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Mathematics Genealogies and The Movements of Academics

From the Mathematics Genealogy Project,
a database of maths-related PhD theses,
I extract the movements of academics be-
tween universities on an international scale.
I show that the extracted movements are
incompatible with several features of a
random graph based on the configuration
model. Using Bayesian hypothesis testing,
I find evidence that an academic is more
likely to move after their PhD if their su-
pervisor has moved since their own PhD. I
discuss how assortative mixing potentially
gives rise to this correlation. Considering
only the movements between 187 US uni-
versities, I show that academics move, at
least indirectly, between every pair of uni-
versities. Finally, I explore time dependent
trends in the movements and, in two cases,
show how they are consistent with historical
events.

1 Introduction

There are a number of questions regarding
academia for which answers are formed through
consensus. An example would be the surveys that
underlie many university league tables. Despite
the controversy such league tables often entail [1],
they have become an indispensable reference for
the application process that every student must
go through. Bowman and Bastedo have found evi-
dence of league tables significantly affecting where
applications are made [2]. Hence, there is moti-
vation to find a more acceptable or, at least, less
disputable alternative to consensus.

The Mathematics Genealogy Project (MGP) is
a database of completed mathematics PhDs where
mathematics is used in the broadest sense to in-
clude statistics, computer science, etc. [3]. MGP
is discussed in detail in Section 3.1. Researchers
have recently used the large volume of data gath-
ered by MGP, as an alternative to consensus, to
gain insights into academia. Malmgren, Ottino &

Amaral study the role of mentorship in protégé
performance through the number of PhD students
an academic supervises [4]. Myer, Mucha & Porter
apply the method of hubs and authorities [5] to the
universities found in MGP and establish that au-
thority scores correlate with league table rankings
[6].

Academics will occasionally change the institu-
tion they are affiliated with. The process of an
academic changing institution in their career, from
PhD onwards, will be referred to as the academic
moving. The moves an academic makes will be
influenced by numerous considerations, some of
which may be unique to the individual. In a sam-
ple containing a large number of moves by many
academics, the widely important considerations
will result in the most significant trends. What
considerations are widely important is unclear and
it could be that, on a large-scale, movements can
be treated as random. If large-scale movements
do correlate with certain factors, the underlying
causes may still remain uncertain; it is known to
be difficult to determine the root of a correlation
when there are both viable social and environmen-
tal causes [7].

While the subject of this project is not physics
in the strictest sense, the topic is one that is likely
to be of interest and relevant to a physicist, if not
to all with an academic background. The methods
of analysis applied to the data are widely transfer-
able to many branches of science. In particular,
networks have applications in statistical mechan-
ics [8] and researchers in the field of network theory
often have a background in physics [9, 10].

The rest of the report is as follows: In Section
2, I give a background for networks and Bayesian
hypothesis testing. In Section 3, I discuss MGP
in detail and use the data to extract movements
of academics between universities, explaining my
procedure. With the movements, I create a net-
work. In Section 4.1, I develop a random graph
model and compare it to the movement network
obtained from MGP. In Section 4.2, I present evi-
dence, based on Bayesian hypothesis testing tech-
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niques [11], that an academic is more likely to have
moved at least once in their career to date if their
supervisor has moved at least once. I then discuss
how such a dependency could be a result of assor-
tativity [12, 5]. In Section 4.3, I investigate the
network of movements between 187 US universi-
ties; and, in Section 4.4, I examine time-dependent
movement trends over the past century, highlight-
ing two universities with trends of particular in-
terest. In Section 5, I conclude and comment on
my results.

2 Background

2.1 Network Theory

2.1.1 General Definitions

A network is a system containing a number of ob-
jects that all have a common defining property and
interact in some way. Details are discarded; only
the aggregate structure is considered. A graph is
a representation of a network where interacting
objects are depicted as dots (called nodes) con-
nected by lines (called edges). The definitions
found throughout Section 2.1 are based on those
found in [5].

Examples of networks include the Internet
(nodes are computers and routers, edges repre-
sent a connection between them) and social net-
works (nodes are people, edges represent acquain-
tance). In physics, networks can arise in statisti-
cal mechanics when nearest-neighbour approxima-
tions are too weak but infinite range interactions
are too strong [8].

In some cases, edges have a direction. For exam-
ple, in a family tree, the relation of parents to their
offspring is not the same as their offspring’s rela-
tion to them. To indicate the irreversibility of this
network, a suitable convention could be to equip
each edge with an arrow pointing from the par-
ents to the offspring. These are known as directed
graphs.

In a graph, a path is a sequence of nodes in which
there is an edge connecting each node to the next
and previous nodes in the sequence. In a directed
graph, a path requires that there must be an edge
that points from each node in the sequence to the
next. For example, in Fig. 2.1, there is a path
from Alice to Deb but not from Deb to Alice.

A cycle is a path in which the first and last nodes
of the path are the same. Family trees are acyclic

Figure 2.1: A family tree; three generations of
Alice’s descendants are displayed, spouses are ig-
nored.

in the sense that an edge cannot be directed from
a younger generation to an older generation: there
are no cycles. Consequently, the graph can be laid
out with all arrows pointing down (see Fig. 2.1).

A network can be represented by an adjacency
matrix, A, where the element Aij gives the number
of edges or, more generally, the weight of the edge
from node i to node j [5]. The total weight of
edges from i is the out-degree, Oi, and the total
weight of edges to i is the in-degree, Ii:

Oi =
∑
j

Aij , Ii =
∑
j

Aji (2.1)

Note that sums over a node label implicitly sum
over all nodes.

For an undirected graph, each edge between i
and j is considered to be both an edge pointing
from i to j and an edge pointing from j to i such
that Aij = Aji and the degree of i is Ii (= Oi).

2.1.2 Transitivity

The likelihood that any two nodes i and j are con-
nected given both i and j are connected to some
node k is called the level of transitivity in the net-
work. The clustering coefficient, C, is a measure of
transitivity [5]. This quantity is most intuitive for
undirected graphs with only edges of unit weight
or no weight between nodes. In terms of the adja-
cency matrix, this requires that Aij ∈ {0, 1} and
Aij = Aji for all i and j. It is possible to con-
vert a general directed graph to this form, at the
cost of losing information, by defining a simplified
adjacency matrix,

Ãij :=

{
0 if Aij +Aji = 0

1 otherwise
(2.2)
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Figure 2.2: a) The connected triple ijk (indepen-
dent of whether there is an edge between i and k
or not). b) The triangle ijk. Note that the tri-
angle contains the three connected triples ijk, jik
and ikj.

Once dealing with a graph of this form, we can
define what is meant by a connected triple. The
nodes i, j and k form the connected triple ijk
if there is an edge between i and j and an edge
between j and k (Ãij = Ãjk = 1). Note the con-
nected triple ijk could also be denoted kji. If
there is a connected triple ijk and an edge be-
tween i and k, the nodes i, j and k form a triangle
(Ãij = Ãjk = Ãik = 1), see Fig. 2.2. The number
of connected triples in a graph is

∑
i

1

2

∑
j

Ãij

{(∑
k

Ãik

)
− 1

}
(2.3)

The clustering coefficient is then straightforward
to define:

C :=
(number of triangles)× 3

(number of connected triples)
(2.4)

In a similar way, each node can be assigned it’s
own local clustering coefficient:

CiL =
number of triangles ijk

number of connected triples jik
(2.5)

where the number of triangles ijk is the number of
triangles with node i as a vertex and the number
of connected triples jik is the number of connected
triples with i in the middle given by

1

2

∑
j

Ãij

{(∑
k

Ãik

)
− 1

}
(2.6)

Note (2.3) is the sum of (2.6) over all nodes.
The mean local clustering coefficient, CL for the

entire network is the arithmetic mean of CiL taken
over all nodes.

2.1.3 Random Graphs

One can construct graphs that have a common
property but are otherwise random. The struc-
tural similarities these graphs tend to have will be
attributable to their common property. A random
graph model is defined as a probability distribution
over all possible graphs with a particular property
[5].

In Section 4.1, a random graph is considered
based on the configuration model in which the de-
gree of each node is fixed. The configuration model
developed here has been adapted from [5] to apply
to directed graphs without self-edges (Aii = 0 for
every node i). We begin by specifying the degree
sequence. That is, for each node

Ii = ιi , Oi = Ωi (2.7)

where ιi and Ωi are constants we have freedom
to choose. Each node is then given as many out-
stubs as its out-degree and as many in-stubs as its
in-degree, see Fig. 2.3.

Figure 2.3: a) Node with 2 out-stubs and 1 in-stub
b) Node with 4 in-stubs and 3 out-stubs. The out-
stubs on one node may be paired in any way with
the in-stubs on the other node. For example, a1

can be connected to b7.

Every in-stub can be paired with an out-stub
on a different node. Each unique way of pair-
ing every in-stub with an out-stub is known as
a configuration. The total number of configura-
tions is ω.

Suppose there is some adjacency matrix, A, that
satisfies the constraints Ii = ιi , Oi = Ωi. Con-
sider an arbitrary configuration corresponding to
A, the stubs on every node can be permuted to
produce new configurations with the same adja-
cency matrix, A. However, for each i and j, there
will be Aij edges from i to j. Consequently, Aij !
of these permutations will give the same configu-
ration. The total number of configurations corre-
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sponding to A is [5] ∏
i

Ωi!ιi!∏
i,j

(Aij !)
(2.8)

If we suppose that each configuration is equally
probable, we can divide (2.8) by the total number
of configurations, ω, to give the probability of a
graph in this configuration model having the ad-
jacency matrix A:

prCM (A) =
1

ω
×

∏
i

Ωi!ιi!∏
i,j

(Aij !)
(2.9)

Another important result for the configuration
model is the expected number of edges from i to j.
Denote the total edge weights in the graph by T :

T :=
∑
i,j

Aij (2.10)

If self-edges were allowed, an out-stub would be
equally likely to connect to any in-stub [5]. Hence,
for a model with self-edges, the expected number
of edges from i to j is given by [5]

〈Aij〉 =
Ωiιj
T

(2.11)

If
∑
i
〈Aii〉 � T , the expected number of self-

edges is small relative to the total number of edges.
Thus, the expected number of edges from i to j in
our model without self-edges would approximately
be given by (2.11).

2.1.4 Assortative Mixing

In a network, the tendency for nodes to have edges
connecting them to other nodes with a common
property is called assortative mixing [5, 12]. A
network in which there is assortative mixing is as-
sortative. The modularity, Q, for a graph with
adjacency matrix A is defined as [13]:

Q :=
1

T

∑
i,j

(Aij − 〈Aij〉) δ(propi, propj) (2.12)

where δ(propi, propj) is the Kronecker delta and
propk is some property of node k such that
δ(propi, propj) = 1 if nodes i and j have the same
property and 0 otherwise.

The Aij term gives the extent of the tendency
for like to connect to like in the graph while the
〈Aij〉 term gives the extent of the tendency for like
to connect to like expected in a random, directed
graph with the same degree sequence, see (2.11).
The modularity of a graph is thus a measure of the
difference between the extent of assortative mixing
in the graph and the extent of assortative mixing
expected by chance.

2.2 Bayesian Hypothesis Testing

The methods used in this section are based on
those in [11]. The following notation is used:
pr(W,X|Y, Z) is the probability (or probability
density function, evident from context) of W and
X given Y and Z.

The elementary operations of probability theory
are the product rule and sum rule:

pr(X,Y ) = pr(X|Y )pr(Y ) (2.13)

pr(X or Y ) = pr(X) + pr(Y ) (2.14)

where X and Y are mutually exclusive in the sum
rule (2.14).

From (2.13), Bayes’ theorem can be derived:

pr(X|Y ) =
pr(Y |X)pr(X)

pr(Y )
(2.15)

Suppose there is some data, d, from experiments
on a system for which we have a hypothesis. To
address whether the hypothesis is correct, we must
have a likelihood function, pr(d|p), for the system.
The likelihood function gives the probability of
measuring d for the system and depends on a pa-
rameter p, which takes some value in the range
pmin ≤ p ≤ pmax.

The hypothesis, Θ – the converse of which is
denoted by Θ̄ – claims p can only take a value from
a subset of pmin ≤ p ≤ pmax. A value of p allowed
by the hypothesis, will be written as p ∈ Θ. Using
the sum rule (2.14), we can express the probability
that Θ is correct by summing the probabilities of
p = p̃i, given the relevant data, over all p̃i ∈ Θ:

pr (Θ|d) =
∑
p̃i

pr (p = p̃i|d) (2.16)

Analogously, when the subset contains contin-
uous values of p, we can express the probability
that Θ is correct as the integral of the probabili-
ties of p̃ ≤ p < q + dp̃. In this case, pr (p = p̃|d) is
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now the probability density of p̃ ≤ p < p̃+ dp̃ (the
equals is retained for notational brevity):

pr (Θ|d) =

ˆ

p̃∈Θ

dp̃ pr (p = p̃|d) (2.17)

p̃ ∈ Θ is used to imply that the integral is over all
values of p that are in agreement with the hypoth-
esis Θ. The above expression is also true when
each Θ is replaced by a Θ̄.

As an example, the parameter p could be the
probability of obtaining heads by flipping a coin.
The likelihood function for the number of heads, h,
obtained in H flips would be a binomial distribu-
tion. We could compare the probability of the coin
being biased to heads (1/2 ≤ p ≤ 1) to the proba-
bility of coin being biased to tails (0 ≤ p ≤ 1/2).

We are interested in the ratio of the probability
of the hypothesis to the probability of its converse
given the data, d:

pr (Θ|d)

pr
(
Θ̄|d
) =

´
p1∈Θ dp1 pr (p = p1|d)´
p2∈Θ̄ dp2 pr (p = p2|d)

(2.18)

To deal with the terms involving pr (p = p̃|d),
apply Bayes’ theorem (2.15),

pr (p = p̃|d) =
pr (d|p = p̃)× pr (p = p̃)

pr (d)
(2.19)

If, prior to consideration of the data, we have no
basis to believe the hypothesis over its converse, we
take

pr (Θ) = pr
(
Θ̄
)

(2.20)

If, also prior to consideration of the data, we
have no reason to believe p = p1 over p = p2

for any p1, p2 ∈ Θ, we take pr(p = p̃) = ρΘ =
constant. With (2.17), this implies

pr (Θ) =

ˆ

p̃∈Θ

dp̃ ρΘ (2.21)

⇐⇒ ρΘ =
pr (Θ)´
p̃∈Θ dp̃

(2.22)

with analogous expressions following for Θ̄ when
each Θ in the above paragraph is replaced by Θ̄.
Application of (2.20) yields

ρΘ

ρΘ̄

=

´
s∈Θ̄ ds´
t∈Θ dt

The ratio in (2.18) is then

pr (Θ|d)

pr
(
Θ̄|d
)=

´
p1∈Θ dp1 pr (d|p=p1)´
p2∈Θ̄ dp2 pr (d|p=p2)

´
s∈Θ̄ ds´
t∈Θ dt

(2.23)

This ratio is a measure of how much we believe
the hypothesis is correct (given the data, d). A
ratio of more than 100 is conventionally taken as
conclusive [14].

To return to the example, the probability of get-
ting h heads from H flips will be binomially dis-
tributed so we can write

pr (d|p = p̃) =

(
H

h

)
p̃h(1− p̃)(H−h) (2.24)

To answer if the coin is more likely to land
heads-up we hence calculate the ratio in (2.23) us-
ing (2.24):

pr(p>1/2|d)

pr(p<1/2|d)
=

´ 1
0.5 dp1(1−p1)(H−h)p1

h

´ 0.5
0 dp2(1−p2)(H−h)p2

h
(2.25)

where the integrals on the far right of (2.23) have
cancelled.

We could also ask if the coin is fair: p = 1/2.
Here, instead of applying (2.17), the hypothesis is
more simply expressed as pr(Θ|d) = pr (p = 1/2|d).
We then assign pr (d|p 6= 1/2) = pr (d|p = 1/2) as in
(2.20).

The ratio of the probability of the coin being
unfair to the probability of the coin being fair is

pr (p 6= 1/2|d)

pr (p = 1/2|d)
= 2H

1ˆ

0

dp̃(1− p̃)(H−h)p̃h (2.26)

Note that in the limit of the integral, the contri-
bution of p̃ = 1/2 is vanishingly small.

3 Discussion of Data

3.1 Mathematics Genealogy Project

The data used in this project contains information
on 137,101 PhDs, which has been obtained from
the Mathematics Genealogy Project [3] (MGP).
MGP was started by Harry Coonce in 1996 with
the aim of compiling a database of one’s academic
ancestry [15]. The project is run by the North
Dakota State University Mathematics Department
and hosted online by the American Mathematical
Society. The data is gathered from sources such
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as Dissertation Abstracts [15] and through mem-
bers of the public entering information online. The
reliability of information submitted by the public
cannot be taken for granted. For example, there
are two PhD thesis entered as having been com-
pleted in 2012, in the future. The data collected
for each PhD are

• The student’s name

• The supervisor’s name

• A second supervisor’s name (if applicable)

• The year of completion

• The university’s name

The MGP data constitute an acyclic directed
graph [5], similar to a family tree, when academics
are taken as nodes and an edge from node i to
node j indicates that i supervised j. A study on
this network has already been published regarding
the fecundity of academics [4].

A other networks are also contained in the MGP
data. Work is currently being done on the directed
network with the universities as nodes [6]. The
weight of an edge from university i to university j
is taken as the number of academics who, having
completed their PhDs at university i, went on to
supervise at least one PhD at university j. This
network will be referred to as the supervisor net-
work.

This project is concerned with another network,
which also takes universities as nodes. It is differ-
ent to the supervisor network in that the weight of
an edge from university i to university j represents
the number of moves made by academics from i to
j. This network will be called the movement net-
work. In the case of a single academic, Fig. 3.1
displays the graphs for (a) the movement network
and (b) the supervisor network.

3.2 Extracting Data on Movements

If an academic, labelled a, completed their PhD
in year y1 at university i, then a must have been
at i at some point in year y1. Now suppose a
has a student who completes their PhD in year y2

at university j, then we also know that a was at
university j in year y2. In this way, every student
marks where their supervisor was at the date of
their PhD completion.

In the example above, a is taken to have moved
from i to j in y2. The move could have occurred

Figure 3.1: a) Movement network - the graph for
an academic who moves from i to j, j to k and
k to l, in that order. b) Supervisor network - the
graph for an academic who completed their PhD
at i before supervising PhDs at j, k and l.

prior to y2. The year given to moves extracted in
this way is an upper bound on the year in which
the move occurred. The time ordering of an aca-
demic’s moves is expected to be accurate in all
or almost all cases. Clearly, there will be missing
moves because an academic does not necessarily
have a student at every university with which they
have been affiliated.

Of the 137,104 PhD entries contained in the
MGP data, 16,070 had no supervisor, 8,291 had
no university, and 9,305 had no year. PhD stu-
dents with a supervisor but without a year or uni-
versity will necessarily be ignored and so are effec-
tively missing students of their respective supervi-
sors. The first location of an academic who has no
PhD university entry is taken as the university at
which they first supervise a PhD. Given the cul-
ture in the US of academics changing institutions
between different stages of their careers [16], the
first move made by those from the US without a
PhD university entry is likely to be missing. Miss-
ing first moves, unlike missing intermediate moves,
don’t lead to incorrect moves being inferred from
the data - an example is illustrated in Fig. 3.2.

Occasionally, an academic will remotely super-
vise a student at a different university or, after a
move, the last student at the old university will
complete their PhD after the first student at the
new university. In these cases, there is a risk of
inferring moves that never occurred. To deal with
this, if an academic apparently moved from i to
j and returned to i (from j or otherwise) within
a five year period, all intermediate moves are ig-
nored, the academic is regarded as never having
left i to go to j.

About 10,000 academics in the database have
the same name. For example, there are two en-
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Figure 3.2: a) An academic begins at i and moves
to j. The academic then proceeds to k before fin-
ishing up at l. However, there is no student at k so
according to the data, the academic moves directly
from j to l. b) An academic completes their PhD
at i but this is not known from the MGP data.
The academic goes on to have students at j, k and
l, in that order. Hence, the move from i to j is
missed.

tries for Lionel Mason of University of Oxford.
These are almost certainly for the same person.
However, there are cases where different people
have the same name (e.g. Zoltán Sebestyén). De-
ciding which entries are genuine doubles of the
same person would be a very time-consuming task.
Only 348 academics who have students have the
same name as another academic who also has stu-
dents. Because this is a small number compared to
the total number of academics who have students
(37,000), the possible errors due to duplicates will
be negligible.

Of the extracted movements, there are 26,450
in total by 20,732 academics between 1964 univer-
sities. By the nature of the MGP data, all the
academics will have ties to a mathematical field.
The first move is in the year 1406 (Heinrich von
Langenstein from Université de Paris to Univer-
sität Wien). The last two are in 2012 which I
manually discarded so the last recorded move is
in 2009. I extracted the MGP data from its origi-
nal SQL format into a text file and carried out all
further manipulations by writing programs in C.

4 Analysis of the Movements of
Academics

4.1 Random Model of Movements

Following Section 2.1.3, we can create a random
graph model with the same degree sequence as the
movement network and no self-edges. Self-edges

are disallowed since an academic must move from
one university to a different university.

Denote the number of moves from i to j in the
data by µij such that the adjacency matrix for
the movement network is µ. The degree sequence
constraints (2.7) in the model are then given by

Oi =
∑
j

µij , Ii =
∑
j

µji (4.1)

From (2.9), the most probable adjacency matri-
ces in the model are the ones for which Aij ∈ {0, 1}
for all i and j (and have no self-edges). How-
ever, these may not be possible given the degree
sequence constraints (4.1). To find a most proba-
ble A possible, I developed Algorithm 1.

Algorithm 1

1) Start by taking A = µ, define a variable
counter and set counter = 0.

2) Choose the largest Aij and then select two
other universities, k and l, to maximise
δ = (Aij +Akl)− (Akj +Ail).

3) Exchange weights (see Fig. 4.1) and increment
counter:

counter → counter + 1

• If counter ≤ 3000 and Akl > δ/4, round δ/4

down to the nearest integer,
Aij → Aij − δ/4, Akl → Akl − δ/4

Ail → Ail + δ/4, Akj → Akj + δ/4

• Else if counter ≤ 3000 and Akl ≤ δ/4,

Aij → Aij −Akl + 1, Akl → 1
Ail → Ail +Akl − 1, Akj → Akj +Akl − 1

• Else (counter > 3000)

Aij → Aij − 1, Akl → Akl − 1
Ail → Ail + 1, Akj → Akj + 1

4) Display counter and largest Aij . If largest
Aij > 1 return to 2), else stop.

Prior to running Algorithm 1 on the movement
network, there was no guarantee it would stop;
trial and error was used in my development of
the algorithm. The algorithm constructs a most
probable adjacency matrix when counter reaches
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Figure 4.1: The edge weights between four nodes
a) before and b) after one loop of Algorithm 1 (for
counter < 3000). Here, δ = 25 so i and k are
decreased by 6 and j and k are increased by 6.

a value of 7401. The matrix found by the algo-
rithm will be labelled µ̃.

The clustering coefficient, C, (2.4) is 0.255 for µ
and 0.259 for µ̃, which are very similar. However,
the mean local clustering coefficient, CL, (2.5) is
0.321 for µ and 0.652 for µ̃. These results might
seem surprising because real networks often have
higher clustering coefficients than they would by
chance [5] but this is a consequence of the ran-
dom model preferring single edges between uni-
versities: nodes connect to as many other nodes as
possible. In the network generated by Algorithm
1 with adjacency matrix µ̃, CL is more than dou-
ble the clustering coefficient, C. To understand
this, note the high-degree nodes will connect to
many other nodes. These will necessarily include
low-degree nodes since there are a limited num-
ber of high-degree nodes. The low-degree nodes
will predominantly connect to high-degree nodes
and thus tend to have high local clustering coeffi-
cients. The low-degree nodes will not be connected
to many other nodes so the high-degree nodes will
have a lower local clustering coefficient. There are
far more low-degree than high-degree nodes and
their contribution will dominate the mean local
clustering coefficient, CL.

As well as a difference in the mean local clus-
tering coefficient between µ and µ̃, using (2.9), I
found that µ is 106430 times less probable than µ̃
in the configuration model considered here. The
probability of µ in the model must therefore be less
than 10−6430: it is very unlikely that this is a suit-
able model for the movement network. Neverthe-
less, results from this model are useful in Section
4.2.

4.2 The Influence of Supervisors

Those who have read “Surely you’re joking Mr.
Feynman!” [17] will recall Professor Slater advis-
ing Feynman,
“... you should go to some other university. You

should find out how the rest of the world is.”
Feynman later concludes,
So MIT was good, but Slater was right to warn

me to go to another university for my graduate
work. And I often advise my students the same
way.

This is an example of a supervisor’s view be-
ing passed down to their students and then on
to their students’ students - as one might expect.
There are, however, differences in culture between
countries. Academics in the US are commonly en-
couraged to change institutions between different
stages of their careers [16] while in the UK this is
much less the often case. Using the data available,
the influence a supervisor has on their students
can be estimated.

An academic’s supervisor is the academic who
supervised their PhD. An academic who has su-
pervised at least one PhD at a university other
than the one at which they completed their PhD
is mobile; an academic who has not is static. To
begin with, consider the number of academics with
mobile supervisors Nm, of which Mm are mobile,
and the number of academics with static supervi-
sors Ns, of which Ms are mobile. Academics who,
according to the MGP data, have not supervised
a PhD are not included in the data used in this
section. For those that are considered,

Mm

Nm
=

15042

18196
≈ 0.827 (4.2)

Ms

Ns
=

3083

4608
≈ 0.669 (4.3)

∆ :=
Mm

Nm
− Ms

Ns
≈ 0.158 (4.4)

In the sample considered here, the above cal-
culation shows that an academic with a mobile
supervisor is about 16% more likely to be mobile
than an academic with a static supervisor. Note
that for an academic with two supervisors, if one
supervisor is mobile and the other is static, I re-
gard the academic as having a mobile supervisor.

The technique set out in Section 2.2 can be used
to find if, generally, an academic with a mobile su-
pervisor is more likely to be mobile. I perform two
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calculations: I test if it is appropriate to assign a
different probability of being mobile to academics
with mobile supervisors, pm, than to academics
with static supervisors, ps, such that ps 6= pm (op-
posed to both groups having the same probability,
ps = pm = p). Then, assuming ps 6= pm, I test the
likelihood of ps < pm.

The ratios of interest are then given by

pr(ps 6= pm|d)

pr(ps = pm|d)
and

pr(ps < pm|d)

pr(ps > pm|d)
(4.5)

To calculate the first ratio of (4.5), the top and
bottom terms are expressed as integrals, analogous
to (2.17):

pr(ps 6=pm|d)=

1ˆ

0

dp̃m

1ˆ

0

dp̃s pr(pm= p̃m, ps= p̃s|d)

(4.6)

pr(ps=pm|d) =

ˆ 1

0
dp pr(pm=p, ps=p|d) (4.7)

The right-hand side terms of these equations are
dealt with using Bayes’ theorem (2.19) and the
procedure laid out from there in Section 2.2 is fol-
lowed down to (2.23).

If the movements being considered are assumed
to be a random sample, the likelihood function,
pr(d|pm, ps), could be taken to be analogous to the
situation of flipping two different coins: a binomial
distribution for academics with mobile supervisors
and another for academics with static supervisors.
In this case, the relevant data, d, is given by the
numbers Nm,Mm, Ns,Ms. Make the definitions
qi := 1− pi and Si := Ni −Mi such that

pr(d|pm= p̃m, ps= p̃s) = γ p̃m
Mmq̃m

Sm p̃s
Msq̃s

Ss

(4.8)
where γ is a normalisation constant. Putting this
together, the ratio of (4.5) can be expressed as

pr(ps 6=pm|d)

pr(ps=pm|d)
=

´ 1
0 dp̃m

[
p̃m
Mmq̃m

Sm
] ´ 1

0 dp̃s
[
p̃s
Msq̃s

Ss
]

´ 1
0 dp

[
p(Mm+Ms)q(Sm+Ss)

]
(4.9)

where the γ and pr(d) terms have cancelled.
I evaluated the integrals numerically using the

trapezium rule. Assuming the moves extracted
from the MGP data are correct and that the like-
lihood function (4.8) is appropriate to use, the
probability of an academic’s mobility to be cor-
related with their supervisor’s (ps 6= pm) is 10109

times more likely than not. Assuming then that

ps 6= pm, the correlation is 10113 time more likely
to be positive than negative.

To account for errors in the data, I altered the
numbers Nm,Mm, Ns,Ms entered into the analy-
sis. Those who are mobile according to the data
will almost certainly have moved at least once.
Those who are static according to the data might
actually have moved - perhaps data that would in-
dicate a move is not available. I found that if 600
static academics with static supervisors actually
have mobile supervisors, D would be reduced to
3.1%. However, it would still be over 100 times
more likely for an academic’s mobility to be cor-
related with their supervisor’s than not, and over
100 times more likely to be positively so than neg-
atively so.

The above analysis is based on (4.8), a like-
lihood function appropriate for random samples.
The PhDs recorded in the MGP data are mostly
since 1930 and predominantly from reputable US
universities. Additionally, academics who are cur-
rently in the early stages of their careers may be-
come mobile in the future. It is unlikely then that
the likelihood function used is a good choice.

Whether there is correlation between an aca-
demic’s mobility and their supervisor’s can be
asked in the case of more specific groups of aca-
demics for whom the likelihood function (4.8)
might be more appropriate. Four groups are con-
sidered in Table 1. All agree on positive corre-
lation between an academic’s and their supervi-
sor’s mobilities if correlation is present. The first
two groups, grouped by year, conclude that there
is correlation while the last two groups, grouped
by universities, give no conclusive indication of
whether there is correlation.

Group ∆ pr(ps6=pm|d)
pr(ps=pm|d)

pr(ps<pm|d)
pr(ps>pm|d)

1945-1959 0.113 > 104 > 106

1700-1929 0.201 > 107 > 109

Oxf. or Camb. 0.084 < 101 > 102

Pr., St. or Ha. 0.048 < 101 > 102

Table 1: Four groups of academics are tested.
The groups 1945-1959 and 1700-1929 contain aca-
demics who completed their PhD theses in those
periods. The third and fourth groups are made
up of academics who completed their PhD at Ox-
ford or Cambridge (UK) and Princeton, Stanford
or Harvard (US) respectively.

For the first two groups, the academics will have
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retired from their careers or at least be nearing
retirement such that they and their supervisors
are unlikely to change their state of mobility. For
the last two groups, a greater number of future
changes in mobilities of the academics and their su-
pervisors may be expected. I excluded academics
who completed their PhDs after 1990 from the last
two groups and found no stronger evidence of cor-
relation.

Suppose movements between universities are as-
sortatively mixed by country (see Section 2.1.4).
That is, academics tend to supervise students at
universities in the same country as their own PhD
university. If the mobility of an academic is de-
pendent on the country as mentioned at the start
of Section 4.2, a positive correlation would be
found in groups of academics from several coun-
tries but not necessarily in groups containing aca-
demics from only one country. The results in Ta-
ble 1 can be seen to be consistent with assortative
mixing by country in the movement network.

The modularity (2.12) is a measure of whether
significant assortative mixing by country is
present. For the configuration model without self-
edges considered in Section 4.1,∑

i

OiIi
T
≈ 120 , T = 26450 (4.10)

so (2.11) is a good approximation. Using this, I
found Q = 0.444 for the movement network. Us-
ing the same approximation for the network gener-
ated by Algorithm 1 – which would be expected to
have a zero modularity – I found Q = 0.101. This
modularity is smaller than that for the movement
network, consistent with the approximation being
reasonable and, hence, there being greater assorta-
tive mixing by country in the movement network
than would be expected by chance.

4.3 Movement Between US Universi-
ties

I considered a network of movements only between
231 US universities, the US universities that have
at least one move to or from them, see Fig. 4.2.

For the network of movements between 231 US
universities, I developed a model in which an aca-
demic travels around the network in discrete steps.
At each step, the academic moves from their cur-
rent university to a different university. The prob-
ability of the academic going from i to j at any

Figure 4.2: A geographically inspired, undirected
graph of the movements between 231 US univer-
sities. This uses the code of S. Myers [6]. The
darkness of the edges indicates the total number
of moves between universities (dark for many, light
for few). Universities are coloured according to
their in-degree (red for high, blue for low). The
universities are sized according to their out-degree
(large for high, small for low). Major universities
are labelled. See Appendix A for the full names.

step is defined as

Pij :=
µij∑
j
µij

(4.11)

Write the probability of the academic being at
university i at step t is written as W t

i . The proba-
bility of the academic to arrive at j from i at step
t + 1 is then given by W t

i Pij . Generally, we have
a Markov chain [18]:

W t+1
j =

∑
i

W t
i Pij (4.12)

Writing W t
i as a row vector and Pij as a matrix

W t+n = W t(P )n (4.13)

As t → ∞, we might expect this to reach equi-
librium:

W∞ = W∞P (4.14)

Formally, this requires that P has a left eigenvec-
tor [19] with eigenvalue equal to one. To get sen-
sible results, universities for which there were zero
moves to or from had to be discarded, leaving 187
universities (for names, see Appendix B). For these
universities, I numerically found that P has only
one left eigenvector with eigenvalue equal to one –
there is a unique W∞. My numerical calculation
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Figure 4.3: The 6-year moving total of movements
between all universities as a fraction of the 6-year
moving total of PhDs used to extract them.

of W∞ found that W∞i > 0 for all i (for values,
see Appendix B).

Since W∞ is unique and all elements are posi-
tive, it is not possible to divide the nodes up into
two groups such that there are edges only in one
direction between the groups. Equivalently, there
must be at least one cycle containing each pair of
nodes. This means that the 187 US universities do
not divide into groups such that academics at uni-
versities in one group cannot move to universities
in another group.

4.4 Time-dependent Movement Trends

The movements extracted from the MGP data are
dated by year. As discussed in Section 3.2, the
year is an upper bound on the date of the move.
With this in mind, the movements can be used to
study past events.

In Fig 4.3, the 6-year moving total of moves is
given as a fraction of the 6-year moving total of
PhDs recorded in MGP. The 6-year moving to-
tal of moves or PhDs in year y is the sum of the
moves or PhDs completed in each year from y− 5
to y inclusive. Only PhDs registered in MGP that
include a year, a university and at least one super-
visor are counted.

The fraction has been stable, with a value of
0.213±7%, since the end of the Second World War
(1946–2003) and during 1918–1928. The fraction
displays dips of about 17% in the periods 1911–
1917 and 1935–1945, which are the periods leading

Figure 4.4: Georgia Institute of Technology

up to and during the First and Second World Wars
respectively. Given the uncertainty in the year of
the movements, any inference from Fig.4.3 should
be made with care.

The large fluctuations between 1900 and 1930
will be partly attributable to the small numbers of
moves being considered. Due to the method used
to extract movements from the PhD data, nothing
accurate can be inferred about movements after
2003: an apparent movement by an academic in
2004 would be invalidated if the academic returned
to their previous university in 2009 and the volume
of MGP data available after 2008 sharply falls.

During the mid-80s, the activities of Georgia
Institute of Technology’s maths department ex-
panded from services to research with the hiring
of Jack Hale as head of department [16]1. Consis-
tent with the expansion, in Fig. 4.4, the number of
moves to Georgia Institute of Technology by can
be seen to escalate in the late 80s to early 90s.

The Academy of Sciences of the GDR was
known as The German Academy of Sciences in
Berlin until 1972 and was closed in 1991 [20]. The
movement data show that all movements to The
Academy of Sciences of the GDR took place be-
tween 1973 and 1991 (see Fig. 4.5), which is con-
sistent with the name change.

In many cases, the trend followed by the moves
from a university is similar to the trend followed
by the moves to a university but with a lag of 5-20
years. Such a lag can be seen in both Fig. 4.4

1M. A. Porter was a member of staff at Georgia Institute
of Technology.
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Figure 4.5: The Academy of Sciences of the GDR

and Fig. 4.5. This makes sense given the time
required to leave one university and supervise a
PhD at another.

5 Conclusions and Discussion

In this report, I have studied the movements of
academics between universities that I extracted
from the Mathematics Genealogy Project (MGP)
data.

I have shown a configuration model, without
self-edges, of the movements is unable to support
several features of the movement network: The
mean local clustering coefficient, CL, and modu-
larity by country, Q, are respectively 0.321 and
0.444 for the movement network but 0.652 and
0.101 for a most probable network of the model.
The probability of the MGP movements occurring
in the model is negligible. Hence, I have demon-
strated that some factors such as job vacancies,
reputation, geographical location, supervisor, etc.
must have a significant influence on the large-scale
movements.

In the MGP movements, I found that academics
with mobile supervisors are 16% more likely to
be mobile than those with static supervisors. I
applied Bayesian hypothesis testing methods and,
assuming the movements could be treated as a ran-
dom sample, found conclusively that a supervisor’s
mobility would be positively correlated with their
students. To check the robustness of the random
sample assumption, I considered four sub-samples
and showed that for two there was conclusive posi-

tive correlation but, for the other two, the correla-
tion was inconclusive. Following this, I have sug-
gested that assortative mixing could be the most
significant cause of correlation.

Using a Markov chain, I have shown that there
is a cycle containing each pair of nodes in the net-
work of movements between 187 US universities
considered in Section 4.3. The implication of this
result is that universities do not form closed groups
between which there is no exchange of academics,
suggesting a good exchange of academic culture.

I found that the ratio of moves to completed
PhDs has remained at 1 : 4.7 ± 0.3 since the Sec-
ond World War, during which the ratio was higher
than 1 : 5.5. I have shown how temporal trends
in the movements of academics are consistent with
the development of Georgia Institute of Technol-
ogy’s maths department in the 1980s and the name
changes of The Academy of Sciences of the GDR
in the second half of the 20th century.

It would be insightful to find whether the like-
lihood function for an academic’s mobility (4.8)
should depend on the country in which an aca-
demic’s PhD was completed. If it did, the depen-
dence would give some indication whether assorta-
tive mixing by country is the most significant cause
of correlation between an academic’s mobility and
their supervisor’s.

A natural progression from studying mobility
would be to address whether exceptional mathe-
maticians have exceptional students. Testing for
correlation between academics and their super-
visors being awarded a prestigious mathematics
prize [21] would be one way to proceed. If the gen-
der of an academic could be discerned from their
name, the data would be of use in equal opportu-
nities studies on academia.

With future MGP data, movements could be
used to assess the impact of funding cuts to uni-
versities in the UK or elsewhere by examining the
departure of highly-regarded academics.
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Appendix
A Universities in Figure 4.2

West to East (top):

University of California, Berkeley
University of Minnesota-Minneapolis
University of Wisconsin-Madison
University of Michigan
Cornell University
Harvard University

West to East (bottom):

University of California, Los Angeles
Stanford University
University of Texas at Austin
University of Illinois at Urbana-Champaign
Purdue University
University of Maryland at College Park
Princeton University
Massachusetts Institute of Technology

B 187 US universities

Ordered by net movement ranking

i Wi University
1 2.28×10−2 North Carolina State Uxniver-

sity
2 2.00×10−2 University of Texas at Austin
3 2.00×10−2 Purdue University
4 1.80×10−2 Texas A&M University
5 1.62×10−2 University of Illinois at Urbana-

Champaign
6 1.56×10−2 Georgia Institute of Technology
7 1.53×10−2 University of Maryland, Col-

lege Park
8 1.48×10−2 University of Michigan
9 1.43×10−2 Virginia Polytechnic Institute

and State University
10 1.30×10−2 University of Florida
11 1.30×10−2 The Pennsylvania State Uni-

versity
12 1.27×10−2 Colorado State University
13 1.23×10−2 George Mason University
14 1.23×10−2 Rutgers University, New

Brunswick
15 1.21×10−2 University of South Florida
16 1.21×10−2 The Johns Hopkins University

17 1.20×10−2 University of Wisconsin-
Madison

18 1.17×10−2 Auburn University
19 1.16×10−2 Iowa State University
20 1.14×10−2 The Florida State University
21 1.10×10−2 Arizona State University
22 1.09×10−2 University of Iowa
23 1.09×10−2 The University of North Car-

olina at Chapel Hill
24 1.06×10−2 Princeton University
25 1.03×10−2 University of Minnesota-

Minneapolis
26 1.02×10−2 Temple University
27 9.51×10−3 Montana State University
28 9.41×10−3 University of Colorado at Boul-

der
29 9.36×10−3 University of California, Berke-

ley
30 9.34×10−3 The Ohio State University
31 8.92×10−3 University of Arizona
32 8.73×10−3 University of South Carolina
33 8.64×10−3 Oregon State University
34 8.59×10−3 University of Louisiana at

Lafayette
35 8.57×10−3 University of California, Los

Angeles
36 8.45×10−3 Cornell University
37 8.35×10−3 Texas Tech University
38 8.22×10−3 University of Houston
39 8.16×10−3 Massachusetts Institute of

Technology
40 8.13×10−3 University of Pittsburgh
41 8.08×10−3 Michigan State University
42 8.05×10−3 Stanford University
43 7.96×10−3 Vanderbilt University
44 7.93×10−3 University of Missouri -

Columbia
45 7.80×10−3 University of Washington
46 7.78×10−3 The Louisiana State University
47 7.64×10−3 Clemson University
48 7.60×10−3 University of North Texas
49 7.59×10−3 Carnegie Mellon University
50 7.56×10−3 Syracuse University
51 7.55×10−3 University of California, River-

side
52 7.14×10−3 Oklahoma State University
53 7.01×10−3 University of Alabama-

Tuscaloosa
54 6.97×10−3 University of Wisconsin-

Milwaukee
55 6.94×10−3 University of Georgia
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56 6.90×10−3 Kansas State University
57 6.85×10−3 State University of New York at

Stony Brook
58 6.83×10−3 State University of New York at

Buffalo
59 6.71×10−3 Harvard University
60 6.68×10−3 University of Delaware
61 6.64×10−3 The University of Connecticut
62 6.61×10−3 Columbia University
63 6.56×10−3 Baylor University
64 6.52×10−3 Missouri University of Science

& Technology
65 6.41×10−3 University of Central Florida
66 6.34×10−3 University of Nebraska-Lincoln
67 6.33×10−3 Southern Methodist University
68 6.32×10−3 University of Kentucky
69 6.24×10−3 University of Massachusetts

Amherst
70 6.03×10−3 University of Tennessee -

Knoxville
71 5.97×10−3 University of Pennsylvania
72 5.59×10−3 University of California, San

Diego
73 5.46×10−3 New York University
74 5.39×10−3 Northwestern University
75 5.37×10−3 University of Utah
76 5.32×10−3 Emory University
77 5.31×10−3 The University of Oklahoma
78 5.30×10−3 Wayne State University
79 5.29×10−3 Rensselaer Polytechnic Insti-

tute
80 5.23×10−3 University of Texas at Arling-

ton
81 5.16×10−3 Tulane University
82 5.10×10−3 Indiana University
83 5.07×10−3 New Mexico State University
84 4.96×10−3 University of California, Davis
85 4.83×10−3 University of New Mexico
86 4.74×10−3 University of Montana
87 4.73×10−3 The College of William and

Mary
88 4.68×10−3 Claremont Graduate Univer-

sity
89 4.56×10−3 Washington State University
90 4.51×10−3 Rice University
91 4.51×10−3 The University of Texas at Dal-

las
92 4.50×10−3 University of California, Santa

Barbara
93 4.49×10−3 University of Virginia
94 4.46×10−3 The University of Chicago

95 4.32×10−3 Kent State University
96 4.30×10−3 Brown University
97 4.20×10−3 The University of Memphis
98 4.12×10−3 Duke University
99 3.98×10−3 Dartmouth College
100 3.96×10−3 Case Western Reserve Univer-

sity
101 3.94×10−3 University of Arkansas
102 3.92×10−3 The George Washington Uni-

versity
103 3.89×10−3 City University of New York
104 3.86×10−3 Florida Institute of Technology
105 3.86×10−3 Boston University
106 3.81×10−3 University of Oregon
107 3.81×10−3 Bowling Green State University
108 3.79×10−3 University of Miami
109 3.67×10−3 West Virginia University
110 3.64×10−3 Western Michigan University
111 3.61×10−3 University of Colorado at Den-

ver
112 3.58×10−3 University of Southern Califor-

nia
113 3.47×10−3 University of Alabama-

Birmingham
114 3.46×10−3 Yale University
115 3.35×10−3 University of Wyoming
116 3.30×10−3 Lehigh University
117 3.29×10−3 University of California, Irvine
118 3.27×10−3 University of Kansas
119 3.26×10−3 California Institute of Technol-

ogy
120 3.22×10−3 Northern Illinois University
121 3.17×10−3 The University of Rochester
122 3.08×10−3 University of Illinois at Chicago
123 3.05×10−3 University of New Hampshire
124 3.04×10−3 Washington University
125 2.89×10−3 Illinois Institute of Technology
126 2.86×10−3 University of Cincinnati
127 2.82×10−3 The American University
128 2.76×10−3 University of Notre Dame
129 2.69×10−3 Stevens Institute of Technology
130 2.65×10−3 Air Force Institute of Technol-

ogy
131 2.50×10−3 Southern Illinois University at

Carbondale
132 2.41×10−3 Northeastern University
133 2.35×10−3 Clarkson University
134 2.35×10−3 University of Maryland, Balti-

more County
135 2.33×10−3 North Dakota State University
136 2.32×10−3 University of Idaho
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137 2.28×10−3 University of Hawaii
138 2.13×10−3 University of California, Santa

Cruz
139 2.11×10−3 Old Dominion University
140 2.08×10−3 State University of New York

at Binghamton
141 2.07×10−3 State University of New York

at Albany
142 2.01×10−3 Virginia Commonwealth Uni-

versity
143 1.95×10−3 Wichita State University
144 1.74×10−3 University of Alabama in

Huntsville
145 1.68×10−3 Louisiana Tech University
146 1.67×10−3 St. Louis University
147 1.64×10−3 Naval Postgraduate School
148 1.62×10−3 Drexel University
149 1.59×10−3 Polytechnic University
150 1.54×10−3 New Jersey Institute of Tech-

nology
151 1.26×10−3 Illinois State University
152 1.24×10−3 Utah State University
153 1.18×10−3 Brandeis University
154 1.17×10−3 University of Rhode Island
155 1.13×10−3 Tufts University
156 1.11×10−3 Howard University
157 1.10×10−3 Clark University
158 1.09×10−3 Georgia State University
159 1.05×10−3 Texas Christian University
160 1.04×10−3 Worcester Polytechnic Insti-

tute
161 9.91×10−4 Portland State University
162 9.76×10−4 Claremont Graduate Univer-

sity
163 9.28×10−4 University of Denver
164 9.22×10−4 Wesleyan University
165 8.95×10−4 University of Toledo
166 8.64×10−4 New Mexico School of Mining

and Technology
167 8.58×10−4 Oakland University
168 8.04×10−4 University of Southern Missis-

sippi
169 7.21×10−4 Brigham Young University
170 6.60×10−4 Adelphi University
171 5.78×10−4 University of Texas at Hous-

ton
172 5.14×10−4 Yeshiva University
173 4.74×10−4 Memphis State University
174 4.52×10−4 Bryn Mawr College
175 4.17×10−4 Rutgers University, Newark
176 2.82×10−4 University of Texas at El Paso

177 2.70×10−4 The Catholic University of
America

178 2.36×10−4 University of Colorado Health
Sciences Center

179 2.36×10−4 University of Texas at San An-
tonio

180 2.04×10−4 Polytechnic Institute of New
York

181 1.66×10−4 The Rockefeller University
182 1.41×10−4 Medical University of South

Carolina
183 1.29×10−4 Oregon Graduate Institute of

Science & Technology
184 1.06×10−4 Georgetown University
185 9.59×10−5 Case Institute of Technology
186 6.02×10−5 University of California, San

Francisco
187 4.12×10−5 Union College
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