (3.112)

which is the sum of the changes in microbiome abundance vector N (i)(t) due to the interac-

tions that host H(i) has with other hosts. Let

J̃
(i)
k,l =


0 , the interaction at time tk,l does not involve H

(i)

γ
(
N (j)(tk)−N (i)(tk)

)
, the interaction at time tk,l is between H

(i) and H(j) .

(3.113)
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We then have
Lk∑
l=1

J
(i)
k,l =

Lk∑
l=1

(
J̃
(i)
k,l + η

(i), exchange
k,l

)
, (3.114)

where

η
(i), exchange
k,l = J

(i)
k,l − J̃

(i)
k,l . (3.115)

If the interaction at time tk,l does not involve host H
(i), then η

(i), exchange
k,l = 0. Otherwise, for

an interaction at time tk,l between hosts H(i) and H(j), we have

η
(i), exchange
k,l = γ

(
N (j)(tk)−N (i)(tk)

)
− γ

(
N (j)

(
t−k,l
)
−N (i)

(
t−k,l
))

(3.116)

= γ
[(
N (j)(tk)−N (j)

(
t−k,l
))

−
(
N (i)(tk)−N (i)

(
t−k,l
))]

.

In either case,∥∥∥η(i), exchangek,l

∥∥∥
∞

≤ γ
(∥∥N (j)(tk)−N (j)

(
t−k,l
)∥∥

∞ +
∥∥N (i)(tk)−N (i)

(
t−k,l
)∥∥

∞

)
(3.117)

= γ
(∥∥∥A(j)

k,l

∥∥∥
∞
+
∥∥∥A(i)

k,l

∥∥∥
∞

)
≤ 2Gγ dt+ 2LkMγ2 .

We seek to bound ∥∥∥∥∥
Lk∑
l=1

J̃
(i)
k,l − E

[
Lk∑
l=1

J̃
(i)
k,l

]∥∥∥∥∥
∞

. (3.118)

There are two sources of stochasticity in the sum

Lk∑
l=1

J̃
(i)
k,l . (3.119)

The number Lk of interactions follows a Poisson distribution with mean λtotdt, and the

term J̃
(i)
k,l depends on which pair of hosts interacts at time tk,l. Because the sum (3.118) is

stochastic, we are only able to bound it with high probability.

The quantity J̃
(i)
k,l is vector-valued, and we denote an entry x of it by

(
J̃
(i)
k,l

)
x
. The sum

(3.119) is also vector-valued, and we denote an entry x of it by
(∑L

l=1 J̃
(i)
k,l

)
x
. We now
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calculate the expectation and the variance of each entry of (3.119). The interaction at time

tk,l is between hosts H(i) and H(j) with probability λij/λtot. Therefore,

E [Lk] = λtotdt , (3.120)

Var [Lk] = λtotdt ,

E
[(
J̃
(i)
k,l

)
x

]
=
∑
j

λij
λtot

γ
(
N (j)(tk)−N (i)(tk)

)
x
,

Var
[(
J̃
(i)
k,l

)
x

]
= E

[(
J̃
(i)
k,l

)2
x

]
−
(
E
[(
J̃
(i)
k,l

)
x

])2
.

The expectation of each entry of the sum (3.119) is

E

[(
Lk∑
l=1

J̃
(i)
k,l

)
x

]
= E

[
E

[(
Lk∑
l=1

J̃
(i)
k,l

)
x

∣∣∣∣∣ Lk

] ]
(3.121)

= E

[
Lk

∑
j

λij
λtot

γ
(
N (j)(tk)−N (i)(tk)

)
x

]

= λtotdt
∑
j

λij
λtot

γ
(
N (j)(tk)−N (i)(tk)

)
x

=
∑
j

λijγ
(
N (j)(tk)−N (i)(tk)

)
x
dt .

Therefore,

E

[
Lk∑
l=1

J̃
(i)
k,l

]
=
∑
j

λijγ
(
N (j)(tk)−N (i)(tk)

)
dt . (3.122)
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Applying the law of total variance, the variance of each entry of the sum (3.119) is

Var

[(
Lk∑
l=1

J̃
(i)
k,l

)
x

]
= E

[
Var

[(
Lk∑
l=1

J̃
(i)
k,l

)
x

∣∣∣∣∣ Lk

] ]
+Var

[
E

[(
Lk∑
l=1

J̃
(i)
k,l

)
x

∣∣∣∣∣ Lk

] ]
(3.123)

= E
[
LkVar

[(
J̃
(i)
k,l

)
x

] ]
+Var

[
LkE

[(
J̃
(i)
k,l

)
x

] ]
= λtotdtVar

[(
J̃
(i)
k,l

)
x

]
+ λtotdt

(
E
[(
J̃
(i)
k,l

)
x

])2
= λtotdtE

[(
J̃
(i)
k,l

)2
x

]
= λtotdt

∑
j

λij
λtot

γ2
(
N (j)(tk)−N (i)(tk)

)2
x

=
∑
j

λijγ
2
(
N (j)(tk)−N (i)(tk)

)2
x
dt .

These variances satisfy the bound

Var

[
Lk∑
l=1

(
J̃
(i)
k,l

)
x

]
≤
∑
j

λijγ
2
(
N (j)(tk)−N (i)(tk)

)2
x
dt (3.124)

≤M2γ2 dt
∑
j

λij ≤M2λtotγ
2 dt .

The error due to the stochasticity of the interactions is

η
(i), exchange
k =

Lk∑
l=1

J̃
(i)
k,l − E

[
Lk∑
l=1

J̃
(i)
k,l

]
. (3.125)

Therefore,

Lk∑
l=1

J̃
(i)
k,l = η

(i), exchange
k + E

[
Lk∑
l=1

J̃
(i)
k,l

]
= η

(i), exchange
k +

∑
j

λijγ
(
N (j)(tk)−N (i)(tk)

)
dt .

(3.126)

The error (3.125) satisfies

∥∥∥η(i), exchangek

∥∥∥
∞

= max
x

{ ∥∥∥∥∥
Lk∑
l=1

(
J̃
(i)
k,l

)
x
− E

[
Lk∑
l=1

(
J̃
(i)
k,l

)
x

]∥∥∥∥∥
}
. (3.127)
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Let κ = dim
(
N (i)

)
and α =

√
3κT
ε dt

. By Chebyshev’s inequality,

Pr

 ∥∥∥∥∥
Lk∑
l=1

(
J̃
(i)
k,l

)
x
− E

[
Lk∑
l=1

(
J̃
(i)
k,l

)
x

]∥∥∥∥∥ ≥ α

√√√√Var

[
Lk∑
l=1

(
J̃
(i)
k,l

)
x

]  ≤ 1

α2
, (3.128)

Pr

( ∥∥∥∥∥
Lk∑
l=1

(
J̃
(i)
k,l

)
x
− E

[
Lk∑
l=1

(
J̃
(i)
k,l

)
x

]∥∥∥∥∥ ≥ αMγ
√
λtotdt

)
≤ 1

α2
,

Pr

( ∥∥∥∥∥
Lk∑
l=1

(
J̃
(i)
k,l

)
x
− E

[
Lk∑
l=1

(
J̃
(i)
k,l

)
x

]∥∥∥∥∥ ≥Mγ

√
3κTλtot

ε

)
≤ ε dt

3κT
.

Therefore,

Pr

( ∥∥∥η(i), exchangek

∥∥∥
∞
< Mγ

√
3κTλtot

ε

)
> 1− ε dt

3T
. (3.129)

Inserting (3.126) into (3.114) yields

Lk∑
l=1

J
(i)
k,l =

Lk∑
l=1

(
J̃
(i)
k,l + η

(i), exchange
k,l

)
(3.130)

=
∑
j

λijγ
(
N (j)(tk)−N (i)(tk)

)
dt+

Lk∑
l=1

η
(i), exchange
k,l + η

(i), exchange
k .

Inserting (3.107), (3.109), and (3.130) into (3.106) yields

E
(i)
k+1 − E

(i)
k =

[
N (i)(tk+1)−N (i)(tk)

]
−
[
Ñ (i)(tk+1)− Ñ (i)(tk)

]
(3.131)

= g(i)
(
N (i) (tk)

)
dt+

Lk+1∑
l=1

η
(i), local
k,l

+
∑
j

λijγ
(
N (j)(tk)−N (i)(tk)

)
dt+

Lk∑
l=1

η
(i), exchange
k,l + η

(i), exchange
k

−

[
g(i)
(
Ñ (i)(tk)

)
+
∑
j

λijγ
(
Ñ (j)(tk)− Ñ (i)(tk)

)]
dt− η

(i), approx
k

= g(i)
(
N (i) (tk)

)
dt− g(i)

(
Ñ (i)(tk)

)
dt

+
∑
j

λijγ
(
N (j)(tk)−N (i)(tk)

)
dt−

∑
j

λijγ
(
Ñ (j)(tk)− Ñ (i)(tk)

)
dt

+

Lk+1∑
l=1

η
(i), local
k,l +

Lk∑
l=1

η
(i), exchange
k,l + η

(i), exchange
k − η

(i), approx
k .
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Therefore,∥∥∥E(i)
k+1

∥∥∥
∞

≤
∥∥∥E(i)

k

∥∥∥
∞
+
∥∥∥g(i) (N (i) (tk)

)
− g(i)

(
Ñ (i)(tk)

)∥∥∥
∞
dt (3.132)

+
∑
j

λijγ
(∥∥∥N (j)(tk)− Ñ (j)(tk)

∥∥∥
∞
+
∥∥∥N (i)(tk)− Ñ (i)(tk)

∥∥∥
∞

)
dt

+

Lk+1∑
l=1

∥∥∥η(i), localk,l

∥∥∥
∞
+

Lk∑
l=1

∥∥∥η(i), exchangek,l

∥∥∥
∞
+
∥∥∥η(i), exchangek

∥∥∥
∞
+
∥∥∥η(i), approxk

∥∥∥
∞
.

The inequality (3.129) gives a bound for
∥∥∥η(i), exchangek

∥∥∥
∞
that holds with probability larger

than 1− ε dt
3T

. The inequalities (3.111) and (3.117) give bounds for the error terms
∥∥∥η(i), localk,l

∥∥∥
∞

and
∥∥∥η(i), exchangek,l

∥∥∥
∞
, respectively. The latter two bounds depend on the number Lk of inter-

actions in the interval (tk, tk+1). As we discussed above, Lk is stochastic and is distributed

as a Poisson random variable with mean λtotdt. Therefore, we give bounds for Lk that hold

with high probability. To obtain these bounds, we first define

β =

√
3T

ε dt
. (3.133)

By Chebyshev’s inequality,

Pr
(
Lk ≥ λtotdt+ β

√
λtotdt

)
≤ 1

β2
, (3.134)

Pr

(
Lk ≥ λtotdt+

√
3Tλtot
ε

)
≤ ε dt

3T
.

Therefore, with probability at least 1− ε dt
3T

, we have the bounds

Lk ≤ λtotdt+

√
3Tλtot
ε

. (3.135)

and

Lkγ ≤ λtotγ dt+
√
γ

√
3Tλtotγ

ε
(3.136)

≤ λtotγ dt+ 2dt2
√

3Tλtotγ

ε

≤

(
λtotγ + 2

√
3Tλtotγ

ε

)
dt ,
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where we use the inequalities γ < 4dt4 and dt < 1. With probability at least 1−
(
ε dt
3T

+ ε dt
3T

)
=

1− 2ε dt
3T

, the bounds in (3.129) and (3.136) both hold, yielding∥∥∥E(i)
k+1

∥∥∥
∞

≤
∥∥∥E(i)

k

∥∥∥
∞
+ C

∥∥∥E(i)
k

∥∥∥
∞
dt+

(∥∥∥E(j)
k

∥∥∥
∞
+
∥∥∥E(i)

k

∥∥∥
∞

)
λtotγ dt (3.137)

+

Lk+1∑
l=1

(F dt+ CGdt+ CLkMγ) dtk,l

+

Lk∑
l=1

(
2Gγ dt+ 2LkMγ2

)
+Mγ

√
3κTλtot

ε
+ F̃ dt2

≤ (1 + (C + λtotγ) dt)
∥∥∥E(i)

k

∥∥∥
∞
+ λtotγ dt

∥∥∥E(j)
k

∥∥∥
∞

+ (F + CG)dt2 + CLkMγ dt+ 2GLkγ dt

+ 2L2
kMγ2 +M

√
γ

√
3κTλtotγ

ε
+ F̃ dt2

≤ (1 + (C + λtotγ) dt)
∥∥∥E(i)

k

∥∥∥
∞
+ λtotγ dt

∥∥∥E(j)
k

∥∥∥
∞

+ (F + CG)dt2 + CM

(
λtotγ + 2

√
3Tλtotγ

ε

)
dt2

+ 2G

(
λtotγ + 2

√
3Tλtotγ

ε

)
dt2 + 2M

(
λtotγ + 2

√
3Tλtotγ

ε

)2

dt2

+ 2M

√
3κTλtotγ

ε
dt2 + F̃ dt2 .

Grouping all of the prefactors of dt2 into a single constant Z, we simplify (3.137) and write∥∥∥E(i)
k+1

∥∥∥
∞

≤ (1 + (C + λtotγ) dt)
∥∥∥E(i)

k

∥∥∥
∞
+ λtotγ dt

∥∥∥E(j)
k

∥∥∥
∞
+ Z dt2 . (3.138)

Let

Ek = max
i

{∥∥∥E(i)
k

∥∥∥
∞

}
(3.139)

denote the maximum error at time tk. The maximum error at time 0 is E0 = 0. Let

Y = (C + 2λtotγ). The maximum error at time tk+1 satisfies the bound

Ek+1 ≤ (1 + Y dt)Ek + Z dt2 . (3.140)
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With probability at least 1− T
dt

(
2ε dt
3T

)
= 1− 2

3ε
> 1− ε, the inequality (3.140) holds for all

k ∈ {1, . . . , T
dt
− 1}. Therefore, with probability larger than 1 − ε, the maximum error at

time tk satisfies

∥Ek∥∞ ≤ Z dt2
k−1∑
k′=0

(1 + Y dt)k
′

(3.141)

= Z dt2
(
(1 + Y dt)k − 1

(1 + Y dt)− 1

)
≤ Z

Y
dt
(
eY dt

)k
≤ Z

Y
dt
(
eY dt

) T
dt

≤ ZeY T

Y
dt

for all k ∈ {0, . . . , T
dt
}

Consider an arbitrary time t′ ∈ (tk, tk+1). For some l, we have t′ ∈ [tk,l, tk,l+1). It then

follows that

E(i)(t′) =N (i)(t′)− Ñ (i)(t′) (3.142)

=N (i)(t′)−N (i)
(
t+k,l
)
+N (i)

(
t+k,l
)
−N (i)

(
t−k,l
)

+N (i)
(
t−k,l
)
−N (i)(tk) +N

(i)(tk)− Ñ (i)(tk)

+ Ñ (i)(tk)− Ñ (i)(t′) .
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Therefore,

∥∥E(i)(t′)
∥∥
∞ ≤

∥∥N (i)(t′)−N (i)
(
t+k,l
)∥∥

∞ +
∥∥N (i)

(
t+k,l
)
−N (i)

(
t−k,l
)∥∥

∞ (3.143)

+
∥∥N (i)

(
t−k,l
)
−N (i)(tk)

∥∥
∞ +

∥∥∥N (i)(tk)− Ñ (i)(tk)
∥∥∥
∞

+
∥∥∥Ñ (i)(tk)− Ñ (i)(t′)

∥∥∥
∞

≤ G (t′ − tk,l) +Mγ +
∥∥∥A(i)

k,l

∥∥∥
∞
+
∥∥∥E(i)

k

∥∥∥
∞
+ G̃(t′ − tk)

≤ Gdt+ 4M dt2 + (Gdt+ LkMγ) +
ZeY T

Y
dt+ G̃ dt

≤
(
2G+ 4M +

ZeY T

Y
+ G̃

)
dt+M

(
λtotγ + 2

√
3Tλtotγ

ε

)
dt ,

≤

(
2G+ 4M +

ZeY T

Y
+ G̃+Mλtotγ + 2M

√
3Tλtotγ

ε

)
dt .

Because dt < γ
1
4 , we have ∥∥E(i)(t′)

∥∥
∞ < Wγ

1
4 , (3.144)

where

W =

(
2G+ 4M +

ZeY T

Y
+ G̃+Mλtotγ + 2M

√
3Tλtotγ

ε

)
. (3.145)

With the inequality

γ ≤ δ4

2W
, (3.146)

it follows for all i and all times t ∈ [0, T ] that

∥∥E(i)(t)
∥∥
∞ ≤ δ (3.147)

with probability larger than 1− ε.

3.7.3 Proof of High-Frequency Constant-Strength Approximation Theorem

In this appendix, we prove the HFCSA Theorem (see Theorem 3).
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Theorem 3 (High-Frequency, Constant-Strength Approximation Theorem). Fix the relative

interaction-frequency parameters lij, the interaction strength γ > 0, and a time T . Suppose

that each local-dynamics function g(i) is Lipschitz continuous and bounded (see Section 3.2.3).

Let ε ∈ (0, 1], δ > 0, and η > 0 be arbitrary but fixed constants. For sufficiently large λtot,

each host microbiome abundance vector N (i)(t) satisfies∥∥∥N (i) − Ñ
∥∥∥
L∞[η,T ]

< δ (3.35)

with probability larger than 1− ε, where

dÑ

dt
=

1

|H|

|H|∑
j=1

g(j)
(
Ñ
)
, (3.36)

Ñ (0) =N (0) .

Proof. Each local-dynamics function g(i) is bounded (see Section 3.2.3), so there exists a

constant M such that each entry of N (i)(t) is nonnegative and

∥∥N (i)(t)
∥∥
∞ ≤M (3.148)

for each microbiome abundance vector N (i)(t) and all times t ≥ 0.

The approximate microbiome abundance vector Ñ t) is the mean of all N (i)(t). The

dynamics of Ñ (t) (3.36) is given by the mean of all hosts’ local dynamics. Because each

local-dynamics function g(i) is bounded, so is the mean of each g(i). Therefore, for all times

t ≥ 0, each entry of Ñ (t) is nonnegative and∥∥∥Ñ (t)
∥∥∥
∞

≤M . (3.149)

We assume that each local-dynamics function g(i) is Lipschitz continuous. Therefore,

there exists a constant C such that

∥∥g(i) (x)− g(i) (y)
∥∥
∞ ≤ C ∥x− y∥∞ (3.150)

68



for each g(i) and all x,y ∈ [0,M ]n. Because each local-dynamics function g(i) is continu-

ous (which follows from their Lipschitz continuity) and each microbiome abundance vector

N (i)(t) is in the compact region [0,M ]n, there exists a constant G such that∥∥∥∥dN (i)

dt

∥∥∥∥
∞

=
∥∥g(i) (N (i)

)∥∥
∞ ≤ G (3.151)

for all N (i)(t). For an interaction involving host H(i) that occurs at time tI , we choose

N (i) (tI) =N
(i)
(
t+I
)
. Therefore, N (i)(t) is right-continuous at time tI . It is usually not left-

continuous at time tI , so it is usually not left-differentiable at time tI .
3 In such situations,

the derivative that we use in (3.151) is a right derivative.

Define the Dirichlet energy

U(t) =
1

2

∑
i,j

λij
λtot

∥∥N (i)(t)−N (j)(t)
∥∥2
2
, (3.152)

which is nonnegative by construction. Let ξ > 0 be arbitrary but fixed. We will show that

U(t) ≤ ξ with probability larger than 1− ε for sufficiently large λtot and all times t ∈ [η, T ].

Between interactions,

dU

dt
=
∑
i.j

λij
λtot

(
g(i)
(
N (i)

)
− g(j)

(
N (j)

))
·
(
N (i) −N (j)

)
. (3.153)

Therefore, ∥∥∥∥dUdt
∥∥∥∥ ≤

∑
i.j

λij
λtot

(2G)M (3.154)

= 4GM .

Fix a dt > 0 such that T/dt is an integer and

dt < max

{
η,

ξ

12GM
,

δ

2CMeCT

}
. (3.155)

3The only situation where N (i)(t) is left-continuous at time tI occurs when the host H(j) with which
H(i) interacts has a microbiome vector N (j)(t−I ) =N

(i)(t−I ).
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Let tk = k dt. There are only finitely many tk in the interval [0, T ]. The probability that an

interaction occurs precisely at any of these tk is 0. Therefore, for the remainder of this proof,

we only consider interactions that occur at times t ̸= tk for any k. Under this assumption,

U(t−k ) = U(tk) (3.156)

for each tk ∈ [0, T ].

We now consider how the Dirichlet energy U(t) changes over an interval [tk, tk+1]. Let

Lk be the number of interactions that occur in (tk, tk+1). (This interval is open because no

interactions occur at any of the tk.) We denote the associated ordered set of interactions by

{tk,l}Lk
l=1. Additionally, we let tk,0 = tk and tk,Lk+1 = tk+1, and we define dtk,l = tk,l − tk,l−1.

For l ∈ {1, . . . , Lk}, let

Wk,l = U
(
t+k,l
)
− U

(
t−k,l
)
. (3.157)

The difference Wk,l is the change in U due to an interaction at time tk,l.

We decompose the change in U(t) over the interval [tk, tk + 1] by writing

U(tk+1)− U(tk) =

Lk+1∑
l=1

[
U
(
t−k,l
)
− U

(
t−k,l−1

)]
(3.158)

=

Lk+1∑
l=1

[
U
(
t−k,l
)
− U

(
t+k,l−1

)]
+

Lk+1∑
l=2

[
U
(
t+k,l−1

)
− U

(
t−k,l−1

)]
=

Lk+1∑
l=1

[
U
(
t−k,l
)
− U

(
t+k,l−1

)]
+

Lk∑
l=1

Wk,l .

The magnitude of the first sum in (3.158) has the upper bound∥∥∥∥∥
Lk+1∑
l=1

[
U
(
t−k,l
)
− U

(
t+k,l−1

)]∥∥∥∥∥ ≤
Lk+1∑
l=1

∥∥[U (t−k,l)− U
(
t+k,l−1

)]∥∥ (3.159)

≤
Lk+1∑
l=1

4GM dtk,l

= 4GM dt .
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We now consider the sum
∑Lk

l=1Wk,l. If the interaction at time tk,l is between hosts H(i)

and H(j), then

Wk,l =
λij
λtot

[∥∥N (i)
(
t+I
)
−N (j)

(
t+I
)∥∥2

2
−
∥∥N (i)

(
t−I
)
−N (j)

(
t−I
)∥∥2

2

]
(3.160)

=
λij
λtot

∥∥(1− γ)N (i)
(
t−I
)
+ γN (j)

(
t−I
)
− (1− γ)N (j)

(
t−I
)
− γN (i)

(
t−I
)∥∥2

2

−
∥∥N (i)

(
t−I
)
−N (j)

(
t−I
)∥∥2

2


=

λij
λtot

[
(1− 2γ)2

∥∥N (i)
(
t−I
)
−N (j)

(
t−I
)∥∥2

2
−
∥∥N (i)

(
t−I
)
−N (j)

(
t−I
)∥∥2

2

]
= −4γ(1− γ)

λij
λtot

∥∥N (i)
(
t−I
)
−N (j)

(
t−I
)∥∥2

2
.

Regardless of which hosts interact, each Wk,l is always nonpositive. We now show by contra-

diction that the Dirichlet energy U(t) ≤ ξ/3 with probability at least 1− ε dt
2T

for sufficiently

large total-interaction-frequency parameter λtot and some time t ∈ [tk, tk+1].

Suppose that U(t) > ξ/3 for all times t ∈ [tk, tk+1]. For all t ∈ [tk, tk+1], there are then

some i and j such that
λij
λtot

∥∥N (i) (t)−N (j) (t)
∥∥2
2
>

ξ

3|H|2
. (3.161)

Therefore, at each time t−k,l immediately before an interaction, there is some i and j such

that
λij
λtot

∥∥N (i)
(
t−k,l
)
−N (j)

(
t−k,l
)∥∥2

2
>

ξ

3|H|2
. (3.162)

Let

lmin = min
i,j

{lij | lij > 0} . (3.163)

An interaction at time tk,l occurs between hosts H(i) and H(j) with probability lij ≥ lmin.

Therefore, regardless of the previous interactions, each Wk,l satisfies

Wk,l < −4γ(1− γ)ξ

3|H|2
(3.164)

with probability at least lmin.
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We define a random variable W such that

Pr (W = 0) = 1− lmin , (3.165)

Pr

(
W = −4γ(1− γ)ξ

3|H|2

)
= lmin .

For all w ≤ 0, we have

Pr

(
Lk∑
l=1

Wk,l < w

)
≥ Pr

(
Lk∑
l=1

W < w

)
. (3.166)

We seek to bound
Lk∑
l=1

W . (3.167)

The random variable W is stochastic, so we can only find a bound for (3.167) that holds

with some probability. The first two moments of W are

E [W ] = −lmin
4γ(1− γ)ξ

3|H|2
, (3.168)

E
[
W2
]
= lmin

(
4γ(1− γ)ξ

3|H|2

)2

.

The expectation of the sum (3.167) is

E

[
Lk∑
l=1

W

]
= E

[
E

[
Lk∑
l=1

W

∣∣∣∣∣ Lk

] ]
(3.169)

= E
[
Lk

(
−lmin

4γ(1− γ)ξ

3|H|2

)]
= −λtotdt lmin

4γ(1− γ)ξ

3|H|2
.

Applying the law of total variance, the variance of the sum (3.167) is

Var

[
Lk∑
l=1

W

]
= E

[
Var

[
Lk∑
l=1

W

∣∣∣∣∣ Lk

] ]
+Var

[
E

[
Lk∑
l=1

W

∣∣∣∣∣ Lk

] ]
(3.170)

= E [LkVar [W ] ] + Var [ LkE [W ] ]

= λtotdtVar [W ] + λtotdt (E [W ])2

= λtotdtE
[
W2
]

= λtotdt lmin

(
4γ(1− γ)ξ

3|H|2

)2

.
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Let α =
√

2T
ε dt

. By Chebyshev’s inequality,

Pr

 Lk∑
l=1

W ≥ E

[
Lk∑
l=1

W

]
+ α

√√√√Var

[
Lk∑
l=1

W

]  ≤ 1

α2
, (3.171)

Pr

(
Lk∑
l=1

W ≥ −λtotdt lmin
4γ(1− γ)ξ

3|H|2
+

√
2Tλtotlmin

ε

4γ(1− γ)ξ

3|H|2

)
≤ ε dt

2T
,

Pr

(
Lk∑
l=1

W < −

(
λtotdt lmin −

√
2Tλtotlmin

ε

)
4γ(1− γ)ξ

3|H|2

)
≥ 1− ε dt

2T
.

Using the bound (3.166) in (3.171) gives

Pr

(
Lk∑
l=1

Wk,l < −

(
λtotdt lmin −

√
2Tλtotlmin

ε

)
4γ(1− γ)ξ

3|H|2

)
> 1− ε dt

2T
, (3.172)

Pr

(
Lk∑
l=1

Wk,l < −
√
λtot

(√
λtotdt lmin −

√
2T lmin

ε

)
4γ(1− γ)ξ

3|H|2

)
> 1− ε dt

2T
.

By choosing sufficiently large λtot, we can make
√
λtot

(√
λtotdt lmin −

√
2T lmin

ε

)
4γ(1−γ)ξ
3|H|2 ar-

bitrarily large. In particular, we choose a sufficiently large λtot so that√
λtot

(√
λtotdtlmin −

√
2T lmin

ε

)
4γ(1− γ)ξ

3|H|2
≥ U(0) + 4GMT + 4GM dt . (3.173)

Therefore,

Pr

(
Lk∑
l=1

Wk,l < − [U(0) + 4GMT + 4GM dt]

)
> 1− ε dt

2T
. (3.174)

Local dynamics can cause the Dirichlet energy U(t) to change at a rate of at most 4GM

per unit time (see (3.154)). Additionally, because each Wk,l is nonpositive, interactions

cannot cause U to increase. Therefore, for any time t ∈ [0, T ], we have U(t) < U(0)+4GMT .

Combining this upper bound, the bound (3.174), and the decomposition of U(tk+1)− U(tk)

in (3.158) yields

U(tk+1) ≤ U(tk) +

∥∥∥∥∥
Lk+1∑
l=1

[
U
(
t−k,l
)
− U

(
t+k,l−1

)]∥∥∥∥∥+
∥∥∥∥∥

Lk∑
l=1

Wk,l

∥∥∥∥∥ (3.175)

< U(0) + 4GMT + 4GM dt− [U(0) + 4GMT + 4GM dt]

< 0 (3.176)
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with probability larger than 1− ε dt
2T

. However, U(t) is always nonnegative. Therefore, with

probability larger than 1− ε dt
2T

, we have a contradiction and there is some time t′ ∈ [tk, tk+1]

such that U(t′) ≤ ξ/3. For some l′, we have t′ ∈ [tk,l′ , tk,l′+1). Therefore,

U(tk+1) = U(t′) + U(tk,l′+1)− U(t′) +

Lk+1∑
l=l′+2

[
U
(
t−k,l
)
− U

(
t+k,l−1

)]
+

Lk∑
l=l′+1

Wk,l (3.177)

≤ U(t′) + ∥U(tk,l′+1)− U(t′)∥+
Lk+1∑
l=l′+2

∥∥U (t−k,l)− U
(
t+k,l−1

)∥∥+ ∥∥∥∥∥
Lk∑

l=l′+1

Wk,l

∥∥∥∥∥
≤ ξ

3
+ 4GM dtk,l′+1 +

Lk+1∑
l=l′+2

4GM dtk,l

≤ ξ

3
+ 4GM dt . (3.178)

Recall that dt < ξ
12GM

(see (3.155)). We have

U(tk+1) <
ξ

3
+
ξ

3
=

2ξ

3
.

With probability larger than 1− ε dt
2T

(
T
dt

)
= 1− ε

2
> 1− ε, every U(tk) except U(0) satisfies

U(tk) < 2ξ/3. Consider an arbitrary time t′ ∈ [tk, tk+1], where k ≥ 1. For some l′, we have

t′ ∈ [tk,l′ , tk,l′+1). Therefore,

U(t′) = U(t′)− U(tk,l′) +
l′∑

l=1

[
U
(
t−k,l
)
− U

(
t+k,l−1

)]
+

l′∑
l=1

Wk,l + U(tk) , (3.179)

which implies that

U(t′) ≤ ∥U(t′)− U(tk,l′)∥+
l′∑

l=1

∥∥U (t−k,l)− U
(
t+k,l−1

)∥∥+ U(tk) (3.180)

≤ 4GM dtk,l′+1 +
l′∑

l=1

4GM dtk,l + U(tk)

≤ 4GM dt+ U(tk)

<
ξ

3
+

2ξ

3

= ξ .
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With probability larger than 1 − ε, we have U(t) < ξ for all times t ∈ [dt, T ]. Because

ξ is arbitrary, by choosing a sufficiently large total-interaction-frequency parameter λtot, we

can make U(t) arbitrarily small over the interval [dt, T ] with probability larger than 1 − ε.

Assume that U(t) < ξ for all t ∈ [dt, T ]. We can then bound the maximum difference

between any microbiome abundance vectors N (i)(t) and N (j)(t). In particular, if H(i) and

H(j) are adjacent, then

λij
λtot

∥∥N (i)(t)−N (j)(t)
∥∥2
2
< ξ , (3.181)∥∥N (i)(t)−N (j)(t)

∥∥
2
<
√
lmaxξ ,

where lmax = maxi,j lij. A shortest path between any two hosts in the interaction network

has length at most |H| − 1. Therefore, the 2-norm of the difference between each pair of

microbiome abundance vectors N (i)(t) and N (j)(t) satisfies

∥∥N (i)(t)−N (j)(t)
∥∥
2
< (|H| − 1)

√
lmaxξ . (3.182)

The inequality (3.182) guarantees that the difference between each microbiome abundance

vector N (i)(t) and the mean microbiome abundance vector N (t) satisfies

∥∥N (i)(t)−N (t)
∥∥
2
< (|H| − 1)

√
lmaxξ , (3.183)∥∥N (i)(t)−N (t)

∥∥
∞ < (|H| − 1)

√
lmaxξ .

We now bound the magnitude of the difference between the mean microbiome abundance

vector N (t) and the approximate microbiome abundance vector Ñ (t) for all times t ∈

[0, T ]. We refer to
∥∥∥N (t)− Ñ (t)

∥∥∥
∞

as the approximation–mean error at time t. At time

0, the approximation–mean error
∥∥∥N (0)− Ñ (0)

∥∥∥
∞

= 0 by construction. We bound the
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approximation–mean error by first bounding its time derivative, which satisfies

d

dt

∥∥∥N − Ñ
∥∥∥
∞

≤
∥∥∥∥ d

dt

(
N − Ñ

)∥∥∥∥
∞

(3.184)

=

∥∥∥∥∥∥ 1

|H|

|H|∑
j=1

g(j)
(
N (j)

)
− 1

|H|

|H|∑
j=1

g(j)
(
Ñ
)∥∥∥∥∥∥

∞

≤ 1

|H|

|H|∑
j=1

∥∥∥g(j) (N (j)
)
− g(j)

(
Ñ
)∥∥∥

∞

≤ 1

|H|

|H|∑
j=1

C
∥∥∥N (j) − Ñ

∥∥∥
∞

≤ 1

|H|

|H|∑
j=1

C
∥∥∥N (j) − Ñ

∥∥∥
∞

≤ 1

|H|

|H|∑
j=1

C
( ∥∥N (j) −N

∥∥
∞ +

∥∥∥N − Ñ
∥∥∥
∞

)

≤ C
∥∥∥N − Ñ

∥∥∥
∞
+

1

|H|

|H|∑
j=1

C
∥∥N (j) −N

∥∥
∞ .

For times t ∈ [dt, T ], each
∥∥N (j)(t)−N (t)

∥∥
∞ < (|H| − 1)

√
lmaxξ. Therefore, on this

interval,
d

dt

∥∥∥N − Ñ
∥∥∥
∞
< C

∥∥∥N − Ñ
∥∥∥
∞
+ (|H| − 1)

√
lmaxξ . (3.185)

For t ∈ [0, dt], we obtain a weaker bound for the time derivative of the approximation–mean

error:

d

dt

∥∥∥N − Ñ
∥∥∥
∞

≤ 1

|H|

|H|∑
j=1

C
∥∥∥N (j) − Ñ

∥∥∥
∞

(3.186)

≤ 1

|H|

|H|∑
j=1

CM

= CM .
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Therefore, for times t ∈ [0, dt], the approximation–mean error satisfies∥∥∥N (t)− Ñ (t)
∥∥∥
∞

≤
∥∥∥N (0)− Ñ (0)

∥∥∥
∞
+ CMt (3.187)

≤ CM dt

≤ δ

2eCT
.

For times t ∈ [dt, T ], we construct a function u(t) that gives an upper bound of the

approximation–mean error. This function u(t) is the solution of the dynamical system

du

dt
= Cu+ (|H| − 1)

√
lmaxξ , (3.188)

u(dt) =
δ

2eCT
.

Using an integrating factor to solve for u(t) yields

e−Ctdu

dt
= e−CtCu+ e−Ct (|H| − 1)

√
lmaxξ , (3.189)

d

dt

(
e−Ctu

)
= e−Ct (|H| − 1)

√
lmaxξ ,

e−Ctu(t) = e−Cdt

(
δ

2eCT

)
+

∫ t

dt

e−Ct′ (|H| − 1)
√
lmaxξ dt′ ,

u(t) = eC(t−dt)

(
δ

2eCT

)
+

(|H| − 1)
√
lmaxξ

C

(
eC(t−dt) − 1

)
.

For t ∈ [dt, T ], the function u(t) satisfies

u(t) ≤ eCT

(
δ

2eCT

)
+

(|H| − 1)
√
lmaxξ

C
eCT (3.190)

=
δ

2
+

(|H| − 1)
√
lmaxξ

C
eCT .

Therefore, ∥∥∥N (t)− Ñ (t)
∥∥∥
∞

≤ δ

2
+

(|H| − 1)
√
lmaxξ

C
eCT . (3.191)

As we discussed previously (see (3.180)), we can make ξ arbitrarily small by choosing a

sufficiently large λtot. Therefore, we make ξ sufficiently small so that

(|H| − 1)
√
lmaxξ < max

{
δ

4
,
δC

4eCT

}
. (3.192)
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Using the bound (3.192) in (3.191) and (3.183) yields∥∥∥N (t)− Ñ (t)
∥∥∥
∞
<
δ

2
+

δC

4eCT

(
eCT

C

)
=

3δ

4
, (3.193)∥∥N (i)(t)−N (t)

∥∥
∞ <

δ

4

for every t ∈ [dt, T ] with probability larger than 1 − ε. Because dt ≤ η, for all times t ∈

[η, T ], the difference between each microbiome abundance vectorN (i)(t) and the approximate

microbiome abundance vector Ñ (t) satisfies∥∥∥N (i)(t)− Ñ (t)
∥∥∥
∞

≤
∥∥N (i)(t)−N (t)

∥∥
∞ +

∥∥∥N (t)− Ñ (t)
∥∥∥
∞

(3.194)

<
δ

4
+

3δ

4
= δ

with probability larger than 1− ε.
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CHAPTER 4

Background on Persistent Homology

In this chapter, we describe the mathematical background on persistent homology (PH)

[OPT17] that we need in Chapter 5. In Chapter 5, we use topological data analysis (TDA)

[EH10,DW22] to study “holes” in resource coverage. To do this, we apply PH, which is one

of the main tools in TDA. PH uses ideas from algebraic topology to (1) identify clusters and

holes in a data set and (2) measure their persistences across different scales.

In Section 4.1, we describe the theory of homology. In Section 4.2, we outline how to

compute PH for a point cloud. Section 4.2 is adapted from the background section of [HJJ24],

which was led jointly by Abigail Hickok, Benjamin Jarman, Jiajie Luo, and me and was co-

authored with Mason A. Porter.

4.1 Homology

Before introducing persistent homology (PH), it is helpful to build some intuition for homol-

ogy theory [Hat02], which provides the mathematical foundation for PH. Homology theory

is a branch of algebraic topology that characterizes a topological space by its “holes”. Let

X be a topological space. For k ≥ 1, the kth homology group Hk(X,Z) of X with integer

coefficients is the Abelian group that represents the “k-dimensional holes” of the space X.

The rank of this group gives the number of such holes. For k = 0, the rank of H0(X,Z) gives

the number of connected components of X. If there are multiple connected components,

the space between these components is considered a 0-dimensional (0D) hole. The rank of

79



(a) X1 (b) X2

Figure 4.1: An example of two topological spaces X1 and X2. [These figures are adapted

from figures in Chapter 2 of [Hat02].]

H1(X,Z) gives the number of “loops” in X that cannot be contracted to a point. The rank

of H2(X,Z) gives the number of regions that are bounded by a 2-dimensional surface, and

so on for higher values of k.

In Figure 4.1, we show two examples of topological spaces, X1 and X2. We adapt these

figures from Chapter 2 of [Hat02]. The space X1 is a graph with three edges a, b, and c that

connect two nodes x and y. We assign directions to the edges from x to y. The space X2

has the same two nodes and the same three edges. Additionally, X2 has two surfaces, which

each have the boundary a − b, where a − b is the loop that goes from x to y along edge a

and back to x along edge b.

Both of the spaces X1 and X2 have a single connected component. Therefore, H0(X1,Z)

and H0(X2,Z) each have rank 1. In X1, the two loops a − b and b − c are a basis for all

other loops. One can construct any other loop from a linear combination of these two loops.

For example, a − c = (a − b) + (b − c). Therefore, H1(X1,Z) has rank 2, indicating that

there are two 1-dimensional holes. For X2, however, the loop a− b is filled in, so H1(X2,Z)

has rank 1. The space X1 has no 2-dimensional holes, so H2(X1,Z) has rank 0. The space

X2 has one 2-dimensional hole. The surface of this 2-dimensional hole is the union of the
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(a) K0 (b) K1 (c) K2 (d) K3 (e) K4

Figure 4.2: An example of a filtration. The simplicial complex Ki has the associated

filtration-parameter value i. [This figure appeared originally in [HNP22] and is used with

permission.]

two surfaces with boundary a − b. Therefore, H2(X2,Z) has rank 0. For k ≥ 3, the groups

Hk(X1,Z) and Hk(X2,Z) both have rank 0.

4.2 Persistent Homology for Point Clouds

We review relevant mathematical background on our application of PH in Chapter 5. See

[OPT17, EH10, DW22] for more thorough discussions. To compute PH, we begin by con-

structing a filtered simplicial complex (which we will call a filtration) from a point cloud,

which is a finite collection X = {xi}ni=1 of points in a metric space (M,d). A simplicial com-

plex is a combinatorial description of a topological space. It is a collection of vertices, edges,

triangles, and higher-dimensional simplices with certain requirements on simplex boundaries

and pairwise simplex intersections. A filtration is a nested sequence Kα0 ⊆ Kα1 ⊆ · · · ⊆ Kαn

of simplicial complexes, where α0 < α1 < · · · < αn. We show an example of a filtration in

Figure 4.2.

Two of the most common constructions are the Čech filtration and the Vietoris–Rips

(VR) filtration [OPT17]. For r > 0, the Čech complex Čr(X,M, d) at filtration parameter

r is the simplicial complex that has a simplex with vertices [xi0 , . . . , xik ] if the intersection⋂
j B(xij , r) is nonempty, where B(x, r) := {y ∈M | d(x, y) ≤ r}. That is, Čr(X,M, d) is
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Figure 4.3: Illustration of a Čech filtration for a point cloud X that we sample from an

annulus. [This figure appeared originally in [HJJ24]. We generated this figure using [AS11].]

the nerve of the closed balls {B(xi, r)}xi∈X . By the Nerve Theorem [Bor48], Čr(X,M, d) is

topologically equivalent (more precisely, it is homotopy-equivalent) to the union
⋃

iB(xi, r)

of balls (i.e., the r-coverage of X) inM whenever the balls B(xi, r) are convex.
1 This implies

that
⋃

iB(xi, r) and Čr(X,M, d) have the same homology (i.e., the same set of holes). A

Čech filtration is a nested sequence of Čech complexes for increasing filtration parameter r.

In Figure 4.3, we show an example of a Čech filtration.

In practice, it is uncommon to use Čech filtrations because they are difficult to compute.

A Vietoris–Rips (VR) complex VRr(X,M, d) is an approximation of a Čech complex that

is faster to compute because it is only necessary to calculate pairwise distances between

points. The VR complex at filtration parameter r has a simplex with vertices [xi0 , . . . , xik ]

if d(xij , xiℓ) < 2r for all j and ℓ. A VR filtration is a nested sequence of VR complexes for

increasing filtration parameter r. A VR filtration approximates a Čech filtration in the sense

that

Čr(X,M, d) ⊆ VRr(X,M, d) ⊆ Č√
2r(X,M, d) (4.1)

for all r. The complexes VRr(X,M, d) and Čr(X,M, d) have the same set of edges for all r.

In Chapter 5, we will use a distance that captures the time cost of accessing a resource.

1This condition is satisfied for all r when (M,d) is Euclidean, but it is not always satisfied for non-
Euclidean metric spaces.
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The filtration level t represents this time cost. We use this in our notation for weighted

versions of the Čech and VR filtration [ACG19]. Given a point cloud X = {x1, . . . , xn} in a

metric space (M,d) and associated weights {w1, . . . , wn}, the radius function at xi is

rxi
(t) :=


−∞ , t < wi

t− wi , otherwise .

(4.2)

The closed ball B(xi, rxi
(t)) has no points for t < wi; for t ≥ wi, the radius grows linearly with

t, which is the filtration parameter. The weighted Čech complex Čweighted
t (X,M, d, {wi}) at

filtration parameter t is the simplicial complex that has a simplex with vertices [xi0 , . . . , xik ] if

the intersection
⋂

j B(xij , rxij
(t)) is nonempty. That is, Čweighted

t (X,M, d, {wi}) is the nerve

of {B(xi, rxi
(t))}xi∈X . Like the unweighted Čech complex, the weighted Čech complex is

homotopy-equivalent to the union
⋃

iB(xi, rxi
(t)) of balls by the Nerve Theorem whenever

the balls B(xi, rxi
(t)) are convex for all xi. Much like an unweighted Čech complex, it takes

too much time to compute a weighted Čech complex in practice, so researchers instead usually

compute a weighted VR complex VRweighted
t (X,M, d, {wi}). This is the simplicial complex

whose vertices are {xi | wi < t} and whose simplices [xi0 , . . . , xik ] satisfy d(xij , xiℓ) + wij +

wiℓ < 2t. The sequence
{
VRweighted

t (X,M, d, {wi})
}

t
for increasing t is the weighted VR

filtration. Analogously to (4.1), the weighted VR filtration approximates the weighted Čech

filtration in the sense that

Čr(X,M, d, {wi}) ⊆ VRr(X,M, d, {wi}) ⊆ Č√
2r(X,M, d, {wi}) (4.3)

for all r.

Given a filtration Kα0 ⊆ · · · ⊆ Kαn , one can compute the homology of each simplicial

complex Kαi
. As discussed in Section 4.1, a homology class represents a hole that exists in

a filtration for some range of filtration-parameter values αi. A 0D homology class represents

a connected component, and a 1D homology class represents a hole that is bounded by a

closed path. To see why 0D homology classes are “holes”, we note that one can also view a

0D homology class as representing the empty region between connected components.
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As the filtration parameter αi grows, holes form and subsequently fill in. The information

that is given by the birth and death of the homology classes of a filtration is called the

persistent homology (PH) of the filtration. We say that a homology class is born at αi if

i is the minimum index such that the homology class appears in Kαi
. Its birth simplex is

the simplex that creates the homology class. For example, in Figure 4.2, a 1D homology

class is born at filtration-parameter value 2. Its birth simplex is the edge with vertices 0

and 3. A homology class that is born at αi subsequently dies at αj, with j ≥ i, if j is the

minimum index such that the homology class becomes trivial (i.e., the corresponding hole

fills in) in Kαj
. We refer to αi as the homology class’s birth value and to αj as its death

value. Its death simplex is the simplex that destroys the homology class. For example, the

homology class that is born at filtration-parameter value 2 in Figure 4.2 subsequently dies

at filtration-parameter value 4. Its death simplex is the triangle with vertices 0, 2, and 3.

One can summarize PH in a persistence diagram (PD) [DW22]. A PD is a multiset of

points in the extended plane R2 ∪ {∞}. For a homology class with birth value b and death

value d, the PD includes a point with coordinates (b, d). An infinite death time d represents

a homology class that is not filled in at any filtration r > b. In Figure 4.4, we show the PD

for the PH of the filtration in Figure 4.2.

In our application of PH to polling-site coverage in Chapter 5, we interpret homology

classes as holes in coverage and we interpret the death simplices as the locations of the holes.
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Figure 4.4: The persistence diagram for the 0D and 1D PH of the filtration in Figure 4.2.
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CHAPTER 5

Persistent Homology for Resource Coverage: A Case

Study of Access to Polling Sites

In this chapter, we use persistent homology (PH), which is a tool from topological data

analysis (TDA), to study the availability and coverage of polling sites. We discussed the

background on these topics in Chapter 4. The information from PH allows us to infer “holes”

in a distribution of polling sites. We analyze and compare the coverage of polling sites in

Los Angeles County and five cities (Atlanta, Chicago, Jacksonville, New York City, and Salt

Lake City). This chapter is adapted from [HJJ24], which was led jointly by Abigail Hickok,

Benjamin Jarman, Jiajie Luo, and me and was coauthored with Mason A. Porter.1 All

figures in this chapter appeared originally in [HJJ24].

This chapter proceeds as follows. We describe our approach in Section 5.2, present

and examine persistence diagrams in Section 5.3, and conclude and discuss implications,

limitations, and potential future directions of our work in Section 5.4. Our code is available

at https://bitbucket.org/jerryluo8/coveragetda/src/main/.

1I codesigned the methodology with Abigail Hickok, Benjamin Jarman, and Jiajie Luo; computed the
distance matrices (see Section 5.2) with Benjamin Jarman and Jiajie Luo; and wrote the paper with all
coauthors.
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5.1 Introduction

The geographical distribution of resources such as polling sites (i.e., locations where people

vote), hospitals, COVID-19 vaccination sites, Department of Motor Vehicles (DMV) loca-

tions, and Planned Parenthood clinics is a major factor in the equitability of access to those

resources. Consequently, given the locations of a set of resource sites, it is important to

quantify their geographical coverage and to identify underserved geographical regions (i.e.,

“holes in coverage”).

A naive approach to quantifying resource coverage is to consider the geographical dis-

tances from resource sites by simply calculating the percentage of people who reside within

some cutoff distance D of the nearest resource site. This naive approach is common in pol-

icy. For example, in March 2021, United States President Joseph Biden announced a goal

to ensure that at least 90% of the adult US population is within 5 miles (i.e., D = 5 miles)

of a COVID-19 vaccination site [The21]. As another example, it is required by Indian law

that 100% of voters live within 2 km of a polling site [SSH19] (i.e., D = 2 km). However,

such an approach poses at least two issues:

(1) it requires choosing an arbitrary cutoff distance D; and

(2) using only geographical distance fails to account for many other factors, such as pop-

ulation density and the availability (and facility) of public transportation, that affect

ease of access to a resource.

These issues severely limit the utility of this naive approach.

In the present chapter, we use PH to study holes in resource coverage. We use PH to

analyze data in the form of a point cloud X = {xi}ni=1 of points in a metric space (M,d).2 In

this chapter, X is a collection of resource sites, with specified latitudes and longitudes, and

2One can weaken the requirement that d is a metric. In this chapter, we use a distance function d that
is not technically a metric because it does not satisfy the triangle inequality.
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M = R2 with a non-Euclidean distance function d (see Section 5.2). Given a point cloud X

and a scale parameter r > 0, one can consider the r-coverage Cr :=
⋃n

i=1B(xi, r). As the

scale parameter r grows, holes arise and subsequently fill in. PH tracks the formation and

disappearance of these holes. When a point cloud is a collection of resource sites, one can

interpret holes that persist for a large range of r as holes in coverage. Our approach using PH

gives a way to measure and evaluate how equitably a resource is distributed geographically.

Our approach addresses both of the issues (see points (1) and (2)) of the naive approach

that we discussed above. First, PH eliminates the need to choose an arbitrary cutoff dis-

tance because one can study holes in coverage at all scales. Second, instead of employing

geographical distance, we construct a distance function d that is based on travel times. We

also incorporate the waiting time at each resource site by constructing a weighted Vietoris–

Rips (VR) filtration (see Section 4.2). In a city with a high population density or a poor

transportation system, the time that is spent waiting at or traveling to a resource site can be a

much higher barrier to access than geographical distance [GS03,HK05]. We estimate waiting

times using Global Positioning System (GPS) ping data from mobile phones at the resource

sites, and we estimate travel times using street-network data, per capita car-ownership data,

and the Google Maps application programming interface (API) [Goo]. Using these estimates,

we construct a weighted VR filtration. We weight vertices by our estimates of waiting times,

and we define the distance between two vertices to be the estimated round-trip travel time

between them. Because the weighted VR filtration is stable, small errors in our estimates

cause only small errors in the resultant PH [ACG19].

In this chapter, we examine polling sites as a case study of using PH to study the coverage

of resource sites. We restrict our attention to six cities3: Atlanta, Chicago, Jacksonville (in

Florida), Los Angeles4, New York City (NYC), and Salt Lake City. We use these cities in part

3Although we frame our discussion in terms of cities, some organizations instead use counties when
considering the coverage of polling sites.

4For Los Angeles, we actually study Los Angeles County. We discuss the reasons for this choice in Section
5.2.5.
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because data about them (e.g., car-ownership data) is widely available. Additionally, these

cities differ considerably in their demographics and infrastructures, and we can thus compare

a variety of different types of cities. Atlanta and New York City are both infamous for long

waiting times at polling sites, especially in non-White neighborhoods [Fow20, Kan19]. In

2020, some counties in the Atlanta metropolitan area had a mean of 3600 voters per polling

site; the number of polling sites had been cut statewide in Georgia by 10% since 2013 [Fow20].

In New York City, each polling site had a mean of 4173 voters in 2018. As a comparison,

in 2004, Los Angeles County and Chicago had only an estimated 1300 and 725 voters per

polling site, respectively [Kan19]. However, Los Angeles is infamous for its traffic [Sch21],

which can affect voters’ travel times to polling sites. Los Angeles and Chicago also differ in

the quality of their public transportation, which also affects travel times to polling sites. In

our investigation, we seek both to compare the coverage of polling sites in our six focal cities

and to identify underserved areas within each city.

5.1.1 Related Work

One can use tools from geography to study resource accessibility. Pearce, Witten, and Bar-

tie [PWB06] used a geographical-information-systems (GIS) approach to examine the acces-

sibility of community resources and how it affects health. Hawthorne and Kwan [HK12] used

a GIS approach and a notion of perceived distance to measure healthcare inequality in low-

income urban communities. Brabyn and Barnett [BB04] illustrated that there are regional

variations in geographical accessibility to general-practitioner doctors in New Zealand and

that these regional variations depend on how one measures accessibility.

Another motivation for our study of resource-site coverage is the related problem of sensor

coverage. Given a set S of sensors in a domain Ω ⊆ R2, one seeks to determine whether

every point in Ω is within sensing range of at least one sensor in S. Typically, each sensor

has a fixed, uniform sensing radius rs. In this case, the problem is equivalent to determining

whether or not the domain Ω is covered by balls of radius rs around each s ∈ S. In
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[SG06,SG07], de Silva and Ghrist gave homological criteria for sensor coverage. Approaches

to studying sensor coverage that use computational geometry (specifically, approaches that

involve the Voronoi diagram of S and the Delauney triangulation of S) were discussed in

[LWF03,MKP01].

Our problem is also a coverage problem, but there are important differences. The key

conceptual difference is that we consider neighborhoods whose sizes depend on a filtration

parameter, rather than neighborhoods with a fixed size. Additionally, we do not seek to

determine whether or not balls of any particular radius cover a domain; instead, our goal

is to quantify the coverage at all choices of radius and to determine how the holes in cov-

erage evolve as we increase the filtration parameter. Another difference between our work

and sensor-coverage problems is that our point cloud represents a set of resource sites (in

particular, polling sites), rather than a set of sensors. In a sensor network, pairwise commu-

nication between sensors can play a role in whether or not the sensors are fully connected

to each other (in a graph-theoretic sense) and in determining whether or not a domain is

covered [ZH05]. By contrast, communication between resource sites does not play a role in

access to those resource sites.

Several studies include applications of PH to geospatial data [CJ23, Fen25]. Feng and

Porter [FP21] developed two methods to construct filtrations—one that uses adjacency struc-

tures and one that uses the level-set method [OF03] of front propagation—and applied their

approaches to examine geospatial distributions of voting results in the 2016 United States

presidential election. They identified political islands (i.e., precincts that voted more heavily

for a candidate than their surrounding precincts). In [FP20], Feng and Porter used their

PH approaches to study spatial networks. Friesen and Ziegelmeier [FZ24] used the level-set

PH method of [FP21] to examine the structure of racial segregation in US cities. Stolz,

Harrington, and Porter [SHP16] used a conventional PH approach to examine the geospatial

distribution of voting results in the United Kingdom’s “Brexit” referendum. Hickok, Needell,

and Porter [HNP22] used PH to study geospatial anomalies in COVID-19 case-rate data (see
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also [FHP22]) and vaccination-rate data. Corcoran and Jones [CJ23] used PH to perform

(1) a point-pattern analysis of pubs for many UK cities and (2) a spatiotemporal analysis of

rainfall in the UK. Kauba and Weighill [KW24] used PH to examine demographic patterns

in the Black and Hispanic populations of 100 US cities. Kadeethum and Downs [KD24]

used PH to identify undocumented oil and gas wells from satellite images, and O’Neil and

Tymochko [OT24] used PH to study holes in cooling-center coverage in US cities.

5.2 Our Construction of Weighted VR Complexes

For each city, we construct a weighted VR filtration in which the point cloud X = {xi} is the

set of polling sites in R2 and the weight wi of a point xi is an estimate of the waiting time at

the corresponding polling site. Instead of computing a weighted VR filtration with respect

to Euclidean distance, we define a distance function that estimates the mean amount of time

that it takes to travel to and from a polling site. With respect to this distance function,

the union
⋃

iB(xi, rxi
(t)) (see (4.2)) is the set of points y such that the estimated time

for an individual at y to vote (including waiting time and travel time5 in both directions)

is at most t. The weighted Čech complex Čweighted
t (X,R2, d, {wi}) is an approximation of⋃

iB(xi, rxi
(t)). When the balls B(xi, rxi

(t)) are convex, the weighted Čech complex is

homotopy-equivalent to
⋃

iB(xi, rxi
(t)), so these two complexes have the same homology

(i.e., the same set of holes). The weighted VR complex VRweighted
t (X,R2, d, {wi}) is an

approximation of the weighted Čech complex.

We construct our distance function as follows. Let x and y be two polling sites. We

5Incorporating information (such as waiting times) other than travel times is sensible both in principle and
in practice. In our computational experiments, using only travel times yields results that differ drastically
from those that we present in this chapter.
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estimate the expected time for an individual to travel from x to y and back to be

d̃(x, y) := C(Z(x))min {tcar(x, y), tpub(x, y), twalk(x, y)}

+ [1− C(Z(x))]min {tpub(x, y) , twalk(x, y)} ,

where Z(x) is the zip code that includes x (a polling site), C(Z(x)) is an estimate of the

fraction of voting-age people in Z(x) who can travel by car to a polling site, and tcar(x, y),

tpub(x, y), and twalk(x, y) are estimates of the expected travel times from x to y and back

by car, public transportation, and walking, respectively. We calculate C(Z(x)) by dividing

an estimate of the number of personal vehicles in Z(x) by an estimate of the voting-age

population in Z(x); see Section 5.2.3. We discuss how we calculate tcar, tpub, and twalk in

Section 5.2.1.

Our definition of d̃(x, y) captures the cost (in time) to travel to vote. In particular,

d̃(x, y) is an estimate of the mean travel time for an individual who resides in zip code Z(x)

to travel from x to y and back. We assume that all individuals choose the fastest mode of

transportation that is available to them. Therefore, individuals who can travel by car choose

the fastest option between driving, taking public transportation, and walking. Their travel

time is min {tcar(x, y), tpub(x, y), twalk(x, y)}. Likewise, we assume that individuals who do

not have access to a car choose the fastest option between taking public transportation and

walking. Their travel time is min {tpub(x, y), twalk(x, y)}. Our estimate of the fraction of a

population with access to a car is C(Z(x)), so the fraction without a car is 1 − C(Z(x)).

Therefore, d̃(x, y) is the (estimated) mean time for an individual who resides in zip code

Z(x) to travel from x to y and back.

The function d̃(x, y) is not symmetric (i.e., d̃(x, y) ̸= d̃(y, x)) because C(Z(x)) ̸= C(Z(y)).

However, we need a symmetric function to construct a weighted VR filtration. To construct

a symmetric distance function that is based on d̃(x, y), we define the distance between x and

y to be a weighted average of d̃(x, y) and d̃(y, x), where we determine the weights from the

populations of the zip codes that include x and y. More precisely, we define the distance
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between x and y to be

d(x, y) :=
1

P
[PZ(x)d̃(x, y) + PZ(y)d̃(y, x)] , (5.1)

where PZ(x) and PZ(y) are the populations of zip codes Z(x) and Z(y), respectively, and

P := PZ(x) + PZ(y) is the sum of the populations of Z(x) and Z(y). With respect to this

distance function, the ball B(x, r) is the set of points y such that the expected time for

an individual to travel back and forth between x and y is at most r, where the individual

starts randomly at x or y with probabilities that are weighted by the populations of their

associated zip codes. Although our distance function is not technically a metric (because

it does not satisfy the triangle inequality), we can still construct a weighted VR filtration

using the definition in Section 4.2.

5.2.1 Estimating Travel Times

To compute our distance function (see (5.1)), we need to estimate the pairwise travel times

by car, public transportation, and walking between each pair of polling sites. We measure

these times in minutes.

We estimate the time that it takes to walk between each pair of polling sites using street

networks, which are available through the OpenStreetMap tool [Ope], for each of our cities.

Using OpenStreetMap, we calculate a shortest path (by geographical distance) between each

pair of polling sites. In Figure 5.1, we show an example of a shortest path between two

polling sites in Atlanta.

Let L(x, y) denote the length (which we measure in meters) of a shortest path (by ge-

ographical distance) between polling sites x and y. Our estimate of the walking time (in

minutes) from x to y and back is twalk(x, y) := 2L(x, y)/vwalk, where vwalk = 85.2 meters per

minute is an estimate of the mean walking speed of an adult human [BBH06].

To estimate the travel times by car and public transportation, we use the Google Maps

Distance Matrix API [Goo]. Because of budgetary constraints (and the cost of five dollars
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Figure 5.1: A shortest path (by geographical distance) between two polling sites in zip code

30314 in Atlanta.

per thousand API queries), we use this API to estimate only the travel times between each

polling site and its 25 geographically closest polling sites. We refer to these sites as a polling

site’s 25 nearest neighbors.

For each of the 25 nearest neighbors, we separately calculate both the time from a polling

site to each neighbor and the time to a polling site from each neighbor. These two travel

times are often different because of different traffic conditions or other factors. We estimate

the remaining pairwise travel times as follows. Let G be the unweighted, undirected graph

whose vertices are the polling sites and whose edges connect each vertex to its 25 nearest
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neighbors.6 Let Gcar and Gpub be the weighted, directed graphs whose vertices and edges7

are those of G and whose weights are the travel times (by car and public transportation,

respectively) that we compute using the Google Maps API. The weight of the directed edge

from vertex x to vertex y is the travel time from x to y. Therefore, the weight of the edge

from x to y may differ from the weight of the edge from y to x. For any two polling sites

x and y, let the travel times t̃car(x, y) and t̃pub(x, y) be the length of a shortest weighted

path from x to y in the graphs Gcar and Gpub, respectively. The corresponding symmetrized

travel times tcar(x, y) and tpub(x, y) are

tcar(x, y) := t̃car(x, y) + t̃car(y, x) ,

tpub(x, y) := t̃pub(x, y) + t̃pub(y, x) .

5.2.2 Estimating Waiting Times

Our weighted VR filtrations have weights at each vertex (i.e., polling site) that are given by

an estimate of the mean time that a voter spends (i.e., the mean waiting time) at that polling

site. In a nationwide study of waiting times at polling sites during the 2016 US presidential

election [CHP19], Chen et al. used smartphone data of hundreds of thousands of voters to

estimate waiting times. They also examined potential relationships between waiting times

and racial demographics.

We construct our waiting-time estimates using the congressional-district-level estimates

in [CHP19] (see their Table C.2). For each polling site x, we calculate the mean of the

waiting-time estimates for each congressional district that overlaps with the zip code Z(x)

that contains x. This averaging procedure yields estimates of waiting times at the zip-code

level. (We transform our waiting-time data to the zip-code level because the rest of our data

6The relation of being one of a vertex’s 25 nearest neighbors is not symmetric. Therefore, the degrees of
some vertices are larger than 25.

7We view each undirected edge (xi, xj) of G as a bidirectional edge, and we include both of the associated
directed edges in the directed graphs Gcar and Gpub.
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is at the zip-code level.)

5.2.3 Estimates of Demographic Information

We obtain estimates of demographic data at the zip-code level from 2019 five-year Amer-

ican Community Survey data [US]. We use voting-age population data from their Table

ACSDT5Y2019.B29001 and vehicle-access data from their Table ACSDT5Y2019.B25046.

5.2.4 Polling-Site Zip Codes

Much of our data is at the zip-code level, and we treat a polling site’s zip code as representa-

tive of its local area. Certain polling sites (predominantly government buildings) have their

own zip codes, despite their populations of 0. We adjust the zip codes of such polling sites

to match the zip codes of the directly surrounding areas.

5.2.5 Special Treatments of Our Cities

The city of Atlanta does not include the suburbs of the Atlanta metropolitan area, so we

use the entire area that is served by the Atlanta Regional Commission.

Chicago’s boundary is not convex (especially in the northwest), so we include all areas

of all zip codes, even when only a small portion of a zip code lies within the city of Chicago.

Because of the oddly shaped city boundaries of Los Angeles, which surrounds several

exclaves, we use the entirety of Los Angeles County (except for its islands).

Because of the disconnected nature of New York City, we subdivide it into three regions

(Queens and Brooklyn, Manhattan and the Bronx, and Staten Island) and treat each region

separately. We then combine our results for the three regions into a single presentation. For

example, we combine the PDs into a single PD for all of New York City.

For more information about the treatment of each city, see the file “readme.txt” in our
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repository at https://bitbucket.org/jerryluo8/coveragetda/src/main/.

5.3 Results

We compute the PH of the weighted VR filtrations of Section 5.2 for Atlanta, Chicago,

Jacksonville, Los Angeles County, New York City, and Salt Lake City. We show their PDs

in Figure 5.2. We examine 0D and 1D homology classes. The 0D homology classes represent

holes between different connected regions of coverage, and the 1D homology classes represent

holes in coverage that are bounded by closed paths. A homology class that dies at filtration-

parameter value t represents a hole in coverage that persists until time t. An individual who

lives in a hole in coverage that dies at t needs t minutes (including both waiting time at a

polling site and travel time back and forth to the site) to cast a vote.

In our analysis, we emphasize homology-class death values. We view homology-class

birth values as largely irrelevant to our application. A homology-class birth value indicates

the filtration-parameter value at which a coverage hole materializes. We use birth values

only in the following way. If the death value divided by the birth value (i.e., the death/birth

ratio) of a homology class is very small (i.e., it is close to 1), then it is possible that this

class is merely an artifact of using a VR approximation of a Čech complex. We thus focus

on homology classes whose death/birth ratios are at least 1.05.8 Beyond this, we use only

the homology-class death values and death simplices.

Larger homology-class death values suggest that a city may have worse coverage, and a

wider distribution of death values suggests that there may be more variation in polling-site

accessibility within a city. In Figure 5.3, we show a box plot of the distribution of homology-

class death values for each city. In Table 5.1, we show the medians and variances of the 0D

and 1D homology-class death values for each city.

8Interested readers can explore thresholds other than 1.05 using our data, which is available at
https://bitbucket.org/jerryluo8/coveragetda/src/main/. We describe the data in detail in the file
“readme.txt”.
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(a) Atlanta (b) Chicago

(c) Jacksonville (Florida) (d) Los Angeles County

(e) New York City (f) Salt Lake City

Figure 5.2: The PDs for each city for the PH of our weighted VR complexes.
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Figure 5.3: Box plots of the death values of the 0D and 1D homology classes for each city.

We only consider homology classes whose death/birth ratio is at least 1.05. Salt Lake City

has no such 1D homology classes.
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City
Homology

Dimension

Median

(minutes)

Variance

(minutes)

Atlanta
0 59.9 75.4

1 77.1 150.8

Chicago
0 53.1 30.2

1 66.3 59.7

Jacksonville (Florida)
0 42.8 75.7

1 57.5 394.4

Los Angeles County
0 59.6 53.3

1 76.1 84.6

New York City
0 65.1 49.2

1 82.9 207.1

Salt Lake City
0 82.8 37.3

1 N/A N/A

Table 5.1: The medians and variances of the homology-class death values for each city. (As

we discussed in the main text, we consider Los Angeles County rather than only the city of

Los Angeles.) We consider homology classes whose death/birth ratio is at least 1.05. Salt

Lake City has no such 1D homology classes.
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(a) 0D homology classes (b) 1D homology classes

Figure 5.4: Histograms of the death values of the 0D and 1D homology classes for Atlanta

and Chicago. We only consider homology classes whose death/birth ratio is at least 1.05.

We compare the coverages of the cities by examining the death values in the PDs. For

example, in the PDs for Atlanta and Chicago in Figure 5.2, we see that Atlanta’s homology

classes tend to die later than Chicago’s homology classes. We also see this in the box plots

in Figures 5.3 and 5.4, in which we plot the distributions of death values for Atlanta and

Chicago. Our PDs and visualizations of summary statistics suggest that Chicago has better

polling-site coverage than Atlanta.

We use the death simplices to locate and visualize holes in polling-site coverage. We

interpret the death simplex of a homology class as the epicenter of an associated coverage

hole because the death simplex represents the last part of the hole to be covered. The

death simplex of a 0D homology class is an edge between two polling sites; there is a hole

in coverage between those two sites. Similarly, the death simplex of a 1D homology class is

a triangle that is the convex hull of three polling sites; there is a hole in coverage between

those three sites. In Figures 5.5 and 5.6, we show the death simplices with the largest death
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values9 for the 0D and 1D homology classes,10 respectively. For example, consider panels

(a) and (b) of Figures 5.5 and 5.6, in which we show the death simplices of the 0D and

1D homology-classes for Atlanta and Chicago. The areas of lowest coverage (i.e., the areas

that have the death simplices with the largest death values) in Atlanta tend to be in the

southwest, whereas the areas of lowest coverage in Chicago tend to be in the northwest and

southeast. There is one 1D homology class in Atlanta that has a significantly larger death

filtration value than the other classes in Atlanta and any of the classes in Chicago. This

homology class represents a hole in coverage in southwest Atlanta (see Figure 5.6a).

5.4 Conclusions and Discussion

5.4.1 Summary

We showed that PH is a helpful approach to studying accessibility and equitability of re-

sources. It allows one to examine holes in resource coverage with respect to an appropriate

choice of distance, which one constructs to incorporate important features of a problem of

interest. The distance can be based on geography, time, or something else. In the present

chapter, we used PH to study and quantify holes in polling-site coverage in six US cities

(technically, in five cities and Los Angeles County). For each city, we constructed a filtration

in which a homology class that dies at time t represents a geographical region in which it

9More precisely, for each city and each homology dimension (0 and 1), we show the death simplices whose
death values have a z-score of at least 1. We calculate the z-score as follows. Let d be the death value of a
p-dimensional homology class (where p = 0 or p = 1) for city C. The z-score of d is z = (d−µC,p)/σC,p, where
µC,p and σC,p are the mean and standard deviation of the distribution of death values of the p-dimensional
homology class for city C.

10In Figure 5.6, in which we show the death simplices of the 1D homology classes, some of the polling
sites appear to be covered by death simplices whose vertices are other polling sites. At least two factors
may contribute to this. One factor is that our measure of distance is not a Euclidean metric, even though
we plot the death simplices in Figure 5.6 as Euclidean triangles. The Euclidean triangles can sometimes
cover polling sites that are not among its vertices, but geodesic triangles may not cover those polling sites.
Another possibility is that a polling site x has such a long waiting time that it does not show up in the
filtration until after the homology class whose death simplex includes x has already died.

102



(a) Atlanta (b) Chicago

(c) Jacksonville (Florida) (d) Los Angeles County

(e) New York City (f) Salt Lake City

Figure 5.5: Death simplices with the largest death values for the 0D homology classes. The

colors correspond to the death values (in minutes). We only consider homology classes whose

death/birth ratio is at least 1.05.
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(a) Atlanta (b) Chicago

(c) Jacksonville (Florida) (d) Los Angeles County

(e) New York City (f) Salt Lake City

Figure 5.6: Death simplices with the largest death values for the 1D homology classes. The

colors correspond to the death values (in minutes). We only consider homology classes whose

death/birth ratio is at least 1.05.
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takes t minutes to cast a vote (including both travel time and waiting time). We interpreted

the death simplex of a homology class as the location of the corresponding hole in resource

coverage. The information in the PH allowed us both to compare the accessibility of voting

across our chosen cities and to determine the locations of the coverage holes within each city.

A key benefit of our use of PH is that it enabled us to identify holes in polling-site coverage

at all time scales. It also allowed us to use a distance that we designed for the problem at

hand, rather than merely using geographical distance, which does not capture important

factors in resource accessibility [BB06]. We based our distance function on estimates of

travel time, which is more reasonable and accurate than geographical distance for capturing

resource accessibility [PWB06].

5.4.2 Limitations

To conduct our study, we needed to estimate a variety of quantities (see Section 5.2), in-

cluding travel times, waiting times, and demographic information. We also made several

simplifications because of computational and monetary constraints. We now discuss some

issues that are important to address before attempting to incorporate our approach into

policy-making.

One limitation of our study is our estimation of travel times. As we discussed in Section

5.2.1, we computed travel times using the Google Maps API. Because of monetary con-

straints, we only computed a subset of the relevant travel times and used a graph-based

estimate to determine the others. Additionally, we computed each travel time between

polling sites only once. Computing more precise estimates of travel times is important to

better capture the accessibility of polling sites. One way to do this is to compute travel times

between the same two polling sites multiple times across different days and times of day and

take an average. Such additional computations can also help yield estimates of best-case

and worst-case scenarios.
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Another limitation of our study is the granularity of our data. As we discussed in Section

5.2.2, our waiting-time data is at the scale of congressional districts. Because there is het-

erogeneity in the waiting times at different polling sites in the same congressional district,

it is important to obtain finer-grained data for the waiting times at polling sites. Having

finer-grained waiting times (e.g., if possible, procuring an estimated waiting time for each

polling site) would improve our ability to capture voting accessibility.

We also made several topological approximations. We worked with a weighted VR filtra-

tion, which approximates a weighted Čech filtration, which in turn approximates the nested

set {
⋃

iB(xi, rxi
(t))}t∈R of spaces, where {xi} is a set of polling sites and rxi

(t) is the radius

function that we defined in Section 5.2. The nested set of spaces is directly relevant to

our application, as the holes in
⋃

iB(xi, rxi
(t)) are the true holes in polling-site coverage.

We made our approximations, which are standard in TDA and are well-justified (see our

discussion in Section 4.2) [OPT17], to reduce computational cost. However, the convexity

condition of the Nerve Theorem, which justifies the approximation of
⋃

iB(xi, rxi
(t)) by a

weighted Čech complex, is not guaranteed to be satisfied for all times t. The Nerve Theorem

implies that the weighted Čech complex is homotopy-equivalent to
⋃

iB(xi, rxi
(t)) whenever

the balls B(xi, rxi
(t)) are convex. This condition always holds in Euclidean space, but it is

not guaranteed to hold in the space that we defined in Section 5.2.11 Homotopy-equivalence

is important because homotopy-equivalent spaces have the same homology and thus have

the same set of holes.

Finally, our approach only detects holes in the convex hull of a set of resource sites.

11Although our space is not Euclidean, it is still reasonable to assume that it is approximately locally
Euclidean. That is, for each polling site x, there is a constant a > 0 such that if y is sufficiently close to
x, then d(x, y) ≈ a · dE(x, y), where d(x, y) is defined by (5.1) and dE(x, y) is the Euclidean distance. This
approximation holds because car-ownership rates and traffic conditions do not vary much within a sufficiently
small neighborhood. We verified empirically that our distance function is approximately locally Euclidean
by showing that, for each polling site x, there is a strong linear correlation between the pairwise distances
d(x, y) and the pairwise Euclidean distances dE(x, y) when y is sufficiently close to x. Because our distance
function is approximately locally Euclidean, sufficiently small balls (with respect to our distance function)
behave like Euclidean balls, so the Nerve Theorem is applicable for sufficiently small filtration values.
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Although this may be inconsequential if resource sites are sufficiently spread out geographi-

cally, it can be problematic if the resource sites are overly concentrated near a few locations.

One way to address this issue is to incorporate city boundaries into the construction of the

filtrations. This would help capture holes in coverage in regions that lie outside the convex

hull of the resource sites, and it would also help identify the filtration-parameter value t at

which an entire city is covered by the balls B(xi, rxi
(t)).

5.4.3 Future Work

As we discussed in Section 5.4.2, we made several topological approximations of our math-

ematical object of interest, which is the nested set {
⋃

iB(xi, rxi
(t))}t∈R of spaces. In-

stead of using a weighted VR filtration, one can construct a more direct approximation

of {
⋃

iB(xi, rxi
(t))}t∈R. One can first discretize a city by imposing a grid onto it. For each

point on such a grid, one can then construct the filtered cubical complex that is induced

by the travel time to the nearest polling site. However, this is much more computationally

expensive than our approach, and it would also entail many more travel-time queries (which

cost money) than in our work.12

It is also important to incorporate city boundaries into the construction of filtrations.

One way to do this is as follows. Let x1, . . . , xn denote the resource sites, and let y1, . . . , ym

denote the points that one obtains by discretizing a city boundary. One can extend our

distance function (5.1) by defining13

d(xi, yj) :=
2

P
[PZ(xi)d̃(xi, yj) + PZ(yj)d̃(yj, xi)] , (5.2)

12Our distance function (5.1) is symmetric, but recall that it is not a metric because it does not satisfy the
triangle inequality. Therefore, we cannot use techniques such as distance transforms and level-set propagation
to reduce the computational complexity of calculating the filtration {

⋃
i B(xi, rxi

(t))}
t∈R.

13The factor of 2 arises from the fact that xi is a resource site but yj is not.
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where P , PZ , and d̃ are as in the distance function (5.1) and

d(yi, yj) =


0 , yi and yj are adjacent points of the discretized city boundary

∞ , otherwise .

(5.3)

At each filtration-parameter value, the simplicial complex that one constructs using the

distance function (5.1) with the extensions (5.2) and (5.3) includes both the points that one

obtains by discretizing the boundary and the edges that connect adjacent boundary points.

The largest death value is then the filtration-parameter value t that corresponds to the time

at which an entire city is covered by the balls {B(xi, rxi
(t))} (i.e., when there are no longer

any holes in coverage).

We used death simplices to locate holes in coverage, but other approaches are also pos-

sible. For example, by calculating minimal generators [LTH21], one can identify repre-

sentative cycles that encircle holes. The topological pipeline “hyperTDA” was introduced

recently [BYM22] to analyze the structure of minimal generators by constructing a hyper-

graph, calculating hypergraph centrality measures, and employing community detection.

This approach may provide insights into the spatial structure of minimal generators. An-

other potentially viable approach is to use decorated merge trees (DMTs) [CHM22] to locate

holes in coverage. DMTs allow one to match holes with associated clusters of points.

Although we have explored a specific case study (namely, the accessibility of polling

sites), it is also relevant to conduct similar investigations for other resources, such as public

parks, hospitals, vaccine distribution centers, grocery stores, Planned Parenthood clinics,

and Department of Motor Vehicles (DMV) locations. One can use similar data to construct

a filtration, although it may be necessary to modify the choices of distance and weighting.

One can also use ideas from mobility theory [BBG18] to help construct suitable distances

and weightings. For example, all DMV offices offer largely the same services, so it seems

reasonable to assume that people will go to their nearest office. Therefore, in a study of

DMV accessibility, it seems appropriate to use travel time as a distance function, just as

108



we did in our analysis of polling sites. However, in other applications, it is not reasonable

to use travel time alone as a distance function. For example, different grocery stores14 may

offer different products at different prices, so travel time alone may not be appropriate as

a choice of distance function. Additionally, although waiting time is a significant factor for

investigating the coverage of polling sites, there are many applications for which it does not

make sense to incorporate waiting time. For example, the time that is spent in a public park

or recreation center is typically not a barrier to access. In applications in which waiting times

are not an accessibility factor, it seems more appropriate to use a standard VR filtration

than a weighted VR filtration. With salient modifications (such as those that we described

in this subsection and in Section 5.4.2), one can apply our approach to many other types of

resource sites.

14See [HLS24] for a recent study of grocery-store accessibility.
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CHAPTER 6

Conclusion

In this dissertation, we presented two projects in network science and relevant background

on these topics. In Chapter 1, we introduced the topics in this dissertation. In Chapter 2, we

provided background on fundamental ideas in network science. In Chapter 3, we presented

and analyzed a novel modeling framework for interacting hosts with microbiome exchange.

In Chapter 4, we discussed relevant background on persistent homology. In Chapter 5, we

developed our PH methodology for the classification of resource coverage and examined the

coverage of polling sites in the 2016 US presidential election.

6.1 Interacting Hosts with Microbiome Exchange

In Chapter 3, we developed a novel framework to model the microbiome dynamics of living

hosts that incorporates both the local dynamics within an environment and exchanges of

microbiomes between environments. Our framework extends existing metacommunity the-

ory by accounting for the discrete nature of host interactions. Unlike classical mass-effects

models, our framework incorporates two distinct parameters that control interaction fre-

quencies and interaction strengths. Using both analytical approximations and numerical

computations, we demonstrated that both parameters are necessary to determine micro-

biome dynamics.

We developed approximations in three parameter regions, and we proved their accuracy

in those regions. Our low-frequency approximation (LFA) gives a good approximation of mi-
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crobiome dynamics when the local dynamics are much faster than the interactions between

hosts. Our high-frequency, low-strength approximation (HFLSA) gives a good approxima-

tion when interactions are frequent but weak, resulting in a model with the same form as

the mass-effects model (3.3). Finally, our high-frequency, constant-strength approximation

(HFCSA) accurately predicts the rapid convergence of all hosts’ microbiome dynamics when

interactions are frequent and have constant interaction strength. We validated the three

approximations through numerical experiments on an illustrative model of microbiome dy-

namics for a range of parameter values.

Our modeling framework provides a foundation for many promising future research direc-

tions in microbiome dynamics. In our framework’s current form, one can use it to study the

effects of host interactions in many ecological models of local dynamics. One can also use it

to study the impact of the structure of interaction networks on microbiome dynamics. There

are many possible extensions of our modeling framework. We discuss several extensions in

detail in Section 3.6.2.

6.2 Persistent Homology for Resource Coverage

In Chapter 5, we showed that persistent homology (PH), which is a type of topological data

analysis (TDA), is a helpful approach to studying accessibility and equitability of resources.

It allows one to examine holes in resource coverage with respect to an appropriate choice of

distance, which one constructs to incorporate important features of a problem of interest.

The distance can be based on geography, time, or something else. We used PH to study

and quantify holes in polling-site coverage in six US cities (technically, in five cities and

Los Angeles County). For each city, we constructed a filtration in which a homology class

that dies at time t represents a geographical region in which it takes t minutes to cast

a vote (including both travel time and waiting time). We interpreted the death simplex

of a homology class as the location of the corresponding hole in resource coverage. The
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information in the PH allowed us both to compare the accessibility of voting across our

chosen cities and to determine the locations of the coverage holes within each city.

A key benefit of our use of PH is that it enabled us to identify holes in polling-site

coverage at all time scales. It also allowed us to use a distance that we designed for the

problem at hand, rather than merely using geographical distance, which does not capture

important factors in resource accessibility. We based our distance function on estimates of

travel time, which is more reasonable and accurate than geographical distance for capturing

resource accessibility.

Our method had a variety of limitations, most of which stemmed from inadequate access

to data. We proposed techniques for improving the accuracy of our method when enough data

and computational resources are available. It is also important to incorporate city boundaries

into the construction of filtrations. This allows classification of polling-site coverage outside

the convex hull of polling sites.

Although we explored a specific case study (namely, the accessibility of polling sites), it

is also relevant to conduct similar investigations for other resources, such as public parks,

hospitals, vaccine distribution centers, grocery stores, Planned Parenthood clinics, and De-

partment of Motor Vehicles (DMV) locations. One can use similar data to construct filtra-

tions, although it may be necessary to modify the choices of distance and weighting. For

example, different grocery stores may offer different products at different prices, so travel

time alone may not be appropriate as a choice of distance function.

6.3 Final Thoughts

In this dissertation, we presented two projects in network science. In the first project,

we took a theory-driven approach to studying the microbiomes of interacting hosts. We

developed and analyzed a novel modeling framework that captures the discrete nature of

host interactions. In the second project, we applied ideas from algebraic topology to data
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analysis. We used persistent homology to classify the coverage of resource sites. These

projects employed different mathematical approaches, yielding distinct insights into their

respective applications.

113



REFERENCES

[ACG19] Hirokazu Anai, Frédéric Chazal, Marc Glisse, Yuichi Ike, Hiroya Inakoshi, Raphaël
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