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Abstract

Instability in spreading thin liquid films arises from the influence

of a driving force and results in the distortion of the leading edge of

the film (the contact line). We study this instability in thin films

placed on a horizontal substrate and driven by an induced surface

tension gradient. We achieve controlled evolution of the contact line

distortion by imposing optical perturbations behind the contact line

at the onset of the instability. This enables us to directly measure the

magnitude of both the initial and evolved disturbances, the ratio of

which is defined to be the transient amplification. From a theoretical

perspective, the presence of transient amplification is predicted from

the non-normality of linearized evolution operator. In this paper, we
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compare the experimentally measured values of transient amplification

to theoretically calculated values. Preliminary results suggest that one

may predict transient amplification from the base state of the system

provided the size and shape of the imposed disturbance are known.

1 Introduction

Contact line instability in thin films results from the influence of a driving

force. An everyday example of this involves painting a wall. When too much

paint is applied to a wall, it flows down the wall. Initially, the leading edge

(contact line) is straight, but as gravity continues to drive the paint down

the wall the contact line becomes distorted and drips (fingers) form.

In this example, instability results from small disturbances caused by the

texture of the wall. We are interested in studying how such intially small

disturbances grow in time. In fact, how much these disturbances have grown

is closely related to what we call the transient amplification.

Transient amplification is important not only in these studies, but is also

related to similar phenomena in other systems (the transition to turbulence).

Nevertheless, transient amplification is much easier to study in the context

of thin films because their flows do not become turbulent as the Reynolds

number is small (Re << 1) [1]. Once understood in this simpler context, we

hope the knowledge of transient amplification can provide insight into more

complicated systems.
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2 Theoretical Background

We study the spreading of a thermally driven thin film on a horizontal sur-

face. This flow is governed by conservation laws (momentum, energy, and

mass) described by the Navier-Stokes equations. In the case of slowly mov-

ing films (Re << 1), these equations can be simplified, using the lubrication

approximation (which involves depth averaging the fluid velocity over the

film thickness), to a single partial differential equation for the film thickness

[2]. The behavior of small disturbances is described by the linearized evolu-

tion operator of this partial differential equation, the eigenfunctions of which

are not orthogonal. That is, the linearized evolution operator is said to be

non-normal1. This can lead to transient amplification.

The concept of non-normality is best understood by a simple example.

Consider a two-dimensional system whose time-evolution (at least near the

equilibria) is governed by two eigenvalues and their corresponding eigen-

vectors. In a ”normal” system, these eigenvectors are orthogonal, and the

dynamics of the system is determined entirely by the time-evolution of the

norm of the eigenvectors, whose growth/decay rates are determined by the

eigenvalues (Fig. 1a,b). In a non-normal system, however, the eigenvectors

are not orthogonal(Fig. 1c,d). As a result, linear stability analysis fails to

capture the short-term (transient) behavior of the system. In the case of two

negative eigenvalues, the exponential decay predicted by the eigenvalues can

be preceded by an initial transient growth, but the system still eventually

approaches equilibrium. However, when there is one positive eigenvalue, as is

1 Mathematically, non-normal means that LL† 6= L†L, where L is the linearized evo-

lution operator and L† is its adjoint.
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the case for our studies, transient growth has more significant implications. If

this transient growth is sufficiently strong, it can push the system far enough

away from equilibrium so that it enters a regime in which nonlinear terms

can no longer be neglected.

The strength of this growth is related to the transient amplification and,

in fact, we formally define transient amplification for these studies to be

the amount by which the transient growth of an initially small disturbance

has amplified the contact line distortion beyond what is predicted by the

positive eigenvalue. It is then natural to consider an optimal disturbance or

a disturbance that produces the maximum transient amplification for given

initial conditions. The structure of such a disturbance is simply a uniform

displacement of fluid by some small amount that spans the entire system.

This slight increase in fluid results in faster flow2 and at later times the

perturbed fluid is more advanced than the unperturbed fluid. The resulting

disturbance amplitude is given by volume conservation.

Numerical computation of the maximum transient amplification resulting

from optimal disturbances has been done [2], and these values provide us with

an upper bound for what we expect to see experimentally.

3 Experimental Background

To study contact line instability experimentally, we project a light gradient

onto a thin film of silicone oil on horizontal substrate (Fig. 2). This light

2compared to the unperturbed film as fluid velocity is directly proportional to film

thickness
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gradient induces a temperature gradient, which then produces a surface ten-

sion gradient across the film. This, in turn, drives fluid flow from warmer

regions to colder regions (i.e, from regions of higher surface tension to those

of lower surface tension) [3]. Once fluid flow has been established, the film

reaches an equilibrium shape that depends on the driving force (Fig. 3).

Ambient perturbations may then cause instability in the contact line and

finger formation. This alone does not provide much insight into how to char-

acterize the transient amplification, as it is difficult to quantify the ambient

perturbations and their impact on the system. However, we can quantify the

initial disturbance by applying controlled perturbations after the equilibrium

has been reached but before the contact line becomes distorted. The contact

line instability then evolves in a controlled fashion, so we can characterize

quantitatively the effect of applied perturbations and the resulting transient

amplification.

In our experiments, we apply sinusoidal optical perturbations, in the form

of alternating light and dark bands, to the oil behind the contact line in a

direction transverse to the previously established fluid flow (Fig. 4). These

perturbations indirectly induce local fluid flow from warmer regions to colder

regions, causing local variations in film thickness (Fig. 5) and ultimately

resulting in finger formation at the locations of local elevations.

4 Experimental Measurements

Experimentally, transient amplification γ is defined as

γ ≡ ‖δhf‖
‖δhi‖

exp(−βt) (1)
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where ‖δhf‖ is the magnitude of the final disturbance and ‖δhi‖ is the mag-

nitude of the initial disturbance. Both of these are characterized by film

displacements with respect to the unperturbed film. One also factors out

a background exponential growth rate, exp(−βt), that is always present. If

growth is purely exponential, then the ratio
‖δhf‖
‖δhi‖ equals exp(βt), where t is

the elapsed time between measurements of δhi and δhf . Therefore, transient

amplification must always be at least one, with equality holding when growth

is purely exponential (equivalently, when the disturbance is not transiently

amplified).

For our experiments,

γ =
f(x = A(tf ))

hi(ti)
exp(−β(tf − ti)) (2)

The magnitude of the initial disturbance hi, measured via interferometry, is

characterized by the height (depth) of the local elevations (depressions) that

result from the applied optical perturbations at time ti.

One determines the magnitude of the final disturbance by measuring the

difference in film thickness between the perturbed and unperturbed film at

some horizontal location. For convenience, we choose the location of the

unperturbed contact line, at which this difference simplifies to the height

of the perturbed film at the unperturbed contact line3. We find that the

unperturbed contact line location is most easily found if we approximate

the fingers as sinusoidal. The location of the unperturbed contact line (for

a film driven for the same amount of time as the perturbed film) is then

halfway between the maximum and minimum of the sine curve. Therefore,

3the film height of the unperturbed film at the unperturbed contact line is always zero

by definition of the contact line
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the horizontal displacement of the contact line due to the perturbation is

equal to the amplitude of the sine wave. The height of the perturbed film

at the unperturbed contact line is then found by evaluating a polynomial fit

f(x) of the film profile with horizontal position x equal to the amplitude A

of the fingers at time tf (Fig. 6). We determine the exponential growth rate

by plotting the natural log of the finger amplitude as a function of time and

estimating the slope of the linear region (Fig. 7).

5 Theoretical Calculations

To solve the partial differential equation for film thickenss (described earlier),

boundary conditions need to be specified. In the slip model [2], these bound-

ary conditions are specified by a slip coefficient (which allows for a difference

in velocity between the fluid and the substrate) and the microscopic slope

of the fluid at the contact line. As these values cannot be extracted from

experimental data, they are used as free parameters to fit the model to the

experimentally determined film profile of the undisturbed flow (8). Using

this as the base state, the evolution of small disturbances to this state is

computed numerically.

As mentioned earlier, an optimal disturbance is defined to be a uniform

displacement of fluid that spans the entire system. Calculating the resulting

transient amplification provides an upper bound for experimentally observed

disturbances, as actual disturbances are sub-optimal in that they neither

span the entire film nor displace the fluid uniformly. Although this provides

us with an upper limit, we find the behavior of the resulting transient am-
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plification from experimental and optimal disturbances to be too different to

make quantitative comparisons. Accordingly, we are studying experimentally

realistic disturbances numerically.

6 Results

In order to compute numerically the transient amplification for sub-optimal

disturbances, we also need to extract the disturbance profile from the exper-

imental data and input it into the model along with the fitted base state.

Upon reviewing our preliminary results (Fig. 9), we realized that our calcu-

lations need to be revised. First, both our experimental measurements and

theoretical computations yield transient amplification are less than unity.

We consider these seemingly contradictory results for experimental measure-

ments and numerical computations separately.

The numerical model used in these calculations was initially constructed

to calculate transient amplification resulting from optimal disturbances. Re-

call that optimal disturbances span the entire system and are therefore im-

mediately at the contact line. In this case, the computation of transient

amplification beginning at t = 0 makes sense, as the disturbance is instanta-

neously at the contact line. However, for non-optimal disturbances located

away from the contact line, we expect to observe some propagation time that

must elapse before the imposed disturbance actually reaches the contact line.

Consequently it does not make sense to factor out the exponential growth

rate of the disturbance at the contact line when the disturbance is not yet

there. At present, we are modifying the model to determine this propagation
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time and to begin computating the transient amplification at this time.

Experimentally, the time-evolution of the transient amplification can be

explained by two effects. The first of these is identical to the modification

required for the numerical model. The imposed disturbance is not instanta-

neously located at the contact line; instead, there is some propagation time

present that must be incorporated. Second, the contact line distortion as a

function of time exhibits rather peculiar behavior (Fig. 10). The contact

line distortion grows initially, then disappears entirely, and finally reappears

later. This unexpected behavior is actually the result of a secondary thermal

effect of the perturbation. While the perturbation is applied, a temperature

gradient develops in the fluid between the contact line and the location of

the applied perturbations. As a result, the fluid in the vicinity of the light

bands of the perturbation advances faster than that in the dark regions (this

corresponds to the first peak in fig. 10). Once the perturbation is turned off,

this effect immediately begins to vanish, and regions corresponding to dark

bands move faster. In fact, this fluid reaches and then advances beyond the

fluid that was pushed ahead by the light perturbations. We are presently

correcting our measurements to account for this.

7 Conclusions

There have been claims that non-normality explains the transition to turbu-

lence in many fluid flow problems [4], however, no quantitative comparisons

between experiment and theory currently exist.

Modifications we made to the existing experimental model allow us for the
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first time to calculate transient amplification for sub-optimal disturbances by

inputting the experimentally determined disturbance profile into the compu-

tational model. We find that transient amplification values for sub-optimal

disturbances that are located away from the contact line have an associated

time delay as there is some amount of time required for these disturbances

to propagate to the contact line.

Preliminary results suggest that quantitative comparisons between exper-

iment and theory as well as possibly even theoretical predictions of transient

amplification for given initial conditions are possible.
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Figure 1: (a) Two orthogonal eigenvectors (black) and their resulting norm

(red). (b) Time evolved eigenvectors (black) and their norm (red) for the

case of two negative eigenvalues. The magnitudes of both vectors will decay

monotonically in time, and it is therefore expected (from standard linear sta-

bility analysis) that their norm will behave in a similar manner. In fact, this

is indeed the case when the vectors are orthogonal. However, the situation

is much different when eigenvectors are not orthogonal, as in (c) and (d).

(d) represents the time-evolution of vectors in (c), both of which have nega-

tive eigenvalues. Despite the fact that the magnitudes of both eigenvectors

decrease, the norm of the two actually experiences a transient growth that

precedes the decay predicted by standard linear stability analysis.
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Figure 2: Initial experimental setup. Light is projected onto the substrate on

which the oil has been placed. (The substrate has been enlarged and rotated

in the lower portion of the figure.) The oil placed on the substrate is below

the contact line (shown in red). The applied light gradient indirectly induces

a surface tension gradient, driving fluid flow toward the darker region.
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Figure 3: Theoretically predicted base (initial) state of film. Experimentally,

this state is achieved by an induced surface tension gradient. Color represents

film height, ranging from 0 (blue) to 2 (red) in non-dimensional units. Fluid

flows toward the negative x direction, the y direction is transverse to the

fluid flow, and the vertical axis gives the film thickness in non-dimensional

units.
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Figure 4: Depiction of applied optical perturbations and resulting fingers.

Perturbations are applied while the contact line is still straight, and fingers

form after the perturbations are turned off. We vary both the wavelength

and width of the perturbations effectively controlling the size of the resulting

disturbance.
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Figure 5: Film just after perturbations have been applied. The local vari-

ations in film thickness behind the contact line are a result of the applied

perturbations. Color represents film height, ranging from 0 (blue) to 2 (red)

in non-dimensional units. Fluid flows toward the negative x direction, the y

direction is transverse to the fluid flow, and the vertical axis gives the film

thickness in non-dimensional units.
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Figure 6: Measurement of the magnitude of final disturbance δhf . The

dotted line represents the unperturbed profile, and the solid line represents

the perturbed profile. The magnitude of the final disturbance is measured at

the location of the unperturbed contact line by evaluating a polynomial fit

f(x) of the perturbed profile height at the finger amplitude x = A. That is,

we determine the horizontal distance between the perturbed and unperturbed

contact lines. This finger amplitude grows with time and is evaluated at tf .
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Figure 7: Natural log of finger amplitude as a function of time. The first

region shows transient growth, the middle region shows exponential growth,

and the right region represents when nonlinear terms become significant.
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Figure 8: Theoretical fit of initial experimental film profile (prior to onset of

instability) achieved by optimizing two free parameters. The differences in

the tail thickness result from the fact that theoretical calculations consider

a constant fluid flux at the tail while the total volume of fluid is constant in

experiments.
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Figure 9: Numerically calculated and experimentally measured transient am-

plification as a function of time. The dip in transient amplification below one

in the theory (red) is attributed to a time delay related to the propagation

time required for a disturbance to reach the contact line. Experimentally,

the dip in transient amplification results in part from the propagation time

of the disturbance and in part from a secondary thermal effect that results

from applied perturbations.
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Figure 10: Contact line distortion (natural log of the finger amplitude) as a

function of time (seconds). The initial peak is a consequence of a secondary

thermal effect that results from the applied perturbations. Once the thermal

disturbances dissipate (dip at t = 200), the contact line experiences the

expected distortion.
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