


Nonlinear Waves in Granular Crystals

Abstract

The properties and stabilities of various wave types
are investigated in nonlinear lattices with a ‘Hertz’
type potential. In particular the interaction of in-
trinsic localized modes with other waves is studied.
Evidence is provided that Fano-like resonances, ob-
served in other nonlinear systems, cannot occur in
Hertzian lattices.

1 Introduction

The majority of real systems exhibit nonlinear dy-
namics to one degree or another. The analytically
intractable nature of many nonlinear systems meant
that it was not until the advent of modern com-
puting that we were to begin to gain a true under-
standing of their behaviours [1]. Granular crystals
are an example of an inherently nonlinear medium.
They are of particular interest to researchers at the
moment due to the tunability of the degree of their
nonlinearity [2, 3]. This gives the crystals potential
applications as shock absorbers [4], acoustic filters
[5], and more.

A specific class of nonlinear wave, supported by
granular crystals, has been shown in other systems
to cause a total reflection of plane waves at certain
frequencies. This effect, ‘Fano resonance’, has been
observed in both linear and weakly nonlinear sys-
tems. Examples include light in optical waveguides
[6], matter waves in Bose-Einstein condensates [7],
and electrons in Josephson junctions and palladium
nanoparticles [7, 8]. In this report I will consider
the question of whether Fano resonances are possi-
ble for sound waves in the strongly nonlinear regime
of granular crystals.

This report will proceed as follows: in section 2
I will give some background to the study of granu-
lar crystals and nonlinear systems, focusing on the
types of wave solution possible (2.3, 2.4), and will

outline the phenomenon of Fano resonance (2.5). In
section 3, I will present new results regarding the
properties of certain granular crystals (3.1) and their
supported nonlinear waves (3.2, 3.3). I will outline
evidence that Fano resonance cannot occur in these
systems (3.4). In section 4, I summarize my results
and suggest future work in this area.

2 Background

2.1 Granular Crystals

Granular crystals are closely packed collections of
macroscopic particles which deform and interact
elastically [3]. The dynamics of such systems are
nonlinear, and prove particularly interesting owing
to the possibility of tuning the degree of nonlinearity
by altering system parameters. This has been shown
both analytically [2] and experimentally [9, 10].

Typical granular crystals will contain tens to hun-
dreds of beads, each a few millimetres in size. Ex-
perimentally these are often held together through
a statically applied precompression, or by gravity in
vertical chains. The dynamics of granular crystals
can be tested by placing sensors within several beads
throughout the lattice, in order to measure the force
at those points as a function of time.

With a precompression applied, it is possible to
develop a band structure for phonon propagation
in direct analogy to that encountered in solid state
physics [11] (see section 3.1). A well-defined band
structure will be valid only in the linear regime of
a granular crystal: that is, for small amplitude dis-
turbances. I will refer to the allowed states of small
amplitude waves as the ‘linear spectrum’ of a crystal
lattice. A typical timescale for phonon propagation
in the granular crystal will be of order milliseconds,
giving some degree of controllability on the macro-
scopic scale.
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2.2 Lattice Models

2.2.1 The Discrete Nonlinear Schrödinger
System

The Discrete Nonlinear Schrödinger equation
(DNLS) is a first-order wave equation. Weakly non-
linear systems governed by the DNLS have been
well studied, making them a useful starting point
before considering strongly nonlinear lattices [12].
The nonlinearity of the DNLS can be restricted to a
subset of the lattice sites, and can be made to satu-
rate at large amplitudes, giving the saturable DNLS
(or s-DNLS) [6]. For amplitudes un, with a one-site
saturable nonlinearity at ni, the equations of motion
are:

−i
∂un

∂t
= (un+1 + un−1) +

(
ε− β

1 + |un|2

)
unδn,ni

(1)
where ε and β give the strengths of the linear and
nonlinear defects at ni, respectively, and t is the
time [6]. The DNLS has been extensively studied
for its application to the propagation of light in op-
tical waveguides [6, 13] and to the dynamics of Bose-
Einstein condensates [14]. Localized to a single site
as above, the s-DNLS can be used to model polarons
in dielectric crystals [15].

2.2.2 Klein-Gordon Lattices

A general class of lattices is described by a discrete
analogue of the Klein-Gordon equation of relativistic
quantum mechanics. This class of lattices can be
described by a classical Hamiltonian of the form

H(p, q) =
∑
i6=j

p2
i

2
+ V (qi) + W (qi − qj) (2)

where p and q are generalized momenta and co-
ordinates, respectively (see, for example, [16]). The
function V (qi) gives an on-site potential while the
function W (qi − qj) gives a potential between sites,
usually restricted to nearest neighbours. By expand-
ing the potentials of a system as a Taylor series it is
often possible to describe it approximately by such
a Hamiltonian.

2.2.3 Hertzian Lattices

In this paper I will be concerned with horizontal
1D granular crystals in which a nearest neighbour
‘Hertz’ potential operates. The lattice is occupied
by coupled nonlinear oscillators, with nearest neigh-
bour sites interacting via a potential of the form
W (x) ∼ x5/2 where x is the displacement from equi-
librium separation. The exponent is derived purely
from the geometry of elastically deformable spheres
in contact [17]. The equations of motion for a chain
of beads, with displacements un from static equilib-
rium, take the form

mnün = A [δ + (un−1 − un)]3/2
+

−A [δ + (un − un+1)]
3/2
+ (3)

where the subscripted + of the square brackets in-
dicates that they return 0 if their contents are less
than or equal to 0 (and hence the beads are not in
contact) [3]. Here mn is the mass of the nth bead
and A is a constant depending on the material and
geometric properties of the beads. The value of A
will differ at the end sites of the crystal depending
on the boundary conditions. The static displace-
ment of the beads, δ, due to precompression of the
lattice, is given by δ =

(
F
A

)2/3 for a precompressive
force F . Experimentally, F will typically range up
to around 20 N [3].

The Hertz potential differs in two important ways
from general Klein-Gordon systems. First, there
is no on-site potential present in the Hertz sys-
tem. Second, the restriction to positive values of the
brackets in equation (3) complicates the lattice’s dy-
namics. This lack of interaction of the beads when
not in contact causes an inherently asymmetric po-
tential, which plays an important role in deciding
the types of disturbance supported by the lattice.
By varying the precompression applied it is possible
to switch the lattice dynamics from strongly non-
linear (lower precompressions) to weakly nonlinear
(higher precompressions).

An important example of Hertzian lattices is that
of dimer chains. In this context, ‘dimer’ is used to
mean that the crystal is occupied by two bead types
which alternate between sites. This is shown in Fig-
ure 1. The unit cell of the lattice will contain two
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Figure 1: The displacements from static equilibrium
of two bead types u and v in a dimer chain. The
static overlap due to precompression is δ, and the
lattice’s unit cell length a = 4r − 2δ.

beads; I will simplify later discussions by referring
to each bead as occupying a single ‘crystal site’, or
simply ‘site’. In this report I will be focusing on a
dimer chain consisting of beads with different masses
but all other parameters held constant. In equation
(3) this entails taking

mn =

{
mA, n odd
mB, n even

.

This selection fixes the value of the parameter A in
the bulk crystal as:

A =

√
8r

9

(
1− ν2

A

EA
+

1− ν2
B

EB

)−1

(4)

where r is the radius of the beads, νA (νB) is the
Poisson’s ratio of beads A (B), and EA (EB) is the
Young’s modulus of beads A (B) [3]. The Poisson’s
ratio of a material is the transverse expansion caused
by an axial compression of unit size; the Young’s
modulus is a measure of a material’s stiffness [18].

The equations of motion (equation (3)) are non-
dissipative. While real Hertzian lattices are found
to dissipate energy over time, as would be expected,
the exact mechanism of this dissipation is not yet
known. Some attempts have been made to address
this problem [19] but, as yet, no theory has been
constructed which models correctly the observed re-
sults.

2.3 Solitary Waves

A solitary wave extends over a finite region of space
and maintains its shape over a long period of time.
In physics the term ‘soliton’ is often used inter-

changeably with ‘solitary wave’. Mathematicians re-
serve the former term for a subset of solitary waves
which travel and which vary by at most a change in
phase upon interaction with one another [20, 21].

Solitary waves are made possible in nonlinear sys-
tems, both discrete and continuous, by the balance
of nonlinearity and dispersion. A common feature of
nonlinear systems is that the amplitude of a propa-
gating disturbance is a function of its velocity. This
can lead to the bunching of a wave packet as it
moves. In dispersive systems the velocity of a wave is
a function of its frequency, which leads to the spread-
ing out of a wave packet of finite width (which will
necessarily contain a mixture of frequencies in ac-
cordance with Fourier analysis). If a wave packet of
the appropriate shape is created in a nonlinear sys-
tem, the bunching effect of nonlinearity can exactly
cancel the separating effect of dispersion, leading to
a wave of constant shape.

The properties of solitary waves depend on the
system in which they exist. In systems governed
by the DNLS (section 2.2.1), solitary-wave solutions
will take the form of plane waves of a single fre-
quency attenuated inside an envelope. In a Hertzian
chain, solitary waves travel as a region of compres-
sion in the crystal (see section 3.2). In this case,
dimensional analysis of equation (3) gives a scaling
vg ∼ v1/5 where vg is the group velocity of the soli-
tary wave and v is the maximum velocity induced in
a lattice bead. This result has previously been ver-
ified experimentally and numerically [9]. Solitary
waves of various forms are pictured in sections 3.2
and 3.4.2.

2.4 Intrinsic Localized Modes

Intrinsic localized modes (ILMs), also called discrete
breathers, are time-periodic, spatially-localized dis-
turbances on a lattice. ‘Intrinsic’ in this case refers
to the fact that these solutions require neither a
physical inhomogeneity in the system nor an exter-
nally applied driving term; rather, their existence is
made possible by the interplay between the spatial
discreteness of the lattice and the nonlinearity in the
lattice’s governing equations. ILMs are generally lo-
calized to a few lattice sites, and are independent of
the system size (provided it is larger than the ILM
localization). The stability of ILMs has been proven
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Figure 2: Some ILM types in different lattices: (a),(b) (after [6]) staggered and unstaggered modes in an
s-DNLS lattice, where the complex amplitude is scaled to be dimensionless; (c) an asymmetric mode in a
Hertzian lattice with 8 N precompression applied.

for a wide range of conditions [22], independent of
lattice dimension and inter-site interaction.

ILM amplitudes must be relatively large in order
for the nonlinearities in the equations of motion to
be significant. In granular crystals, typical ILM am-
plitudes will be of order 10−6 m. In contrast, linear
waves propagate in such systems at amplitudes of
around 10−8 m. The frequency of an ILM must lie
outside the linear spectrum of its lattice. If this is
not the case, the ILM will radiate energy via plane
waves [23].

Different systems support distinct classes of ILM.
Systems governed by the s-DNLS admit both stag-
gered and unstaggered solutions, whereas the latter
are not present in lattices with Hertzian potentials.
ILMs in Hertzian lattices are necessarily asymmetric
[3] whereas this condition does not apply to s-DNLS
lattices. Some ILM solutions are given in Figure 2.

2.5 Fano Resonances

In a general sense, for systems in which a transmis-
sion spectrum is relevant, a Fano resonance is an
asymmetric transmission profile caused by the in-
teraction of a discrete state with a continuum [24].
This phenomenon is perhaps most famously associ-
ated with atomic physics where, for example, the
absorption profile of light by an atom with a sin-
gle highly excited electron (a ‘Rydberg atom’) has
a strong asymmetry [7]. In this case, the excited
electron has a discrete set of states available to it,
whereas the incident light can occupy a continuum
of states.

The lineshape of the Fano resonance can be de-
rived for a linear system of two coupled harmonic
oscillators in which one oscillator is driven by an ex-

ternal sinusoidal force. The equations of motion of
the oscillators are given by

ẍ1 + γ1ẋ1 + ω2
1x1 + ν12x2 = a1 exp(iωt)

ẍ2 + γ2ẋ2 + ω2
2x2 + ν12x1 = 0 (5)

where xj (j ∈ [1, 2]) are generalized displacements,
γj are damping terms, and ωj are the resonant fre-
quencies of the uncoupled oscillators [25]. The cou-
pling between the oscillators is ν12, and a1 is the
amplitude of the sinusoidal driving term applied to
oscillator 1. Substituting the ansatz

xj(t) = x0
j exp (iωt)

yields the solution

(
x0

1

x0
2

)
=

1
∆

(
(−ω2 + iωγ2 + ω2

2) a1

−ν12 a1

)
(6)

where

∆ =
1

(−ω2 + iωγ1 + ω2
1)(−ω2 + iωγ2 + ω2

2)− ν2
12

.

Following [25], we set γ2 = 0 (no damping of the
second oscillator), γ1 = 0.025, and ν12 = 0.1. The
eigenfrequencies of the uncoupled system are taken
to be ω1 = 1 and ω2 = 1.21. Figure 3 shows a plot
of the amplitude |x0

1| as a function of the driving fre-
quency ω (units of ω1). The resonant frequencies are
shifted slightly from the uncoupled case, and physi-
cally represent the oscillators moving either in phase
or in antiphase. Around ω = 1.21 the asymmetric
profile of the Fano resonance can be seen, including
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Figure 3: From equation (6), the amplitude |x0
1|

(units of a/ω2
1) of a sinusoidally driven simple har-

monic oscillator when coupled to a second, undriven,
oscillator as a function of driving frequency (units
of ω1). The asymmetric lineshape about frequency
1.21, including a point of zero amplitude, is charac-
teristic of a Fano resonance.

a point of zero amplitude. In the general case this
corresponds to a zero in the transmission spectrum
of the system, and is the (experimentally testable)
signature of a Fano resonance.

The phenomenon of Fano resonance has been ob-
served in many weakly nonlinear systems capable of
supporting ILMs, such as the s-DNLS system and
Klein-Gordon lattices [6, 23, 26]. It has not so far
been observed in strongly nonlinear systems.

When plane waves approach an ILM, the nonlin-
ear interaction can generate new modes on a discrete
ladder of frequencies [27]. These frequencies can lie
either in the linear bands (‘open channels’) or in
the band gaps (‘closed channels’). Perhaps counter-
intuitively it is the closed channels which can lead
to resonant reflection in a system. The interaction
of the ILM with a closed channel generates an ex-
ponentially localized state. When the frequency of
the incident wave resonates with this localized state,
total reflection can occur [23, 28].

3 Results and Discussion

3.1 Dynamics of the Dimer Hertzian
Lattice

In this paper, I study a Hertzian granular crystal
consisting of beads with alternating masses. The

equations of motion of the system, from equations
(3) and (4), are given by:

muün=A [δ + vn−1 − un]3/2
+ −A [δ + un − vn]3/2

+

mvv̈n=A [δ + un − vn]3/2
+ −A [δ + vn − un+1]

3/2
+ (7)

where the displacements are defined in Figure 1.
At displacements with small amplitudes relative to
those due to precompression, the contents of the
brackets will not be able to become negative, so the
+ subscript can be dropped. Factoring out δ and ex-
panding the result to first order gives the linearized
equations:

muün ' 3Aδ1/2

2
(vn + vn−1 − 2un)

mvv̈n ' 3Aδ1/2

2
(un+1 + un − 2vn) . (8)

Substituting the plane wave ansatz
un = u0 exp (ikna− 2πift) and vn =
v0 exp (ikna− 2πift), where k is the wave number,
f is the frequency, and a = 4r − 2δ is the size of
one unit cell of the lattice, yields the equation

(
f2

pu
− 2 exp (−ika) + 1

exp (ika) + 1 f2

pv
− 2

)(
u0

v0

)
= ~0

(9)
where pi = 3Aδ1/2/4π2mi (i = u, v). For nontrivial
solutions, the determinant of the matrix must be
zero. Applying this condition and simplifying the
result gives

f2 = pu + pv ±
√

p2
u + p2

v + 2pupv cos (ka) (10)

which gives the dispersion relation for the two linear
phonon bands. In analogy with solid state physics
the upper and lower bands are named the optic and
acoustic bands, respectively. The band edges are
found at k = 0, ±π/a. Using this information, and
substituting the values of pi (with δ = (F/A)2/3),
gives the results:
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Band edge Frequency (2 d.p.)
Lower Acoustic f1 = 0.00 kHz
Upper Acoustic f2 = 4.71 kHz

Lower Optic f3 = 8.10 kHz
Upper Optic f4 = 9.37 kHz

Table 1: The theoretical frequencies of the linear
band edges at 20 N precompression.

f1 = 0 (lower acoustic)

f2 =

√
3A2/3F 1/3

4π2mu
(upper acoustic)

f3 =

√
3A2/3F 1/3

4π2mv
(lower optic)

f4 =

√
3A2/3F 1/3

4π2

(
1

mu
+

1
mv

)
(upper optic)

where mv < mu (without loss of generality). Phys-
ically these band edges correspond to the following
situations: f1 has all the beads moving together with
zero velocity; f2 has the light beads stationary and
the heavy beads oscillating, with heavy beads in ad-
jacent unit cells in antiphase; f3 has the situation re-
versed with heavy beads stationary and light beads
oscillating; f4 has all the heavy beads moving to-
gether in phase, and all the light beads moving to-
gether in antiphase with them. The relative ampli-
tudes of oscillation are such that the crystal’s centre
of mass is stationary in each case.

I follow [3] by choosing beads A to be made of
aluminium and beads B to be made of stainless steel.
From [3] and references therein this gives parameter
values vA = 0.33, vB = 0.30, EA = 73.5 GPa, and
EB = 193 GPa. The bead radii are taken to be r =
9.525 mm, giving mu = 28.84 g, mv = 9.75 g. Using
these values in a lattice with 20 N precompressive
force F gives the band edge frequencies of Table 1.
The dispersion relation of equation (10) is plotted
in Figure 4 (a).

I then checked these analytic results numerically
by testing the properties of a simulated 299 bead
crystal of the above specifications. Both ends of the
crystal were beads of type A (aluminium). Site 1

of the crystal was held stationary, simulating an im-
movable aluminium wall. The displacement of site
299 was allowed to be varied externally, representing
an actuator driving the system. The precompression
was held at 20 N.

I first checked the response of the crystal to small
amplitude (10−8 m) plane waves, by sinusoidally
varying the displacement of bead 299 with frequen-
cies in the range of 0-12 kHz at intervals of 100 Hz.
The driving force was applied for 11 ms in each case.
Within the acoustic band this was sufficient time for
the waves to reach site 70. At other frequencies the
situation was not so clear cut. At band edges other
than f1 the group velocity ∂ω

∂k of plane waves tends
to zero, but the phase velocity ω

k does not (here
ω = 2πf). This causes a distortion of the waves’
shapes, and time dependent amplitudes, along the
lattice.

I chose to take the amplitude to be the average
between sites 1 and 297, as measured at 11 ms. The
amplitudes of the two end beads were representative
of the driving force rather than of the crystal itself.
The result is shown, after dividing by the driving
amplitude, in Figure 4 (b). No waves could traverse
the lattice completely in this time, so the values
found are necessarily an underestimate. Further-
more, with waves of different frequency travelling
different distances in 11 ms, a systematic error will
have been introduced. On the other hand, the result
gives a good qualitative description of the crystal’s
response at each frequency. An attempt to aver-
age the amplitudes only over the distance traversed
by each wave would give a significant overestimate
around band edges, leading to an unrepresentative
shape of the transmission spectrum.

As a second test on the analytic results, I
calculated the temporal Fourier transform of the
amplitude at sites 150 and 151, after applying
uniformly-distributed random displacements in the
range

[
−10−8 m, 10−8 m

]
to all beads in the bulk

crystal. The end beads were held stationary. In
order to find a representative response of a crystal
unit cell it was necessary to sample neighbouring
odd and even sites. The resulting spectrum, Fig-
ure 4 (c), shows the relative contributions of plane
waves at each frequency to the motion of the crystal
during the 242 ms sample time. The validity of the
Fourier transform is discussed in section 3.4.2.
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Figure 4: Analytic and numerical results for the
small amplitude (10−8 m) response of the crystal of
section 3.1 at 20 N precompression. (a) The analyt-
ically calculated (inverse) dispersion relation k(f).
(b) The average amplitude 〈u〉 of plane waves in the
bulk crystal upon sinusoidally driving the end bead
for 11 ms, normalized to the driving amplitude. (c)
The absolute value of the Fourier transform of the
amplitudes of one unit cell, u(t), after initially ran-
domly displacing the crystal’s beads (plotted on a
logarithmic scale). This test was run for 242 ms.
All figures share a common x axis, and the calcu-
lated band edges of Table 1 have been indicated.

3.2 Solitary Wave Solutions

Solitary waves arise from a balance between non-
linearity and dispersion (section 2.3). This fact sug-
gests that in order for a solitary wave to be stable its
amplitude must be large enough to be significantly
affected by the nonlinear terms in the equations of
motion. In comparison, plane waves are only stable
in the small amplitude limit.

The dimer Hertzian lattice provides a useful set-
ting for testing the stability of different solutions,
as the degree of nonlinearity can be varied by alter-
ing the lattice’s precompression. For a given ampli-
tude, plane waves become more stable at higher pre-
compressions and solitary waves become more sta-
ble at lower precompressions. I was able to verify
this statement numerically by applying an impulse
to the end bead of the simulated 299 bead crystal
of section 3.1. This was implemented by starting
the end bead with a nonzero velocity but zero dis-
placement. Physically this situation represents an
aluminium bead (site 299) being rolled into the end

−4

−2

0

u 
(x

10
−

4 m
)

80 90 100 110 120 130 140
−6
−4
−2

0

bead number

v 
(m

s−
1 )

Figure 5: The displacements u and velocities v of
the beads in a crystal struck at site 298 by an alu-
minium bead travelling at -20 ms−1. The resulting
solitary wave induces a kink into the crystal as it
propagates. The lattice had 8 N precompression ap-
plied, and the test had run for 3.8 ms at this point.
The graphs share a common x axis. The circles mark
bead locations but do not represent bead sizes.

(stainless steel) bead, now site 298, of the crystal
and contacting at time t = 0.

At zero lattice precompression, solitary waves are
stable at all amplitudes and plane waves cannot
propagate. This is a consequence of the asymmetric
inter-site potential. At a given striker bead veloc-
ity, as the precompression in the lattice is turned
up, a solitary wave will gradually gain a ‘tail’ of fur-
ther solitary waves. These separate solitary waves
eventually coalesce into a plane wave as the precom-
pression increases and causes the lattice to become
linear at the amplitude of the disturbance.

Viewed from the opposite perspective, if the sys-
tem parameters are chosen such that the striker bead
sets up a good approximation to a plane wave, this
wave will separate into individual solitary waves as
the precompression is decreased. As a guide to some
typical parameter values, in a lattice with 20 N pre-
compression the striking bead must hit at around
0.4 ms−1 or higher to create a stable solitary wave.
This value drops to around 0.1 ms−1 for 5 N pre-
compression, and 0.03 ms−1 for 1 N precompression.
Solitary waves induced by this method are known
as ‘kinks’, on account of the fact that they cause a
net displacement of the beads they have travelled
through. An example of a stable kink is given in
Figure 5.
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Given a sufficiently long time in a large lattice,
any short impulse of the form just described will
eventually lead to a sequence of approximately iso-
lated solitary waves. This is due to the dependence
of the waves’ group velocity on the velocity of the
individual beads described in section 2.3. This can
provide a method of creating small amplitude soli-
tary waves, by allowing small amplitude (approxi-
mate) plane waves to separate out over a large lat-
tice length.

In numerical simulations, it is possible to create
solitary waves by a different method. This is to set
up a crystal with a Gaussian distribution of starting
displacements, and all initial velocities zero. Pro-
vided the Gaussian is wide enough (around 10 sites
full width at half maximum) it will decay into two
oppositely directed solitary waves. The waves take
the shape of the original envelope, but scaled down
to conserve energy. This method is very versatile
and can be used to create arbitrarily small solitary
waves, in lattices of arbitrarily high precompression.
This provides an extremely useful tool in the search
for Fano resonances (section 3.4).

Non-Gaussian starting configurations can also
work to create solitary waves, but with varying de-
grees of success. Lorentzian envelopes, defined by

un = a
γ2

(n− n0)2 + γ2

with a the packet’s amplitude, γ the full width
at half maximum (FWHM), and n0 the centre of
the distribution, must have a FWHM greater than
around 20 sites to give stable solitary waves. If this
condition is fulfilled, the resulting waves will have a
Lorentzian shape. A ‘Top Hat’ function of the form

un =

{
a, n1 < n < n2

0, otherwise

will give solitary waves with long tails approaching
plane waves.

From observation of many starting configurations
I have inferred that if the initial envelope or its first
derivative are discontinuous at any point this will
result in solitary waves tailed by plane waves. If
the distribution and its first derivative are approx-
imately continuous throughout the lattice, this will
result in solitary waves with little or no noise, and no
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Figure 6: A spatially continuous starting configu-
ration (red, dashed), with continuous first deriva-
tive, leads to two counter-propagating solitary waves
(black, solid). The directions of propagation of the
waves are indicated. This 699 bead dimer Hertzian
lattice had 8 N precompression applied.

plane wave tail. Both the numerical model and the
real lattice being described are discrete systems, so
this stability condition is more accurately described
by how sharply the functions or their first derivatives
vary. This gives the minimum widths of the Gaus-
sian and Lorentzian envelopes. The starting config-
uration need not be symmetric: whatever distribu-
tion is chosen, two smaller amplitude replicas will
form and counter-propagate. An example is given
in Figure 6.

3.3 ILMs in the Dimer Hertzian Lattice

Stable intrinsic localized modes exist in Hertzian lat-
tices for a range of conditions. The frequencies of os-
cillation of all ILMs found so far have been outside
the linear spectrum of their lattice. In this report
I have worked with ILMs whose frequencies are lo-
cated between the acoustic and optic bands.

Experimentally, ILMs can be induced by apply-
ing a small amplitude sinusoidal driving force to the
end bead of a precompressed crystal. Driving the
crystal at the frequency of a band edge can lead
to ILM formation in the neighbouring band gap by
a phenomenon known as Modulational Instability
[29]. The experimental signature of these ILMs is a
peak in the Fourier spectrum of the ILM sites at a
frequency within the band gap, found by placing a
force sensor within the appropriate bead [3].
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In numerical simulations it is possible to set
up a crystal with the correct displacements and
velocities at each site so as to cause a stable
ILM. I developed an effective method of finding
these starting conditions: I enclosed uniformly-
distributed random displacements, in the range[
−5× 10−6 m, 5× 10−6 m

]
, in an envelope of

width around 10 crystal sites in the centre of a large
lattice (different envelopes vary slightly in success
rate, and I found Gaussians to work most effec-
tively). I set all velocities to zero. I allowed this ini-
tial configuration to evolve until the resulting noise
had spread out to the ends of the crystal. By con-
servation of energy the noise around the centre of
the crystal decreased in amplitude.

An ILM will result from this method in the ma-
jority of cases. In those cases where an ILM is not
created it is generally due to the fact that a band
edge mode (section 3.1) has been activated instead.
In this case the mode will eventually spread through-
out the crystal. Looking at the form of ILM solu-
tions as a function of their frequency reveals that,
as the frequency approaches a band edge, the num-
ber of sites occupied by the ILM increases, tending
to the system size as f → fband edge [3]. To this ex-
tent band edge modes can be thought of as the large
width limit of stable ILM solutions.

Once an ILM is generated, the displacements of
the beads not contributing to the oscillation can be
set to zero and the simulation run again. Each time
this process is repeated, the noise present in the sur-
rounding crystal will be diminished. Iterating until
the noise is smaller than any signals of interest re-
sults in a stable ILM which can be used in further
tests. An example of such a stable ILM is shown in
Figure 2 (c).

The frequencies of oscillation of the ILMs gener-
ated by this method are shown in Figure 7. To date,
only ILMs whose frequencies lie in the lower band
gap have been found in Hertzian lattices. If ILMs
can exist in the upper band gap it would seem prob-
able that their form will be different from that of the
lower band gap solutions. If not, the method out-
lined above would be expected occasionally to gen-
erate ILMs of upper band gap frequencies, which I
have not found to be the case. Alternatives to the
types of ILM solution found so far could include so-
called ‘dark breathers’, in which the displacements
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Figure 7: The oscillation frequencies of ILMs gen-
erated by the method of section 3.3 (crosses). The
analytically calculated linear bands are shown for
reference.

of the ILM sites are smaller than in the surround-
ing crystal. This is in analogy to the ‘dark solitons’
observed in many systems. The existence of dark
breathers has been demonstrated in Klein-Gordon
lattices (section 2.2.2) for a range of conditions [30].

3.4 Fano Resonance Results

In their extensive review of ILMs [23], Flach and
Gorbach study the conditions necessary for Fano res-
onance in systems with potentials of the form

V (x) = 0; W (x) = φ2
x2

2
+ φ3

x3

3
+ φ4

x4

4
(11)

where V (x) is an on-site potential and W (x) is be-
tween nearest neighbours. They deduce that bond-
centred, as opposed to bead-centred, ILMs are re-
quired for such a resonance. The Hertz potential
can be approximated to the above form by a trun-
cated Taylor series, although this approximation ne-
glects the inbuilt zero tensile response of equation
(3). None of the ILMs I have encountered in this
study have been bond-centred.

I employed two methods in a numerical search for
Fano resonances in a simulated dimer Hertzian lat-
tice. The first was to test the transmission proper-
ties of ILMs to plane waves of individual frequencies.
The second was to test the transmission spectra of
ILMs to broadband wave packets in the form of soli-
tary waves.
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In both tests the crystal was of the prescription
given in section 3.1. By the method of section 3.3, I
was able to stabilize ILMs in the crystal at various
precompressions. All ILMs were localized to fewer
than 10 sites, and the noise in the surrounding crys-
tal was of amplitude less than 5×10−9 m in all cases.

3.4.1 Plane Wave Transmission

This test consisted of applying a small amplitude
(10−8 m) sinusoidal driving force to the end bead of
a 299 bead crystal containing an ILM around site
150. An advantage of this method is that individual
frequencies can be tested to arbitrary resolution by
varying the step in incident frequency between runs.
Furthermore, the displacements and velocities of in-
dividual beads can be found, giving a good physical
picture of what is happening in the wave-ILM inter-
action.

The transmission spectrum for plane waves in the
absence of ILMs for 20 N precompression is given in
Figure 4 (b). The occurrence of a Fano resonance in
the presence of ILMs would be signalled by a drop
to zero of the transmitted wave amplitude within
a linear band. I conducted tests in lattices with
precompressions from 1 N to 20 N, in steps of 1 N,
and at some higher (experimentally unattainable)
forces.

A representative example of the results obtained
is given in Figure 8, which shows the transmission
properties of a crystal with 8 N precompression. The
graph was obtained as follows: within the acous-
tic band and band gaps, the crystal was driven for
12.7 ms at site 299. At these frequencies this was
long enough for the waves comfortably to reach site
50, where the ILM (when present) was located at
site 150. The amplitude was averaged between sites
50 and 140. Within the optic band it was necessary
to drive the crystal for a longer time to get a rep-
resentative transmitted wave. This was because the
optic band is rather narrow, so the states within it
are always close to a band edge. The group veloci-
ties are therefore quite small. In the range 6900 Hz
- 8100 Hz the crystal was driven for 37.6 ms, which
was long enough for the waves to reach site 100.
The average amplitude in this case was taken be-
tween sites 100 and 140. The peaks in both spectra
at the upper acoustic band edge are a relic of av-
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Figure 8: The amplitude of transmitted waves di-
vided by the driving amplitude (10−8 m) in a crys-
tal with 8 N precompression. The dashed line shows
the crystal’s response in the absence of an ILM. The
solid line shows the response in the presence of an
ILM, after subtracting the disturbance due to the
ILM itself. The analytically calculated band edges
are indicated.

eraging only over a region of the crystal containing
the waves (cf. section 3.1).

While Figure 8 shows a reduced transmission in
the presence of an ILM, at no point does this trans-
mission drop to zero. For this reason, it would
seem a Fano resonance is not occurring in this sys-
tem. Applying the same test over the aforemen-
tioned range of precompressions yields the same re-
sult in each case. Inductively this supports the con-
clusion that ILMs in Hertzian lattices are unable to
demonstrate Fano resonance.

3.4.2 Solitary Wave Transmission

The basic principle of Fourier analysis is that any
function with at most a finite number of disconti-
nuities can be decomposed into harmonics (which
will take the form of sinusoidal waves in systems
of interest to this study). This is true in systems
where linear superposition applies1. In nonlinear
granular crystals this is not strictly the case, but
for small amplitude waves linear superposition holds
approximately. For this reason, solitary waves can

1Strictly speaking the Fourier transform applies to con-
tinuous systems of infinite size. The approximate method
of Discrete (or Finite) Fourier Transforms is relevant to the
systems of interest here. See, for example, [31].
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be thought of as a collection of plane waves linearly
superposed. The spatial Fourier transform (FT) of
a solitary wave will give the contribution of each
different wave number of plane wave to the packet.
Wave number and frequency can be related in this
system by the dispersion relation of equation (10).
If a Fano resonance were to occur at some frequency
when passing a solitary wave through an ILM, the
corresponding wave number would be absent from
the FT of the transmitted wave packet. This would
change the shape of the solitary wave, and could
destabilize it.

A Gaussian solitary wave will contain a Gaussian
distribution of wave numbers, with thin distribu-
tions in real space giving wide distributions in k
space. A delta function in real space, which can
be thought of as the limit of an infinitely thin dis-
tribution, would contain equal amounts of all wave
numbers, but this configuration is not a stable soli-
tary wave. As a compromise, I chose to employ the
thinnest real space Gaussian distribution attainable,
with a width of 10 sites FWHM.

By Fourier transforming the shape of this solitary
wave, I found the distribution in k space to cover
the approximate range k ∈ [−0.13π, 0.13π], i.e. the
wave was composed of wave numbers from the lowest
13% of the possible domain. By comparing with
the dispersion graph 4 (a) it can be seen that this
range covers the lower part of the acoustic band and
the upper part of the optic band. The lack of total
coverage is a clear disadvantage to this method, but
the domain which is covered is sampled with the
greatest possible resolution.

I carried out the test numerically by modelling a
299 bead crystal with 8 N precompression and an
ILM (amplitude 2×10−6 m) around site 150. I cen-
tred a solitary wave (amplitude 5×10−9 m) at site
250, and allowed it to propagate through the ILM.
For clarity, I then subtracted the disturbance due
to the ILM itself. The result is shown in Figure 9.
Some of the solitary wave reflects in the form of a
solitary wave of a different shape. It should be noted
that after repeated tests of the reflected wave, using
incident Gaussian solitary waves of different widths,
I found that it is not an attenuated plane wave (de-
spite the similarity in appearance).

The transmitted wave loses some height by con-
servation of energy, and consequently has a reduced
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Figure 9: The displacements of the beads after
starting a left travelling solitary wave around bead
250 and running for 9.4 ms. Part of the solitary
wave reflects in the presence of an ILM (lower fig-
ure; ILM disturbance subtracted). The amplitude
of the transmitted wave is reduced to conserve en-
ergy, but the shape is unchanged relative to the non-
interacting case (upper figure). The graphs share
common axes.

velocity relative to the non-interacting case. By
Fourier transforming the transmitted waves I was
able to confirm that the distributions of wave num-
bers are identical in each case. This demonstrates
the absence of a Fano resonance in the range of wave
numbers sampled by the solitary wave for 8 N pre-
compression. The same test was applied for various
precompressions with the same result in each case.

4 Conclusions

In this report I have developed new methods for cre-
ating and stabilizing solitary waves and intrinsic lo-
calized modes in numerical models of granular crys-
tals. I have applied these methods to the study of
Fano resonance in lattices with a Hertzian potential
and have found no evidence that such resonances
can be supported.

I believe future work in the study of Fano reso-
nances in Hertzian lattices should be directed to-
wards finding new forms of ILM, such as ‘bond-
centred’ forms (section 3.4) or ‘dark’ forms (section
3.3). A good starting point may be to search for
such solutions in the upper band gap.
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