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Abstract

Sociophysics is a field that studies social behaviour using theories and techniques from
topics such as statistical physics. In particular, it has become fashionable to use Monte
Carlo simulations to explain and predict sociological phenomena. The Deffuant model
is a popular mathematical model in sociophysics. Each individual holds an opinion in a
certain real interval, and the opinion distribution of the population evolves with sequen-
tial random pairwise encounters. A pair of interacting individuals update their opinions
towards a compromise if and only if their opinions differ by less than a given threshold
called ‘confidence bound’. Incorporating network structure allows one to take into account
heterogeneity of interactions in a population. We study the Deffuant model on networks by
considering different network structures and interaction mechanisms between pairs of indi-
viduals. In particular, we show how convergence time and the number of opinion groups at
equilibrium are affected by network topology, confidence bound, the number of participat-
ing agents, and their willingness to change their minds. We use numerical simulations to
explore the opinion dynamics of the Deffuant model on networks and conduct regression
analysis to model observed phenomena.
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1 Introduction

Social interactions play a central role in the process of opinion formation in communities
[35]. Discussions among acquaintances, coworkers, friends, and family members often
lead interlocutors to adjust their viewpoints on politics, participation in social movement,
and adoption of technological innovations [63]. Predicting collective opinion formation in
a population in connection with individual attitudes and their mutual influence is a question
of major interest in social sciences [13].

There are two different methods of studying opinion formation in social networks, one
based on Bayesian learning, and the other based on setting mechanisms by which indi-
viduals update their attitudes as a result of social interaction [3]. The Bayesian learning
approach assumes that individuals update their opinions optimally according to Bayes’ the-
orem as more information about the underlying state of the world becomes available [2].
Although mathematically tractable, Bayesian updating requires some unrealistic assump-
tions about individuals’ knowledge and reasoning ability, and becomes computationally
infeasible in complex settings [3, 35]. While non-Bayesian models do not suffer these
problems and may yield more accurate approximations to the collective behaviour of a
poplulation, there is a high degree of arbitariness in the choice of specific models and pa-
rameters to use, which sometimes leads to markedly different results [3, 64].

For the non-Bayesian approach to studying opinion formation, a substantial amount
of work uses models and tools from statistical physics [13]. A major theme in statisti-
cal physics is how global properties can emerge from local rules, which is similar to the
question in social sciences of how the collective opinion of a population evolves as the
result of individual attitudes and their mutual influence [40]. In the framework of statis-
tical physics, three possible final states have been identified: (i) the population reaches a
consensus, meaning that all agents hold the same opinion; (ii) two distinct opinions per-
sist, which is called polarisation; or (iii) a state of fragmentation appears, where there are
more than two different opinions [13]. Some notable statistical physics models of opinion
formation include the voter model [15, 32], majority rule models [28], models based on
social impact theory [45, 55], the Sznajd model [67, 68], and bounded confidence models
[18, 31, 42, 71].

Bounded confidence models, first introduced by Deffuant et al. [18, 72] and Hegsel-
mann and Krause [31, 42], capture the notion of a tolerance threshold based on experimen-
tal social psychology [74]. Bounded confidence reflects the concept of selective exposure
in psychology, which refers to people’s tendancy to favour information that supports their
views while neglecting conflicting arguments [50, 66]. Both the Deffuant model and the
Hegselmann-Krause model consider a set of agents that hold continuous opinions from a
real interval. Agents are connected by an interaction network, and neighbouring agents
adjust their opinions at discrete time steps whenever their opinions are sufficiently close.
The two models mainly differ in their communication regime. In the Deffuant model, a
pair of neighbouring agents are selected uniformly at random at each time step, and they
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4 CHAPTER 1. INTRODUCTION

make a compromise towards each other’s opinion if and only if their opinion difference is
less than a given threshold. In the Hegselmann-Krause model, agents interact with all of
their compatible neighbours simultaneously at each time step and updates their opinions to
agree with the average of these neighbours’. The Deffuant model is constructed to study the
opinion formation process in large populations, where people interact in small groups such
as pairs. By comparison, the Hegselmann-Krause model is suitable for investigating the
effect of meetings participated by many people at the same time on the opinion dynamics.

In contrast to the synchronous updating rule of the Hegselmann-Krause model, one can
tune the speed at which opinions converge in the Deffuant model through an additional
parameter that describes the population’s openness to compromises, sometimes referred
to as the cautiousness parameter. For this reason, we focus on the Deffuant model in
this project. Two questions have drawn considerable interest in the study of the Deffuant
model, namely, what parameter space gives rise to a final state of consensus, polarisation,
or fragmentation, and how long does a system reach the final state [18, 43, 46, 72, 73].

Despite its conciseness, the Deffuant model is not analytically solvable in general, and
most results are derived through Monte Carlo simulations. In the final state of the Deffuant
model, two opinions are either the same or differ by at least the confidence bound so that
no more dynamics can occur. In principle, opinions converge at infinitely long times, as
the opinion space is continuous and the difference between opinions becomes arbitrarily
small without reaching the same value in finite time unless compromise takes the form
of averaging opinions [43]. However, the emergence of the final state is evident at finite
values of time as consecutive opinion cliques must be separated far enough so that the
cliques will not merge together. Thus, a convergence criterion on the maximum range of
opinions within each clique is generally set in numerical simulations.

There have also been efforts to study the Deffuant model from an analytical perspective,
using a density function that determines the agents’ density in the opinion space [10, 46].
This approach adopts a classical strategy in statistical physics by deriving a rate equa-
tion (also called a ‘master equation’) and can be interpreted as taking the infinite limit of
the number of agents [48]. While these derivations do not lead to analytical solutions of
the Deffuant model directly, they only require numerical integration, which is faster than
running Monte Carlo simulations. However, such density-based method requires some as-
sumptions, such as homogeneous mixing and averaging interacting agents’ opinions as the
means of compromise.

The Deffuant model also has limitations, and numerous efforts have been made to ex-
tend the Deffuant model in order to better reflect reality. For instance, the confidence
bound imposes a clear boundary on interacting agents’ decision whether or not to adjust
their opinions. A small change in the difference between their opinions may lead to a
different decision being made. For this reason, smooth confidence bounds have been pro-
posed, with which the attraction of agents decreases as their opinion difference increases
[19, 20]. Other generalisations of confidence bound include introducing heterogeneous tol-
erance thresholds in a population [72, 74] and considering time-dependent thresholds [72].
In addition, the Deffuant model can be naturally extended to vector-valued opinions, which
only requires redefining opinion distance [25].

Even with numerical simulations, determining the specific parameters to use for the



confidence bound and openness of mind of a population is an open question for many ap-
plications. Studies of variants of the Deffuant model often compare new results with those
of the original model. However, numerical simulations of the original model are usually
ad hoc and performed for specific networks. Moreover, conclusions are often drawn based
on graphic patterns and sometimes rely on simplifying assumptions. We are motivated by
such existing results to investigate the Deffuant model on networks in a systematic manner.
In particular, we explore the dependence of convergence time and the number of opinion
cliques in the final state on network topology, confidence bound, the number of participat-
ing agents, and their openness of mind. We first design an algorithm for simulating the
Deffuant model on networks, checking the convergence of opinions, and determining the
number of opinion cliques in the final state. We then conduct regression analysis to model
convergence time as a function of the parameters considered and study the behaviour of
opinion cliques in the final state qualitatively. The Deffuant model is an example of a
discrete-time repeated game, played pair-wise among a group of agents, which are called
players in game theory [27, 35, 36]. The game is played until the players’ opinions con-
verge. We study the Deffuant model on networks in a game-theoretic framework in the rest
of the report.

The networks that we study fall into two categories. The first group consists of com-
plete graphs, cycles, and annular lattices, all of which have deterministic structures. We use
simulation results on these networks to compare with those on more complex strucures. In
addition, complete graphs can be used to model small communities, where everyone knows
each other, such as Rhodes Scholars! in a particular year, the inhabitants of a village, and
high-level political leaders in a country. Furthermore, large social networks often consist
of communities, within which individuals are more closely connected with each other than
with outsiders, and complete graphs are sometimes used as approximations to such commu-
nities [S1]. The second group of networks are random graphs, including cycles and annular
lattices with random edges and random graphs generated by the Erds-Rényi model [30].
These graphs possess some properties that social networks often exhibit. For example, cy-
cles and annular lattices with random edges are a version of the Watts-Strogatz model [53]
with original connectivity 2 and 3 respectively. The Watts-Strogatz model captures two
properties that are commonly observed in real social networks, which are high clustering,
meaning that individuals with mutual friends tend to be friends as well, and short average
path lengths [52]. The Erd6s-Rényi model is one of the best studied models of network and
has been used to study the Deffuant model in previous literature [5, 24, 40, 41, 52].

The rest of this report is organised as follows. In Chapter 2, we introduce relevant
definitions from network science, define the Deffuant model in mathematical terms, and
present some important known results for the Deffuant model on networks. Chapter 3 de-
scribes our methodology and introduces the networks that we use in numerical simulations
as well as the numerical approach used for simulations. Chapter 4 presents our original
work on the behaviour of the Deffuant model for various networks using numerical simu-
lations and regression analysis. In particular, we explore the dependence of convergence
time and the number of opinion cliques in the final state on network structure, confidence

IThe Rhodes Scholarship, named after Cecil John Rhodes, is an international postgraduate award for
non-British students to study at the University of Oxford.



6 CHAPTER 1. INTRODUCTION

bound, the number of participating players, and their willingness to change their minds. In
Chapter 5, we summarise our results, and we also discuss the implications for sociology
and game theory.



2 Background

In this chapter, we first introduce relevant definitions from network science, then define
the Deffuant model, giving some intuition of its design, and finally present some important
known results of the Deffuant model on networks.

2.1 Networks

A network is, in its simplest form, a set of items (called nodes) with connections (called
edges) between them [52]. Network science is an academic field that uses such abstract
frameworks to study the pattern of connections between components of a complex system
and the dynamical processes thereon [16, 59]. The advancement of network science has
contributed to new discoveries in a wide range of domains, such as biology, ecology, engi-
neering, computer science, and social sciences [8, 9, 11, 16, 35, 52, 69]. According to the
social network paradigm in social sciences: social life consists of the flow and exchange of
norms, values, ideas, and other social and cultural resources channeled through a social
network [76]. Therefore, networks provide a natural framework for studying collective so-
cial phenomena such as the diffusion of technological innovations, the spread of epidemic
diseases, and, relevant to our interests, the formation of opinions in communities.

A subset of ideas in network science originate from graph theory, and we introduce
some definitions here, based on [52] and [75], that are relevant for our study.

Definition 1. A graph G is a triple consisting of a node set V(G), an edge set E(G),
and a relation that associates with each edge two nodes (not necessarily distinct) called its
endpoints. A network in its simplest form is a graph.

Definition 2. Two nodes are adjacent and are neighbours if and only if there exists an
edge between them.

Definition 3. The degree of a node is defined as the number of neighbours it has (i.e.
the number of edges connected to the node). A regular graph is a graph where each node
has the same degree.

Definition 4. Random-graph models are probability distributions on graphs of which
some specific set of parameters take fixed values, but the networks are random in other
aspects.

In the framework of network science, the players in the Deffuant model are represented
by nodes of a network, and the pair of players on a randomly selected edge can interact
with each other. In the next section, we will give the definition of the Deffuant model and
some intuition of its design.
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2.2 The Deffuant model

In the model proposed by Deffuant et al. [18], randomly selected neighbouring players in-
teract pairwise and make a compromise toward each other’s opinion whenever their opinion
difference is less than a given threshold.

Definition 5. Consider a population of N players, the acquaintance of whom is repre-
sented by a network G. Let [a,b] € R be the opinion space. Suppose that each player i
holds a time-dependent opinion x;(¢) € |a,b] for t € N, where N = {0,1,2,---}. Given an
initial profile ¥(0) € [a,b]", a confidence bound c € [0,b— a], and a multiplier m € (0,0.5],
the Deffuant model is the random process (X(7)),;>o defined as follows: at time #, a pair
of neighbouring players i and j # i, which are selected uniformly at random, update their
opinions according to the equations

] xi(@) 4 mxi() —xi(r)|, if |xi(t) —x;(2)] <,
xi(t+1) = { ), o } otherwise, ' o
X; t)+m[x,-(t)—xj(t)], if [xi(t) —x;(1)| <c, '

), otherwise.

The Deffuant model adopts a continuous opinion space, as an individual’s stance on a
specific matter can vary smoothly from one extreme to the other in many real-world sce-
narios [13]. For instance, one’s political position is often not absolutely left or right but
somewhere between the two extremes. The study of opinion formation processes tradition-
ally considered an opinion to be a discrete variable, which is a reasonable assumption for
some applications. For example, the voter model [15, 32] considers a binary variable that
specifies one’s decision in a vote.

As in the original paper [18] that introduced the Deffuant model, most later studies
treat the initial opinions as being independent and identically distributed according to the
uniform distribution on the opinion space [a,b]. We also adopt this convention in this report,
as our goal is to explore the basic version of the Deffuant model in a systematic manner
and provide a point of reference for the results of the model’s variants. Nonuniform initial
opinion distributions are considered, for example, in [37].

The confidence bound ¢ characterises a population’s tolerance of diverse viewpoints. If
the opinion difference between a pair of players is smaller than this threshold, then they
reduce their disagreement by making a compromise. Otherwise, the two players refuse to
discuss and keep their current opinions. In the extreme case of ¢ = 0, no iteraction leads to
compromise, and the initial opinion profile is a fixed point. On the other hand, if c =b —a,
then any pair of randomly selected neighbouring players make convergent adjustments of
their opinions.

The multiplier m, also referred to as a convergence parameter in some literature, speci-
fies a population’s cautiousness while making compromises. A larger value of m indicates
that the poplulation is more willing to make convergent adjustments of their opinions. In
the special case of m = 0.5, pairs of interacting players agree on the average of their opin-
ions whenever their opinion difference is less than the confidence bound c.
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The Deffuant model, in its original form [18], considers the confidence bound and the
multiplier to be constant in time and across the whole population. In such setting, the av-
erage opinion of a pair of players is preserved before and after their interaction. Hence, if
initial opinions are independent and identically distributed according to the uniform distri-
bution on the opinion space [0, 1], the expected mean opinion of the population is always
0.5.

Convergence of opinions is generally defined as the appearance of a stable configuration
where no more dynamics can occur. In a final state, the opinion distribution is a superpo-
sition of Dirac delta functions in the opinion space [a,b], such that consecutive spikes are
separated by at least c. We call the group of players that share the same opinion as a clique.
Any two players in the final state either are in the same clique or hold opinions that differ
by at least c. We use the notation K € N to denote the number of opinion cliques in a final
State.

2.3 The Deffuant model on various networks

To the best of our knowledge, the Deffuant model has been studied on only a small sub-
set of networks, which include complete graphs, two-dimensional grids, Erdés-Rényi ran-
dom graphs, Watts-Strogatz random graphs, and Barabdasi-Albert random graphs [7]. The
Barabasi-Albert model is a simple model that generates random networks that have power-
law degree distributions, which are widely observed in natural and artificial systems such
as the World Wide Web, citation networks, and some social networks [52].

Many papers study the Deffuant model on complete graphs, which allow any pair of
players to interact [18]. For this homogeneous mixing case, the population’s opinions al-
ways converge to a final state [46]. It has been shown that a large confidence bound, c,
gives rise to a final state of consensus, while multiple opinion cliques can persist for small
values of ¢ [18, 24, 43, 72, 73]. The same phenomena were observed in simulations on
two-dimensional grids in the form of square lattices, Erd6s-Rényi random graphs, Watts-
Strogatz random graphs, and Barabasi-Albert random graphs [18, 40, 41, 65]. Moreover,
a conjecture based on numerical simulations on complete graphs states that the number of
opinion cliques in the final state, K, is inversely proportional to ¢ [18, 72, 73]. Numerical
simulations on complete graphs also suggest that multiplier, m, and the number of partic-
ipating players, N, have no effect on K [18, 72]. However, a later study, also based on
numerical simulations, observes that the number of major opinion cliques which contain
many players is a function of ¢, whereas the number of minor opinion cliques (sometimes
referred to as minorities) depends on m [43].

The Deffuant model on two-dimensional grids, Watts-Strogatz random graphs, and
Barabasi-Albert random graphs also exhibits behaviour that is different from the homo-
geneous mixing case. For instance, simulations on square lattices and Barabdsi-Albert
random graphs suggest that K depends not only on ¢ but also on N when multiple opinion
cliques persist in the final state [18, 65]. Simulations on Watts-Strogatz random graphs
indicate that K is a function of ¢ and the network structual disorder, and the presence of
disorder only affects the convergence time, 7, slightly [29]. Such results further motivate
us to study the convergence time carefully.
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Existing research of the Deffuant model on Erdds-Rényi random graphs has mainly fo-
cused on adaptive networks that evolve with the game [40, 41]. For Watts-Strogatz random
graphs, the study of the model has centred around the opinion cliques in the final state so
far [29]. For these reasons, we shall study complete graphs, cycles, annular lattices, cycles
and annular lattices with random edges, and Erd6s-Rényi random graphs. The first three
networks have deterministic structures, which provide results for comparison with those of
the three random graphs.



3 Methods

In this chapter, we describe our methodology for exploring the Deffuant model on various
network structures, introduce the networks that we study, and describe our approach for
performing numerical simulations in detail.

3.1 Approach

We investigate the Deffuant model on various networks in a systematic manner, as numer-
ical simulations of the original model are usually ad hoc, and conclusions are often drawn
based on graphic patterns. For each network structure, we conduct regression analysis to
model convergence time as a function of confidence bound, the number of participating
players, and their openness of mind represented by a multiplier. We then study the be-
haviour of opinion cliques in the final state qualitatively, as such approach is more natural
than conducting regression analysis due to the more complicated nature of the opinion
clique distributions.

3.2 Networks studied

We study the Deffuant model on a range of networks in order to understand the effect of
network structure on convergence time and the number of opinion cliques in the final state.
Some of the networks that we study have deterministic structures, while others are random
graphs. In Table 3.1, we list the notations, definitions, and examples for these networks.

The first group of networks that we study are deterministic graphs, including complete
graphs (Kj,), cycles (Cy,), and annular lattices (A,). We use simulation results on these net-
works to compare with those on more complex strucures. In addition, complete graphs can
be used to model small communities, where everyone knows each other, and as approxi-
mations to communities in large social networks [51].

The second group of networks that we study consists of random graphs, which are
cycles with random edges (C, ), annular lattices with random edges (A4, ), and random
graphs generated by the Erd6s-Rényi G(n, p) model. The G(n, p) model is the most funda-
mental and widely studied random graph ensemble and is often used in the study of social
networks [52]. Nevertheless, the Erdds-Rényi G(n, p) model does not generate local clus-
tering which has been observed in numerous social networks. The Watts-Strogatz model
produces random graphs with local clustering, which is commonly observed in real social
networks [53, 52]. The random graphs that are generated by the Watts-Strogatz model also
have short average path lengths, which is another property that are common to social net-
works [52]. Cycles and annular lattices with randomly generated extra edges are a version
of the Watts-Strogatz model with original connectivity 2 and 3, respectively. The Watts-
Strogatz model actually has two versions, with one rewiring edges of the existing graph
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and the other one adding random edges to the existing graph [53, 70]. These two versions
of the model have similar behaviour when the proportion of random edges is small [52].
The cycles and annular lattices with random edges that we consider in this report belong to
the second version of the Watts-Strogatz model.

Network Definition Example
K, A complete graph K, has n pairwise adjacent nodes [75]. @
C, Forn >3, acycle C, has node set {v; | 1 < j <n} and edge Q

set {vjviy1 |1 <j<n—1}U{v,vi}[75].

A, For even n, we define an annular lattice A, as two cycles
C,/2 joined together by 5 edges.

Cs Forn>3and 0 <s < Z%%, we define C, s as follows: add
an edge between a pair of non-adjacent nodes uniformly at
random on C,, and repeat this process sN times in order to
add sN distinct extra edges on the cycle C,.

Ans Forevenn>4and 0 < s < ﬁ, we define A,, s as follows: l"
add an edge between a pair of non-adjacent nodes uniformly ‘Q’
at random on A,, and repeat this process sN times in order —
to add sN distinct extra edges on the annular lattice A,,.

G(n,p) Forn € Z~o and p € [0,1], random graphs are generated e

from the Erd6s-Rényi G(n, p) model [30] as follows: start
with n disconnected nodes and place an edge between each
distinct pair with independent probability p.

Table 3.1: Summary of the definitions of the networks on which we study the Deffuant
model. In each example network, black solid lines denote deterministic edges, and red
dashed lines represent edges that are generated randomly.
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3.3 Simulations

Without loss of generality, we consider the Deffuant model on the opinion space [0, 1]. In
other words, we normalise the dynamical game so that each player’s opinion is between O
and 1 at any time step. We can generalise our results to any closed real interval by linear
transformation, but we lose no generality by assuming an opinion space [0, 1]. In addition,
we allow the multiplier m to be any number in the interval (0, 1), as compared with the
interval (0,0.5] considered by the original model [18]. This generalisation is useful as
interacting players could possibly be convinced to believe in others’ opinions more than
their own. Moreover, considering m € (0, 1) reveals interesting phenomena that we will
discuss in Chapter 4.

Table 3.2 lists the values for the number of participating players (), confidence bound
(c), and multiplier (m) that we consider in our simulations. This set of parameter val-
ues provides a reasonably fine mesh of the underlying parameter space, which provides
sufficiently many data points for our regression analysis. However, the specific parame-
ter values considered are completely arbitrary choices except for ¢ = 1 and m = 0.5. For
¢ = 1, any pair of randomly selected players make convergent opinion adjustments, which
corresponds to interaction without confidence bound. For m = 0.5, each pair of randomly
selected players agree on the average of their opinions whenever their opinion difference
is below c¢. Theoretically, there is no upper bound on the number of players that one can
consider in a population, but running numerical simulations on extremely large populations
is computationally unrealistic. Hence, we set N = 1000 as an upper bound for our simula-
tions, and the behaviour of the model with larger population size can be deduced from the
regression models that we construct.

N 10,50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000
¢ 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1
m 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8, 0.9

Table 3.2: Values of the number of players (N), confidence bound (c), and multiplier (m)
that we consider in our simulations.

In principle, the convergence time, 7', and the number of opinion cliques in the final
state, K, are both unpredictable, as the initial opinion profile, the pair of players that interact
at each time step, and the graphs generated by random graph ensembles are all stochastic. In
order to smooth these noises, we run 10 groups of independent simulations for each network
(introduced in Section 3.2) and each combination of N, ¢, and m considered. For each
simulation, we first generate a group of N independent and identically distributed initial
opinions according to a uniform distribution on [0, 1]. We then play the game according to
the Deffuant model.

Theoretically, opinions converge to one or multiple values in the final state, but this
is in principle achieved at infinitely long times, as the opinion space is continuous and
opinions approach each other arbitarily close without reaching the same value in finite times
unless m = 0.5 [43]. However, the emergence of the final state is evident at finite times as
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consecutive opinion cliques must be separated by a distance of at least ¢ so that the two
cliques will not merge together. The smaller the confidence bound, the larger the maximum
number of opinion cliques that can form in the final state. The smallest confidence bound
that we consider is ¢ = 0.1, which can give rise to at most K = 11 different opinions in the
final state, with consecutive values separated by 0.1. Thus, a maximum range of 0.02 within
each opinion clique is a reasonable approximation for the purpose of numerical simulations.
We design a code in PYTHON that checks the convergence of opinions automatically. We
present a pseudocode in Algorithm 1 to illustrate our design of the simulations. Based
on some test simulations, we choose to set a bailout time of 10° (time steps) for each
simulation in order to balance the trade-off between the number of simulations that are
expected to finish before the cutoff time and the time frame of the project. For every 10
(denoted by #y in Algorithm 1) time steps, we check if the opinions have converged to one
or multiple cliques, within which the range of opinions is at most 0.02 (denoted by o in
Algorithm 1).

If the opinions have converged by the bailout time, then we record the convergence
time (7') and the number of opinion cliques (K). Otherwise, we record T = 3.55 x 10°, a
strict upper bound that is higher than all possible convergence times. In Chapter 4, we use
the natural logarithm of 7 in some plots as T varies across different levels of magnitude
depending on the network structure, confidence bound, and multiplier under considera-
tion. The maximum convergence time can be the bailout time, 10°, which would give
In(10%) ~ 21. For comparison, In(3.55 x 10°) ~ 22 differentiates simulations that did not
converge by the the bailout time in the plots.
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Algorithm 1 Algorithm for simulating the Deffuant model on networks

Input: G < network

N < number of players
¢ < confidence bound

m <— multiplier

to <— accuracy

0 < tolerence

1, < bailout time

Output: 7 < convergence time

10:
11:

12:
13:
14:
15:
16:
17:
18:
19:

R A o e

K < number of opinion cliques
fork=1toN do
X% (0) <— UNIFORM( [0, 1]);
end for
t <+ 0;
while 7 < 1, do
for iteration = 1 to ¢y do
(i,j) < UNIFORM(EDGES(G));
if [x;() —x;(t)| < c then
xi(t+ 1) =xi(t)+m[x;(t) —x; (1)
Xj<t+ l)zxj(t)—i—m [X,'(l‘)-)@'(l‘
else
x,'(l + 1) :x,-(t);
Xj(t+ 1) :)Cj<t>;
end if
end for
t < t+1o;
y1 to yn <= SORT(x;(7) to xn(1));
K+ 0;
Ky [v=y1)/c]+ 15
for clique =1 to K, do
if MAX(y) —y; < O then

)]};;

20: T «+t;
21: K+ K+1;
22: BREAK;
23: else
24: [+ 1;
25: while y; <y, + 6 do
26: [+ 1+1;
27: end while
28: if yy —y;—1 < cthen
29: K<+ 0;
30: BREAK;
31: else
32: K+ K+1;
33: REMOVE(y; to y;_1);
34: RELABEL(Y) starting from 1;
35: end if
36: end if
37: if clique = K}, and {y} # @ then
38: K+ 0;
39: end if
40:  end for
41: if K > 0 then
42: T «+t;
43: BREAK;
44:  end if
45: end while
46: if T =1, and K = 0 then
47: T <+ 3.55 x1y;
K < N/A;
48: end if




4 Numerical simulations on deterministic and
random networks

In this chapter, we study the Deffuant model on various deterministic and randomly gen-
erated networks by considering different network structures and interaction mechanisms
between pairs of players. For each network structure, we first use linear regression analysis
to model convergence time (7)) as a function of the number of participating players (N),
confidence bound (c), and multiplier (7). We then comment on the phenomena that we
observed about the number of opinion cliques in the final state qualitatively.

For the linear regression analysis, we adopt the method of ordinary least squares, as the
estimator is unbiased and consistent if the errors have the same finite variance and are un-
correlated with the regressors [26]. If the errors are also normally distributed, ordinary least
squares is the maximum likelihood estimator [26]. We check these assumptions throughout
our model selection process.

For robust regression analysis, we only use simulation results for cases when there are
100 or more players in the network in order to reduce the stochasticity introduced by the
random initial opinion distribution. In addition, sociologists are often interested in the
opinion dynamics of large populations, which also justifies our choice. Furthermore, for all
cases considered, we run 10 different simulations and take the average, in order to mitigate
the influence of the random initial opinion distribution and the order in which pairs of
players are selected randomly.

4.1 Complete graphs

The Deffuant model, in its simplest form [18], allows any pair of players in the system to
interact, which is equivalent to studying the model on complete graphs. Complete graphs
can be used to model small communities, where everyone knows each other, and as ap-
proximations to communities in large social networks [51].

Figure 4.1 summarises the values of In(7") observed in simulations for which N = 10,
50, 100, 200, 400, 600, 800, and 1000, as these are representative of the trends that we
observe in all simulations. We take the natural logarithm of 7 for the sake of revealing
patterns in the change of the colours. We present the same subset of plots for other network
structures in the rest of Chapter 4 for the same reason.

We start our analysis with some data exploration in order to get an intuition of the
potential relationship between the response, T', and the explanatory variables, N, ¢, and m.
We also conduct data exploration for all other netwosks but only give full details here, as
the process is similar. Scatter plots shown in Figure 4.2 suggest dependence of 7' on N,
¢, and possibly m. In particular, the relationship between 7" and ¢ undergoes a transition
at ¢ = 0.5, below which we observe a larger variation of 7. Figures 4.3 and 4.4 give the
scatter plots that correspond to ¢ < 0.5 and ¢ > 0.5 respectively. Since Figures 4.3 and 4.4

16
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Figure 4.1: Summary of convergence time of simulations on complete graphs for N = 10,
50, 100, 200, 400, 600, 800, and 1000. These are representative of the trends that we
observe in all simulations. This and all subsequent figures of this type are generated using
the MATPLOTLIB library for Python developed by J. D. Hunter [33].

show qualitatively distinct behaviour for ¢ < 0.5 and ¢ > 0.5, we shall consider distinct
models for each case.
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Figure 4.2: Scatter plots for convergence time (7") on complete graphs against the number
of players (N), confidence bound (c), and multiplier (m). The figure is drawn using the
software environment R [60].

4.1.1 Convergence time

The case of ¢ < 0.5

We start by fitting a normal linear model given by the equation
T =Bo+BiN+ B2N2 + Bsc+ ﬁ4C2 + Bsm+ ﬁ6m2 + Bymc+ BsNc+ BoNm+¢€,  (4.1)

where B; (j =0,1---,9) are coefficients to be estimated and € is assumed to be an in-
dependent and normally distributed error with zero mean and constant variance for every
observation. The model given by Equation 4.1 is a linear model because it is linear with
respect to the coeffcients B; (j =0,1---,9). We include all the explanatory variables up to
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Figure 4.3: Scatter plots for convergence time (7') against the number of players (V), confi-
dence bound (c), and multiplier (), using simulation results on complete graphs for which
¢ < 0.5. The figure is drawn using the software environment R [60].
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Figure 4.4: Scatter plots for convergence time (7') against the number of players (N), confi-
dence bound (c), and multiplier (m2), using simulation results on complete graphs for which
¢ > 0.5. The figure is drawn using the software environment R [60].

the second order in the full model (Equation 4.1) to account for the curvature observed in
Figure 4.3. We will drop statistically insignificant variables during model reduction.

Before proceeding with model selection, we check the validity of the model assump-
tions. Subfigure 4.5a checks the assumption that the errors have zero mean and constant
variance by plotting studentised residuals against response values predicted by Equation 4.1.
Ideally, variance should be constant in the vertical direction and the scatter should be sym-
metric vertically about 0. However, Subfigure 4.5a indicates that the assumption of constant
variance does not hold as the points follow a clear wedge-shaped pattern, with the vertical
spread of the points increasing with the fitted values. Subfigure 4.5b checks the assumption
of normality by plotting the sample quantiles against the quantiles of a normal distribution.
Data generated from a normal distribution should follow the 45° line through the origin
closely, but the Q-Q plot in Subfigure 4.5b suggests non-normality of the residuals. The
diagonostics show the necessity of stabilising variance and making the data more normal
distribution-like.

The one-parameter Box-Cox method [12] is a popular way to determine a transforma-
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Figure 4.5: (a) Studentised residuals against fitted values and (b) normal Q-Q plot of stu-
dentised residuals for Equation (4.1) using simulation results on complete graphs for which
¢ < 0.5. In (a), the red reference dashed line is the horizontal line through the origin. Ide-
ally, variance should be constant in the vertical direction and the scatter should be symmet-
ric vertically about 0. In (b), the red reference dashed line is the 45° line through the origin.
Data generated from a normal distribution should follow the red dashed line closely. The
figure is drawn using the software environment R [60].

tion on strictly positive responses [56]. A Box-Cox transformation maps the response 7' to
T, where the family of transformations indexed by A is defined by

poy [T iA#0, 4.2)
In(T) if A =0.

Figure 4.6 shows that the confidence interval for A at the 95% confidence level runs
roughly from —0.1 to 0. We choose to set A = 0, as this corresponds to taking a natural
logarithm. The diagonostics of the new model indicate that we do log-transformation again,
which gives the model

In(In(T)) = Bo+ BIN + BN + ac + Bac® + Bsm + Berm” + Byme + BsNc + PoNm + €,
4.3)
where € is assumed to be an independent and normally distributed error with zero mean
and constant variance for every observation. The variance for € is not necessarily the same
for Equations (4.1) and (4.3). We use the same notation for € in the rest of the report, with
the understanding that it is of course different for each model.

This time, Subfigure 4.7a shows approximately constant variance in the vertical di-
rection and the scatter is roughly symmetric vertically about 0. There are no studentised
residuals outside the [—3, 3] range, which implies that there are no serious outliers. In Sub-
figure 4.7b, the points follow the 45° line through the origin closely. The diagnostic plots
show that our model assumptions are reasonable for Equation (4.3).
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Figure 4.6: Profile log-likelihood plot for parameter A of the Box-Cox transformation. The
figure is drawn using the software environment R [60].
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Figure 4.7: (a) Studentised residuals against fitted values and (b) normal Q-Q plot of stu-
dentised residuals for Equation (4.3) using simulation results on complete graphs for which
¢ < 0.5. The red reference dashed lines in (a) and (b) are the horizontal line through the
origin and the 45° line through the origin respectively. The diagnostic plots show that our
model assumptions of normally distributed errors with zero mean and constant variance are
reasonable for Equation (4.3). The figure is drawn using the software environment R [60].

Proceeding with model selection, we use the Akaike Information Criterion (AIC) [4]
to select the ‘best” subset of predictors, as the method balances the trade-off between the
goodness of fit and the complexity of a model. This model selection approach aims to
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minimise AIC which is defined by
AIC =2(p—1In(L)), (4.4)

where p is the number of estimated parameters and L is the maximum value of the likeli-
hood function for the model. AIC-based model selection drops the first-order term of ¢ and
all terms that include m, giving the model

In(In(7)) = Bo+ BiN + BoN? + B3c® + BaNc + €. (4.5)

The diagnostic graphs of Equation (4.5) are similar to those in Figure 4.7 and are therefore
acceptable.

Cook’s distance [17] measures the influence of a data point in a least squares regres-
sion analysis. A commonly used threshold for detecting highly influential observations is
8/(n—2p), where n is the number of observations and p is the number of fitted parameters
[54]. Figure 4.8 reveals 3 influential observations. We remove these 3 points and give the
estimates for the coefficients f8; (j =0,1,---,4) of Equation (4.5) in Table 4.1, accurate
to 4 significant figures using scientific notation. Table 4.1 is part of the regression output
given by the software environment R [60]. The column of ¢ value gives the values of the
t-statistic for the hypothesis test with the null hypothesis that the corresponding regression
coefficient is 0. The column of Pr(> |t|) gives the probability for a test statistic to be at
least as extreme as the observed ¢ value if the null hypothesis were true. A low value of
Pr(> |¢]) suggests that it would be rare to get a result as extreme as the observed value if the
coefficient under consideration were 0, and hence we should keep the corresponding term
in our model.

Estimate Std. Error t value Pr(> |t])
Bo  2.139 1.380x 1072 1.550x 10> <2x 10716
B 7.124x107% 5255x107°  1.356x10 <2x107'6
B, —3.763x1077 4.178x 1078 —9.006 <2x10716
B —9.922x10°! 1.076 x 10! —9.220 <2x10716
Bs  3.696x107% 8983 x 107>  4.114 4.850 x 1073

Table 4.1: Summary of regression parameters for Equation (4.5), accurate to 4 significant
figures using scientific notation.

The coefficient of determination, R? € [0, 1], is a measure of goodness of fit of a regres-
sion model [22]. Values of R? that are closer to 1 indicate better fits. An R2 =0 implies that
the dependent variable cannot be predicted from the independent variable, and an R?> = 1
means that the dependent variable can be predicted without error from the independent vari-
able. Let 7; be the predicted value for the observed convergence time 7; (i = 1,2,--- ,n),
and let T = (Y7_, T;) /n. The definition of R? is given by

>

n 7\2
= izl 1) 4.6
(Ti=T) *o

~

1
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Figure 4.8: Cook’s distances for the model defined by Equation (4.5). The red dashed line
is a horizontal line through 8/(n —2p), where n is the number of observations and p is the
number of fitted parameters. This line gives the threshold for detecting highly influential
observations that are particularly worth checking for validity. The figure is drawn using the
software environment R [60].

Table 4.2 summarises the values of AIC and R? of regression models considered for
simulations on complete graphs for which ¢ < 0.5. The substantial increase in R? and
decrease in AIC indicate that our final model (Equation (4.5)) has much better goodness of
fit and a considerably simpler form than our orignal model (Equation (4.1)).

Model AIC R?

Equation (4.1)  8146.1 0.5272
Equation (4.3) —2040.4 0.8164
Equation (4.5) —2037.1 0.8246

Table 4.2: Values of AIC and R? of regression models considered for simulations on com-
plete graphs for which ¢ < 0.5, accurate to 5 and 4 significant figures, respectively.

The case of ¢ > 0.5

For ¢ > 0.5, we go through a similar model selection process to the case of ¢ < 0.5 and
arrive at the following equation

In(T) = Bo+ Bi In(N) + Bac + B3¢ + Bam + PBsm?* + €. (4.7)

We include an In(N) term in the full model (Equation 4.7) to account for the linear
dependence of T on N which Figure 4.4 suggests. AIC-based model selection shows
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statistical significance of the In(N) term. For Equation (4.7), we have AIC ~ —3248.9
and R? ~ 0.9965. Table 4.3 gives the estimates for the coefficients 8; (j = 0,1,---,5) of
Equation (4.7), accurate to 4 significant figures using scientific notation.

Estimate Std. Error t value Pr(> |t])
Bo  4.024 5038x 1072  7.988x10 <2x107'6
B 1.062 3.039x 1073 3.495x 10> <2x107'6
B —1.316 1.277x107"  —1.031x10 <2x1071!6
B;s 7346 x 107! 8.472x 1072  8.671 <2x 10716
By —6.261 3.704x 1072 —1.690 x 10> <2 x 10716
Bs  6.262 3.612x 1072 1.733x 10> <2x10716

Table 4.3: Summary of regression parameters for Equation (4.7), accurate to 4 significant
figures using scientific notation.

Table 4.3 suggests combining m and m? together as a single term (m —0.5)? and ¢ and
¢? as (c —1)2. The model with combined terms has two fewer coefficients to estimate than
Equation (4.7) and very close values of AIC ~ —3240.9 and R ~ 0.9964. Thus, we update

our model for ¢ > 0.5 as the simpler model given by
In(T) = Bo+ B In(N) + o (c — 1)>+ B3(m — 0.5)% + &. (4.8)

Table 4.4 gives the estimates for the coefficients f; (j = 0,1,2,3) of Equation (4.8),
accurate to 4 significant figures using scientific notation.

Estimate Std. Error t value Pr(> [t])
Bo 1.865 1.916 x 1072 9.734x10 <2x 1076
Bi  1.062 3.067 x 1073 3.463x 10> <2x10710
B, 4.530x107" 2.398x1072 1.889x10 <2x107'0
B 6.262 3.646 x 1072 1.718 x 10> <2x107'°

Table 4.4: Summary of regression parameters for Equation (4.8), accurate to 4 significant
figures using scientific notation.

Summary of convergence time results

Through the above regression analysis, we obtained the models given by Equations (4.5)
and (4.8) for complete graphs with confidence bounds ¢ < 0.5 and ¢ > 0.5, respectively.
The different forms of these equations confirm our conjecture based on data exploration that
convergence time, 7', undergoes a transition at ¢ = 0.5. To be more precise, the regression
results suggest that the behaviour of 7" differs for ¢ < 0.4 and ¢ > 0.5. In order to determine
a more precise critical value for ¢, one should conduct numerical simulations using ¢ €
(0.4,0.5).

For ¢ < 0.5, multiplier m has no statistically significant impact on 7', and T increases
with N. For ¢ > 0.5, the effects of N, ¢, and m on T are independent. In particular, T
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increases with N roughly linearly. We also observe that 7" increases with (¢ — 1) exponen-
tially and obtains a minimum at ¢ = 1, which corresponds to interaction without confidence
bound. In other words, for fixed N and m, convergence time on complete graphs is minimal
when any pair of randomly selected players make a convergence compromise. Further-
more, T increases with (m — 0.5)? exponentially and obtains a minimum at m = 0.5, in
which case each pair of randomly selected players agree at their average opinion whenver
their opinion difference is less than the given confidence bound.

4.1.2 The number of opinion cliques

For each combination of N, ¢, and m, we average the number of opinion cliques in the final
state, K, if and only if at least 6 out of the 10 simulations converged within the bailout
time, as defined in Section 3.3. Otherwise, we state that division of opinion was observed
for such combination of parameters. We use the same standard to decide the number of
opinions in the final state in the rest of the report.

Figure 4.9 summarises the number of opinion cliques that emerged in simulations on
complete graphs for which N = 10, 50, 100, 200, 400, 600, 800, and 1000.
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1
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Figure 4.9: Summary of the number of opinion cliques that emerged in simulations on com-
plete graphs for N = 10, 50, 100, 200, 400, 600, 800, and 1000. These are representative of
the trends that we observe in all simulations. We use grey colour to represent simulations
that did not converge by the bailout time (10° time steps).

Figure 4.9 reveals that K depends on the number of participating players, N, only for
confidence bound ¢ < 0.5, with the most dramatic changes happening in the region of
¢ =0.1. For ¢ > 0.5, consensus is reached consistently. For 0.2 < ¢ < 0.4, K generally
increases with N, and 1 < K < 4. For ¢ = 0.1, we observed that K > 5 for N > 200.
In addition, for ¢ < 0.5 and N > 600, K is generally larger for m closer to 0.5. This
phenomenon is reasonable because, as m — 0.5, players tend to agree with each other and
hence have less time to change their opinions. As the convergence time is shortened as
m — 0.5, more opinion cliques tend to persist in the final state.
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4.2 Cycles

In this section, we explore the behaviour of convergence time and the number of opinion
cliques in the final state on cycles. We use simulation results on cycles to compare with
those on cycles with random edges.

4.2.1 Convergence time

Figure 4.10 summarises the values of In(7) observed in simulations on cycles for which
N =10, 50, 100, 200, 400, 600, 800, and 1000.
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Figure 4.10: Summary of convergence time recorded in simulations on cycles for N = 10,
50, 100, 200, 400, 600, 800, and 1000.

For large N, In(T') changes with m rapidly when c is close to 1. We speculate that
a singularity arises at c = 1 and m = 0.5, as N — oo. For complete graphs, simulation
results suggest that 7 obtains a global minimum at ¢ = 1 and m = 0.5 when N is fixed, and
that T — o0 as N — co. Linear regression models cannot capture singularity points, so we
exclude data points that correspond to ¢ > 0.7 from our regression analysis for cycles.

Following a similar AIC-based regression selection process as outlined in Section 4.1,
we arrive at the model

In(T) = Bo + Bi In(N) + Baoc + B3¢ + Ba(m — 0.5)% + BsNm +&. (4.9)

Table 4.5 summarises the estimates for coefficients 8; (j=0,1,---,5) of Equation (4.9),
accurate to 4 significant figures using scientific notation. Table 4.5 is part of the regression
output given by the software environment R [60]. For Equation (4.9), R* ~ 0.9991 and
AIC ~ —3257.6.

As was true for complete graphs, the convergence time, 7', increases as more players are
connected on a cycle. However, simulations indicate different behaviour of 7" in connection
with the number of players (N), confidence bound (c), and multiplier (m) for the Deffuant
model on cycles. For instance, simulations show no clear transition of the behaviour of T
with respect to ¢. Nevertheless, for values of ¢ that are close to 1, In(7') changes with m
more rapidly as N increases. In addition, the effects of N and m on T are weakly coupled
through a factor exp (BsNm), where PBs is estimated to be —7.642 x 107,
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Estimate Std. Error t value Pr(> |t])
Bo —6313x107! 3.054x1072 —2.067x10 <2x107'6
B 3.018 5.142x 1073 5.870x 10> <2x107'°
B —2.630 6.357x 1072 —4.137x10 <2x107'°
B: —1.624 7.708 x 1072 —2.107x10 <2x107'6
Bs  9.371 4669 x 1072 2.007 x 10> <2x107'°
Bs —7.642x107> 1.713x 107> —4.461 9.770 x 107°

Table 4.5: Summary of regression parameters for Equation (4.9), accurate to 4 significant
figures using scientific notation.

4.2.2 The number of opinion cliques

Figure 4.11 summarises the number of opinion cliques that emerged in simulations on cy-
cles for which N = 10, 50, 100, 200, 400, 600, 800, and 1000.
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Figure 4.11: Summary of the number of opinion cliques that emerged in simulations on
cycles for N = 10, 50, 100, 200, 400, 600, 800, and 1000. These are representative of the
trends that we observe in all simulations. We use grey colour to represent simulations that
did not converge by the bailout time (10° time steps).

As shown in Figure 4.11, a consensus is reached for all simulations on cycles with
N =100, 200, 400, and 600. Even though some simulations for N = 1000 did not converge
by the bailout time, we conjecture that all simulations on cycles with large values of N
will converge, independent of the values of ¢ and m, if the Deffuant game is played for
sufficiently many iterations. For N being 10 and 50, consensus is reached when ¢ > 0.5.
This observation is reasonable as, with fewer players connected on a circular network, their
initial opinions are farther away from each other, which forces them to form more cliques.
Similar to complete graphs, we observe that more opinion cliques tend to emerge in the
final state as m — 0.5 if multiple opinion cliques persist in the final state.

4.3 Annular lattices

In this section, we explore the behaviour of convergence time and the number of opinion
cliques in the final state on annular lattices. We use simulation results on annular lattices
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to compare with those on annular lattices with random edges.

Figure 4.12 summarises the values of In(7") observed in simulations on annular lattices
for which N = 10, 50, 100, 200, 400, 600, 800, and 1000. Similar to complete graphs in
Section 4.1, scatter plots of In(7") against N, ¢, and m, show qualitatively distinct behaviour
for ¢ < 0.5 and ¢ > 0.5. Thus, we conduct regression analysis for ¢ < 0.5 and ¢ > 0.5
separately.

N=10 N=50 N=100 N=200 N=400 N=600 N=800 N=1000
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Figure 4.12: Summary of convergence time recorded in simulations on annular lattices for
N =10, 50, 100, 200, 400, 600, 800, and 1000. These are representative of the trends that
we observe in all simulations.

4.3.1 Convergence time

The case of ¢ < 0.5

Following a similar AIC-based regression selection process as in Section 4.1, we arrive at
the model

In(7)% = Bo+ BiN + BoN? + Bzc + Bac* + Bs(m — 0.5)> 4 BgNc + €. (4.10)

Table 4.6 summarises the estimates for coefficients 8, (j=0,1,--- ,6) of Equation (4.10),
accurate to 4 significant figures using scientific notation. For Equation (4.10), R*> ~ 0.9919
and AIC ~ 1301.9.

Estimate Std. Error t value Pr(> |t])

Bo  1.062x10>  2.803 3.789x 10 <2x 10716
B 4319x107! 6206x10-3  6.960x10 <2x107'°
B —1.790x107% 4.822x10-6 —3.712x10 <2x107'°

B 7.759x10 1.830 x 10 4.239 2.890 x 107>
Bs —5.946x10>  3.400 x 10 —1.749x 10 <2x107'°
Bs  2.839x10> 5924 4792x10 <2x10716

Bs —1.332x107" 1.083x10—2 —1.230x10 <2x10716

Table 4.6: Summary of regression parameters for Equation (4.10), accurate to 4 significant
figures using scientific notation.
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The case of c > 0.5

Following a similar AIC-based regression selection process as in Section 4.1, we arrive at
the model

VIn(T) = Bo+ Bi In(N) + Bac + B3c® + Ba(m — 0.5)> + BsNc + €. 4.11)

Table 4.7 summarises the estimates for coefficients 8; (j=0,1,---,5) of Equation (4.11),
accurate to 4 significant figures using scientific notation. For Equation (4.11), R ~ 0.9845
and AIC ~ —4219.1.

Estimate Std. Error t value Pr(> |t])
Bo  2.263 2.634x 1072 8592x10 <2x10716
Bi  2072x107!' 3.160x 1073  6.556x10 <2x10716
B —1.212 4976 x 1072 —2.436x10 <2x10716
Bs  7.507x1071 3273x 1072  2294x10 <2x107'°
Bs  1.064 1.395x 1072 7.624x10 <2x1071'6
Bs —6.056x1075 9.865x 1076 —6.138 1.650 x 10~°

Table 4.7: Summary of regression parameters for Equation (4.11), accurate to 4 significant
figures using scientific notation.

Summary of convergence time results

Through regression analysis, we obtained the models given by Equations (4.10) and (4.11)
for annular lattices with confidence bounds ¢ < 0.5 and ¢ > 0.5 respectively. Similar to
complete graphs, the different forms of these equations confirm our conjecture based on
data exploration that convergence time, 7, undergoes a transition for confidence bound
being ¢ = 0.5. As we stated in Section 4.1, one should conduct numerical simulations
using ¢ € (0.4,0.5) in order to determine an accurate critical value for c.

Similar to complete graphs, T increases with the number of participating players, N.
However, the effects of N, ¢, and m on T are coupled for annular lattices. In addition,
T increases more rapidly for ¢ < 0.5 than ¢ > 0.5. With fixed values of N and ¢, T is
symmetrical about multiplier being m = 0.5, at which value T obtains a minimum.

4.3.2 The number of opinion cliques

Figure 4.13 summarises the number of opinion cliques that persisted in the simulations on
annular lattices for which the number of participating players are N = 10, 50, 100, 200,
400, 600, 800, and 1000. A consensus is reached for all simulations on annular lattices
with confidence bound being ¢ > 0.5. For N > 100, the final state is mostly in polarisation
at 2 distinct opinions when ¢ < 0.5. For N being 10 and 50, multiple, sometimes more
than 2, opinion cliques emerged in the final state. For a similar reason to that for cycles in
Subsection 4.2.2, players’ initial opinions are farther away from each other, as the number
of players connected on an annular lattice decreases, which forces them to form more
opinion cliques.
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Figure 4.13: Summary of the number of opinion cliques that emerged in simulations on
annular lattices for N = 10, 50, 100, 200, 400, 600, 800, and 1000. These are representative
of the trends that we observe in all simulations. We use grey colour to represent simulations
that did not converge by the bailout time (10° time steps).

4.4 Cycles with extra random edges

In this section, we explore the behaviour of convergence time and the number of opinion
cliques in the final state on cycles with randomly generated extra edges. For a cycle with N
nodes, we pick a pair of non-adjacent nodes uniformly at random and add an edge between
them. We repeat this process sN times in order to add sN distinct extra edges to the cycle.
We consider three values of s, namely 0.1, 0.2, and 0.3. Cycles with random edges are
a version of the Watts-Strogatz model with original connectivity 2. The Watts-Strogatz
model captures two properties that are commonly observed in real social networks, which
are high clustering, meaning that individuals with mutual friends tend to be friends as well,
and short average path lengths [52].

4.4.1 Convergence time

Figure 4.14 summarises the values of In(7") observed in simulations on cycles with ran-
domly generated extra edges for which the number of participating players are N = 10, 50,
100, 200, 400, 600, 800, and 1000.

Following a similar AIC-based regression selection process as in Section 4.1, we arrive
at the model

In(T)% = Bo+ Bi In(N) + BoN + B3N? + Bac + Bsc® + Bs(m —0.5)> + B;Nc + €, (4.12)

where the power transformation parameter « is given by o = —%, —%, and —% fors =0.1,

0.2, and 0.3, respectively. For s = 0.1, the Nc¢ term is statistically insignificant and thus
is dropped during model reduction. Table 4.8 summarises the estimates for coefficients f3;
(j=0,1,---,7) of Equation (4.12), accurate to 4 significant figures using scientific nota-
tion.

As we have observed in all the networks considered so far, convergence time, 7, in-
creases with the number of participating players, N. However, regression analysis suggests
no transition of 7" with respect to confidence bound, c. Instead, T increases more rapidly
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Figure 4.14: Summary of convergence time recorded in simulations on cycles with sN extra
randomly generated edges for N = 10, 50, 100, 200, 400, 600, 800, and 1000. These are
representative of the trends that we observe in all simulations.

s Bo B B2 B3 Bs Bs Bs B
0.1 5.485 % 107! —3.140x 1072 6.760x 107> —2.908 x 108 1.820x 10~ —1.101 x 107! —9.576 x 102 N/A
02 2763x107! —2351x1072  4343x1070  —1.653x 1078 1.779 x 10~ —1.084 x 107! —8.901 1072 —1.008 x 1072
03 2.031x107! —1.977x1072  3.548x 1070 —1.090 x 1078 1.452x 107! —8.829%x 1072 —7.934x1072  —1.093x 107>

Table 4.8: Estimates for the coefficients of Equation (4.12) for cycles with sN extra random
edges, where N is the number of players in the network. Estimates are accurate to 4 signif-
icant figures using scientific notation. For s = 0.1, the Nc¢ term is statistically insignificant
and thus is dropped during model reduction, which corresponds to the entry 37 = N/A in
the table. For s = 0.1, AIC ~ —10378.2 and R ~ 0.9853. For s = 0.2, AIC ~ —10443.3
and R ~ 0.9829. For s = 0.3, AIC =~ —10719.2 and R ~ 0.9816.

with N for ¢ < 0.5 than ¢ > 0.5. Adding extra random edges to cycles decreases conver-
gence time significantly. In addtion, 7 increases much more slowly with N on cycles with
random edges than on cycles. Interestingly, the weak coupling term Nm becomes less sta-
tistically significant and finally changes to the weak coupling term N¢, as we add more
random edges to a cycle. We also note that 7 is roughly symmetric about the multiplier
value of m = 0.5, with the smallest values of 7" occuring around m = 0.5.

4.4.2 The number of opinion cliques

Figure 4.15 summarises the number of opinion cliques that emerged in simulations on cy-
cles with randomly generated extra edges for which N = 10, 50, 100, 200, 400, 600, 800,
and 1000. For a small proportion of random edges, the number of opinion cliques in the
final state is roughly the same as observed in simulations on cycles. However, multiple
opinion cliques emerge in the final state for ¢ > 0.3 and N > 100. We conjecture that the
number of opinion cliques in the final state, K, behaves more like in the case of complete
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graphs as more random edges are added with respect to the value of N.
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Figure 4.15: Summary of the number of opinion cliques that emerged in simulations on
cycles with random edges for N = 10, 50, 100, 200, 400, 600, 800, and 1000. These
are representative of the trends that we observe in all simulations. We use grey colour to
represent simulations that did not converge by the bailout time (10° time steps).

4.5 Annular lattices with extra random edges

In this section, we explore the behaviour of convergence time and the number of opinion
cliques in the final state on annular lattices with random edges that are generated using the
same mechanism as in Section 4.4. We also consider s = 0.1, 0.2, and 0.3. Annular lattices
with random edges are a version of the Watts-Strogatz model with original connectivity 3.
Figure 4.16 summarises the values of In(7") observed in simulations on annular lattices
with randomly generated extra edges for the cases N = 10, 50, 100, 200, 400, 600, 800, and
1000. Similar to annular lattices in Section 4.3, we observe qualitatively distinct behaviour
of convergence time for ¢ < 0.5 and ¢ > 0.5 on annular lattices with extra randomly gener-
ated random edges. Thus, we conduct regression analysis for these two cases separately.

4.5.1 Convergence time

The case of ¢ < 0.5

Following a similar AIC-based regression selection process as in Section 4.1, we arrive at
the model

In(T) = Bo + BiN + BoN? + Bac + Bac? + Bs(m — 0.5)* + BeNc + €. (4.13)

Table 4.9 summarises the estimates for coefficients 8; (j =0,1,--- ,6) of Equation (4.13),
accurate to 4 significant figures using scientific notation.
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Figure 4.16: Summary of convergence time recorded in simulations on annular lattices with
extra randomly generated edges for N = 10, 50, 100, 200, 400, 600, 800, and 1000. These
are representative of the trends that we observe in all simulations.

s Bo B B2 Bs Ba Bs Bs
0.1 1225x10 1.240x1072 —6.048x10°% —6.132 —1.078x10 6.183 —5.739x 1073
02 1.309%10 1.067x1072 —5535%x107% —1.699 x 10 1.088x 10  6.064 —4.199x 1073

03 1.353x10 8.670x1073 —4.073x10° —2.060x 10 1.764x 10  6.879 —3.324x1073

Table 4.9: Estimates for the coefficients of Equation (4.13) and the corresponding coeffi-
cients of determination for annular lattices with sN extra random edges, where N is the
number of players in the network. Estimates are accurate to 4 significant figures using sci-
entific notation. For s = 0.1, AIC &~ —592.1 and R =~ 0.9613. For s = 0.2, AIC =~ —427.99
and R ~ 0.9283. For s = 0.3, AIC ~ —482.58 and R ~ 0.9336.

The case of ¢ > 0.5

Following a similar AIC-based regression selection process as in Section 4.1, we arrive at
the model

In(T) = Bo + Bi In(N) + Bac + B3¢ + Ba(m — 0.5)> + BsNc + €. (4.14)

Table 4.10 summarises the estimates for coefficients 8; (j =0,1,---,5) of Equation (4.14),
accurate to 4 significant figures using scientific notation.

Summary of convergence time results

Through regression analysis, we obtained the models given by Equations (4.13) and (4.14)
for annular lattices with random edges for confidence bounds ¢ < 0.5 and ¢ > 0.5 respec-
tively. The different forms of these equations confirm our conjecture based on data ex-
ploration that convergence time, 7', undergoes a transition at ¢ = 0.5. Again, one should
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s Bo B1 B2 Bs Ba Bs

0.1 3.528 1.200 —4.263 2.628 6.720 —2.061 x10~*
0.2 3.300 1.161 —3.242 2.002 6.634 —1.808x10~*
0.3 3.193 1.116 —2.436 1465 6.671 —5.580x107°

Table 4.10: Estimates for the coefficients of Equation (4.13) and the corresponding co-
efficients of determination for annular lattices with sN extra random edges, where N is
the number of players in the network. The estimates are accurate to 4 significant fig-
ures using scientific notation. For s = 0.1, AIC ~ 2596.67 and R ~ 0.9914. For s = 0.2,
AIC =~ —2693.1 and R ~ 0.9922. For s = 0.3, AIC ~ —2912.41 and R =~ 0.9947.

conduct numerical simulations using ¢ € (0.4,0.5) in order to determine an accurate criti-
cal value for c¢. Regression analysis suggests that adding random edges to annular lattices
decreases T more for ¢ < 0.5 than it does for ¢ > 0.5.

4.5.2 The number of opinion cliques

Figure 4.17 summarises the number of opinion cliques that emerged in simulations on an-
nular lattices with randomly generated extra edges for which N = 10, 50, 100, 200, 400,
600, 800, and 1000.
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Figure 4.17: Summary of the number of opinion cliques that emerged in simulations on
annular lattices with random edges for N = 10, 50, 100, 200, 400, 600, 800, and 1000.
These are representative of the trends that we observe in all simulations. We use grey
colour to represent simulations that did not converge by the bailout time (10° time steps).

As was true for annular lattices, censensus is always reached on annular lattices with
random edges for confidence bound being ¢ > 0.5. For ¢ < 0.5, however, K ~ 3 when
N > 50, in contrast with K ~ 2 for annular lattices.
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4.6 Erdos-Rényi model

In this section, we explore the behaviour of convergence time and the number of opinion
cliques in the final state on random graphs generated by the ErdGs-Rényi G(N, p) model,
where p is the independent probability to add an edge between a pair of nodes. The Erdds-
Rényi model is one of the best studied models of network and has been used to study
the Deffuant model in some literature [5, 24, 40, 41]. However, existing research of the
Deffuant model on Erd6s-Rényi random graphs has mainly focused on adaptive networks
that evolve with the game [40, 41]. We consider the Erd6s-Rényi G(N, p) model for p =
0.1,0.2,---,0.9. Complete graphs are a special case of the Erd6s-Rényi G(N, p) model
with p = 1.

Figure 4.18 presents a subset of the values of In(7') recorded in simulations, which are
representative of the observed trends in all simulations. The scatter plots of T against N, c,
and m are similar to those of complete graphs (Figure 4.2), which also show qualitatively
distinct behaviour for ¢ < 0.5 and ¢ > 0.5.
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Figure 4.18: Summary of simulations on random graphs generated by the Erd8s-Rényi
G(N, p) model. We conducted simulations for p = 0.1,0.2, ---, 0.9, and present a subset
of the plots here which are sufficient to show the observed trends.

4.6.1 Convergence time

The case of ¢ < 0.5

Following a similar AIC-based regression selection process as in Section 4.1, we arrive at
the model

In(In(T)) = Bo+ BIN + BoN? + B3c? + Ba(m — 0.5)%> + BsNc + &. (4.15)

Random graphs generated by the ErdGs-Rényi G(N, p) model adds more stochasticity
to the game, which accounts for the increased number of outliers observed in the simulation
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results as compared with simulations on complete graphs. For each value of p, Table 4.11
summarises estimates for the coefficients of Equation (4.15). In the caption of Table 4.11,
we also give the proportion (g € [0, 1]) of data points that we identify as extreme outliers and
exclude from our regression analysis. We only consider the G(N, p) models for p = 0.7,
0.8, and 0.9, as g > 0.15 for smaller values of p, which can undermine the reliability of the
regression analysis.

P ﬁo Bl [32 53 54 ﬁs
0.7 2.098 8.744x107% —4.854x10"7 —8.606x 10! 2.294x 10! N/A
0.8 2.111 8328x10~% —4349x1077 —7.874x10"" 1.255x 10! N/A

09 2.117 7901 x107% —4327x1077 —8.926x10"' 1.200x 107! 2.323x10°*

Table 4.11: Estimates for the coefficients of Equation (4.15) for the Erdgs-Rényi G(N, p)
model with ¢ < 0.5, accurate to 4 significant figures using scientific notation. For p = 0.7,
q ~0.1133, AIC =~ —1515.5, and R ~ 0.8360. For p = 0.8, g =~ 0.0767, AIC ~ —1658.1,
and R ~ 0.8114. For p =0.9, ¢ = 0.05, AIC ~ —1774.1, and R ~ 0.7984.

The case of c > 0.5

Following a similar AIC-based regression selection process as in Section 4.1, we arrive at
the model given by Equation (4.8) for all the values of p considered. For each value of p,
Table 4.12 summarises estimates for the coefficients 8; (j =0, 1,---,3) of Equation (4.8),
together with the corresponding values of AIC and R?.

p  Bo Bi B2 Bs AIC R?

0.1 1953 1.050 4.412x107! 6.362 —3156.1 0.9958
0.2 1.931 1.053 4.500x 107! 6.290 —3194.2 0.9961
0.3 1918 1.055 4.512x107" 6.275 —3215.1 0.9962
0.4 1.886 1.060 4.453x10~! 6.270 —3233.7 0.9963
0.5 1.827 1.068 4.548x 107! 6.284 —3209.2 0.9963
0.6 1.870 1.062 4.499x 107! 6.255 —3233.6 0.9964
0.7 1.851 1.065 4.470x 107! 6.242 —3213.7 0.9963
0.8 1.873 1.061 4.555x107! 6.289 —3267.4 0.9966
0.9 1.838 1.067 4.676x 107! 6.261 —3251.8 0.9965
1 1.865 1.062 4.530x10°! 6.262 —3240.9 0.9964

Table 4.12: Estimates for the coefficients of Equation (4.8) and the corresponding values
of R? and AIC for the Erdés-Rényi G(N, p) model for which ¢ > 0.5, accurate to 4 and 5
significant figures using scientific notation respectively. For comparison, we also include
the coeffcients of the model for complete graphs studied in Section 4.1.
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Summary of convergence time results

Through regression analysis, we obtained the models given by Equations (4.15) and (4.8)
for the Erd6s-Rényi G(N, p) model for confidence bounds being ¢ < 0.5 and ¢ > 0.5 re-
spectively. The different forms of these equations confirm our conjecture based on data
exploration that convergence time, 7, undergoes a transition at ¢ = 0.5. Again, one should
conduct numerical simulations using ¢ € (0.4,0.5) in order to determine an accurate critical
value for c.

For ¢ < 0.5, multiplier m affects T through the (m —0.5)? term. In contrast, the regres-
sion model for complete graphs (Equation (4.5)) suggests independence of 7" on m. For the
Erd6s-Rényi G(N, p) model, the effect of m on T is independent of N and c. In addition, T
1s symmetrical about m = 0.5, obtaining a minimum at m = 0.5 if N and c are fixed.

For ¢ > 0.5, the regression model is Equation (4.8), which is the same as that for com-
plete graphs. We do not observe a clear trend of the estimated coefficients f8; (j =0,1,2,3)
with respect to p. For large values of p, the estimated coefficients are very close to those
for complete graphs. This suggests that one can probably use a mean-field approximation
to study convergence time on the Erd6s-Rényi G(N, p) model if p is close to 1.

4.6.2 The number of opinion cliques

Figure 4.19 summarises the number of opinion cliques that emerged in simulations on ran-
dom graphs generated by the Erdés-Rényi G(N, p) model for which N = 10, 50, 100, 200,
400, 600, 800, and 1000.
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Figure 4.19: Summary of the number of opinion cliques that emerged in simulations on
Erd6s-Rényi G(N, p) models. We conducted simulations for p = 0.1,0.2,---,0.9, and
present a subset of the plots here which are sufficient to show the observed trends. We use
grey colour to represent simulations that did not converge by the bailout time (10° time
steps).

For values of edge probability, p, close to 1, the behaviour of the number of opinion
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cliques in the final state, K, is similar to what is observed on complete graphs. As p — 0,
the major difference is that opinions will fail to converge within the bailout time for small
values of confidence bound, c.



5 Discussions

The Deffuant model is an example of a discrete-time repeated game, played pair-wise
among a group of players that are connected via a network. At each time step, randomly
selected neighbouring players interact pairwise and make a compromise toward each oth-
ers opinion whenever their opinion difference is less than a given threshold. The game is
played until the players’ opinions converge. There are four ways through which one can
manipulate the game, namely the structure of the network on which players are connected,
the number of players that participate in the game (N), the population’s confidence bound
(c), and their openness of mind (m). In this report, we have investigated the Deffuant model
on various networks in a systematic manner. In particular, we have modelled the conver-
gence time of opinions, 7, as a function of N, ¢, and m through numerical simulations and
linear regression analysis for each network topology considered. We have also studied the
number of opinion cliques in the final state, K, qualitatively, as such approach is more nat-
ural than conducting regression analysis due to the more complicated nature of the opinion
clique distributions.

We have studied two types of networks, one having deterministic structures and the
other being generated randomly according to some stochastic rules. The deterministic net-
works studied consist of complete graphs, cycles, and annular lattices, all of which are
regular graphs. These networks provide simulation results for us to compare with those
on random graphs. In addition, complete graphs can be used to model small communities,
where everyone knows each other, and as approximations to communities in large social
networks [51]. The random graphs considered consist of cycles and annular lattices with
randomly generated extra edges, and random graphs generated by the Erd6s-Rényi G(N, p)
model. These graphs possess some properties that social networks often exhibit. For ex-
ample, cycles and annular lattices with random edges are a version of the Watts-Strogatz
model and capture the properties of high clustering and short average path lengths, which
are commonly observed in real social networks [52]. Meanwhile, the Erd6s-Rényi model is
one of the best studied models of network science and has been used to study the Deffuant
model in some literature [5, 24, 40, 41, 52].

We first summarise the convergence time results. For the collection of networks with
deterministic structures, the Deffuant model converges fastest on complete graphs and
slowest on cycles. This observation suggests that the convergence time of opinions, 7,
decreases with an increase in the density of edges in a network. Interestingly, regression
analysis reveals that T undergoes a transition at a value of the confidence bound equal to
¢ = 0.5 on complete graphs and annular lattices, while such a transition is not seen on
cycles. When such a transition occurs, 7' is much smaller for ¢ > 0.5 than for ¢ < 0.5.
Another notable phenomenon is that the interplay among the effects of N, ¢, and m on T is
different when the underlying interaction network changes. For example, the effects of the
three parameters on 7' are independent on complete graphs with ¢ > 0.5, whereas N and
m are weakly coupled for cycles, and all of the three parameters are coupled for annular
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lattices. A common trait that we have found on all of these three deterministic networks is
that 7 increases with V.

For the random graph models considered, whether there exists a transition in the be-
haviour of 7" with respect to ¢ is consistent with their deterministic counterpart networks.
Recall that complete graphs can be interpreted as graphs generated by a special case of the
Erd6s-Rényi G(N, p) model with p = 1. Regression analysis suggests that adding random
edges to cycles and annular lattices decreases 7' dramatically. For annular lattices, the de-
crease in 7' due to the addition of random edges is sharper for ¢ < 0.5 than for ¢ > 0.5. In
addition, T increases much more slowly with N on cycles with random edges than it does
on cycles. The same observation holds for annular lattices and their random graph coun-
terparts in the region ¢ < 0.5. For the ErdGs-Rényi G(N, p) model, the regression model is
very similar to that of complete graphs for large values of the edge generation probability,
p- This suggests that one can probably use a mean-field approximation to study conver-
gence time on the Erd6s-Rényi model if p is close to 1. Overall, our regression analysis
also indicates that T is symmetric about m = 0.5 on complete graphs when ¢ > 0.5, on
annular lattices with random edges for all ¢ € [0, 1], and on random graphs generated by
the Erd6s-Rényi model when ¢ > 0.5.

In terms of the number of opinion cliques in the final state, K, consensus is reached for
¢ > 0.5 on all three of the deterministic networks, whereas more opinion cliques persist
as the node degree of a regular graph increases for ¢ < 0.5. A possible reason for this
phenomenon is that players who are connected on a regular graph with a higher node degree
have more neighbours with ‘competing’ opinions, which gives the players less time to make
up their minds, and thus more opinion cliques persist. Adding a small proportion of random
edges to cycles in terms of N does not have a large impact on the number of opinion cliques
in the final state. However, multiple opinion cliques emerge in the final state for ¢ > 0.2
and N > 100, whereas consensus is reached on cycles for N > 100 except for 9 out of
540 combinations of N, ¢, and m. For the cases that did not converge by the bailout time,
it is possible that the opinions will converge to censensus if the Deffuant game is played
for sufficiently many iterations. We conjecture that K behaves more like in the case of
complete graphs as we add more random edges to cycles with respect to the value of N. In
contrast, adding more random edges to annular lattices makes the final state changes from
polarisation at K = 2 different opinions to fragmentation where there are K > 2 opinion
cliques. For the Erd6s-Rényi G(N, p) model, the behaviour of K is similar to what is
observed on complete graphs when the edge generation probability, p, is close to 1. As the
value of p decreases, we observe that convergence fails to occur before the bailout time,
for small enough values of c.

Our results provide insight into how some real-world happenings can be steered towards
desired outcomes as well as implications for the study of voting games. For instance, when
a convention wants to reach a censensus, it is often desirable to let attendants agree in
shortest time that is possible. In such a scenario, the meeting’s organisers should encourage
people to embrace diverse opinions. Introducing strangers so that they have conversations
may speed up the process for attendants to make up their minds, but this may lead the
crowds to divide into groups with opposing viewpoints. While planning such a meeting,
the organiser should be aware that the more people there are invited, the longer it will likely
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to take for the attendants to narrow down their opinions to a few options for voting. In some
other cases, such as campaigns to prevent certain wrong beliefs to spread, the government
should caution people against trusting bizarre opionions and suggest that people agree with
others who share similar viewpoints instead.

There are several possible extensions to the work in this report. First, we have consid-
ered three deterministic networks and three random graph models, and it will be valuable to
study the Deffuant model on more network structures. In particular, it would be interesting
to conduct numerical simulations on random networks that are generated using some prop-
erties of real social networks, such as friendships on Facebook. Second, opinions in some
of our simulations did not converge by the bailout time, and we averaged convergence time
and the number of opinion cliques in the final state over 10 groups of independent simula-
tions for each network and each combination of N, ¢, and m, considered in order to smooth
out noise caused by the stochasticity of the initial opinion profiles and the order of players’
pairwise interaction. Having more than 10 groups in each simulation and longer bailout
time would generate data points that are more accurate for regression analysis. In addition,
studying generalisations of the Deffuant model on various networks in a systematic man-
ner, as we did here for the standard Deffuant model could provide more accurate insight
into real-world applications.



Bibliography

[1] Acemoglu, D., Como, G., Fagnani, F., and Ozdaglar, A., Opinion fluctuations and
disagreement in social networks, Math. Oper. Res., 38(1), 1-27 (2013).

[2] Acemoglu, D., Dahleh, M. A., Lobel, I., and Ozdaglar, A., Bayesian learning in social
networks, Rev. Econ. Stud., 78(4), 1201-1236 (2011).

[3] Acemoglu, D. and Ozdaglar, A., Opinion dynamics and learning in social networks,
Dyn. Games Appl., 1(1), 3—49 (2011).

[4] Akaike, H., A new look at the statistical model identification, IEEE Trans. Autom.
Control, 19(6), 716=723 (1973).

[5] Alaai, A., Purvis, M. A., and Savarimuthu, B. T. R., Vector opinion dynamics:
An extended model for consensus in social networks, in Proceedings of the 2008
IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent
Technology, pp. 394-397, IEEE Computer Society, Washington, DC (2008).

[6] Amblard, F. and Deffuant, G., The role of network topology on extremism propaga-
tion with relative agreement opinion dynamics, Physica A, 343, 725738 (2004).

[7] Barabasi, A.-L. and Albert, R., Emergence of scaling in random networks, Science,
286(5439), 509-512 (1999).

[8] Barabasi, A.-L., Gulbahce, N., and Loscalzo, J., Network medicine: A network-based
approach to human disease, Nat. Rev. Genet., 12(1), 5668 (2011).

[9] Barrat, A., Barthélemy, M., and Vespignani, A., Dynamical processes on complex
networks, Cambridge University Press, Cambridge (2008).

[10] Ben-Naim, E., Krapivsky, P. L., and Redner, S., Bifurcations and patterns in compro-
mise processes, Physica D, 183(3—4), 190-204 (2003).

[11] Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., and Hwang, D.-U., Complex net-
works: Structure and dynamics, Phys. Reps., 424(4-5), 175-308 (2006).

[12] Box, G. E. P. and Cox, D. R., An analysis of transformations, J. R. Stat. Soc. Ser. B,
26, 211-234 (1964).

[13] Castellano, C., Fortunato, S., and Loreto, V., Statistical physics of social dynamics,
Rev. Mod. Phys., 81(2), 591-646 (2009).

[14] Chamley, C., Scaglione, A., and Li, L., Models for the diffusion of beliefs in social
networks: An overview, IEEE Signal Process. Mag., 30(3), 16-29 (2013).

41



42 BIBLIOGRAPHY

[15] Clifford, P. and Sudbury, A., A model for spatial conflict, Biometrika, 60(3), 581-588
(1973).

[16] Cohen, R. and Havlin, S., Complex networks: Structure, robustness and function,
Cambridge University Press, Cambridge (2010).

[17] Cook, R. D., Detection of influential observation in linear regression, Technometrics,
19(1), 15-18 (1977).

[18] Deffuant, G., Neau, D., Amblard, F., and Weisbuch, G., Mixing beliefs among inter-
acting agents, Adv. Complex Syst., 3(1), 87-98 (2000).

[19] Deffuant, G., Amblard, F., Weisbuch, G., and Faure, T., How can extremism prevail?
A study based on the relative agreement interaction model, J. Art. Soc. Soc. Simul.,
5(4) (2002).

[20] Deffuant, G., Amblard, F., and Weisbuch, G., Modelling group opinion shift to ex-
treme: The smooth bounded confidence model, arXiv preprint cond-mat/0410199
(2004).

[21] Di Mare, A. and Latora, V., Opinion formation models based on game theory, Int. J.
Mod. Phys. C, 18(9), 1377-1395 (2007).

[22] Draper, N. R. and Smith, H., Applied Regression Analysis, John Wiley & Sons, New
York, 2nd ed. (1981).

[23] Erdds, P. and Rényi, A., On random graphs, Publ. Math. Debrecen, 6, 290-297
(1959).

[24] Fortunato, S., Universality of the threshold for complete consensus for the opinion
dynamics of Deffuant et al., Int. J. Mod. Phys. C, 15(9), 1301-1307 (2004).

[25] Fortunato, S., Latora, V., Pluchino, A., and Rapisarda, A., Vector opinion dynamics
in a bounded confidence consensus model, Int. J. Mod. Phys. C, 16(10), 1535-1551
(2005).

[26] Freeman, D. A., Statistical Models: Theory and Practice, Cambridge University
Press, Cambridge (2005).

[27] Fudenberg, D. and Tirole, J., Game Theory, MIT Press, Cambridge (1995).

[28] Galam, S., Minority opinion spreading in random geometry, Eur. Phys. J. B, 25, 403—
406 (2002).

[29] Gandica, Y., del Castillo-Mussot, M., Vazquez, G. J., Rojas, S., Continuous opinion
model in small-world directed networks, Physica A, 389(24), 5864-5870 (2010).

[30] Gilbert, E. N., Random graphs, Ann. Math. Stat., 30(4), 1141-1144 (1959).



BIBLIOGRAPHY 43

[31] Hegselmann, R. and Krause, U., Opinion dynamics and bounded confidence: Models,
analysis and simulation, J. Artif. Soc. Soc. Simul., 5(3), 1-24 (2002).

[32] Holley, R. A. and Liggett, T. M., Ergodic theorems for weakly interacting infinite
systems and the voter model, Ann. Probab., 3(4), 643—663 (1975).

[33] Hunter, J. D., Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 9(3), 90—
95, http://matplotlib.org/ (2007).

[34] Idiguez, G., Kertész, J., Kaski, K. K., and Barrio, R. A., Opinion and community
formation in coevolving networks, Phys. Rev. E, 80(6), 066119 (2009).

[35] Jackson, M. O., Social and Economic Networks, Princeton University Press, Princeton
(2008).

[36] Jackson, M. O. and Zenou, Y., Games on networks, Handbook of Game Theory, 4
(2014).

[37] Focusing of opinions in the Deffuant model: First impression counts, Int. J. Mod.
Phys. C,17(12), 1801-1808 (2006).

[38] Jalili, M., Social power and opinion formation in complex networks, Physica A,
392(4), 959-966 (2013).

[39] Kiveld, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., and Porter, M.
A., Multilayer networks, J. Complex Netw., 2(3), 203-271 (2014).

[40] Kozma, B. and Barrat, A., Consensus formation on adaptive networks, Phys. Rev. E,
77(1), 016102 (2008).

[41] Kozma, B. and Barrat, A., Consensus formation on coevolving networks: groups’
formation and structure, J. Phys. A: Math. Theor., 41(22), 224020 (2008).

[42] Krause, U., A discrete nonlinear and non-autonomous model of consensus formation,
in S. Elaydi, G. Ladas, J. Popenda, and J. Rakowski, eds., Communications in Dif-
ference Equations, Proceedings of the Fourth International Conference on Difference
Equations, pp. 227-236, CRC Press, Poznan (2000).

[43] Laguna, M. F., Abramson, G., and Zanette, D. H., Minorities in a model for opinion
formation, Complexity, 9(4), 31-36 (2004).

[44] Landau, D. P. and Binder, K., A Guide to Monte Carlo Simulations in Statistical
Physics, Cambridge University Press, New York, 4th ed. (2014).

[45] Latané, B., The psychology of social impact, Am. Psychol., 36(4), 343-356 (1981).

[46] Lorenz, J., A stabilization theorem for dynamics of continuous opinions, Physica A,
355(1), 217-223 (2005).


http://matplotlib.org/

44 BIBLIOGRAPHY

[47] Lorenz,J., Continuous opinion dynamics: Insights through interactive Markov chains,
arXiv preprint 0708.3293 (2005).

[48] Lorenz, J., Continuous opinion dynamics under bounded confidence: A survey, Int. J.
Mod. Phys. C, 18(12), 1819-1838 (2007).

[49] Lorenz, J., Heterogeneous bounds of confidence: Meet, discuss and find consensus!,
Complexity, 15(4), 43-52 (2010).

[50] Lorenz, J. and Urbig, D., About the power to enforce and prevent consensus by ma-
nipulating communication rules, Adv. Complex Syst., 10(2), 251-269 (2007).

[51] Luce, R. D. and Perry, A. D., A method of matrix analysis of group structure, Psy-
chometrika, 14(2), 95-116 (1949).

[52] Newman, M. E. J., Networks: An Introduction, Oxford University Press, Oxford
(2010).

[53] Newman, M. E. J. and Watts, D. J., Scaling and percolation in the small-world net-
work model, Phys. Rev. E, 60(6), 7332—7342 (1999).

[54] Nicholls, G., Lecture notes for Part B Applied Statistics, Department of Statistics,
University of Oxford, version of 28 November 2014, http://www.stats.ox.ac.
uk/~nicholls/sbla/lectures5-6.pdf.

[55] Nowak, A., Szamrej, J., and Latané, B., From private attitude to public opinion: A
dynamic theory of social impact, Psychol. Rev., 97(3), 362-376 (1990).

[56] Osborne, J. W., Improving your data transformations: Applying the Box-Cox trans-
formation, Practical Assessment, Research & Evaluation, 15(12), 1-9 (2010).

[57] Pluchino, A., Latora, V., and Rapisarda, A., Changing opinions in a changing world:
A new perspective in sociophysics, Int. J. Mod. Phys. C, 16(4), 515 (2005).

[58] Porfiri, M., Bollt, E. M., and Stilwell, D. J., Decline of minorities in stubborn soci-
eties, Eur. Phys. J. B, 57(4), 481-486 (2007).

[59] Porter, M. A. and Gleeson, J. P., Dynamical Systems on Networks: A Tutorial,
Springer, Switzerland (2016).

[60] R Development Core Team, R: A language and environment for statistical comput-
ing, R Foundation for Statistical Computing, Vienna, http://www.R-project.org
(2008).

[61] Sen, P. and Chakrabarti, B. K., Sociophysics: An Introduction, Oxford University
Press, Oxford (2013).

[62] Shang, Y., Deffuant model with general opinion distributions: First impression and
critical confidence bound, Complexity, 19(2), 38—49 (2013).


http://www.stats.ox.ac.uk/~nicholls/sb1a/lectures5-6.pdf
http://www.stats.ox.ac.uk/~nicholls/sb1a/lectures5-6.pdf
http://www.R-project.org

BIBLIOGRAPHY 45

[63] Siegel, D. A., Social networks and collective action, Am. J. Polit. Sci., 53(1), 122—-138
(2009).

[64] Sobkowicz, P., Modelling opinion formation with physics tools: Call for closer link
with reality, J. Artif. Soc. Soc. Simul., 12(11), 1 (2009).

[65] Stauffer, D. and Meyer-Ortmanns, H., Simulation of consensus model of Deffuant et
al. on a Barabdasi-Albert network, Int. J. Mod. Phys. C, 15(2), 241-246 (2004).

[66] Sullivan, L. E., Selective exposure, The SAGE Glossary of the Social and Behavioral
Sciences, 465 (2009).

[67] Sznajd-Weron, K. and Sznajd, J., Opinion evolution in closed community, Int. J. Mod.
Phys. C, 11(6), 1157-1165 (2000).

[68] Sznajd-Weron, K., Sznajd model and its applications, Acta Phys. Pol. B, 36, 2537—
2547 (2005).

[69] Wasserman, S. and Faust, K., Social Network Analysis: Methods and Applications,
Cambridge University Press, Cambridge (1995).

[70] Watts, D. J. and Strogatz, S. H., Collective dynamics of ‘small-world’ networks, Na-
ture, 393, 440-442 (1998).

[71] Weisbuch, G., Kirman, A., and Herreiner, D., Market organization and trading rela-
tionships, Econ. J., 110(463), 411-436 (2000).

[72] Weisbuch, G., Deffuant, G., Amblard, F., and Nadal, J.-P., Meet, discuss, and segre-
gate!, Complexity, 7(3), 55-63 (2002).

[73] Weisbuch, G., Bounded confidence and social networks, Eur. Phys. J. B, 38(2), 339—
343 (2004).

[74] Weisbuch, G., Deffuant, G., and Amblard, F., Persuasion dynamics, Physica A, 353,
555-575 (2005).

[75] West, D. B., Introduction to Graph Theory, Prentice Hall, New Jersey, 2nd ed. (2001).

[76] White, H, Boorman, S., and Breiger, R., Social structure from multiple networks. I
Blockmodels of roles and positions, Am. J. Sociol., 81, 730-780 (1976).



	Introduction
	Background
	Networks
	The Deffuant model
	The Deffuant model on various networks

	Methods
	Approach
	Networks studied
	Simulations

	Numerical simulations on deterministic and random networks
	Complete graphs
	Cycles
	Annular lattices
	Cycles with extra random edges
	Annular lattices with extra random edges
	Erdos-Rényi model

	Discussions
	Bibliography

