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Abstract

We investigate the impact of damage on a neuronal network trained

to recognise objects. A neuronal network is formed by a set of nodes

that represent neurons, and edges that represent the connections be-

tween the neurons. To set the stage, we review some existing models

that describe the dynamics of individual neurons. We then focus on

Integrate-and-Fire (IF) models that we use for this project. We then

discuss the numerical method that we use for our model of interacting

IF neurons. We then construct our network using a multilayer-network

formalism. We consider a simple multilayer network architecture that

represents the interactions between the retina and the primal visual

cortex (V1) in the brain. We train the system to recognise objects and

di�erentiate between them using the "continuous transformation learn-

ing rule", which is based on relative spike times of pre-synaptic and

post-synaptic neurons. To highlight the robustness and stability of the

trained neuronal network, we simulate damage a�ecting the connec-

tions in the network and measure the performance of the deteriorated

systems. A network has good performances if the neurons in the V1

representation di�erentiate successfully between di�erent objects. In

this situation, a subset of the neurons responds strongly to the stim-

uli corresponding to one object and weakly to the other. Our study

provides preliminary insights on the impact of damage on connections

between two neuronal subsystems.
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Chapter 1

Introduction

Over the last decades, the interest for networks study has grown substantially. It

is especially sensible when contemplating the rapidly increasing literature on the

subject across various �elds ranging from social sciences to biology [34] (e.g., the

study of social networks or the study of how a disease spread). This recent trend

stems from a growing interest in the investigation of complex systems, such as

brains, societies, and economies. Furthermore, the development of supercomput-

ers and the increased access to large data sets have allowed studies to become more

complicated and simulate systems formed of thousands, millions, or even more in-

teracting components. To understand such systems, it is necessary to gain detailed

insights on the components of a system, how they interact with each other, and

the resulting dynamics that emerge.

The characteristics and dynamics of a system are intimately linked to the inter-

actions of its elements. Connections between the components can come in various

form, for instance, chemical or electrical connections between cells and the type

of relations in a social environment (e.g., friends, colleagues, or relatives). Fur-

thermore, a system can also sometimes be subdivided into smaller systems that

interact with each other. To formally capture the richness of a system and its con-

nectivity, classical graph theory is not always su�cient, leading to the recent and

growing popularity of the multilayer network framework that o�ers a formalism

to describe complex architectures and tools to study the interactions in a system

[4, 26].
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Network science is an important tool in neuroscience and, more speci�cally,

for the study of the neuronal systems [29, 40, 45]. Indeed, the brain operates on

di�erent spatial and temporal scales, and it is the interactions of the nerve cells

on and across such scales that creates the dynamical patterns of the brain. Hence,

network representations are particularly �tted for the study of neuronal systems.

Two types of questions can be identi�ed in the study of neuronal systems [40].

First, what are the functions of a neuronal system? Various approaches can help

give insights to answer this question. For example, a common practice is to study

the de�cits arising from damage in part of a system, highlighting the functions

that are lost, and thus pointing towards the role of the system [33]. Additionally,

knowledge of the relations between di�erent brain regions is often necessary to

understand what functions a system performs.

Second, how are the roles ful�lled? Answering this question requires precise

knowledge of the interactions of the system components and of the connections

with other regions. Moreover, understanding what is the function of a region does

not imply the knowledge of how this role is achieved. For instance, knowing which

parts of the brain are implicated in object recognition does not entail mechanistic

knowledge of the process. Nor does it explain why an object is recognised even if

seen from a di�erent angle. To obtain such mechanistic knowledge, it is necessary

to understand and model how each part of the systems compute their tasks. It is

in trying to answer such questions that network approaches are particularly useful

for neuroscience. The research on this subject is still in its infancy, but it is very

active.

This relates to the discussion raised in [27] about the "connectomics", which

correspond to a structural description of the human brain as a network. As Kopell

points out in [27], knowing what is connected is not su�cient to understand how

brains compute their tasks. One needs to know how the regions are connected

and how communications occur between them. Kopell introduces the notion of

"dynome", which correspond to the study of the dynamical structure of the brain

and how it relates to cognition.
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In this project, we are interested in emulating object recognition in a neuronal

network, by using learning rules in association with arbitrary inputs presented to

the system. A learning rule intervenes with the connectivity of a network and

tunes it in a way that depends on the response of the system to stimuli. We

also investigate the short-range impact of damage to a network on the recognition

process.

Outline of the study

To get insights on the processes performed by a neuronal system, the �rst step

is to construct a model to represent the behaviour of a single cell. Various frame-

works exist in the neuroscience literature, and the choice of the model depends on

the aim of the study [2, 12]. If high biophysical accuracy at the neuronal scale is

required, then a model that encompasses the biological characteristics of each cell

precisely (e.g., Hodgkin�Huxley model, which we discuss in Section 2.2) o�ers bet-

ter insights than simpler models. If a study is interested in phenomena that occur

on a larger scale (e.g., synchrony), and as such does not require a precise descrip-

tion of the single cells, then simpler and better-understood models can be su�cient

(e.g., �ring-rate-based models that are discussed in Section 2.2). In Chapter 2, we

review several models of neuronal dynamics, and we detail the Integrate-and-Fire

(IF) model, that we will use to describe single neuron behaviour in this thesis.

The second step consists of creating an environment to simulate both the single-

cells dynamics and the interactions of the cells. The underlying numerical schemes

commonly used for IF models are discussed in Chapter 3 and we detail the scheme

implemented in the study.

The next step to complete the description of our neuronal system is to specify

the connectivity of the network. In Chapter 4, we introduce the multilayer network

framework and detail the architecture and interactions of our neuronal system.

Chapter 5 is dedicated to the description of how learning can occur through

"synaptic plasticity" in a neuronal network. We implement a version of the contin-

uous transformation (CT) learning. To evaluate the impact of the learning on the

networks, it is necessary to measure the performance of the network in response
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to a stimulus. We use analysis of variance (ANOVA), which we detail in Chapter

5.

In Chapter 6, we simulate two types of damage a�ecting the connections of our

network. We detail our numerical experiments we ran in the course of this project

and we discuss our results. In Chapter 7, we give conclusions and leads for future

work.
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Chapter 2

Neuronal dynamics

Before de�ning the structure that we will use to describe neuronal networks, we

need to discuss the dynamics of individual neurons. In this chapter, we start with a

description of a single neuron and give a brief review of the existing mathematical

models of neurons. For more extensive reviews see [2, 5, 12, 17, 40]. We conclude

this chapter by detailing the Integrate-and-Fire model, and we discuss reasons for

selecting this model for the rest of the thesis.

2.1 Representation of a single neuron

A neuron is an electrically excitable cell that transmits information through the

body by electro-chemical signalling. Neurons are connected to each other and

other types of cells via structures called synapses that permit the transfer of infor-

mation between the cells. The input signals of a neuron can be traced back either

to sensory cells or to other neurons, called pre-synaptic since they transmit the

information to a synapse, as opposed to the post-synaptic neurons that receives

information from a synapse [40]. A neuron can generally (although some excep-

tions exist) be decomposed into three components: the cell body (also known as

soma), the dendrites, and the axon (see Figure 2.1).

A synapse operates the connexion between the axon of a pre-synaptic neuron

and a dendrite of the post-synaptic neuron. Synaptic processing is a key compo-

nent of the neuronal system, and it is partly electrical and partly chemical. The
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Figure 2.1: Neuron structure. The soma corresponds to the body of the neuron,
from which spurts the dendrites and the axon [Creative Commons [22]].

electrical aspect of a neuron is linked to the capacitance and resistance of the

neuronal membrane and to the resistivity of the extracellular milieu. The electric

�eld and di�erence of potential across the membrane around the soma (also known

as the membrane potential) are controlled by ion channels. These channels can

be voltage-gated, their state (open or closed) depends on the level of the mem-

brane potential. Or they can also be chemically-gated, in this case, their state

depends on the interaction of chemicals in the extracellular milieu. The existence

of ionic channels was �rst postulated by Hodgkin and Huxley in 1952 [17], and it

was con�rmed subsequently by experiments led by Katz and Miledi in the 1970s

[23�25].

Before moving on to the description of the mathematical models, it is necessary

to detail how the ionic �uxes impact the membrane potential [12]. The principal

ions involved are the sodium ion (Na+), the chloride (Cl−), and the potassium

(K+) ions. Hyperpolarisation occurs when either a positive current exits the cell

or a negative current enters the cell. In contrast, depolarisation takes place when

the membrane potential rises with an in�ux of positively charged ions or an out�ux

of negatively charged ions. These phenomena are sensitive to the degree of per-

meability of the membrane to a given ion, which in turn depends on the number

of opened ionic channels.
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When the membrane potential of a neuron rises su�ciently, it emits a short

electrochemical signal, called an action potential, down the axon. The increase

in the membrane potential required for the emission of a spike is variable. Once

activated, the neuron enters a refractory period, during which it cannot �re again

and the membrane potential decreases to its resting value at a rate de�ned by the

membrane time constant. If the initialisation fails, meaning that the depolarisation

of the membrane due to a stimulus is not su�cient to produce an action potential,

then the membrane returns to its resting state. Thus, a neuron has a stable

resting state and follows an all-or-nothing principle: it �res or resets, depending

on the strength of the stimuli. Figure 2.2 represents an idealised time series of the

dynamics of a neuron where we assume that the potential threshold for �ring is

constant.

Figure 2.2: Idealised neuron time series. The membrane potential varies in
response to stimuli. If at a given time, the stimulus is too weak, then it leads to
a failed initialisation, and the membrane voltage returns to the resting value. If,
on the contrary, in response to a stimulus, the membrane potential exceeds the
threshold, then the neuron �res an action potential down the axon and resets its
voltage to the resting value. [Creative Commons [1]]

To summarise, a neuron can be described as a processing cell that adds its

inputs (which come from di�erent synapses) and �res an action potential if the sum

exceeds a certain threshold. This remark is at the core of numerous mathematical

models that have been developed to characterise neuronal networks. To give an
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order of magnitude, typically a neuron can receive between 5000 and 20000 input

connections from other cells [40].

2.2 Neuronal network models

Numerous mathematical models have been proposed to describe the interactions

in a network of neurons. Ermentrout and Terman reviewed much of the literature

on the subject [12]. Given the omnipresence of oscillations in neuronal systems,

models based on coupled oscillators are popular among neuroscientists [2]. The

underlying idea is that each node of a network corresponds to a neuron, whose

dynamics can be described using some kind of oscillator. The edges of the network

represent the connections between the neurons. A model is then described with

(1) a set of equations describing the oscillators and (2) a network to represent the

interactions.

Before giving a brief review of some existing models for the oscillators, we

outline the formalism that we use. Letting A denote the set of neurons, we index

neurons by i. The subset of A that contains the set of pre-synaptic neurons

connected to neuron i is Ci. The strength of the synapses between the neurons is

given by the associated weight wij, the membrane potential of the cell is denoted

by Vi, and the �ring rate of a neuron is denoted by ri. In Figure 2.3, we give a

rough sketch of this representation.

In the rest of the section, we give a brief overview of some of the existing

models describing the subthreshold dynamics of a single neuron. We will then give

a detailed discussion of the Integrate-and-Fire model that we will use to describe

the dynamics of the neuronal networks in this thesis.

2.2.1 Hodgkin�Huxley model

The Nobel Prize winning work of Hodgkin and Huxley on a giant squid axon

built the foundation for the modelling of neurons [2, 12, 17]. One of their main

discoveries is the existence of voltage-gated conductances. In Figure 2.4, we show

a circuit that is equivalent to the neuronal dynamics in the Hodgkin�Huxley (HH)

model.
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Figure 2.3: Schematic of neurons, denoted i and j, and their coupling. Both i
and j receive an input from a neuron k (not represented in the �gure), and neuron
j is connected to neuron i. In this case, j and k are pre-synaptic neurons to i and
k is a pre-synaptic neuron to j.

Figure 2.4: Equivalent circuit corresponding to the Hodgkin�Huxley model. The
objects labelled by gX , where X ∈{Na,K,L}, are conductances. The parameter
CM represents the conductance of the soma and EX , where X ∈{Na,K,L}, are
potentials.

In Figure 2.4, the parameter CM corresponds to the membrane capacitance,

gK = gK(t) and gNa = gNa(t) are the ion conductances (where Na stands for

sodium and K stands for potassium), and gL = gL(t) is the leak conductance. The

potentials VL, VK, and VNa represent the associated voltages of the gated channels.
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The governing equation of the model is

CM
dV

dt
= Iapp + Iion = I, (2.1)

Iion = −gNa (V − VNa)− gK (V − VK)− gL (V − VL) ,

where Iion is the current generated by the ion �uxes and Iapp is the applied current,

which can comes from a stimulus or the interaction with other neurons.

Hodgkin and Huxley proposed, by �tting experimental data [17], that each K

channel has four identical activation gates, the associated conductance depends

then on the probability that the four gates are open simultaneously leading to

gK = g̃Kn
4, where n ∈ [0, 1]. In contrast, they proposed that each Na channel

depends upon three identical activation (m) and one inactivation gates (h), leading

to gNa = g̃Nam
3h, where (m,h) ∈ [0, 1]2. Here, n,m, and h are gating variables that

represent the probability that one of the associated gate is open, they each depend

on the membrane potential. The values g̃K and g̃Na represent the maximal value

of the conductances observed when all the gates are open. The gating variables

X ∈ {n,m, h} each satisfy a di�erential equation of the form

dX

dt
= αX(V )(1−X)− βX(V )X,

where the parameters αX and βX were �tted to experimental data by Hodgkin

and Huxley resulting in the equations:

αn = 0.01(V+55)
1−exp(−(V+55)/10)

, βn = 0.125 exp(−(V+65)
80

),

αm = 0.1(V+40)
1−exp(−(V+40)/10)

, βm = 4 exp
(
−(V+65)

18

)
,

αh = 0.07 exp(−(V+65)
20

), βh = 1
1+exp(−(V+35)/10)

.

Thus, the Hodgkin�Huxley model is a system of four di�erential equations:

one equation describes the membrane potential, and three equations describe the

channel-gating variables.

The resulting model exhibits neuron-like behaviour. It has action-potential

generation above a certain threshold, a stable resting state for small perturbations,

and sustained oscillations for su�ciently high applied current.
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2.2.2 Morris�Lecar model

The Morris�Lecar (ML) model [2, 12] is a simpli�cation of the Hodgkin�Huxley

model 2.2.1. It is a system of two di�erential equations. It involves three channels:

a leak channel, a potassium channel, and a calcium channel (Ca2+). In the most

basic version of the model, the calcium current depends only on the membrane po-

tential (so gCa = g̃Cam(V )), and the potassium current depends on one activation

gate (gK = g̃Kn). The resulting system is

CM
dV

dt
= Iapp − g̃Cam(V ) (V − VNa)− g̃Kn (V − VK)− gL (V − VL) , (2.2)

dn

dt
=
n∞(V )− n
τn(V )

,

where

m(V ) =
1

2

(
1 + tanh

(
V − V1
V2

))
,

τn(V ) =
1

cosh ((V − V3)/2V4)
,

n∞(V ) =
1

2

(
1 + tanh

(
V − V3
V4

))
.

The gating variable n approaches the asymptotic value n∞(V ) with time constant

τn(V ) and both are voltage-dependent. The parameters V1, V2, V3, and V4 are

chosen to �t the voltage data.

The Morris�Lecar model exhibits characteristic features of neuronal dynamics

[2, 12]. It has a stable resting state, spike generation, and a stable limit cycle. The

di�erence with the HH model arises from the simpli�cation of the description of

the ionic channels.

2.2.3 Integrate-and-Fire models

In contrast to the HH and ML models, which o�er detailed descriptions of single-

neuron dynamics, integrate-and-�re (IF) models [2, 5, 12, 40] were developed to

study networks of neurons. The neuron dynamics are described by a single vari-

able V associated to the membrane potential (generally, the potential itself) that
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satis�es an equation of the form

τ
dV

dt
= f(V ) +RI(t), (2.3)

where I(t) is an external drive and f is a function that depends on the type of

model used (see below). The parameters τ and R are associated to the time

constant and resistance of the membrane (see Section 2.1).

Associated to Equation (2.3) are two �xed potential values: Vt and Vr, which are

for simplicity set to 1 and 0, respectively. This simpli�cation makes the assumption

that the �uctuations of the rest and threshold potentials are small enough to be

neglected. When V > Vt, the neuron is assumed to produce a near-instantaneous

action potential at the soma. After spiking, the potential V is reset to Vr. The

value of V is clamped to Vr during the refractory period, and its variation is

otherwise captured by Equation (2.3).

Various forms of IF models have been studied, and we indicate a few of them.

1. Simple integrate-and-�re [12, 20]: The most basic form of the model

corresponds to the description of a perfectly integrating cell. Thus, f ≡ 0,

and Equation (2.3) becomes

τ
dV

dt
= RI(t). (2.4)

2. Leaky integrate-and-�re [12, 20]: Perhaps the most studied version of

the IF model is one that includes a leak term given by f(V ) = −V . Equation
(2.3) then becomes

τ
dV

dt
= −V +RI(t). (2.5)

3. Quadratic integrate-and-�re [11, 12]: It is de�ned with the quadratic

function f = V 2. This yields

τ
dV

dt
= V 2 +RI(t). (2.6)

The quadratic IF model o�ers a description of a certain type of neurons,

called θ-neurons [11], that can support low-frequency oscillations [16].
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2.2.4 Firing-rate models

In contrast to the previous models, �ring-rate-based models do not track the indi-

vidual spikes of each neuron. Instead, the models track the averaged behaviour of

the neurons [12, 40]. They are commonly described by a nonlinear system of the

form

τi
dVi
dt

= −Vi +
∑
j∈Ci

wijrj, (2.7)

ri = F (Vi),

where the parameter τi is a characteristic time constant of the dynamics of the

i-th neuron (generally set to be equal to the membrane time constant; see Section

2.1), and the function F expresses the relation between the membrane potential

and the �ring rate. Di�erent approaches have been used to convert potentials to

�ring rates [12]. For instance, one can evaluate the �ring rate by counting the

number of spikes and taking the average over a period of time or by computing

the spike's density (i.e., averaging over multiple runs).

If, in the scope of a study, an accurate description of single neuron dynamics

is not necessary, there are several practical reasons to opt for a �ring-rate-based

model [12, 40]. Notably, computational e�ciency and analytical tractability. In-

deed, when investigating large-scale networks, a conductance-based model that

describes precisely the dynamic of each neuron (e.g., the HH and ML models) can

become very expensive in computational time and memory use. Moreover, in some

experimental setups, the only variable measured is the probability of �ring rather

than the membrane potential.

2.3 De�nition of the Integrate-and-Fire model used

2.3.1 Motivation for studying the Integrate-and-Fire model

In this project, we chose to use an integrate-and-�re model to describe the dynam-

ics of the neurons. Two reasons motivate our choice for using IF neurons. Choosing

a model forces a trade-o� between biophysical accuracy, computational e�ciency,
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and analytical tractability. We want a model that has both good accuracy at the

level of individual neurons and reasonable computational e�ciency.

To account for spike-dependent plasticity that will be discussed in Section

5.2, we require a model that tracks individual spikes, which excludes �ring-rate-

based models. Integrate-and-Fire models o�er good compromise between the most

accurate models (e.g., the HH model) and the less computational expensive �ring-

rate-based models.

Furthermore, the simple IF model does not account for the existence of a stable

resting state (see Section 2.1), thus we opt for the second type: the leaky IF model

(see Equation (2.5)).

2.3.2 Detailed model

The current input I(t) in Equation (2.3) is the sum of the applied current Iapp,

linked to external stimuli, and of the input Ii coming from other neurons. We

adopt the following current-based description (as opposed to the conductance-

based model used in [13, 36], for instance)

Ii(t) =
∑
Q

∑
j of type Q

gij(t)VQ, (2.8)

gij(t) =
∑
k

wijδ(t− tkj ),

where Q represents the di�erent types of neurons (commonly two, corresponding

to inhibitory or excitatory neurons), gij is the conductance of the synapse between

the j-th pre-synaptic neuron and the post-synaptic neuron, tkj is the �ring time of

the k-th spike of the j-th pre-synaptic neuron since the last spike time of neuron

i, and wij are the coupling strengths. We de�ne the parameter VQ as a constant

potential associated with the excitatory or inhibitory characteristic of the pre-

synaptic neuron. Finally, δ is the Dirac delta function and veri�es

δ(t) =

{
1, if t = 0,

0, otherwise,
and

∫ ∞
−∞

δ(t)dt = 1.
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To improve the biophysical accuracy of the model, we add white noise with a

mean value of 0 and a standard deviation of µ. Equation (2.3) then becomes

τ
dV

dt
= Vr − V +RI(t) + µ

√
τξ(t) (Vt − Vr) , (2.9)

where ξ(t) is a Gaussian variable (i.e., 〈ξ〉 = 0 and 〈ξ(t)ξ(s)〉 = δ(t−s)) represent-
ing the Wiener process W , with ξ(t) = dW (t)

dt
. The dimension of ξ is [time]−1/2,

where [time] represents the unit of time, so to make the equation consistent, we

scale the noise by the square root of the membrane time-constant τ [30].
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Chapter 3

Numerical methods for

Integrate-and-Fire networks

In this chapter, we brie�y review numerical methods that have been used to sim-

ulate networks of spiking neurons, hence called spiking networks. We then outline

the numerical methods that we have implemented and used for this project.

3.1 Literature review

3.1.1 Numerical schemes for single neuron update

Before developing a numerical method to simulate the interactions in a neuronal

network, the �rst step is to choose a numerical scheme to solve for the single neuron

dynamics. Di�erent options exist to update the state variables of a neuron when

an analytical solution is not available or too complex. The simplest approaches

use explicit Euler, implicit Euler, or Runge�Kutta methods. For weakly coupled

networks and weak external stimuli (i.e., low values for wij and Iapp relatively to

the di�erence Vt − Vr), the system of equations is not sti�1, so standard schemes

can be used. An error in computation for one neuron will not have a substantial

e�ect on the rest of the network. However, for other dynamical regimes (e.g.,

1A system of equations is said to be "sti�" relative to a numerical scheme when an extremely
small time step is required for the stability of the scheme.
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strong connections), the system might become sti� and thus require extremely

small time steps, which makes the methods computationally expensive.

To tackle this issue, Rangan et al. [36]2 proposed a scheme based on the an-

alytical solution of the system of equations (2.3), which they calculated using an

integrating factor. One advantage of their method is that it enables the use of a

coarse-grained time grid. For a performance review, see [36]. The main advan-

tages are an increased precision and e�ciency compared to explicit Euler, implicit

Euler, and fourth-order Runge�Kutta methods. The di�erences with the "classi-

cal" methods become more apparent as the network size increases. In contrast,

Morrison et al. [32] proposed di�erent types of time-constrained methods using

exact integration for the subthreshold dynamics of a neuron for IF models.

3.1.2 Numerical methods for spiking networks

Numerical methods for spiking networks are commonly divided into two categories:

event-driven methods and time-step-based methods. See [8] for more details. The

main method that we use in this project is time-step-based.

3.1.2.1 Event-driven methods

In event-driven methods, sometimes called "asynchronous", one updates the state

variables of a neuron only when it either �res or receives an input. Originally, these

methods were used for models having an analytical solution [8]. Indeed, updating

the state variables of a neuron between the previous update time and the current

time is easy when there is a simple formula for the model. For example, in the IF

model without incoming spikes, the solution to Equation (2.9) between and initial

time t0 and t (with Vr = 0 , Vthresh = 1) is given by

V (t) = V (t0) exp

(
t− t0
τ

)
+ µ
√
τW (t). (3.1)

2There are typographical errors in Equation (5) of their article. These played a role in slowing
down the progress of our project. Indeed, our initial idea was to implement a code inspired from
their paper, and we devoted a lot of time to testing this code and trying to �nd bugs before we
discovered an issue in their paper.
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In practice, for such models, highly e�cient implementations of event-driven

methods exist [7, 50]. However, as the size of a network increases (size correspond-

ing to the number of neurons in the network), one issue arises from the necessity to

create a data structure to hold and sort the queue of incoming spikes for a neuron.

Indeed, the operations on the queue can become extremely heavy, in terms of mem-

ory use, for large systems. Strategies to address these issues have been developed

[8, 41]. Some of them make use of a �xed or adaptive time step [9], which in turn

allow to extend event-driven methods to models without an analytical solution.

3.1.2.2 Time-step-based methods

The basic idea behind time-step-based methods is to update the neuronal state

variables using a �xed time step ∆t. These methods are "synchronous", as all

neurons are updated at the same time. A compromise has to be made, as high

accuracy requires small time steps, while simulation speed requires large time steps.

These methods are generally simpler than the event-driven methods to implement,

though several issues arise.

The �rst issue is that an excessively small time step may be required either to

achieve su�ciently high accuracy or because the system of equations can become

sti� in some dynamic regime (e.g., for the conductance-based IF models used in

[13, 36]). Another shortcoming is linked to the spike times. Because the temporal

evolution of a neuronal network occurs only at speci�c times, the occurrence of

a spike is assimilated to the nearest temporal grid point [32]. This approach is

su�cient for some studies, such as those that examines "high-level dynamics" of a

spiking networks [8] i.e., dynamics observable at the level of population rather than

single neuron (e.g., synchrony). However for studies that aim at more biophysical

accuracy, exact spike times may be required. To tackle this issue, one solution

is to increase the temporal resolution. However, this can entail using extremely

small time steps and may impact an algorithm's execution time.

To compensate for the above shortcomings, one can use asynchronous time-

step-methods that use ideas from the event-driven methods (see Section 3.1.2.1).

The time step is adapted in accordance with the activity of the network (see

[32, 36]) by letting the system evolve on a given time grid until spikes are detected.
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One then determines an approximation of the �rst spike time through the use of

interpolation. If one detects that a neuron's potential has crossed the threshold at

a time tn, then one can assume that the neuron �red in the time interval [tn−1, tn]

and can approximate the spike time by interpolation. Finally, one updates the

network at this time point. This approach allows the use of a coarse-grained time

grids and speeds up the simulation.

3.2 Numerical method employed in the project

The algorithm that we used is adapted from the one described and used by Zhang

et al. in their articles [37, 52, 53]. It is based on a simpli�cation of the dynam-

ics of a neuronal network: it ignores delays in neuron�neuron communications.

Consequently, when a neuron �res, the impact on the connected neurons is in-

stantaneous. This removes some of the ambiguity of causality in a �ring cascade,

so it is reasonable to assume that a burst of activity in a network arises from

a multi-�ring event (i.e., from a cascade of neurons �ring). This assumption is

reasonable for our purpose as we are not interested in the precise timing between

the spikes of a neuron. For a statistical study on the transfer of information and

object recognition, the method is appropriate and it gives good insights for how a

neuronal network responds to a stimulus. This is one of our primary interests in

this thesis. The numerical method is chosen both for its simplicity and adequacy

with the objectives of the thesis.

The algorithm provided by [52, 53] uses an adaptive time grid. However, in

contrast to the model used by Zhang et al. [52, 53], we add Gaussian white noise

to the system (see Equation (2.9)), so our spike times can only be approximated.

Hence, we use a �xed time step of ∆t = 0.01 ms and the �rst spike time tspk

approximates to the grid point at which the voltage of a neuron has crossed the

threshold. Similar to the method proposed by Morrison et al. [32], we use the

analytical solution to Equation (2.9) to update the state variables of each neuron

until a spike is emitted by at least one neuron. Recall that the di�erential equation
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associated with the leaky IF model without �ring is given:

τ
dVi(t)

dt
= Vr − Vi(t) +RIapp + µ

√
τξ(t) (Vt − Vr) .

After the approximation of the �rst spike time, we freeze the "macroscopic"

time t and consider a system that evolves at an arbitrary in�nitesimal time scale

with time variable t̃. This system is described by the membrane potentials of

each neuron vi(t̃), with vi(0) = Vi(t
−
spk). Each neuron can only �re once in the

in�nitesimal time period. Once it has �red, its potential is clamped to the value

Vr. That is, it is �xed to this value for the duration of the refractory period. The

dynamics at this time scale are described by (see Equation (2.8))

dvi

dt̃
=
∑
Q

∑
j of type Q

gijVQ, (3.2)

gij = wijδ(t̃− t̃j), (3.3)

where t̃j corresponds to the time (if any) in the in�nitesimal system at which

neuron j �res.

We solve Equations (3.2,3.3) with analytical formulae for each neuron. As an

example, consider a neuron at time t̃ with voltage vi(t̃) and conductance

gi(t̃) =
∑

j of type Q

gij(t̃)VQ.

If this neuron receives no further inputs (and thus does not �re), then at time

t̃′ > t̃, we have gi(t̃
′) = gi(t̃) and vi(t̃

′) = vi(t̃) +
∑

Q gi(t̃). Thus, the voltage

membrane vi has reached an equilibrium. The algorithm evolves the system by

processing one spike at a time and updating each neuronal state variable until all

of the neurons have either �red or reached an equilibrium. If two neurons cross

the threshold at the same time point, then the one closer to the threshold value Vt

is assumed to �re �rst. When the process is �nished, we return to the macroscopic

time scale and �x the voltages to be Vi(t
+
spk) = vi(∞). All �ring times are collapsed

to tspk, though one can still determine the order of the spikes by looking at the

in�nitesimal system.
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Figure 3.1: Temporal evolution of a simple network formed by three excitatory
neurons (E1, E2, and E3) and one inhibitory neuron (I). The temporal order of
the events that occur within the black box can be recovered by looking at the
in�nitesimal time system (see Figure 3.2).

To illustrate the process, Figure 3.1 shows the temporal evolution of an all-to-

all connected network formed by three excitatory (E1, E2, and E3) neurons and

one inhibitory (I) neuron. In this simulation, we chose the parameters arbitrarily

to highlight the algorithm. We �x Vt = 1 and Vr = 0. The inputs of the network

are given by Poisson processes, one for each of the inhibitory and the excitatory

population, that have rates of 750 Hz (inhibitory) and 1500 Hz (excitatory). We

choose a strong coupling to accentuate the chain of �ring: synaptic strengths

are �xed to 0.1 for inputs, to 1 for excitatory�inhibitory connections, to 0.34 for

excitatory�excitatory couplings, and to 0.37 for inhibitory�excitatory connections.

These represent strong couplings, as they are roughly of the same order as the

di�erence Vt − Vr.
We observe two spikes during the simulation of the network in Figure 3.1. The

�rst one corresponds to the third excitatory neuron (orange curve), and it leads to

a �ring of the inhibitory neuron as well, as shown by the purple curve being reset

to the resting potential. The second spike occurs in the black rectangle, and we

detail the evolution of the associated in�nitesimal-time system in Figure 3.2. Here,

the excitatory neuron E1 (in light blue) �res �rst. Its voltage is then clamped to
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Vr for the rest of the in�nitesimal-time system. This initial spike then causes the

membrane potential of E2 (in red) to cross the threshold and �re. This, in turn,

leads the inhibitory neuron (in purple) to �re and end the cascade. At the end of

the in�nitesimal-time system, the potentials of neurons E1, E2, and I are clamped

to the rest value Vr, and the last neuron E3 has reached an equilibrium.
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Figure 3.2: Evolution of the in�nitesimal-time system of the network formed by
three excitatory neurons (E1, E2, and E3) and one inhibitory neuron (I) corre-
sponding to the spikes contained in the black rectangle of Figure 3.1. The colour
code is the same that the one de�ned in Figure 3.1.
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Chapter 4

Multilayer structure

In this chapter, we motivate the use of the multilayer structure in networks, and

we then de�ne a multilayer network and the associated notations (as introduced

in [26]). We conclude by detailing the structure that we use in this project.

4.1 Motivation

Network theory is important for numerous �elds of research, such as social and

information sciences [34], because it provides frameworks and tools to represent

and study interacting systems. In a network, the nodes represent objects, and

edges symbolise the interactions between the objects. The structure of connectiv-

ity in�uences the properties of a dynamical system on a network as the structure

indicates which components interact with each other. The development of "multi-

layer network" provides a framework to describe increasingly realistic systems. A

real system, whether natural or human-made, generally involves multiple type of

entities and/or interactions. For instance, it can involve multiple subsystems or

types of connections. Classical graphs (or monolayer network) only consider one

type of connection and one type of node, and thus can fail to capture important

features of such systems. A multilayer network provides a more comprehensive

framework for the description of complex systems. The advantage of the multi-

layer framework appears in the theoretical description of a system. The formalism

that is introduced in Section 4.2 allows a more precise and detailed de�nition of
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a system when compared to using graphs, as it becomes easy to distinguish dif-

ferent type of components and interactions. The increasing interest in multilayer

networks is striking, as highlighted by the extensive reviews made by Kivelä et al.

[26] and Boccaletti et al. [4], and the numerous papers that have been written

since.

The study of dynamical systems on networks seeks to improve the understand-

ing of the relation between dynamical processes that occur in a system and the

connectivity of an underlying network of interactions between a system's compo-

nents. One of the simplest types of phenomena on networks is percolation, and

numerous studies have explored how the structure of a multilayer network can

a�ect such processes. Percolation in network theory corresponds to the study of

the behaviour of clusters in random graphs. For instance, [39] use percolation

processes on a multilayer networks representation of the brain to investigate how

connectivity may explain the stability observed in natural systems (the study is

based on fMRI data of the brain). In the �eld of neuroscience, some forms of

multilayer networks were introduced several years ago [48, 54, 55], although they

did not use the language of multilayer network. Indeed, to develop models and

representations in line with experimental results and observation, researchers have

been using structure composed of di�erent interconnected populations, where a

population is formed of coupled oscillators. For instance, Zhou et al. [54, 55]

studied synchronisation on a structure inspired by the cortical brain of a cat. Syn-

chronisation in a network of populations of coupled oscillators was also the object

of the studies in [3, 43]. Other dynamics were also studied on multilayer networks

that were designed to represent part of the visual pathway in the brain of a pri-

mate (including orientation selectivity [31], a transform-invariant representation

[13], and multi-�ring events [38]).

4.2 Notation and general form

In this section, we detail the general form of a multilayer network and introduce

the formalism used to describe them. In the literature on the subject, numerous

notation has been introduced to characterise their structure. Here, we use the
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formalism de�ned by Kivelä et al. [26]. The global representation that they

proposed encompasses most of the di�erent de�nitions that exist in the literature.

We start by brie�y de�ning some of the terminology used to describe a mono-

layer network or graph. A graph consists of nodes that are connected by edges.

Two nodes connected by an edge are said to be adjacent, and the edge is said to

be incident to each of the two nodes. If two edges are incident to the same node,

then they are also said to be incident to each other. A graph is represented by

a tuple G = (V,E), where the set V contains the nodes of the graph and the set

E ⊆ V × V gives the edges, where an edge is de�ned by the pair of nodes that it

connects.

For a multilayer network, it is helpful to introduce the notions of layers and

elementary layers. An elementary layer is an element of a set describing one aspect

of the system studied (e.g., time, type of connections, type of population, etc.).

A layer is a combination of elementary layers, one for each aspect. A multilayer

network is de�ned by the quadruplet (VM , EM , V, L), where V represents the set

of nodes in the network and the set L gives the list of sets of elementary layers

(L1, . . . , Ld), where d is the number of aspects. A layer then belongs to the set

de�ned by L1 × · · · × Ld. The set VM is de�ned to clarify the layer(s) in which

a given node occurs: VM ⊆ V × L1 × · · · × Ld. Note that a node can belong to

multiple layers in this formalism. An element of VM is called a node-layer-tuple

and an element of V is sometimes called a physical node. The set EM contains the

edges of the network. Here, the edges are de�ned by the pairs of node-layers that

it connects: EM ⊆ VM × VM .

Figure 4.1 illustrates the general form of a multilayer network. It contains

four nodes, V = {1, 2, 3, 4}, and two aspects with associated sets L1 and L2 of

elementary layers, where L1 = {A,B} and L2 = {X, Y }. Thus, VM = V × L1 ×
L2. Node-layers of this network include (1, A,X) and (1, B, Y ), but (1, A, Y )

does not occur in this network. The dotted lines represents inter-layer edges

(e.g, ((1, A,X), (1, B,X))), and the solid lines indicate intra-layer edges (e.g,

((4, B,X), (3, B,X))).

The formalism can be extended further when a system requires a more spe-

ci�c description (see [26]) for instance, by di�erentiating between inter-layer and
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Figure 4.1: (a) Example of a multilayer network. It is composed of four lay-
ers ((A,X), (A,Y), (B,X), and (B,Y)) and two types of edges: intra-layer edges
(solid lines) and inter-layer edges (dotted lines). (b) The underlying graph
GM = (VM , EM) of the multilayer network. [This �gure is used with permission
from [26].]

intra-layer edges more explicitly. However, for our purpose, the above notions are

su�cient to describe the system that we study. However, we do need to de�ne a

few more terms for the edges in networks more generally. An edge is undirected if

information can go both ways. However, considering the structure of a single neu-

ron (see Section 2.1), the edges in a neuronal network are directed. They are also

weighted, as each edge is associated with the strength of the synaptic connection

between the pair of neurons. The weight of the directed edge from the neuron j

to neuron i corresponds to wij in Equation (3.3).

4.3 Architecture of the network

The brain is an extremely complex system that contains various numbers of neu-

rons, depending on its size [51]. For example, human brain is estimated to contain

between ten billion and a trillion neurons. Commonly, brain systems are decom-

posed into di�erent components that handle various functions. For example, the

role of the hypothalamus is linked to sleep-and-wake cycles, and the medulla is

involved in sensory and re�ex motor functions such as heart rate. The number of

components is linked to the size of an animal (and of its brain). These components

can be further decomposed into di�erent intercommunicating regions or layers; see,
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for instance, the representation of the neocortex in [10] and or the representations

of the primary visual cortex (V1) in [15, 31]. Communications between nuclei of

di�erent regions or within the same region are extremely intricate; the density,

type, and strength of these connections can vary greatly [45].

The multilayer network framework de�ned in Section 4.2 is an e�cient way to

represent the wide range of observed, and postulated, structures and interactions.

The most common approach is to study a particular region or subsystem of a region

[45]. A common object of study is the primary visual cortex (V1) [7, 31, 38]. The

V1 region is implicated in pattern recognition [40] and is a subsystem of the visual

pathway, which corresponds to the part of the brain that processes visual stimuli.

The V1 region is estimated to contain about 140 million neurons [28]. For instance,

reference [38] modeled part of the V1. Using the formalism introduced in Section

4.2, the network has 3 aspects. The �rst one corresponds to "hypercolumns", the

second one corresponds to clusters that represent an "orientation preference", and

the last one is the type of the neurons (excitatory or inhibitory). The nodes are

connected randomly, the probability that an intra-layer edge exist is higher than

for an inter-layer edge.

In this project, we also study an architecture inspired by part of the structure

of the visual pathway. The basic structure of the network that we use (see Figure

4.2) is the same as the one introduced in [13]. It amounts to simpli�cation of

the ventral visual stream, which is important in pattern recognition and memory

formation. The network emulates the connection between the retina (input) and

group of neurons of the V1 (output)[7]. Visual stimuli are presented to the retina,

and the response of the group of neurons is observed.

The architecture of the network is simple: it contains two aspects, which cor-

respond to the sets L1 = {Input,Output} and L2 = {Excitatory, Inhibitory} of
elementary layers. Thus, there are four layers: (Excitatory, Input), (Inhibitory,

Input), (Excitatory, Output), and (Inhibitory, Output). To simplify the notation,

we denote these layers by E1, I1, E2, and I2, respectively. For clarity, we call

the bi-layers de�ned by {E1,I1} and {E2,I2} (see the dotted boxes in Figure 4.2)

the "input cluster" and "output cluster", respectively. In the network, a physical

node belongs to exactly one layer. This type of multilayer networks is called "layer

disjoint" in [26]. Each arrow in Figure 4.2 represents full connectivity. Thus, all
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nodes in each inhibitory layer are adjacent to each other (all-to-all intra-layer con-

nections in I1 and I2 layers), and we have all-to-all inter-layer edges in both the

input and output clusters. The interactions from the input cluster to the out-

put cluster occur only between the two excitatory layers, and we also assume full

connectivity in this case. The inhibitory populations are integrated to introduce

"competition" within the excitatory populations. Competition comes from the

fact that excitatory neurons that �re �rst, and cause inhibitory neurons to �re,

decrease the potential of the other excitatory neurons. Finally, the weights of the

long-range connections evolve throughout the learning phase (see Chapter 5). The

competition introduced accentuate the learning; it is an instance of "competitive

learning" (see Section 5.2).

E 

I 

I 

E 
Output 

Input 

Figure 4.2: Structure of the toy V1 network. The letter E stands for excita-
tory neurons, and I stands for inhibitory neurons. The network has four layers:
(E,Input), (I,Input), (E,Output), and (I,Output).
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Algorithm and structure

We now explain how the structure de�ned in this chapter and the algorithm

de�ned in Chapter 3 �t our objectives. Our main goal is to observe the e�ect of

damage (e.g, lesions) on a network. We use learning to simulate pattern recogni-

tion (see Chapter 5) as a way to measure the impact on memory. Network theory

is particularly adapted for the study of neuronal interaction and the multilayer for-

malism allows a clear and concise formal description of how the system behaves.

Our study is qualitative, and we thus use a toy model to obtain some preliminary

insights on how much information can be lost. The visual pathway is often mod-

elled with four, or more, excitatory layers with feedforward connections [46, 48].

Each of the excitatory layer is associated with an inhibitory layer simulating the

mechanism of lateral inhibition observed in real systems. Here, we are interested

in how learning a�ects each layer as well as in the short-range impact of damage on

the connectivity. For our purposes, the simpler architecture detailed is su�cient.

A more quantitative approach would require a more realistic network structure

and dynamical system. For example, one could want to add delays in transmissions

between pairs of nodes (see Chapter 3), and a more complex architecture (e.g., in

the number of layers and connections).
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Chapter 5

Synaptic plasticity and learning

It is widely accepted that the formation of memory and the learning in a brain

is associated with the evolution of the connectivity of a neuronal network and in

particular with the modi�cation of the strength of the synapses [14, 40]. The un-

derlying mechanism, called synaptic plasticity, refers to the ability of the synapses

to strengthen or weaken over time depending on their activity level. In [14], Don-

ald O. Hebb introduced a basic description of such mechanisms that led to the

development of the Hebbian theory (see Section 5.2).

We elaborate on the de�nition of the structure of a synapse (see Section 2.2),

before discussing the Hebbian theory. This will help the biophysical interpretation

of the learning rule that we implement.

5.1 Synapse structure

In Section 2.2, we introduced the synapse as the junction that operates information

transfer between the axon of a pre-synaptic neuron and a dendrite of a post-

synaptic neuron. The full details of the synaptic transmission process are not

discussed in this thesis, but it is useful to understand the underlying basic steps. In

Figure 5.1, we give a the schematic of the structure of a synapse. A synapse consists

of three main parts: the axon terminal (or pre-synaptic ending), which contains

chemical messengers called neurotransmitters; the synaptic cleft; and the post-

synaptic ending (or dendrite terminal), which contains receptors. When an impulse
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travels down an axon, it triggers the release of neurotransmitters in the synaptic

cleft. When enough of the released neurotransmitters link with the receptors

on the post-synaptic membrane, it produces an action potential that propagates

to the post-synaptic neuron. When there are more unoccupied receptors, more

neurotransmitters are required to create an action potential.

Figure 5.1: Schematic of a synapse between the axon of a neuron and a dendrite
of another [Creative Commons [44]].

Essentially, the strength of a synapse is linked to both the number of neuro-

transmitters contained in the pre-synaptic ending and the number of receptors on

the post-synaptic membrane.

5.2 Hebbian theory

To emulate learning in a network, we implement a Hebbian-like method. Heb-

bian theory was introduced by Donald O. Hebb in 1949 [14]; he formulated the

underlying idea as follows:

Let us assume that the persistence or repetition of a reverberatory

activity (or "trace") tends to induce lasting cellular changes that add

to its stability. [...] When an axon of cell A is near enough to excite a

cell B and repeatedly or persistently takes part in �ring it, some growth

process or metabolic change takes place in one or both cells such that

A's e�ciency, as one of the cells �ring B, is increased.
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In other words, the wiring between a pre-synaptic and a post-synaptic neuron

is strengthened if the pre-synaptic cell contributes to the activity of the post-

synaptic, and it is weakened otherwise. The basic concept can be summarised by

Carla Schatz's phrase "cells that �re together wire together" [42]. However, one

needs to be careful with the phrasing, as it omits the notion of causality present

in Hebb's statement. Indeed, the pre-synaptic cell activity needs to "lead" to the

�ring of the post-synaptic neuron, so it needs to �re �rst. This is an important

point in the continuous transformation (CT) learning method that we use in this

project. Furthermore, the competition introduced by the inhibitory populations

impacts the learning in the sense that it favours the �ring of neurons that respond

faster to the stimulus (i.e., the neurons that have stronger connections to the

cells stimulated in the input cluster). Indeed, in parallel to the learning rule, the

excitatory neurons that �re lead to a decrease of the membrane potential of the

other neurons in the same layer. This implies that the neurons that have not

�red are less likely to �re, as their connections are weakened and their potentials

decrease.

Continuous Transformation learning

The CT method for spiking networks, such as the ones using IF models, was

introduced by Perrinet et al. [35] as an adaptation of Hebb's principle.

The model in [35] corresponds to a spike-time-dependant synaptic plasticity.

An important feature of the model in [35] is that a spike produced by a neuron

propagates both down the axon to the pre-synaptic terminal (feedforward) and

back to the dendrites' endings (feedback). We denote the relative concentration

of synaptic vesicles containing the neurotransmitters in the axon terminal of the

synapses between the neuron j and i (see Figure 5.1) with the variable Cij, and

we denote the proportion of unoccupied receptors on the post-synaptic ending's

membrane with the variable Di. These variables are impacted by the feedback and

feedforward produced when the neuron �res. This yields the following system of
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equations:

dCij(t)

dt
= −Cij(t)

τC
+ αC (1− Cij(t))

∑
k

δ
(
t− tkj

)
, (5.1)

dDi(t)

dt
= −Di(t)

τD
+ αD (1−Di(t))

∑
k

δ
(
t− tki

)
, (5.2)

where τC and τD correspond to the decay time constant of the variables C and

D. The parameters αC and αD are the associated pulse amplitudes. We assume

that these four parameters are the same for all neurons in the network. Note that

(Cij, Di) ∈ [0, 1]2 for (αC , αD) ∈ [0, 1]2 and for all t > 0. Finally, tkj corresponds to

the time at which the k-th spike of neuron j occurs, and tki is the time of the k-th

spike of neuron i.

Qualitatively, Equation (5.1) implies that when the pre-synaptic neuron j �res,

the concentration of neurotransmitters increases according to the parameter αC in

each synapse that is connected to the axon. The concentration then decays to 0 at

a rate �xed by the time constant τC . Similarly, Equation (5.2) signi�es that when

the post-synaptic neuron �res, the feedback to the dendrites leads to an increase

in the number of unoccupied sites. The synaptic strength wij(t) evolves according

to the system

wij(t) =wEEλij(t), (5.3)

dλij(t)

dt
= (1− λij(t))Cij(t)

∑
k

δ
(
t− tki

)
− λij(t)Di(t)

∑
k

δ
(
t− tkj

)
,

where wEE corresponds to the maximum possible value of the synapses' weights,

and λij ∈ [0, 1] represents the relative strength of a synapse.

Biophysically, the system formed by Equations (5.1,5.2,5.3) can be interpreted

as follows. When a pre-synaptic cells �res, Cij increases and the weight wij weakens

in a way that depends on the recent activity of the post-synaptic cell. The decrease

is larger if the neuron �red recently. Alternatively, when the post-synaptic neuron
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�res, Di increases and the synapse connections strengthen with the recent activity

of the associated pre-synaptic cells. If a pre-synaptic neuron �red recently, then it

is likely that it contributed to the �ring of neuron i and thus the synapse weight

is increased.

Numerically, we solve Equations (5.1,5.2,5.3) using the same method as before

(see Section 3.2). We update the variables Cij and Di using analytical solutions

in the absence of spikes. When a spike is detected, the impact is processed in the

in�nitesimal-time system that we described in Section 3.2. Note that causality

in our system implies that a neuron in the E1 layer �res before a neuron in the

E2 layer. Hence, Equation (5.1) and the second sum of Equation (5.3) are solved

before the �rst sum and Equation (5.2) to insure time-spike-dependant plasticity.

This process happens simultaneously with simulating neurons' �ring.

5.3 Stimuli and training procedure

Continuous transformation learning is based on the spatial continuity of the trans-

forms of an object [46]. For instance, consider an object that can be observed at

di�erent angles. Each angle gives a di�erent visual stimulus, but each corresponds

to the same object. Essentially, an object can be associated to di�erent stimuli

that we call transforms.

Recall that the network we use represents part of the visual system in a brain.

Seeing an object, produces a visual stimulus that is processed by the neuronal

system. In our representation, the stimulus produced is applied on the E1 layer

of the input cluster, and we are interested in the response of the neurons in the

E2 layer of the output cluster. We assume that stimuli corresponding to di�erent

objects do not overlap, meaning that the stimuli are applied on di�erent neurons.

However, it is reasonable to assume that stimuli associated to one object are sim-

ilar to each other. Hence, we consider that transforms of an object should have a

certain degree of overlap, which means that some number of the neurons that are

stimulated in the transforms are shared between the transforms. The degree of

overlap is de�ned relatively to the number of neurons excited by a stimulus. Refer-

ence [13] showed that the degree of overlap plays a role in the learning process. As
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the amount of overlap becomes larger, the association of transforms corresponding

to the same object becomes better.

In this project, we consider two objects with three transforms each (see the

sketch given on Figure 5.2). The details of the stimuli (number of neurons stimu-

lated by one stimulus and degree of overlap) are discussed in Chapter 6.

Figure 5.2: Schematic of the objects and their transforms as they are presented to
the input excitatory neurons. The neurons excited by each stimulus are directly
above the bar that represents it. We represent only 10 neurons to simplify the
�gure.

A training sequence is de�ned by the successive presentation of the stimuli

that correspond to each transform of each object to the input excitatory neurons.

Between each transform, the voltages of all neurons, as well as all Cij and Di, are

reset to 0. Reference [13] showed that the decay time constants τC and τD play

an important role for the e�ciency of the learning phase. We use the parameters

values used in [13, 35]: τC = 15 ms and τD = 25 ms.

5.4 Performance of the network

We need to be able to measure the performance of the network to evaluate the

impact of the learning and the damage to the system. Good performance for a

neuron of the network entails object speci�city, which means that its response to

one object, independently of its transform, is stronger than its response to the other

object. When the subset of neurons that shows object speci�city becomes larger,
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the performance of the network increases. In this project, to measure performances

we consider both a visual method, based on the raster plots and scatter plots, and

a simple statistical method (the analysis of variance or ANOVA).

A raster plot represents the activity of neurons during a time-frame (see Figure

6.1). The horizontal axis gives the time, and the vertical axis gives the rank of

the neurons. Each dot on the graph stands for the corresponding neuron �ring.

The scatter plots (see Figure 6.4) are de�ned to show the di�erence between the

responses of the network to two objects and the similarity between the responses

of the network to the three transforms of each object. For this, we compute the

number of spikes during 100 ms time bins (simulation time) for each stimulus. We

then compute the following mean spike counts over 10 runs for each neuron:

1. SO1
i : Mean response to object 1,

2. SO2
i : Mean response to object 2,

3. SO1,T1
i : Mean response to the �rst transform of object 1,

4. SO1,T2
i : Mean response to the second transform of object 1,

5. SO1,T3
i : Mean response to the third transform of object 1,

6. SO2,T1
i : Mean response to the �rst transform of object 2,

7. SO2,T2
i : Mean response to the second transform of object 2,

8. SO2,T3
i : Mean response to the third transform of object 2.

A neuron di�erentiate between objects if its response to one object is high and

low to the other (i.e., SO1
i large and SO2

i small, or the opposite). Furthermore, a

neuron has an invariant response to the transforms of an object if SO,T1
i , SO,T2

i ,

and SO,T3
i are similar for each object. These remarks motivate three scatter plots:

one for the responses to both objects, and one for each object and the responses

to its transforms.
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The ANOVA method was used by Wallis et al. [48] to measure the stimulus

speci�city of neurons. Other available options involve information-theoretic no-

tions; see [6, 29] for details. For instance, [13, 18, 19] used transfer entropy and/or

mutual information to evaluate the performance of their networks.

ANOVA is a method that measures di�erences between sample means in our

case, �ring rates. Furthermore, ANOVA allows one to di�erentiate between several

independent factors at the same time, and one can thereby evaluate their individual

and combined e�ects on the data sets [21]. We take advantage of this feature of

ANOVA. In short, we assume that the �ring rates obtained for each neuron while

considering di�erent combinations of factors are all equal. To test this hypothesis,

we compute a value, denoted F , that corresponds to the ratio between two di�erent

measures of the population variance. One measure is based on the hypothesis that

the �ring rates are equal, and the other measure is only based on the data set. If F

exceeds a critical value, then the two measures present su�cient discrepancy, and

the hypothesis is rejected. We conclude that there are signi�cant di�erences among

a neuron �ring rates for the di�erent combinations of factors. Critical values are

drawn from the F -distribution depending both on the desired level of precision (to

obtain a con�dence interval) and on the degree of freedoms for each factor. In our

case, we consider two factors: the object and the transform. Because there are two

objects and three transforms, the factor object has 1 degree of freedom and the

factor transform has 2 degrees of freedom. We are interested in the separate e�ect

of each factor, so we compute two F -ratios: FO and FT . The �rst is associated

to the factor "object" and the second is associated to the factor "transform". A

high value of FO entails a good discrimination between objects. A low value of

FT entails an invariance of responses to the di�erent transforms of an object. The

performance of a cell in the network is then measured by the discrimination ratio

FO/FT [48]. The higher the discrimination ratio, the better the performance of

the neuron.

In practice, we apply this method for each excitatory cell in the output cluster.

We run 20 simulations for each stimulus. A run lasts 100 ms, and we compute the

�ring rate of each neuron after each run. Once the simulations are done, we use

the Matlab function anovan that computes the ANOVA method, and we then
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plot the discrimination ratio for the E2 layer. We compare the curves that we

obtain for the di�erent cases in Chapter 6.
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Chapter 6

Simulations and discussion

6.1 Summary of the model

Before detailing our numerical experiments, it is useful to brie�y review the equa-

tion that we are examining. The sub-threshold dynamics of a neuron i are governed

by the equation

τi
dVi(t)

dt
= Vr − Vi(t) +Ri (Ii(t) + Iapp) + µ

√
τiξ(t) (Vt − Vr) , (6.1)

Ii(t) =
∑
Q

∑
j of type Q

gijVQ,

gij =
∑
k

wijδ(t− tkj ).

See Section 2.2.3 for details on the parameters. We assume for simplicity that

τi = τ and Ri = R for all i. The parameter Iapp corresponds to the stimulus

applied to the input excitatory neurons, so Iapp = 0 for all neurons except for

those corresponding to the area of the retina being stimulated, for which we con-

sider Iapp = 2 nA. For inhibitory�excitatory, excitatory�inhibitory, and inhibitory�

inhibitory connections, the weights wij are constants equal to wIE, wEI , and wII ,

respectively. See Table 6.1 for the numerical values. The weights of the connec-

tions between excitatory populations are governed by the following system (see
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Section 5.2 for details):

dCij(t)

dt
= −Cij(t)

τC
+ αC (1− Cij(t))

∑
k

δ
(
t− tkj

)
, (6.2)

dDi(t)

dt
= −Di(t)

τD
+ αD (1−Di(t))

∑
k

δ
(
t− tki

)
, (6.3)

wij(t) = wEEλij(t), (6.4)

dλij(t)

dt
= (1− λij(t))Cij(t)

∑
k

δ
(
t− tki

)
(6.5)

− λij(t)Di(t)
∑
k

δ
(
t− tkj

)
.

The architecture that we use contains 72 neurons in the E1 and E2 layers and

18 neurons in the I1 and I2 layers. The choice of a small number of nodes is made to

speed the numerical experiments, it is reasonable as we only consider two di�erent

objects. We adapted most parameters listed in Table 6.1 from values found in the

literature. The other were tuned through successive simulations to obtain results

consistent with learning as done in [13]. In particular, it implies that the choice

of values for the weights is not unique. Through the tuning phase, we observed

that the most important point was how they relate to each other. We then chose

values of roughly the same order of magnitude as those found in [13, 35].

The λij are all initialised to 0.4, the values evolve during the training phase

and are then �xed to their �nal value for the tests. The other variables in the

system are all initialised to 0, and furthermore they are reset to 0 for each test

and between stimuli.

In our experiments, we apply each stimulus to 28 neurons of the E1 layer. For

one object, we consider that successive transforms have 24 overlapping neurons

(i.e., transforms 1 and 2 share 24 neurons, and transforms 2 and 3 share 24 neu-

rons). Furthermore, we consider that transforms of the two objects never overlap.

In Figure 6.1 we give the spike raster plot that corresponds to the response of the

excitatory input layer to the presentation of each stimulus for 250ms. The �rst

three stimuli correspond to transforms of the �rst object, and the remaining three

are transforms of the second object.
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Parameter Symbol Value Reference

Stimulus pulse applied to single neuron Iapp 2 nA

Time-step ∆t 0.01 ms

Number of neurons in the E1 layer NE1 72 [13]

Number of neurons in the I1 layer NI1 18 [13]

Number of neurons in the E2 layer NE2 72 [13]

Number of neurons in the I2 layer NI2 18 [13]

Cells membrane resistance R 0.04 GΩ [13]

Cells membrane-time constant τ 20 ms [13, 47]

Cells �ring threshold potential Vt 1 V [36]

Cells rest potential Vr 0 V [36]

Excitatory neuron constant potential VE 14/3 V [36]

Inhibitory neuron constant potential VI −2/3 V [36]

Neuron refractory period τref 2 ms [13, 47]

Synaptic weight for inhibitory�inhibitory connections wII 40 nS

Synaptic weight for excitatory�inhibitory connections wEI 40 nS

Synaptic weight for inhibitory�excitatory connections wIE 15 nS

Synaptic factor for excitatory�excitatory connections wEE 5 nS

Synaptic neurotransmitter pulse amplitude αC 0.5 [13, 35]

Synaptic receptor pulse amplitude αD 0.5 [13, 35]

Post-synaptic time constant τC 15 ms [13, 35]

Pre-synaptic time constant τD 25 ms [13, 35]

Table 6.1: Values, symbols, and origin of each of our parameters. The reference
column gives the articles from which the values were either taken or adapted. The
parameters without reference were tuned, for our purposes, through successive
simulations.
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Figure 6.1: Spike raster plot corresponding to the successive presentation of all
stimuli. Each stimulus is presented for 250 ms and on 28 neurons corresponding
to the boxes; the �rst three are transforms of the �rst object, and the latter three
correspond to the second object.

6.2 Results and discussion

6.2.1 Training simulation

We train the system over a total of 50 sequences and measure the performance after

2, 20, and 50 sequences. In the following, when we refer to the trained network, it

corresponds to the state after 50 sequences of training.

Figure 6.2 gives raster plots for the untrained network, and the trained network.

Initially, the response of the network to the stimuli is random. However after

training, we observe that the activity is more organised and that some cells in the

network respond more to the transforms of one object than to the other object.

However, we remark that the activity level on the network (i.e., the overall number

of neurons spiking), is not signi�cantly di�erent.

In the panel of Figures 6.4, the �rst striking point is the increase of the variance

between the two cases. In Figure 6.4.a, corresponding to the untrained network, we

remark that the mean activity of each neuron in response to each object is close
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Figure 6.2: (a) Raster plot of the untrained network. (b) Raster plot of the
trained network after 50 sequences. The horizontal axis gives the time, the vertical
axis gives the rank of the neurons. The red dots represent the spikes of the neurons.

to the overall mean response of the network. However for the trained network,

in Figure 6.4.d the variance between the neurons responses increases signi�cantly.

Furthermore, the number of neurons that respond strongly to both objects (upper-

right quadrant) is lower than in the other regions. This shows that there is an

enhanced discrimination between the objects when compared to the untrained

network. Ideally, there would be fewer neurons in the bottom-left quadrant. A

solution could be to tune down the weights wEI and wIE to reduce the impact of the

inhibitory neurons. The remaining �gures on the panel underline the invariance

of response of the network to the transforms of the same object. In Figures 6.4.b

and 6.4.c, we observe that there is no correlation between the transforms of an

object in the responses of the untrained network. However, the trained network

responses show the a certain degree of invariance, as highlighted by the scatter

plots in Figures 6.4.e and 6.4.f.

In Figure 6.5, we give the cumulative plot of the discrimination ratio distribu-

tion in the course of the training phase. Recalling that a high discrimination ratio

implicates good performance of the corresponding cell, we observe as the training

progresses that probability that the cell has a high discrimination ratio increases

rapidly. After only two sequences, the network shows good performance; after 20

sequences of training, the network has reached what appears to be its maximal
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performance. The fact that any further training does not improve performances

signi�cantly comes from the noise introduced in the system. The reason the train-

ing is e�cient so quickly comes from the fact that the network is trained with only

two objects with three transforms each. If there were more transforms or more

objects the network would require more training sequences to reach a similar level

of performance.
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Figure 6.3: Cumulative plot of the discrimination ratio distribution in the output
excitatory layer. The vertical axis gives the probability that a neuron has a dis-
crimination ratio above a certain value, which is given on the horizontal axis. The
horizontal axis is cut at 100 to improve readability. The black line correspond to
the response of the untrained network. The other lines corresponds to the trained
network after 2 sequences (blue), after 20 sequences (green) and after 50 sequences
(red).
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Figure 6.4: These �gures correspond to scatter plots. (a), (b), and (c) corre-
sponds to the untrained network, and (d), (e), and (f) are associated with the
trained network. (a) and (d) are the scatter plots of the mean spike counts for
each cell SO1

i andSO2
i corresponding to responses of the network to object 1 and

object 2, respectively. These graphs are normalised with the mean value over all
cells for each object 〈SO1〉 and 〈SO2〉, which implies that the value 1 on both axis
represents the mean response over all cells to each object. (b) and (e) are the
scatter plots of the mean spike counts for each cell SO1,T1

i , SO1,T2
i ,and SO1,T3

i cor-
responding to responses of the network to each transform associated with object
1. SO1,T1

i (blue) and SO1,T2
i (red) are plotted against SO1,T3

i . (c) and (f) are the
scatter plots of the mean spike counts for each cell SO2,T1

i , SO2,T2
i ,and SO2,T3

i cor-
responding to responses of the network to each transform associated with object
2. SO2,T1

i (blue) and SO2,T2
i (red) are plotted against SO2,T3

i .
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6.2.2 Impact of damage

In this section, we test the robustness of a trained network to damage. In our case,

robustness implies that the performance of a network is maintained, to a certain

extent, despite the degradation of the network. In [49], Walters et al. highlighted

the robustness of �ring-rate-based neuronal networks to random removal of nodes

in a layer (up to 50%). Here, we are interested in the impact of damage a�ecting

the connections between the E1 and E2 layers. We consider two models of damage

on the trained network. The �rst one corresponds to the destruction of connec-

tions that were simulated by removing uniformly at random some percentage of

the connections between the excitatory layers. The second type corresponds to

the modi�cation of part of the connections, which we simulate by drawing uni-

formly at random some percentage of the connections and changing their relative

weights λij to random values drawn from the uniform distribution on the interval

[0, 1]. Essentially, we are replacing "trained" weights by values drawn uniformly

at random.

6.2.2.1 Loss of connections

In Figure 6.5, we show the raster plots after 30% and 70% of the connections

were randomly removed from the trained network (the weights of the connections

removed are set to 0). We observe two things when we compare Figure 6.2 and

Figure 6.5. The �rst observation is that the activity in the network decreases as the

percentage of damage in the network increases (fewer neurons �re in the E2 layer).

This observation was expected, as we remove connections between the input and

output clusters, without increasing the weights of the remaining edges. Second, we

observe that a certain degree of di�erentiation between the objects is preserved,

as shown by the fact that some neuron respond speci�cally to one object and not

to the other.

In the panel of Figures 6.7, the scatter plots give an interesting result: the

loss of connections impact the responses between transforms more than the object

di�erentiation. In Figures 6.7.a and 6.7.d, we observe no signi�cant change when

compared to the trained network in Figure 6.4.d. This underlines that the neu-

rons in the network conserve, on average, their object speci�city. However, the
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Figure 6.5: (a) Raster plot of the trained network where 30% of the connections
were randomly suppressed. (b) Raster plot of the trained network where 70% of
the connections were randomly suppressed. The horizontal axis gives the time; the
vertical axis gives the rank of the neurons. The red dots represent the spikes of
the neurons.

correlation between the responses to each transform of one object decreases as the

percentage of damage increases. This is highlighted in Figures 6.7.b, 6.7.c, and

particularly in Figures 6.7.e and 6.7.f.

Each curve in Figure 6.9 represents the cumulative plot of discrimination ratio

distribution of the neurons in the E2-layer. We remark that the network retains

good performance despite the damage. For example, the network with 10% of

the connections destroyed has roughly the same distribution that the trained net-

work. With 30% and 50% of the connections removed, the discrimination ratio

distribution still shows reasonable performance similar to those obtained after 2

sequences of training on the initial network. However at 70%, we observe that the

performance of the network drops considerably.

The study of the destruction of connection between the E1 and E2 layers high-

lights two results. The �rst result is the robustness of the network performance

to the random removal of edges. On average, the damaged networks appear to

di�erentiate the objects the same way as the trained system. However, this type

of damage seems to lead to an increased variance between the responses of the

47



network to the transforms of one object. This result is directly linked to the de-

crease in activity in the system. It may be interpreted as the network starting

to di�erentiate the objects but also the transforms of an object due to a lack of

information reaching the E2 layer (i.e., the network interprets the transforms of

an object as independent objects).
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Figure 6.6: Cumulative plot of the discrimination ratio distribution in the out-
put excitatory layer. The vertical axis gives the probability that a neuron has a
discrimination ratio above a certain value, which is given on the horizontal axis.
The horizontal axis is cut at 100 to improve readability. The dashed line corre-
sponds to the response of the untrained network. The thicker lines correspond to
the trained network after 2 sequences (green) and after 50 sequences (blue). The
other lines correspond to the trained network after removing randomly 10% (blue),
30% (red), 50% (orange), and 70% (purple) of the connections.
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Figure 6.7: These �gures correspond to scatter plots. (a), (b), and (c) corre-
sponds to the trained network with 30% of connections removed, and (d), (e), and
(f) are associated with the trained network with 70% of connections down. (a)
and (d) are the scatter plots of the mean spike counts for each cell SO1

i andSO2
i

corresponding to responses of the network to object 1 and object 2, respectively.
These graphs are normalised with the mean value over all cells for each object
〈SO1〉 and 〈SO2〉, which implies that the value 1 on both axis represents the mean
response over all cells to each object. (b) and (e) are the scatter plots of the mean
spike counts for each cell SO1,T1

i , SO1,T2
i ,and SO1,T3

i corresponding to responses of
the network to each transform associated with object 1. SO1,T1

i (blue) and SO1,T2
i

(red) are plotted against SO1,T3
i . (c) and (f) are the scatter plots of the mean spike

counts for each cell SO2,T1
i , SO2,T2

i ,and SO2,T3
i corresponding to responses of the

network to each transform associated with object 2. SO2,T1
i (blue) and SO2,T2

i (red)
are plotted against SO2,T3

i .

49



6.2.2.2 Alteration of connections

In Figure 6.8, we observe that, as one could expect, the randomness in the response

of the network to the stimuli increases with the percentage of edges' weights altered.

However, one can still detect neurons that respond strongly to only one object's

stimuli.
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Figure 6.8: (a) Raster plot of the trained network where 30% of the connections
were randomly altered. (b) Raster plot of the trained network where 70% of
the connections were randomly modi�ed. The horizontal axis gives the time; the
vertical axis gives the rank of the neurons. The red dots represent the spikes of
the neurons.

In the panel of Figures 6.9, two observations can be made. First, Figures 6.9.a

and 6.9.d show that, in contrast to the previous case, the di�erentiation between

the objects decreases as we increase the percentage of connections modi�ed. This

remark is supported by the increased randomness observed on the raster plots in

Figure 6.8. However, in Figures 6.9.b, 6.9.c, 6.9.e, and 6.9.f we observe still a

correlation between the transforms, which implies that the network responds the

same to the di�erent stimuli associated with an object.

The discrimination ratio distributions in Figure 6.10 highlights the robustness

of the performance of the system to this source of damage. The network maintains

performance up to 50% of damage before dropping below the level reached after 2

sequences of training.
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Figure 6.9: These �gures correspond to scatter plots. (a), (b), and (c) corre-
sponds to the trained network with 30% of connections modi�ed, and (d), (e), and
(f) are associated with the trained network with 70% connections modi�ed. (a)
and (d) are the scatter plots of the mean spike counts for each cell SO1

i andSO2
i

corresponding to responses of the network to object 1 and object 2, respectively.
These graphs are normalised with the mean value over all cells for each object
〈SO1〉 and 〈SO2〉, which implies that the value 1 on both axis represents the mean
response over all cells to each object. (b) and (e) are the scatter plots of the mean
spike counts for each cell SO1,T1

i , SO1,T2
i ,and SO1,T3

i corresponding to responses of
the network to each transform associated with object 1. SO1,T1

i (blue) and SO1,T2
i

(red) are plotted against SO1,T3
i . (c) and (f) are the scatter plots of the mean spike

counts for each cell SO2,T1
i , SO2,T2

i ,and SO2,T3
i corresponding to responses of the

network to each transform associated with object 2. SO2,T1
i (blue) and SO2,T2

i (red)
are plotted against SO2,T3

i .

This type of damage a�ects the network di�erently when compared to the

simple removal of connexions. In contrast, we observed the capacity of the neuron

in the network to di�erentiate between objects was primarily a�ected. This is

consistent with an homogenisation of the �ring across the E2 layer. It could be
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interpreted as the network having relatively the same response to each stimulus

and thus trouble di�erentiating object. Note, however, that this become sensible

when the percentage of connections altered exceeds 50%. Hence, the network

shows robustness to this model of damage as well.
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Figure 6.10: Cumulative plot of the discrimination ratio distribution in the
output excitatory layer. The vertical axis gives the probability that a neuron
has a discrimination ratio above a certain value, which is given on the horizontal
axis. The horizontal axis is cut at 100 to improve readability. The dashed line
corresponds to the response of the untrained network. The thicker lines correspond
to the trained network after 2 sequences (green) and after 50 sequences (blue). The
other lines correspond to the trained network after changing randomly 10% (blue),
30% (red), 50% (orange), and 70% (purple) of the connections.
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Chapter 7

Conclusion

In this project, we developed a toy model and we used it to investigate a way to

achieve object recognition in a neuronal system and to study the impact of damage

on connections in a system.

We used the leaky Integrate-and-Fire model to describe the behaviour of each

neuron of the system. This model allows one to track the individual spikes of each

neuron. This is necessary for the spike-dependent plasticity of the synapses on

which the continuous transformation learning rule is based.

We used a multilayer network formalism to describe the architecture of the

system and how components interact with each other. The network de�ned is

composed of four layers, which are sorted into two clusters. The input cluster

models the retina, and the output cluster represents a part of the primary visual

cortex (V1).

We then successfully trained our toy network to recognise two di�erent objects

and their transforms and to di�erentiate between the objects (see Section 6.2.1).

The transforms of an object can be interpreted as the stimuli produced by the

object observed at di�erent angles.

We simulated damage in the system using two di�erent methods to a�ect the

inter-excitatory-layer connections: (1) direct removal of a connection and (2) ran-

dom change of the weight of a connection. The simulations on these deteriorated

systems highlighted the robustness and stability of the trained network. Indeed,

the network exhibits little performance drop even when the percentage of the
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connections a�ected exceeds 50%. Recall that performance is associated to good

discrimination between di�erent objects presented to the network. This entails

cell speci�city, which means that a cell performs well if it responds strongly to one

object and weakly to the other. We evaluate speci�city using both visual interpre-

tation of graphs and the discrimination ratio computed with an ANOVA method.

Future work could entail training the system with either more objects or more

complicated objects for instance, using actual pictures, as in [35]. We expect

that the performance of a network will drop more rapidly with an increase in the

percentage of damaged connections.. Another interesting direction would be to

examine the impact on layers that receive inputs from the output cluster. We

observed that the level of activity decreases with the percentage of damage, the

layers located further away from the input cluster are expected to rapidly lose

speci�city. The notion of distance we have in mind here corresponds to the number

of "inter-layers" between the input and the output considered. This hypothesis, if

con�rmed, will then lead to a similar question asked in [39]: how can the stability

observed in real neuronal systems be explained? The answer proposed in their

article is that the stability comes inherently from the network connectivities. One

could then test how di�erent type of connectivities between clusters impact both

the learning phase and the process of stimuli by a damaged network.
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Appendix A

Integrate-and-Fire code with

learning

function [D_int_layer] = IF_CODE_inputconst(N,D,D_int_layer,tburst,...

nburst,dt,I,xi,flag_learning)

% N - Number of neurons in excitatory and inhibitory

% layers (2*1 vector)

% D - Fixed weights values (2*2 matrix)

% D_int_layer - Relative weight between E1 and E2 layer

% tburst - Time during which each stimulus is presented

% nburst - Overall number of stimulation (each stimulus is

% presented nburt/6 times

% dt - Fixed time-step

% I - Intensity amplitude received by each neuron during

% stimulation

% xi - White noise standard deviation

% flag_learning - Boolean stating turning on/off the learning phase

DEBUG =1;

if nargin <1 && DEBUG==1

clc;

warning ('off','all');
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N = [18 72]*1;

dt = 0.01;

tburst = 100;

nburst = 60;

D = [0.08 0.08 ; 0.03 0.01];

D(1,:) = D(1,:)*2/3;

D(2,:) = D(2,:)*14/3;

% Relative weights between E1 and E2

load connections;

D_int_layer = connections;

flag_learning = 1;

%Stimuli parameters

P = 28;% Number of neurons stimulated by one transform

Pt = 4;% Translation between successive transform

I = 0.1;% Intensity of stimulus

%Noise

xi = 0.01;

end

eps = 10^(-5);

%Learning rule parameters

D_i = 0.1*ones(N(2),N(2));

C_i = 0.1*ones(N(2),N(2));

alpha_D = 0.5; alpha_C = 0.5;

%Simulation max time

TMAX = tburst*nburst;

%Parameters

TAU_V=20;VT=1;VR=0;

NI1 = N(1); NE1 = N(2);% Number of inihbitory/excitatory neurons on 1st

layer
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NI2 = N(1); NE2 = N(2);% Number of inihbitory/excitatory neurons on 2nd

layer

% DQR are coupling strengths from R to Q;

DII = D(1,1); DIE = D(1,2); DEI = D(2,1); DEE = D(2,2); %Synapses

strengths intra layer

%Stimuli

IE1_1 = I* [ones(P,1);zeros(NE1-P,1)];

IE1_2 = I* [zeros(Pt,1);ones(P,1);zeros(NE1-P-Pt,1)];

IE1_3 = I* [zeros(2*Pt,1);ones(P,1);zeros(NE1-P-2*Pt,1)];

IE2_1 = I* [zeros(NE1-P,1);ones(P,1)];

IE2_2 = I* [zeros(NE1-P-Pt,1);ones(P,1);zeros(Pt,1)];

IE2_3 = I* [zeros(NE1-P-2*Pt,1);ones(P,1);zeros(2*Pt,1)];

%Potential initialisation

VE1 = zeros(NE1,1);

VI1 = zeros(NI1,1);

VE2 = zeros(NE2,1);

VI2 = zeros(NI2,1);

% Stocking structures

time_serie = [];

E1_fired_serie = {}; E2_fired_serie = {}; I1_fired_serie = {};

I2_fired_serie = {};

E2_fire_count = zeros(NE2,1);

E2_spike1 = zeros(NE2, nburst/2);

E2_spike2 = zeros(NE2, nburst/2);

iteration=0; t_sum=0;

dtmax= dt;

% Structures keeping track of refractory period for each neuron

Tref = 2;% Refractory time

TR_E1 = zeros(NE1,1); TR_I1 = zeros(NI1,1); TR_E2 = zeros(NE2,1); TR_I2

= zeros(NI2,1);
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while (t_sum<TMAX);

if (mod(floor(t_sum/tburst),6)== 0)% First stimulus

dt_temp = dtmax;

if (any(TR_E1>eps) || any(TR_I1>eps) || any(TR_E2>eps) ||

any(TR_I2>eps))

% Find the next neuron getting out of the refractory period (if

% any)

dt_temp = min([ min(TR_E1(TR_E1>eps)), min(TR_I1(TR_I1>eps)),...

min(TR_E2(TR_E2>eps)), min(TR_I2(TR_I2>eps))]);

end

% Set time step to the minimum between the time the next neuron gets

% out the refractory period, the time left until the stimulus is

% changed and the fixed time step dtmax.

dt_cur = min([dtmax,((floor(t_sum/tburst)+1)*tburst - t_sum),dt_temp]);

t_sum = t_sum+dt_cur;% Update simulation time

% Update potentials and refractory times of neurons

edt = exp(-dt_cur/TAU_V);

VE1 = (VE1*edt + IE1_1*dt_cur + xi*randE1).*(TR_E1==0)+VR;

VI1 = (VI1*edt + xi*randI1).*(TR_I1==0)+VR;

VE2 = (VE2*edt+ xi*randE2).*(TR_E2==0)+VR;

VI2 = (VI2*edt+ xi*randI2).*(TR_I2==0)+VR;

TR_E1 = max(TR_E1 - dt_cur,0); TR_I1 = max(TR_I1 - dt_cur,0);

TR_E2 = max(TR_E2 - dt_cur,0); TR_I2 = max(TR_I2 - dt_cur,0);

if (any(VI1(VI1 >= VT)) || any(VE1(VE1 >= VT))|| ...

any(VI2(VI2 >= VT)) || any(VE2(VE2 >= VT)))

% Detect if any neurons crossed the threshold

[E1_fired,I1_fired,E2_fired, I2_fired,VE1,VI1,VE2,VI2,C_i,D_i,...

D_int_layer] = getMFE_ifdyn(VE1,VI1,VE2,VI2,D,D_int_layer,...

C_i,D_i,flag_learning); % Process the impact of the spike(s)

iteration=iteration+1;

% Reset potentials

VE1(E1_fired)=VR; VI1(I1_fired)=VR;

VE2(E2_fired)=VR; VI2(I2_fired)=VR;
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% Set neurons refractory period

TR_E1(E1_fired) = Tref; TR_I1(I1_fired) = Tref;

TR_E2(E2_fired) = Tref; TR_I2(I2_fired) = Tref;

% Update structures that hold the spike counts

E2_fire_count(E2_fired) = E2_fire_count(E2_fired) + 1;

time_serie = [time_serie, t_sum];

E1_fired_serie{iteration} = E1_fired;

E2_fired_serie{iteration} = E2_fired;

I1_fired_serie{iteration} = I1_fired;

I2_fired_serie{iteration} = I2_fired;

end

if (mod(floor(t_sum/tburst),6)== 1)

% Reset potential if transform changes, and store number

% of spikes counted

VE1 = zeros(NE1,1);

VI1 = zeros(NI1,1);

VE2 = zeros(NE2,1);

VI2 = zeros(NI2,1);

E2_spike1(:,1 + (floor(t_sum/tburst/6))*3) = E2_fire_count;

E2_fire_count = zeros(NE2,1);

end

elseif (mod(floor(t_sum/tburst),6)== 1)% Second stimulus

dt_temp = dtmax;

if (any(TR_E1>eps) || any(TR_I1>eps) || any(TR_E2>eps) ||

any(TR_I2>eps))

dt_temp = min([ min(TR_E1(TR_E1>eps)), min(TR_I1(TR_I1>eps)),...

min(TR_E2(TR_E2>eps)), min(TR_I2(TR_I2>eps))]);

end

dt_cur = min([dtmax,((floor(t_sum/tburst)+1)*tburst - t_sum),dt_temp]);

t_sum=t_sum+dt_cur; % update simulation time

edt = exp(-dt_cur/TAU_V);

VE1 = (VE1*edt + IE1_2*dt_cur + xi*(randn(NE1,1))).*(TR_E1==0)+VR;

VI1 = (VI1*edt + xi*(randn(NI1,1))).*(TR_I1==0)+VR;

VE2 = (VE2*edt+ xi*(randn(NE2,1))).*(TR_E2==0)+VR;
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VI2 = (VI2*edt+ xi*(randn(NI2,1))).*(TR_I2==0)+VR;

TR_E1 = max(TR_E1 - dt_cur,0); TR_I1 = max(TR_I1 - dt_cur,0);

TR_E2 = max(TR_E2 - dt_cur,0); TR_I2 = max(TR_I2 - dt_cur,0);

if (any(VI1(VI1 >= VT)) || any(VE1(VE1 >= VT))||...

any(VI2(VI2 >= VT)) || any(VE2(VE2 >= VT)))

[E1_fired,I1_fired,E2_fired, I2_fired, VE1,VI1,VE2,VI2,C_i,D_i,...

D_int_layer] = getMFE_ifdyn(VE1,VI1,VE2,VI2,D,D_int_layer,...

C_i,D_i,alpha_C,alpha_D);

iteration=iteration+1;

VE1(E1_fired)=VR; VI1(I1_fired)=VR;

VE2(E2_fired)=VR; VI2(I2_fired)=VR;

TR_E1(E1_fired) = Tref; TR_I1(I1_fired) = Tref;

TR_E2(E2_fired) = Tref; TR_I2(I2_fired) = Tref;

time_serie = [time_serie, t_sum];

E1_fired_serie{iteration} = E1_fired;

E2_fired_serie{iteration} = E2_fired;

I1_fired_serie{iteration} = I1_fired;

I2_fired_serie{iteration} = I2_fired;

E2_fire_count(E2_fired) = E2_fire_count(E2_fired) + 1;

end

if (mod(floor(t_sum/tburst),6)== 2)

VE1 = zeros(NE1,1);

VI1 = zeros(NI1,1);

VE2 = zeros(NE2,1);

VI2 = zeros(NI2,1);

E2_spike1(:,2 + (floor(t_sum/tburst/6))*3) = E2_fire_count;

E2_fire_count = zeros(NE2,1);

end;

elseif (mod(floor(t_sum/tburst),6)== 2)% Third stimulus

dt_temp = dtmax;

if (any(TR_E1>eps) || any(TR_I1>eps) || any(TR_E2>eps) ||

any(TR_I2>eps))

dt_temp = min([ min(TR_E1(TR_E1>eps)), min(TR_I1(TR_I1>eps)),...

min(TR_E2(TR_E2>eps)), min(TR_I2(TR_I2>eps))]);
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end

dt_cur = min([dtmax,((floor(t_sum/tburst)+1)*tburst - t_sum),dt_temp]);

t_sum=t_sum+dt_cur;

edt = exp(-dt_cur/TAU_V);

VE1 = (VE1*edt + IE1_3*dt_cur + xi*(randn(NE1,1))).*(TR_E1==0)+VR;

VI1 = (VI1*edt + xi*(randn(NI1,1))).*(TR_I1==0)+VR;

VE2 = (VE2*edt+ xi*(randn(NE2,1))).*(TR_E2==0)+VR;

VI2 = (VI2*edt+ xi*(randn(NI2,1))).*(TR_I2==0)+VR;

TR_E1 = max(TR_E1 - dt_cur,0); TR_I1 = max(TR_I1 - dt_cur,0);

TR_E2 = max(TR_E2 - dt_cur,0); TR_I2 = max(TR_I2 - dt_cur,0);

if (any(VI1(VI1 >= VT)) || any(VE1(VE1 >= VT))||...

any(VI2(VI2 >= VT)) || any(VE2(VE2 >= VT)))

[E1_fired,I1_fired,E2_fired, I2_fired, VE1,VI1,VE2,VI2,C_i,...

D_i,D_int_layer] = getMFE_ifdyn(VE1,VI1,VE2,VI2,D,D_int_layer,...

C_i,D_i,alpha_C,alpha_D);

iteration=iteration+1; dt_cur=0;t_sum=t_sum+dt_cur;

VE1(E1_fired)=VR; VI1(I1_fired)=VR;

VE2(E2_fired)=VR; VI2(I2_fired)=VR;

TR_E1(E1_fired) = Tref; TR_I1(I1_fired) = Tref;

TR_E2(E2_fired) = Tref; TR_I2(I2_fired) = Tref;

time_serie = [time_serie, t_sum];

E1_fired_serie{iteration} = E1_fired;

E2_fired_serie{iteration} = E2_fired;

I1_fired_serie{iteration} = I1_fired;

I2_fired_serie{iteration} = I2_fired;

E2_fire_count(E2_fired) = E2_fire_count(E2_fired) + 1;

end

if (mod(floor(t_sum/tburst),6)== 3)

VE1 = zeros(NE1,1);

VI1 = zeros(NI1,1);

VE2 = zeros(NE2,1);

VI2 = zeros(NI2,1);

E2_spike1(:,3 + (floor(t_sum/tburst/6))*3) = E2_fire_count;

E2_fire_count = zeros(NE2,1);

end
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elseif (mod(floor(t_sum/tburst),6)== 3)% Fourth stimulus

dt_temp = dtmax;

if (any(TR_E1>eps) || any(TR_I1>eps) || any(TR_E2>eps) ||

any(TR_I2>eps))

dt_temp = min([ min(TR_E1(TR_E1>eps)), min(TR_I1(TR_I1>eps)),...

min(TR_E2(TR_E2>eps)), min(TR_I2(TR_I2>eps))]);

end

dt_cur = min([dtmax,((floor(t_sum/tburst)+1)*tburst - t_sum),dt_temp]);

t_sum=t_sum+dt_cur;

edt = exp(-dt_cur/TAU_V);

VE1 = (VE1*edt + IE2_1*dt_cur + xi*(randn(NE1,1))).*(TR_E1==0)+VR;

VI1 = (VI1*edt + xi*(randn(NI1,1))).*(TR_I1==0)+VR;

VE2 = (VE2*edt+ xi*(randn(NE2,1))).*(TR_E2==0)+VR;

VI2 = (VI2*edt+ xi*(randn(NI2,1))).*(TR_I2==0)+VR;

TR_E1 = max(TR_E1 - dt_cur,0); TR_I1 = max(TR_I1 - dt_cur,0);

TR_E2 = max(TR_E2 - dt_cur,0); TR_I2 = max(TR_I2 - dt_cur,0);

if (any(VI1(VI1 >= VT)) || any(VE1(VE1 >= VT))||...

any(VI2(VI2 >= VT)) || any(VE2(VE2 >= VT)))

[E1_fired,I1_fired,E2_fired, I2_fired, VE1,VI1,VE2,VI2,C_i,...

D_i,D_int_layer] = getMFE_ifdyn(VE1,VI1,VE2,VI2,D,D_int_layer,...

C_i,D_i,alpha_C,alpha_D);

iteration=iteration+1; dt_cur=0;t_sum=t_sum+dt_cur;

VE1(E1_fired)=VR; VI1(I1_fired)=VR;

VE2(E2_fired)=VR; VI2(I2_fired)=VR;

TR_E1(E1_fired) = Tref; TR_I1(I1_fired) = Tref;

TR_E2(E2_fired) = Tref; TR_I2(I2_fired) = Tref;

time_serie = [time_serie, t_sum];

E1_fired_serie{iteration} = E1_fired;

E2_fired_serie{iteration} = E2_fired;

I1_fired_serie{iteration} = I1_fired;

I2_fired_serie{iteration} = I2_fired;

E2_fire_count(E2_fired) = E2_fire_count(E2_fired) + 1;

end

if (mod(floor(t_sum/tburst),6)== 4)
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VE1 = zeros(NE1,1);

VI1 = zeros(NI1,1);

VE2 = zeros(NE2,1);

VI2 = zeros(NI2,1);

E2_spike2(:,1+floor(t_sum/tburst/6)*3) = E2_fire_count;

E2_fire_count = zeros(NE2,1);

end

elseif (mod(floor(t_sum/tburst),6)== 4)% Fifth stimulus

dt_temp = dtmax;

if (any(TR_E1>eps) || any(TR_I1>eps) || any(TR_E2>eps) ||

any(TR_I2>eps))

dt_temp = min([ min(TR_E1(TR_E1>eps)), min(TR_I1(TR_I1>eps)),...

min(TR_E2(TR_E2>eps)), min(TR_I2(TR_I2>eps))]);

end

dt_cur = min([dtmax,((floor(t_sum/tburst)+1)*tburst - t_sum),dt_temp]);

t_sum=t_sum+dt_cur;

edt = exp(-dt_cur/TAU_V);

VE1 = (VE1*edt + IE2_2*dt_cur + xi*(randn(NE1,1))).*(TR_E1==0)+VR;

VI1 = (VI1*edt + xi*(randn(NI1,1))).*(TR_I1==0)+VR;

VE2 = (VE2*edt+ xi*(randn(NE2,1))).*(TR_E2==0)+VR;

VI2 = (VI2*edt+ xi*(randn(NI2,1))).*(TR_I2==0)+VR;

TR_E1 = max(TR_E1 - dt_cur,0); TR_I1 = max(TR_I1 - dt_cur,0);

TR_E2 = max(TR_E2 - dt_cur,0); TR_I2 = max(TR_I2 - dt_cur,0);

if (any(VI1(VI1 >= VT)) || any(VE1(VE1 >= VT))||...

any(VI2(VI2 >= VT)) || any(VE2(VE2 >= VT)))

[E1_fired,I1_fired,E2_fired, I2_fired, VE1,VI1,VE2,VI2,C_i,...

D_i,D_int_layer] = getMFE_ifdyn(VE1,VI1,VE2,VI2,D,D_int_layer,...

C_i,D_i,alpha_C,alpha_D);

iteration=iteration+1; dt_cur=0;t_sum=t_sum+dt_cur;

VE1(E1_fired)=VR; VI1(I1_fired)=VR;

VE2(E2_fired)=VR; VI2(I2_fired)=VR;

TR_E1(E1_fired) = Tref; TR_I1(I1_fired) = Tref;

TR_E2(E2_fired) = Tref; TR_I2(I2_fired) = Tref;

time_serie = [time_serie, t_sum];
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E1_fired_serie{iteration} = E1_fired;

E2_fired_serie{iteration} = E2_fired;

I1_fired_serie{iteration} = I1_fired;

I2_fired_serie{iteration} = I2_fired;

E2_fire_count(E2_fired) = E2_fire_count(E2_fired) + 1;

end

if (mod(floor(t_sum/tburst),6)== 5)

VE1 = zeros(NE1,1);

VI1 = zeros(NI1,1);

VE2 = zeros(NE2,1);

VI2 = zeros(NI2,1);

E2_spike2(:,2 + (floor(t_sum/tburst/6))*3) = E2_fire_count;

E2_fire_count = zeros(NE2,1);

end;

else %if (mod(floor(t_sum/tburst),6)== 5) % Sixth stimulus

dt_temp = dtmax;

if (any(TR_E1>eps) || any(TR_I1>eps) || any(TR_E2>eps) ||

any(TR_I2>eps))

dt_temp = min([ min(TR_E1(TR_E1>eps)), min(TR_I1(TR_I1>eps)),...

min(TR_E2(TR_E2>eps)), min(TR_I2(TR_I2>eps))]);

end

dt_cur = min([dtmax,((floor(t_sum/tburst)+1)*tburst - t_sum),dt_temp]);

t_sum=t_sum+dt_cur;

edt = exp(-dt_cur/TAU_V);

VE1 = (VE1*edt + IE2_3*dt_cur + xi*(randn(NE1,1))).*(TR_E1==0)+VR;

VI1 = (VI1*edt + xi*(randn(NI1,1))).*(TR_I1==0)+VR;

VE2 = (VE2*edt+ xi*(randn(NE2,1))).*(TR_E2==0)+VR;

VI2 = (VI2*edt+ xi*(randn(NI2,1))).*(TR_I2==0)+VR;

TR_E1 = max(TR_E1 - dt_cur,0); TR_I1 = max(TR_I1 - dt_cur,0);

TR_E2 = max(TR_E2 - dt_cur,0); TR_I2 = max(TR_I2 - dt_cur,0);

if (any(VI1(VI1 >= VT)) || any(VE1(VE1 >= VT))||...

any(VI2(VI2 >= VT)) || any(VE2(VE2 >= VT)))

[E1_fired,I1_fired,E2_fired, I2_fired, VE1,VI1,VE2,VI2,C_i,...

D_i,D_int_layer] = getMFE_ifdyn(VE1,VI1,VE2,VI2,D,D_int_layer,...

64



C_i,D_i,alpha_C,alpha_D);

iteration=iteration+1; dt_cur=0;t_sum=t_sum+dt_cur;

VE1(E1_fired)=VR; VI1(I1_fired)=VR;

VE2(E2_fired)=VR; VI2(I2_fired)=VR;

TR_E1(E1_fired) = Tref; TR_I1(I1_fired) = Tref;

TR_E2(E2_fired) = Tref; TR_I2(I2_fired) = Tref;

time_serie = [time_serie, t_sum];

E1_fired_serie{iteration} = E1_fired;

E2_fired_serie{iteration} = E2_fired;

I1_fired_serie{iteration} = I1_fired;

I2_fired_serie{iteration} = I2_fired;

E2_fire_count(E2_fired) = E2_fire_count(E2_fired) + 1;

end

if (mod(floor(t_sum/tburst),6)== 0)

VE1 = zeros(NE1,1);

VI1 = zeros(NI1,1);

VE2 = zeros(NE2,1);

VI2 = zeros(NI2,1);

E2_spike2(:,3 + (floor(t_sum/tburst/6)-1)*3) = E2_fire_count;

E2_fire_count = zeros(NE2,1);

end;

end

end;%while (t_sum<TMAX);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function

[E1_fired,I1_fired,E2_fired,I2_fired,VE1,VI1,VE2,VI2,C_i,D_i,...

D_int_layer] = getMFE_ifdyn(VE1,VI1,VE2,VI2,D,D_int_layer,...

C_i,D_i,flag_learning)

% This function deals with the infinitesimal-time system

TAU_V=20;VT=1;VR=0;

tau_delta = 10;

DII = D(1,1); DIE = D(1,2);

DE12 = D(2,2);DEI = D(2,1);
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% first population of inihbitory neurons

I1_fired = find(VI1>=VT);

LI1 = length(I1_fired);

I1_remaining = find(VI1<VT);

if LI1>0;

VE1 = VE1 - DEI*LI1;

VI1(I1_remaining) = VI1(I1_remaining) - DII*LI1;

end;%if LI>0;

% second population of inihbitory neurons

I2_fired = find(VI2>=VT);

LI2 = length(I2_fired);

I2_remaining = find(VI2<VT);

if LI2>0;

VE2 = VE2 - DEI*LI2;

VI2(I2_remaining) = VI2(I2_remaining) - DII*LI2;

end;%if LI2>0;

% first layer excitatory neurons

E1_fired = find(VE1>=VT);

LE1 = length(E1_fired);

E1_remaining = find(VE1<VT);

E2_remaining = find(VE2<VT);

% Feed forward to 2nd layer

VE2(E2_remaining) = VE2(E2_remaining) ...

+ (DE12*14/3)*sum(D_int_layer(E2_remaining,E1_fired),2);

total_V_to_add_to_I1 = DIE*LE1;

while (total_V_to_add_to_I1>0);

possible_I1_spikes = find(VI1(I1_remaining)>=VT-total_V_to_add_to_I1);

[max_I1,ind_I1] = max(VI1(I1_remaining)); ind_I1 = I1_remaining(ind_I1);

if (isempty(possible_I1_spikes));

V_to_add_to_I1 = total_V_to_add_to_I1;

VI1(I1_remaining) = VI1(I1_remaining) + V_to_add_to_I1;

total_V_to_add_to_I1 = 0;
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else %(~isempty(possible_I1_spikes));

V_to_add_to_I1 = VT - max_I1;

VE1(E1_remaining) = VE1(E1_remaining) - DEI;

I1_fired = [I1_fired(:);ind_I1];

I1_remaining = setdiff(I1_remaining,ind_I1); LI1=LI1+1;

VI1(I1_remaining) = VI1(I1_remaining) - DII + V_to_add_to_I1;

total_V_to_add_to_I1 = total_V_to_add_to_I1 - V_to_add_to_I1;

end;%if any possible spikes;

end;%while (total_V_to_add>0);

if flag_learning % If learning turned on, deals with pre-synaptic spikes

C_i(:,E1_fired) = C_i(:,E1_fired) + alpha_C*(1-C_i(:,E1_fired));

Dint(:,E1_fired) = Dint(:,E1_fired) ...

- repmat(D_i,1,length(E1_fired)).*D_int_layer(:,E1_fired)/tau_delta;

end

% Second layer excitatory neurons

E2_fired = find(VE2>=VT);

LE2 = length(E2_fired);

E2_remaining = find(VE2<VT);

total_V_to_add_to_I2 = DIE*LE2;

while (total_V_to_add_to_I2>0);

possible_I2_spikes = find(VI2(I2_remaining)>=VT-total_V_to_add_to_I2);

[max_I2,ind_I2] = max(VI2(I2_remaining)); ind_I2 = I2_remaining(ind_I2);

if isempty(possible_I2_spikes)

V_to_add_to_I2 = total_V_to_add_to_I2;

VI2(I2_remaining) = VI2(I2_remaining) + V_to_add_to_I2;

total_V_to_add_to_I2 = 0;

else %~isempty(possible_I2_spikes)

V_to_add_to_I2 = VT - max_I2;

VE2(E2_remaining) = VE2(E2_remaining) - DEI;

I2_fired = [I2_fired(:);ind_I2];

I2_remaining = setdiff(I2_remaining,ind_I2); LI2=LI2+1;

VI2(I2_remaining) = VI2(I2_remaining) - DII + V_to_add_to_I2;
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total_V_to_add_to_I2 = total_V_to_add_to_I2 - V_to_add_to_I2;

end;%if any possible spikes;

end;%while (total_V_to_add>0);

if flag_learning % If learning turned on, deals with post-synaptic

spikes

D_i(E2_fired) = D_i(E2_fired) + alpha_D*(1-D_i(E2_fired));

Dint(E2_fired,:) = Dint(E2_fired,:) ...

+ (1-Dint(E2_fired,:)).*C_i(E2_fired,:)/tau_delta;

end;%flag_learning
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