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ABSTRACT OF THE DISSERTATION

Inference and Size Localization

of Mesoscale Structures

in Temporal Networks

by

Theodore Yushin Faust

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2025

Professor Mason A. Porter, Chair

In studies of networks, researchers often examine the evolution of mesoscale struc-

tures, structures that involve groups of nodes that are larger than a single node but

smaller than an overall network. A prominent approach to studying such structures

is statistical inference. In the present thesis, we use statistical-inference methods

to detect two such mesoscale structures, community structure and core–periphery

structure, in time-dependent networks (i.e., “temporal networks”). We represent

temporal networks as multilayer networks, with each layer encoding a time step,

and we devise statistical-inference methods that avoid common biases in such meth-

ods against generating communities or other groups with large or small numbers of

nodes. We show that our methods are able to accurately identify mesoscale struc-

ture in cases of interest. Additionally, we show that using our generative model
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is beneficial for analyzing the community structure of networks with large or small

communities. It leads to better accuracy than methods that contain biases against

generating groups with large or small numbers of nodes. We also generalize hierar-

chical core–periphery structure, which is a type of core–periphery structure in which

nodes can be members of multiple groups simultaneously, to temporal networks.

We use a statistical-inference approach to identify such core–periphery structure in

real-world temporal networks.
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CHAPTER 1

Introduction

In this thesis, we develop statistical-inference methods to identify mesoscale struc-

tures in temporal networks.

The study of networks, which consist of nodes (representing agents or other en-

tities) and edges between nodes (which encode interactions or relationships between

objects), has become commonplace [56]. A common research topic in network science

is the study of “mesoscale structures”, which involve groups of nodes that are larger

than a single node but smaller than an overall network [56]. For example, it is very

common when analyzing networks to seek to identify communities — which are sets

of nodes that are densely connected to each other but sparsely connected to other

sets of nodes — in networks [20, 56, 69]. The study of mesoscale structures has led

to a greater understanding of a variety of complex systems in many fields, such as

sociology [26,60,83,84], biology [10], and economics [8, 76,85].

In many applications — such as in the study of social networks [60,83], economic

networks [8], citation networks [38], and biological networks [10] — it is important

to consider networks whose structures can change with time. One can represent such

data as a temporal network, in which the nodes and/or the edges between them

are time-dependent [30–32]. A temporal network is a sequence of networks in which

each network encodes the relationships between entities during one time point or

1



time period.

The study of mesoscale structures in temporal networks has led to insights into a

wealth of applications, including causal inference in social networks [59], identifica-

tion of epidemic sources [39], role detection in bicycle-sharing networks [9], and anal-

ysis of migration networks [13]. Our work focuses on the use of statistical-inference

methods [23, 67, 79, 88, 89] to identify mesoscale structures in temporal networks.

Such methods offer many benefits, including convergence guarantees and mitigation

of overfitting issues [66]. In this thesis, we devise a statistical-inference method that

identifies community structure in temporal networks and avoids certain assumptions

that negatively impact other statistical-inference approaches. We show that, in cases

of interest, our method outperforms existing methods that make such assumptions.

We also devise a novel approach for the identification of core–periphery structure in

temporal networks.

1.1 Organization

The thesis proceeds as follows.

In Chapter 2, we give background information on mesoscale structures, temporal

networks, and statistical-inference methods on networks.

In Chapter 3, we introduce the notation for temporal networks that we use

throughout the thesis.

In Chapter 4, we discuss our community-detection method for temporal networks.

We show that our method avoids the common biases in such methods against gen-

erating communities with large or small numbers of nodes. We also show that our

2



method is beneficial for analyzing the community structure of networks with such

communities, as it leads to better accuracy than methods that include these biases.

In Chapter 5, we discuss our hierarchical core–periphery identification method

for temporal networks. We prove that our Markov-chain Monte Carlo (MCMC)

method samples from the exact posterior distribution in the limit as the number of

nodes of a network goes to infinity. We then use our method to study two real-world

temporal networks and demonstrate that it can identify time-dependent hierarchical

core–periphery structure in those data sets.

Finally, in Chapter 6, we present our overall conclusions and discuss future di-

rections.

In Appendix A, we provide a table of commonly-used notation. In Appendix

B, we derive computable expressions for various probability distributions. We need

these expressions to implement the examined statistical-inference approaches.
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CHAPTER 2

Background

2.1 Network Science and Mesoscale Structures

The use of networks to encode the behavior of complex systems, which involve rela-

tional and interactional behaviors, has become commonplace [56]. A network consists

of nodes and edges. Nodes represent entities or other objects in a system, while edges

between two nodes encode pairwise ties or interactions between the objects. As an

example, consider a social network in which the edges represent people and two nodes

are connected by an edge if they are friends with each other. The notion of a network

is very versatile, and the study of networks has led to advances in a wide variety of

fields, including sociology [80], biology [64], epidemiology [11], and other areas.

In network science, it is common to study “mesoscale structures”, which involve

groups of nodes that are larger than a single node but smaller than an overall net-

work [56]. Two common mesoscale structures, which we consider in this thesis, are

community structure [56] and core–periphery structure [71].

When studying community structure, one supposes that a network consists of

“communities” of nodes that are connected densely to each other but connected

sparsely to other sets of nodes [20, 56, 69]. Communities in real-world networks

can represent important structures in their associated systems. For example, in a
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social network, the identification of communities allows one to algorithmically detect

groups of friends [3]. Investigations of community structure have led to insights into

the study of social networks [60, 83], economic networks [8], citation networks [38],

biological networks [10], and other applications.

When detecting core–periphery structure, one supposes that a network consists of

a set of densely-connected core nodes and sparsely-connected peripheral nodes. Core

nodes can be either densely connected to peripheral nodes or sparsely connected to

them [71]. Similarly to community structure, core–periphery structure can represent

important structures in a complex system [7,71]. For example, in a trade network in

which nodes represent countries and edges encode trade flows, the identification of

core–periphery structure allows one to differentiate countries’ involvement in world

trade systems [5,42]. Studies of core–periphery structure have also led to insights into

the study of social networks [26, 84], academic networks [16, 86], economic networks

[76,85], and many other systems.

2.2 Temporal and Multilayer Networks

In many situations — including in the analysis of the spread of diseases through face-

to-face contacts [21], transportation systems [53], legislation cosponsorships [46,55],

and other applications — it is important to consider relationships and/or interactions

that change with time. One can represent such data as a temporal network, in which

the entities and/or the ties between them can change with time [30–32]. A temporal

network is a sequence of networks in which each network encodes the relationships

between entities during one time point or time period.

It is also common in network science to consider multilayer networks, which con-

5



sist of layers (which are each networks) along with edges that connect nodes in

different layers [40]. Multilayer networks are able to encode a variety of structures.

Notably for our work, one can use multilayer networks to encode temporal networks

by considering the network structure at each time point to be a layer [40]. Through-

out this thesis, we use this multilayer formulation of temporal networks, as it is

convenient and it allows the possibility of generalizing our work to broader varieties

of multilayer networks.

2.3 Statistical Inference on Networks

In this thesis, we are concerned with the identification of community structure and

core–periphery structure in temporal networks. To identify such structures, we use

a statistical-inference approach [66, 67, 79, 88]. In an inferential approach, one uses

a generative model to algorithmically detect a desired type of structure. We employ

a Bayesian approach to sample from a posterior distribution and obtain a network’s

community structure [65]. There are statistical-inference approaches to detect many

types of mesoscale structures in networks [68, 81, 89], and there are a particularly

large number of such methods for community structure [20,66]. Although statistical-

inference approaches have a tendency to be somewhat computationally costly, they

also have several favorable properties, such as results that guarantee convergence and

a better ability to avoid overfitting than other approaches [66].

In statistical inference, it is desirable to employ generative models that are based

on realistic assumptions [66]. A generative model that relies on unrealistic assump-

tions can have a detrimental impact on the accurate detection of community struc-

ture, core–periphery structure, and any other structure in networks. However, it

6



is not always straightforward to avoid unrealistic assumptions, and many genera-

tive models that appear to make reasonable choices include such assumptions. One

example of a problematic assumption that is present in many generative models for

community structure involves the probability distribution of the number of nodes in a

community. We highlight an example in the context of temporal networks. It is com-

mon for generative models of temporal community structure to use a discrete-time

Markov process to assign nodes to communities [1, 25, 50, 88]. However, due to the

choices that are made in many such models, the community-size distributions become

increasingly localized over time. Therefore, at later times of a temporal network, the

probability of generating a small or large community is much smaller than the prob-

ability of generating a community of moderate size. Real-world temporal networks

can have communities of many sizes [61], including ones that are small or large, so

it is desirable that generative models of networks are able to successfully infer such

communities. To mitigate this issue, in Chapter 4, we introduce a novel community-

evolution approach that yields community-size distributions with substantially less

localization than in the above models. Our approach thereby leads to more accurate

community identification than in these types of approaches in networks with small

or large communities.

The importance of avoiding unrealistic assumptions extends beyond community

structure. Indeed, in Chapter 5, we demonstrate that generative models that are

based on discrete-time Markov processes cause our inference approach to consistently

underestimate the number of groups in identification of core–periphery structure. To

mitigate this issue, we use a modified version of our community-evolution approach

from Chapter 4 to evolve the core–periphery assignments in our generative model.

This approach mitigates the underestimation of the number of groups and improves

7



core–periphery identification in temporal networks.
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CHAPTER 3

Notation

In this section, we introduce notation for both single-layer (i.e., “monolayer”) net-

works and temporal networks, which we represent as multilayer networks in which

each layer corresponds to one time step [40]. In Appendix A, we provide a table of

the commonly-used notation in the thesis.

We first discuss our notation for monolayer networks. For simplicity, we consider

unweighted and undirected networks without self-edges or multi-edges. A monolayer

network is a graph G = (V,E), which consists of a set V = {1, . . . , n} of nodes (i.e.,

vertices) and a set E ⊆ V × V of edges. We denote an undirected edge by (i, j). We

represent a monolayer network G using an adjacency matrix A ∈ {0, 1}n×n, where

Aij = 1 if nodes i and j are connected directly by an edge (i.e., they are adjacent)

and Aij = 0 otherwise. We consider only undirected and unweighted graphs.

We represent a temporal network as a multilayer network in which each layer en-

codes the adjacencies between nodes at its associated time step. We model a temporal

network as a sequence of network layers (i.e., times) ℓ ∈ {1, . . . , L}. At each time

ℓ ∈ {1, . . . , L}, we suppose that all nodes i ∈ {1, . . . , n} are present. We refer to an

instantiation of a node in a given layer as a node-layer (i, ℓ) ∈ {1, . . . , n}×{1, . . . , L}.

We again use an adjacency representation, so we have a sequence (A(1), . . . , A(L)),

with A(ℓ) ∈ {0, 1}n×n for each layer ℓ. We assume that the networks are unweighted
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and undirected, so A
(ℓ)
ij = 1 if node-layers (i, ℓ) and (j, ℓ) are adjacent and A

(ℓ)
ij = 0

if they are not adjacent. For notational convenience, we let A denote the sequence

(A(1), . . . , A(L)). Technically, this is an abuse of notation because we already used A

to refer to a single adjacency matrix for a monolayer network, but we always clearly

state whether we are considering a monolayer network or a multilayer network. As

general terminology, we refer to A as an adjacency structure. For convenience (and

despite the additional associated abuse of notation), we also sometimes refer to A as

a “network”.
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CHAPTER 4

Detection of Community Structure in Temporal

Networks

4.1 Introduction

As we discussed in Section 2.1, in network analysis, it is common to study “commu-

nities” of nodes that are connected densely to each other but connected sparsely to

sets of nodes [20,56,69]. Investigations of community structure in networks have led

to insights in the study of social networks [60, 83], economic networks [8], citation

networks [38], biological networks [10], and many others.

As we stated in Section 2.2, it is important in many situations to consider rela-

tionships and/or interactions that change with time. One can represent such data

as a temporal network; in such a network, the entities and/or the ties between them

can change with time [30–32]. A temporal network is a sequence of networks in

which each network encodes the relationships between entities at one time point or

time period. A variety of approaches have been developed to algorithmically detect

communities in temporal networks [72]. These approaches include statistical infer-

ence [67, 79, 88], optimization of various objective functions [2, 51, 54], non-negative

matrix and tensor factorization [17, 24, 74], information-theoretic methods (such as
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those that minimize description length) [67, 75, 78], local methods [34, 37, 47], and

other applications.

In the present chapter, we study community detection in temporal networks using

statistical inference [66]. As we discussed in Section 2.3, in an inferential approach,

one uses a generative model to algorithmically detect a desired type of network struc-

ture. There are statistical-inference approaches to detect many types of mesoscale

structures in networks [68,81,89], and there are a particularly large number of such

methods for community structure [20, 66]. Investigations of community structure

using statistical inference have led to insights into a wealth of applications, includ-

ing causal inference in social networks [59], identification of epidemic sources [39],

role detection in bicycle-sharing networks [9], and international migration [13]. The

statistical-inference methods that we consider use a Bayesian approach to sample

from a posterior distribution and obtain a network’s community structure [65].

As we discussed in Section 2.3, it is desirable to base the generative models that

one employs to statistically infer community structure on realistic assumptions [66].

A generative model that relies on unrealistic assumptions can have a detrimental

impact on the accurate detection of communities in networks. However, it is not

always straightforward to avoid unrealistic assumptions, and many generative models

that appear to make reasonable choices include such assumptions. One example of

a problematic assumption involves the probability distribution of the number of

nodes in a community. It is common for generative models for temporal community

structure to use a discrete-time Markov process to assign communities [1,25,50,88].

However, due to the choices in many such models, the community-size distributions

become increasingly localized over time. To demonstrate this behavior, we consider

the Markov-process models of Yang et al. [88] and Bazzi et al. [1]. We show that
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the community-size distributions for these models become increasingly localized over

time. Therefore, at later times of a temporal network, the probability of generating

a small or large community is much smaller than the probability of generating a

community of moderate size. Real-world temporal networks can have communities of

many sizes [61], including ones that are small or large, so it is desirable that generative

models of networks are able to successfully infer small and large communities.

To mitigate the issue of generative models producing networks that are biased

against small and large communities, we introduce a novel community-evolution ap-

proach that yields community-size distributions with substantially less localization

than those from Markov-process models. Our approach generates the community

assignments of a network at a given time using the community assignments of all

nodes at the previous time, rather than updating each node separately at each time.

For a multilayer representation of a temporal network [40], when evolving the com-

munity assignments from one layer to the next (i.e., from one time to the next), we

generate the number of nodes with community assignments that change between lay-

ers, instead of generating the community assignments of each node separately. This

choice arises from the idea of “exchangeability” [6]. In our context, it signifies that

we should not distinguish between nodes with the same community assignment. We

demonstrate that statistical-inference methods that use our generative model per-

form more accurately than the Yang et al. [88] and Bazzi et al. [1] Markov-process

models in networks with small or large communities.

This chapter proceeds as follows. In Section 4.2, we introduce the Markov-

process methods and our statistical-inference approach in more detail. In Section

4.3, we demonstrate empirically that our approach leads to significantly less-localized

community-size distributions than the Markov-process models. In Section 4.4, we
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demonstrate that our approach identifies communities more accurately than those

models in synthetic networks with small or large communities. In Section 4.5, we

conclude and discuss future directions. In Appendix B, we derive computable expres-

sions for various probability distributions. We need these expressions to implement

the examined statistical-inference approaches.

4.2 Statistical-Inference Methods for Community Detection

In this section, we discuss statistical-inference methods for community detection. In

Section 4.2.1, we discuss how the methods that we consider use a generative model

to infer community structure in networks. In Sections 4.2.2 and 4.2.3, we introduce

the generative models that we will consider, with a particular focus on each method’s

probability distribution for community assignments.

4.2.1 Statistical Inference

In a statistical-inference method for community detection, one chooses a generative

model for networks with community structure [66]. To do this, one creates a gener-

ates random adjacency structure A, which is an adjacency matrix for a monolayer

network and is a sequence of adjacency matrices for a temporal network, accord-

ing to some probability distribution P(A). We choose the probability distribution

P(A) so that the randomly-generated networks have community structure. Let k

denote the number of communities in a network. Given k, a generative model first

generates a vector g ∈ {1, . . . , k}n (if we seek a monolayer network) or a matrix

g ∈ {1, . . . , k}n×L (if we seek a temporal network) of community assignments. Let

gi ∈ {1, . . . , k} denote the community assignment of node i of a monolayer network,
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and let g(i,ℓ) ∈ {1, . . . , k} denote the community assignment of node-layer (i, ℓ) of a

temporal network. The vector

g(ℓ) = (g(1,ℓ), . . . , g(n,ℓ)) (4.1)

encodes the community assignment of each node-layer in layer ℓ of a temporal net-

work.

Using the generative model, we generate an adjacency structure A with an “ex-

pected” community structure g. We expect nodes (respectively, node-layers) with

the same community assignment to be more likely to be adjacent to each other

than to nodes (respectively, node-layers) with different community assignments. One

commonly-employed generative model to generate a monolayer network A given a

community assignment g is a stochastic block model (SBM) [56, 65]. In the simplest

type of SBM, given a matrix ψ ∈ [0, 1]k×k, we place an edge between nodes i and

j independently with probability ψgigj for each pair {i, j} of distinct nodes. If the

diagonal elements ψrr are larger than the off-diagonal elements ψrs (with r ̸= s), we

expect that nodes with the same community assignments are connected more densely

than nodes with different community assignments. In other words, we expect that

A has community structure that is specified by g.

To make our above intuition precise, let P(A|g) denote the probability distribu-

tion that we obtain a network (i.e., an adjacency structure) A given the community

structure g. Let P(g) denote the probability distribution of the community assign-

ments. This distribution describes the probability of a given community structure g

independent of the observed adjacency structure A. The primary foci of the present

chapter are the assumptions about this distribution and the effect of these assump-

tions on the performance of statistical-inference methods for community detection.

15



In particular, we focus on assumptions about the probability distribution of the num-

ber of nodes in a community (i.e., the size of a community). Such size assumptions

also affect the behavior and performance of statistical-inference methods that infer

a discrete group assignment for each node-layer. This includes the identification

of both community structure and other mesoscale structures (e.g., core–periphery

structure) in temporal networks. In Chapter 5, we discuss the effects of similar size

assumptions on the behavior of statistical-inference algorithms for core–periphery

detection.

The generative model for a random network A with community structure g is

P(A, g) = P(A|g)P(g) . (4.2)

Because we fix the number k of communities, one can think of k as an input of the

examined methods. We assume a fixed k throughout the entire statistical-inference

process, so we omit k from the notation for each probability distribution.

We consider statistical-inference methods that use a Bayesian approach to infer

the community structure g of a network A (which is either monolayer or tempo-

ral). Given P(A|g) and P(g), the posterior distribution for the inferred community

structure g given the observed network A is

P(g|A) = P(A|g)P(g)
P(A)

. (4.3)

There are a variety of approaches to sample from P(g|A) [22,88]. In Section 4.4,

we briefly discuss the specific sampling approaches that we use in our comparisons of

various statistical-inference methods. However, our focus is the effect of the choice

of generative model on the results of statistical inference, so we do not include a

detailed discussion of the benefits and drawbacks of different sampling approaches.
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For comparisons of such sampling approaches, see [63] and [49] for a general compar-

ison and see [22] for a discussion of the application of various methods of statistical

inference of community structure.

There are also a variety of generative models P(A|g) that generate a network

A with “expected” community structure g. (See [22] for a review of such models.)

However, because our primary concerns are (1) the de facto assumptions about the

community assignments that arise from different choices of community-assignment

probability distributions P(g) and (2) the effects of these assumptions on statistical-

inference results, we also limit our discussion to the generative models P (A|g) that

we use in our comparisons.

4.2.2 Community-Assignment Probability Distributions for Monolayer

Networks

As we discussed in Section 4.2.1, our primary goals are to examine (1) the choices of

community-assignment probability distributions P(g) in various generative models

of community structure in temporal networks and (2) the influence of these choices

on the results of their corresponding statistical-inference approaches for community

detection. We now discuss each of the choices of P(g) in detail. In Sections 4.2.2.1

and 4.2.2.2, we first consider generative models of monolayer networks, as the ex-

amined generative models of temporal networks are extensions of these models. In

this discussion, we focus on properties of P(g) that affect the performance of the

corresponding statistical-inference methods. In Section 4.3, we support these claims

using numerical computations.
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4.2.2.1 Uniform Distributions on Community Assignments

The first class of community-assignment probability distributions P(g) are uniform

distributions on community assignments, for which

P(g) =
1

kn
(4.4)

for all community assignments g ∈ {1, . . . , k}n. Equivalently, such a model gener-

ates a community assignment g by generating each node’s community assignment gi

independently at random from a uniform distribution on {1, . . . , k}.

It is common to use a uniform distribution on community assignments (see,

e.g., [25,28]). However, Polanco and Newman [68] noted that this distribution choice

assumes implicitly that the distributions of the sizes of communities are highly local-

ized (and specifically that the probability of generating a community structure with

large or small communities is very small), which typically is an unrealistic assumption

in practice.

4.2.2.2 Nodewise Community Assignments

Another type of single-layer community-assignment probability distribution is “node-

wise” community assignments [88]. Employing a nodewise approach allows one to

sample the community assignments of each node from a distribution that is not uni-

form. One inputs a parameter vector π ∈ [0, 1]k with entries that sum to 1. For

each node i, one independently sets its community assignment gi to a value r with

probability πr. We denote this procedure by

gi|π ∼ π . (4.5)
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Equivalently, the probability distribution of g is

P(g|π) =
k∏

r=1

πnr(g)
r , (4.6)

where nr(g) is the number of nodes i with gi = r. That is, nr(g) is the size of

community r.

To remove the dependence on π in (4.6), we sample π from the Dirichlet distri-

bution with parameters γ1, . . . , γk. That is, π ∼ Dir(γ1, . . . , γr), so

P(π) =
Γ(
∑k

r=1 γr)∏k
r=1 Γ(γr)

k∏
r=1

πγr−1
r , (4.7)

where Γ(·) is the Gamma function. In the present thesis, we always choose (γ1, . . . , γk) =

(1, . . . , 1), which entails that the prior distribution for π is a uniform distribution on{
(v1, . . . , vk)

T |
∑k

r=1 vr = 1
}
∩ [0, 1]k. For notational convenience, let ∆k−1 denote

the set {
(v1, . . . , vk)

T |
k∑

r=1

vr = 1

}
∩ [0, 1]k . (4.8)

The choice (γ1, . . . , γk) = (1, . . . , 1) in the distribution (4.7) is equivalent to taking

a uniform distribution on community sizes [57]. In this uniform distribution, one first

chooses the sizes n1, . . . , nk of communities 1, . . . , k uniformly at random from the

set of ordered pairs of k non-negative integers that sum to n. One then chooses

the community assignment g uniformly at random from the set of all community

assignments with nr nodes in community r (for r ∈ {1, . . . , k}).

Although this class of community-assignment probability distributions is perhaps

less intuitive than using uniform distributions on community assignments, we show

in Section 4.3.2 that it greatly mitigates localization issues in community-size distri-

butions.
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4.2.3 Community-Assignment Probability Distributions for Temporal Net-

works

We now build on our discussion of choices of community-assignment probability

distributions P(g) in generative models of monolayer networks (see Section 4.2.2) to

examine these choices in temporal networks.

In the present discussion of P(g), we omit closed-form expressions for some choices

of P(g) because deriving them is cumbersome. For those probability distributions,

we instead provide a procedure to sample from P(g). In Appendix B, we include

derivations of the closed-form expressions of P(g) that are required to sample from the

posterior distributions P(g|A). In Section 4.3.1, we discuss these sampling methods

in detail.

4.2.3.1 Uniform Distributions on Community Assignments

As with monolayer networks (see Section 4.2.2.1), one can employ a uniform distri-

bution on community assignments in the study of temporal networks. In contrast to

the monolayer setting, because a uniform distribution avoids correlation between the

community assignments in different layers (which is generally desirable), Researchers

avoid this choice for inference applications.

Analogously to (4.4), we have

P(g) =
1

knL
(4.9)

for all community assignments g ∈ {1, . . . , k}n×L. As with monolayer networks, it

is equivalent to generate a community assignment g by generating the community

assignment g(i,ℓ) of each node-layer independently at random from a uniform distri-
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bution on {1, . . . , k}.

As with monolayer networks, this community-assignment probability distribution

implicitly makes the unrealistic assumption that the community-size distributions are

highly localized.

4.2.3.2 Discrete-Time Markov-Process Models

Another class of community-assignment probability distributions use a discrete-time

Markov process to generate community assignments [1, 25,50,88].

One uses a nodewise approach (see Section 4.2.2.2) to generate the community

assignments for the first layer of a temporal network. That is, to sample the com-

munity assignment g(i,1), one follows the procedure

π ∼ Dir(γ) ,

g(i,1) |π ∼ π , (4.10)

where we recall that γ = (1, . . . , 1). In this thesis, when we provide a sequence of sam-

ples from probability distributions (i.e., a “sampling procedure”), such as in (4.10),

we perform the sampling in sequence from top to bottom. For the second and sub-

sequent layers, one generates the community assignments of each node-layer using a

process that depends only on the community assignment of the same node in the pre-

vious layer. To do this, one inputs a “transition kernel” K = (K(2), . . . , K(L)), where

each K(ℓ) is a matrix whose rows sum to 1, and “laziness parameters” αℓ ∈ [0, 1].

The ℓth laziness parameter αℓ is the probability that one copies the community as-

signment from that of the previous layer when generating the community assignment

for a node in layer ℓ. For notational convenience, we write α = (α2, . . . , αL).
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One then generates g(i,ℓ) according to the conditional distribution

P(g(i,ℓ) = r | g(i,ℓ−1) = s, α,K) = αℓ δrs + (1− αℓ)K
(ℓ)
sr , (4.11)

where δij is the Kronecker delta. Sampling the community assignments gi,ℓ according

to the conditional distributions (4.11) is equivalent to using

{g(i,ℓ)}Lℓ=2 |α,K ∼ Markov
({
αℓI + (1− αℓ)K

(ℓ)
})
,

where Markov({K(ℓ)}) denotes a discrete-time Markov process with transition kernels

{K(ℓ)}. We thus can write

π ∼ Dir(γ) ,

g(i,1) | π ∼ π ,

{g(i,ℓ)}Lℓ=2 |α,K ∼ Markov
({
αℓI + (1− αℓ)K

(ℓ)
})
. (4.12)

To complete the specification of the model, we need to provide priors on the

laziness parameters α and the transition kernel K. As we discussed in Section 4.1,

many common choices of priors on α and K lead to community-size distributions

that become increasingly localized over time. In the present chapter, we consider

two representative choices of priors for these parameters.

The first choice of priors is from the method of Yang et al. [88]. In this method,

the laziness parameters α are (0, 0, . . . , 0). To choose the transition kernel K, one

first assumes that K(ℓ) = K̃ for each layer ℓ ∈ {2, . . . , L}. One then imposes an

independent Dirichlet prior with parameters (µs1 , . . . , µsk) on each row of K̃. That

is,

K̃s∗ ∼ Dir(µs∗) , (4.13)
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where K̃s∗ = (K̃s1, . . . , K̃sk) and µs∗ = (µs1, . . . , µsk). In the present chapter, we

assume that µs∗ = (1, . . . , 1) for each s ∈ {1, . . . , k}.

The second choice of priors is from the method of Bazzi et al. [1]. In this method,

one chooses each entry αℓ of α uniformly at random from [0, 1]. To choose the

transition kernel K, one takes each probability vector K
(ℓ)
s∗ to be the same for all

s ∈ {1, . . . , k}. That is, K
(ℓ)
s∗ = κ(ℓ). One then imposes an independent Dirichlet

prior with parameters µ(ℓ) = (µ
(ℓ)
1 , . . . , µ

(ℓ)
k ) on κ(ℓ) for each layer ℓ ∈ {2, . . . , L}. In

summary, one takes

αℓ ∼ Unif(0, 1) ,

κ(ℓ) ∼ Dir(µ(ℓ)) ,

K(ℓ)
s∗ = κ(ℓ) ,

where K
(ℓ)
s∗ = (K

(ℓ)
s1 , . . . , K

(ℓ)
sk ). In the present chapter, we assume that µ(ℓ) =

(1, . . . , 1) for each layer ℓ ∈ {2, . . . , L}.

The Yang et al. [88] and Bazzi et al. [1] Markov-process approaches both have

community-size distributions with less localization than those for a uniform distribu-

tion on community assignments (see Section 4.2.3.1). However, in both approaches,

the single-layer community-size distributions are more localized for later layers than

for earlier layers, which leads to moderate localization in the community-size distri-

butions of a temporal network (see Section 4.3.3). Because many Markov-process

approaches (e.g., [35, 50]) have similar choices of prior distributions to the Yang et

al. [88] and Bazzi et al. [1] approaches, we also expect increasing localization over

time in other Markov-process models.
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4.2.3.3 Exchangeability-Based Approach

As we discussed in Section 4.2.3.2, the employed methods for a discrete-time Markov-

process approach to community assignment yield increasingly localized single-layer

community-size distributions for later layers, and they thus in turn yield more local-

ized community-size distributions in a temporal network. To mitigate this undesir-

able feature, we introduce a novel approach for community evolution. As we will see

in Section 4.3.3, localization of the single-layer community-size distributions increases

less over time in this approach than in discrete-time Markov-process approaches.

Consequently, the overall community-size distribution of our novel approach is much

less localized than those of the discrete-time Markov-process approaches.

The intuition behind our approach is the notion of exchangeability [6], which

in our context entails that community assignments in a given layer of a temporal

network do not distinguish between nodes that were not distinguished by their com-

munity assignments in previous layers. With exchangeability, one obtains a uniform

distribution on community assignments in monolayer networks (see Section 4.2.2.2).

Before generating the community assignments of each node, there is nothing to distin-

guish the nodes from one another. Because nodes are indistinguishable, the only way

to distinguish between different nodes i is to assign them to communities with differ-

ent sizes nr. Therefore, we first generate the community sizes uniformly at random,

and we then choose a random labeling of the nodes by selecting the community as-

signment g uniformly at random from the set of all community assignments with the

desired community sizes. This is precisely the procedure that we described in Section

4.2.2.2 to generate community assignments with a uniform distribution on commu-

nity sizes. Additionally, recall that this method has less localized community-size
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distributions than a uniform distribution on community assignments (see Sections

4.2.2.1 and 4.3.3), motivating our choice to consider exchangeability.

We now use the concept of exchangeability in temporal networks to motivate our

statistical-inference approach. As with the discrete-time Markov-process approaches

in Section 4.2.3.2, we generate the community assignments one layer at a time.

Because the nodes in the first layer are indistinguishable before one determines their

community assignments, we use a nodewise approach for the first layer. Therefore,

as before (see (4.10)), we write

π ∼ Dir(γ) ,

g(i,1)|π ∼ π , (4.14)

where γ = (1, . . . , 1). For each layer ℓ ≥ 2, we then treat nodes as indistinguishable if

they are in the same community in layer ℓ− 1. This clearly does not need to be true

in practice (because two nodes can certainly have the same community assignment

in layer ℓ − 1 but different community assignments in a layer ℓ′ < ℓ − 1), but this

simplification allows us to formulate a computationally tractable approach. When

generating the community assignments for layer ℓ, we partition the set of nodes into

k sets, where the rth set (with r ∈ {1, . . . , k}) consists of the nodes in community r

in layer ℓ − 1. We treat the nodes in each set as indistinguishable from each other.

In a similar fashion as our procedure to generate community assignments in the first

layer, for each set, our community-assignment procedure consists of first choosing

the community sizes and then randomly labeling the nodes in the set by selecting

the community assignments uniformly at random from the set of all community

assignments with the desired community sizes.

To make the above approach scientifically rigorous, we begin by introducing no-
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tation for weak compositions. A weak composition of a positive integer n with k

parts is an ordered sequence (n1, . . . , nk) of non-negative integers that satisfies the

constraint
∑k

r=1 nr = n. We use Ck
n to denote the set of all weak compositions of n

with k parts, and we write Unif(Ck
n) for the uniform distribution on Ck

n.

Given a weak composition c = (c1, . . . , ck) ∈ Ck
n and a set G = {1, . . . , n} of nodes,

let G(c) denote the set of all community assignments g = (g1, . . . , gn) ∈ {1, . . . , k}G

such that ∣∣{gi = r | i ∈ {1, . . . , k}}
∣∣ = cr

for all r ∈ {1, . . . , k}. We write Unif(G(c)) to refer to the uniform distribution on

G(c).

Using this notation, we can now describe our approach for community evolution in

detail. In particular, we provide the process to generate the community assignments

g(ℓ) in layer ℓ given the community assignments g(ℓ−1) in layer ℓ − 1. Let nr(g) =

|{gi = r | i ∈ {1, . . . , k}}| be the number of times that r appears in g, let n(g) =

(n1(g), . . . , nk(g)), and let

G(ℓ)
r = {i ∈ {1, . . . , n} | g(i,ℓ) = r} (4.15)

be the rth community in g(ℓ). It follows from the definition (4.15) that |G(ℓ)
r | =

nr(g(ℓ)).

As we discussed previously, we consider each set G(ℓ)
r separately and choose the

community sizes when restricted to each individual set. For notational convenience,

we write c
(ℓ)
r = (c

(ℓ)
r1 , . . . , c

(ℓ)
rk ), where c

(ℓ)
rs is the number of nodes in community r in

layer ℓ − 1 that are in community s in layer ℓ. In contrast to monolayer networks,

we desire that temporal networks bias community assignments toward remaining

unchanged between layers, as we want our generative model to generate communities
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whose memberships remain somewhat stable over time. To do this, we bias the

number c
(ℓ)
rr of nodes that stay in community r toward the value nr(g(ℓ−1)), which is

the size of community r in layer ℓ− 1, by sampling it from a geometric distribution.

Specifically, let Geom(n, p) be the distribution with probability mass function

P(m) = pn−m 1− p

1− pn+1
, (4.16)

where m ∈ {0, 1, . . . , n}. We sample c
(ℓ)
rr from Geom(nr(g(ℓ−1)), pr,ℓ) and impose inde-

pendent uniform priors over [0, 1] on pr,ℓ for each r ∈ {1, . . . , k} and ℓ ∈ {1, . . . , L}.

Let c
(ℓ)
r,−r = (c

(ℓ)
r1 , . . . , c

(ℓ)
r,r−1, c

(ℓ)
r,r+1, . . . , c

(ℓ)
rk ) denote the vector c

(ℓ)
r with the rth compo-

nent removed. We do not want our method to be biased for or against any commu-

nity other than community r, so we sample c
(ℓ)
r,−r uniformly at random from all weak

compositions of nr(g(ℓ−1)) − c
(ℓ)
rr into k − 1 parts. Given c

(ℓ)
r , we sample g′

r,ℓ from a

uniform distribution on G(ℓ−1)
r (c

(ℓ)
r ). Finally, we concatenate g′

r,ℓ ∈ {1, . . . , k}G
(ℓ−1)
r

over r ∈ {1, . . . , k} to obtain the community assignments g(ℓ) ∈ {1, . . . , k}n in layer

ℓ. To make our notation compact, we write g(ℓ) =
⊕k

r=1 g
′
r,ℓ. In summary, for our

approach, given the layer-(ℓ − 1) communities g(ℓ−1), we generate the layer-ℓ com-

munities g(ℓ) by first sampling g′
r,ℓ for each r ∈ {1, . . . , k} according to the following

procedure:

pr,ℓ ∼ Unif(0, 1) ,

c(ℓ)rr | pr,ℓ ∼ Geom(nr(g(ℓ−1)), pr,ℓ) ,

c
(ℓ)
r,−r | c(ℓ)rr ∼ Unif

(
Ck−1

nr(g(ℓ−1))−c
(ℓ)
rr

)
,

g′
r,ℓ | c(ℓ)r ∼ Unif

(
G(ℓ−1)
r (c(ℓ)r )

)
, (4.17)

where we recall that γ = (1, . . . , 1). We then set g(ℓ) =
⊕k

r=1 g
′
r,ℓ.
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4.3 Localization of Community-Size Distributions

We now numerically compute community-size distributions for each of the generative

models in Sections 4.2.2 and 4.2.3. We obtain the following results:

• Monolayer-network generative models:

– The community-size distribution of a uniform distribution on community

assignments (see Section 4.2.2.1) is highly localized.

– The community-size distribution of nodewise community assignments (see

Section 4.2.2.2) is much less localized than the community-size distribu-

tion of a uniform distribution on community assignments.

• Temporal-network generative models:

– The community-size distribution of a uniform distribution on community

assignments (see Section 4.2.3.1) is highly localized.

– The community-size distributions of the Yang et al. [88] and Bazzi et

al. [1] discrete-time Markov-process approaches (see Section 4.2.3.2) are

much less localized than that of a uniform distribution on community as-

signments. However, for both the Yang et al. and Bazzi et al. approaches,,

the single-layer community-size distributions of later layers are more lo-

calized than those of earlier layers.

– In our approach (see Section 4.2.3.3), the localization of the single-layer

community-size distributions increases much more slowly than it does for

the Yang et al. [88] and Bazzi et al. [1] approaches. Consequently, the
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overall community-size distribution is much less localized than those of

the Yang et al. and Bazzi et al. approaches.

In Section 4.3.1, we discuss the methodology that we use to verify these claims. In

Section 4.3.2, we verify the above claims for monolayer-network generative models.

In Section 4.3.3, we verify the above claims for temporal-network generative models.

Finally, in Section 4.3.4, we present a conjecture for the behavior of the single-layer

community-size distributions in our approach (see Section 4.2.3.3) in the limit of

infinitely many layers.

4.3.1 Methodology

To compute the community-size distributions for each of the generative models in

Sections 4.2.2 and 4.2.3, we begin by using them to generate M = 106 instantiations

of community assignments g.

For monolayer networks, we report the “empirical distribution” (i.e., histogram)

of the size of community 1. We let g(m) be the mth community-assignment instan-

tiation, and we plot the observed frequencies Pi for each i ∈ {0, . . . , n}, where Pi is

defined by the map

i 7→ Pi :=
1

M

M∑
m=1

δn1(g(m)),i . (4.18)

By symmetry, we choose the community label “1” without loss of generality. In

Figure 4.1, we show an example of such a histogram.
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Figure 4.1: An example of the community-size frequency histogram for a monolayer

network. The horizontal axis indicates the number of nodes in the network with

community assignment 1, and the vertical axis indicates the observed frequency of

community assignments with that number of nodes in community 1.

For temporal networks, we first count the number of node-layers (i, ℓ) in layer

ℓ that are in community 1, for each layer ℓ ∈ {1, . . . , L}. We also count the total

number of node-layers that are in community 1 across a whole network. For each

layer ℓ, we then generate a histogram for each layer of the observed frequencies Pi

for each i ∈ {0, . . . , n}, where Pi is defined by the map

i 7→ Pi :=
1

M

M∑
m=1

δ
n1

(
g
(m)
(ℓ)

)
,i

(4.19)

in that layer. We also generate a histogram of the observed frequencies Pi for each

i ∈ {0, . . . , n}, where Pi is defined by the map

i 7→ Pi :=
1

M

M∑
m=1

δn1(g(m)),i (4.20)
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for the overall network. In Figure 4.2, we show an example of such a set of histograms.

(a) Community-size histograms for each layer

(b) Community-size histograms for the overall net-

work

Figure 4.2: An example of the community-size histograms for a temporal network

with 5 layers. In both panels (a) and (b), the horizontal axis indicates the number

of node-layers with community assignment 1, and the vertical axis indicates the

observed frequency of community assignments with that number of node-layers in

community 1. For the histograms in (a), we consider only the node-layers in the

indicated layer when counting the number of nodes in community 1. In the histogram

in (b), we consider all of the node-layers in the network when counting the number

of nodes in community 1.
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In addition to using histograms to qualitatively compare the amount of localiza-

tion of community-size distributions between different generative models, we calcu-

late the inverse participation ratio (IPR) [43] to quantify the amount of localization

in each community-size distribution. The IPR of a community-size distribution is

the squared L2-norm of the distribution. That is,

IPR =
n∑

i=0

P 2
i , (4.21)

where Pi is one of (4.18), (4.19), or (4.20), depending on which type of community-

size distribution we are considering. Larger values of the IPR indicate more localized

distributions. The minimum value of the IPR is 1
n+1

and is attained when Pi =
1

n+1

for each i. The maximum value of the IPR is 1 and is attained when Pj = 1 for some

j and Pi = 0 for all i ̸= j.

In the following subsections, we examine the community-size histograms and cal-

culate their IPRs to quantify and compare the amount of localization in the examined

generative models for community detection.

4.3.2 Community-Size Distributions of Generative Models of Monolayer

Networks

We consider two community-assignment probability distributions for monolayer net-

works: a uniform distribution on community assignments (see Section 4.2.2.1) and

nodewise community assignments (see Section 4.2.2.2). Using the approach in Sec-

tion 4.3.1, we generate a community-size histogram for each of the two community-

assignment probability distributions. We set the number of nodes to n = 50 and

generate two community-size histograms for each of the two community-assignment

probability distributions. One distribution has k = 2 communities, and the other
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has k = 5 communities. We show the resulting community-size histograms for k = 2

in Figure 4.3 and the histograms for k = 5 in Figure 4.4. We compute the IPR for

the community-size distribution of each example and compile our results in Table

4.1.

(a) Uniform distribution on community assignments

(b) Nodewise community assignments

Figure 4.3: Community-size histograms for monolayer networks for k = 2 commu-

nities for (a) a uniform distribution on community assignments and (b) nodewise

community assignments.
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(a) Uniform distribution on community assignments

(b) Nodewise community assignments

Figure 4.4: Community-size histograms for monolayer networks for k = 5 commu-

nities for (a) a uniform distribution on community assignments and (b) nodewise

community assignments.
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Method IPR for k = 2 IPR for k = 5

Uniform distribution on community assignments 0.0796 0.0998

Nodewise community assignments 0.0196 0.0436

Table 4.1: Values of the inverse participation ratio (IPR) for single-layer community-

size distributions.

We begin our analysis of our results by restating our claims (see Sections 4.2.2

and 4.3) for monolayer networks:

• The community-size distribution for a uniform distribution on community as-

signments (see Section 4.2.2.1) is highly localized.

• The community-size distribution for nodewise community assignments (see Sec-

tion 4.2.2.2) is much less localized than that for a uniform distribution on

community assignments (see Section 4.2.2.1).

In Figures 4.3 and 4.4, we see that both claims appear to hold for both k = 2

communities and k = 5 communities. The histograms for a uniform distribution on

community assignments appear to be highly localized, whereas the histograms for

nodewise community assignments are far less localized.

These qualitative observations are confirmed by the IPRs of the community-

size distributions in Table 4.1. For example, for k = 2, the IPR for the uniform

distribution on community assignments is 0.0796, which is much larger than the IPR

value of 0.0196 for nodewise community assignments. Recall that larger IPR values

indicate more localization of a distribution. Therefore, for k = 2, the community-
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size distribution for nodewise community assignments is much less localized than the

community-size distribution for a uniform distribution on community assignments.

We observe the same behavior for k = 5.

4.3.3 Community-Size Distributions of Generative Models of Temporal

Networks

We consider the following community-assignment probability distributions for tempo-

ral networks: a uniform distribution on community assignments (see Section 4.2.3.1),

the Yang et al. [88] and Bazzi et al. [1] discrete-time Markov-process approaches (see

Section 4.2.3.2), and our exchangeability-based approach (see Section 4.2.3.3). As

with monolayer networks, we use the approach in Section 4.3.1 to generate a set of

community-size histograms (one for each layer and one for the overall network) for

each of the four generative models. We again set the number of nodes to n = 50 and

again consider k = 2 and k = 5 communities. We show the histogram for each layer

for k = 2 in Figure 4.5, the histogram for the overall network for k = 2 in Figure 4.6,

the histogram for each layer for k = 5 in Figure 4.7, and the histogram for the over-

all network for k = 5 in Figure 4.8. We compute the IPR for the community-size

distribution for each example, and we compile the IPR values for each layer in Table

4.2 and the IPR values for the overall network in Table 4.3.
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(a) Uniform distribution on community assign-

ments

(b) Yang et al. approach

(c) Bazzi et al. approach (d) Our approach

Figure 4.5: Community-size histograms for each layer of a temporal network for k = 2

communities for (a) a uniform distribution on community assignments, (b) the Yang

et al. approach [88], (c) the Bazzi et al. approach [1], and (d) our exchangeability-

based approach.
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(a) Uniform distribution on community assign-

ments

(b) Yang et al. approach

(c) Bazzi et al. approach (d) Our approach

Figure 4.6: Community-size histograms for the overall network for k = 2 commu-

nities for (a) a uniform distribution on community assignments, (b) the Yang et al.

approach, (c) the Bazzi et al. approach, and (d) our exchangeability-based approach.
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(a) Uniform distribution on community assign-

ments

(b) Yang et al. approach

(c) Bazzi et al. approach (d) Our approach

Figure 4.7: Community-size histograms for each layer of a temporal network for

k = 5 communities for (a) a uniform distribution on community assignments, (b)

the Yang et al. approach, (c) the Bazzi et al. approach, and (d) our exchangeability-

based approach.
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(a) Uniform distribution on community assign-

ments

(b) Yang et al. approach

(c) Bazzi et al. approach (d) Our approach

Figure 4.8: Community-size histograms for the overall network for k = 5 commu-

nities for (a) a uniform distribution on community assignments, (b) the Yang et al.

approach, (c) the Bazzi et al. approach, and (d) our exchangeability-based approach.
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Method Layer IPR for k = 2 IPR for k = 5

Layer 1 0.0795 0.0997

Layer 2 0.0794 0.0998

Uniform distribution on community assignments Layer 3 0.0798 0.0997

Layer 4 0.0795 0.0997

Layer 5 0.0797 0.0998

Layer 1 0.0196 0.0436

Layer 2 0.0220 0.0545

Yang et al. [88] Layer 3 0.0232 0.0595

Layer 4 0.0225 0.0597

Layer 5 0.0226 0.0597

Layer 1 0.0196 0.0435

Layer 2 0.0220 0.0448

Bazzi et al. [1] Layer 3 0.0239 0.0471

Layer 4 0.0247 0.0481

Layer 5 0.0250 0.0485

Layer 1 0.0196 0.0435

Layer 2 0.0196 0.0437

Our exchangeability-based approach Layer 3 0.0196 0.0440

Layer 4 0.0196 0.0442

Layer 5 0.0196 0.0443

Table 4.2: IPR values of the community-size distribution of each layer for each

examined generative model for community assignments in temporal networks.

41



Method IPR for k = 2 IPR for k = 5

Uniform distribution on community assignments 0.0357 0.0446

Yang et al. [88] 0.0057 0.0153

Bazzi et al. [1] 0.0066 0.0122

Our exchangeability-based approach 0.0041 0.0095

Table 4.3: IPR values of the community-size distribution of the overall network for

each examined generative model of community assignments in temporal networks.

For convenience, we restate our previous claims (see the introduction of Section

4.3) about temporal networks:

• The community-size distribution of a uniform distribution on community as-

signments (see Section 4.2.3.1) is highly localized.

• The community-size distributions of the Yang et al. [88] and Bazzi et al. [1]

discrete-time Markov-process approaches (see Section 4.2.3.2) are much less

localized than that of a uniform distribution on community assignments. How-

ever, for both the Yang et al. and Bazzi et al. approaches, the single-layer

community-size distributions of later layers are more localized than those of

earlier layers.

• In our approach (see Section 4.2.3.3), the localization of the single-layer community-

size distributions increases much more slowly than it does for the Yang et al. [88]

and Bazzi et al. [1] approaches. Consequently, the overall community-size dis-

tribution is much less localized than those of the Yang et al. and Bazzi et al.

approaches.
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In Figures 4.5, 4.6, 4.7, and 4.8, we see that all of these claims appear to hold for

both k = 2 communities and k = 5 communities. In the example in Figure 4.6, we

see for k = 2 that the overall community-size histogram is much more localized for

a uniform distribution on community assignments than for the three other methods.

We also observe that the community-size histogram for the overall network appears

to be less localized in our approach than in those of the Yang et al. [88] or Bazzi et

al. [1] approaches.

Our qualitative observations are also confirmed by the IPR values in Tables 4.2

and 4.3. For example, for k = 2, the IPR of the overall community-size distribution is

0.0357 for a uniform distribution on community assignments, 0.0057 for the Yang et

al. method, 0.0066 for the Bazzi et al. method, and 0.0041 for our exchangeability-

based approach, confirming that the overall community-size distribution is much

more localized for a uniform distribution on community assignments than for the

three other methods and that the community-size distribution for our approach is

less localized those of the Yang et al. and Bazzi et al. approaches. Additionally, for

k = 2, the IPRs of the single-layer community-size distributions for the Yang et al.

approach increase from 0.0196 in layer 1 to 0.0226 in layer 5, illustrating that the

single-layer community-size distributions become more localized over time.

4.3.4 Asymptotic Behavior of Our Exchangeability-Based Approach

Recall from Section 4.2.3.3 that our exchangeability-based approach generates the

layer-ℓ communities g(ℓ) given the layer-(ℓ − 1) communities g(ℓ−1) by sampling g′
r,ℓ
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according to the procedure given in (4.17). Namely, we take

π ∼ Dir(γ) ,

g(i,1)|π ∼ π ,

pr,ℓ ∼ Unif(0, 1) ,

c(ℓ)rr | pr,ℓ ∼ Geom(nr(g(ℓ−1)), pr,ℓ) ,

c
(ℓ)
r,−r | c(ℓ)rr ∼ Unif

(
Ck−1

nr(g(ℓ−1))−c
(ℓ)
rr

)
,

g′
r,ℓ | c(ℓ)r ∼ Unif

(
G(ℓ−1)
r (c(ℓ)r )

)
,

where we recall that γ = (1, . . . , 1). We then set g(ℓ) =
⊕k

r=1 g
′
r,ℓ. We previ-

ously showed empirically (see Section 4.3.3) that the localization of the single-layer

community-size distributions increases much more slowly for this approach than it

does for the Yang et al. [88] and Bazzi et al. [1] approaches.

We now discuss a conjecture about the behavior of the single-layer community-size

distributions of a similar community-assignment probability distribution in the limit

of infinitely many layers. The community-assignment probability distribution that

we consider generates the layer-ℓ communities g(ℓ) given the layer-(ℓ−1) communities

g(ℓ−1) by sampling g′
r,ℓ according to the following procedure:

π ∼ Dir(γ) ,

g(i,1) | π ∼ π ,

c(ℓ)rr | p ∼ Geom(nr(g(ℓ−1)), p) ,

c
(ℓ)
r,−r | c(ℓ)rr ∼ Unif

(
Ck−1

nr(g(ℓ−1))−c
(ℓ)
rr

)
,

g′
r,ℓ | c(ℓ)r ∼ Unif

(
G(ℓ−1)
r (c(ℓ)r )

)
, (4.22)
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where γ = (1, . . . , 1) and p ∈ (0, 1) is a specified parameter. The procedure (4.22)

is the same as the procedure (4.17) except that we choose pr,ℓ = p instead sampling

pr,ℓ independently from a uniform distribution on (0, 1). We conjecture the fol-

lowing result about the single-layer community-size distributions of the community-

assignment probability distribution that generates communities according to the pro-

cedure (4.22):

Conjecture 1. As the layer ℓ → ∞, the single-layer community-size distributions

satisfy

Pi →
(1− pi+1)(1− pn−i+1)∑n
j=0(1− pj+1)(1− pn−j+1)

, (4.23)

where Pi is defined in (4.19).

To demonstrate that Conjecture 1 is plausible, we generate M = 106 instantia-

tions of community assignments using the community-assignment probability distri-

bution that samples according to (4.22). We set the number L of layers to be 50, the

number n of nodes to 50, the number k of communities to 2, and the parameter p to

0.6. In Figure 4.9, we plot the empirical distribution Pi of the size of community 1

in layer 50 and the conjectured distribution from (4.23).
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Figure 4.9: A comparison of the community-size histogram for layer 50 of a temporal

network with k = 2 groups for a community-assignment probability distribution that

samples using the procedure (4.22) (blue) and the conjectured distribution from

(4.23) (red).

In Figure 4.9, we see that the conjectured distribution is almost the same as

the empirical distribution Pi for each community size i, which suggests that Conjec-

ture 1 is plausible. If we are able to prove Conjecture 1, it would further support

the claim that our exchangeability-based approach has less-localized community-size

distributions than Markov-process models (such as the Bazzi et al. [1] and Yang et

al. [88] methods), because the conjectured distribution in (4.23) is almost uniform

for community sizes i away from the boundary (i.e., very close to 0 or very close to

the number n of nodes in the network).
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4.3.5 Summary

Our numerical computations confirm our claims that the choice of generative model

for community assignments has a significant effect on the localization of community-

size distributions. We observed that a uniform distribution on community assign-

ments yields substantially more localized community-size distributions than the other

examined methods for temporal community structure. We also observed that the

single-layer community-size distributions of the discrete-time Markov-process ap-

proaches become more localized over time, whereas the localization of the single-

layer community-size distributions increases much more slowly with time for our

exchangeability-based approach. Accordingly, in temporal networks, we conclude

that our exchangeability-based approach has less localized overall community-size

distributions than discrete-time Markov-process models do.

4.4 Comparison of Community-Detection Performance of

Statistical-Inference Approaches

As we mentioned in Section 4.1, we expect that statistical-inference methods that

employ generative models with more-localized community-size distributions will have

poorer performance in networks with large or small communities than methods with

less-localized community-size distributions. In this section, we demonstrate that this

is indeed the case.
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4.4.1 Posterior-Sampling Approaches

We first describe the algorithms that we use to sample from the posterior distribu-

tions P(g|A) for each choice of community-assignment probability distribution P(g).

Recall from equation (4.2) that the generative models of networks with community

structure that we consider take the form

P(A, g) = P(A|g)P(g) ,

where P(A|g) is the probability of generating a network with adjacency structure A

given community assignments g and the term P(g) is the probability of the commu-

nity assignment g. We seek to examine the impact of localization of a community-size

distribution of a community-assignment generative model P(g), so we vary only the

choice of P(g) in the examined methods. All examined methods use the same P(A|g).

We consider independent SBMs in each layer, so

P(A|g, ω) =
L∏

ℓ=1

P(A(ℓ)|g(ℓ), ω(ℓ)) =
L∏

ℓ=1

∏
1≤i<j≤n

(
ω(ℓ)
g(i,ℓ)g(j,ℓ)

)A(ℓ)
ij
(
1− ω(ℓ)

g(i,ℓ)g(j,ℓ)

)1−A
(ℓ)
ij

,

(4.24)

where ω(ℓ) ∈ [0, 1]k×k (for each ℓ ∈ {1, . . . , L}) is a matrix whose entries ω
(ℓ)
rs control

the probability of edges between nodes in communities r and s in layer ℓ. We set the

prior distributions for each ω
(ℓ)
rs to be independent uniform distributions on [0, 1] for

each r and s such that 1 ≤ r ≤ s ≤ k. We set ω
(ℓ)
rs = ω

(ℓ)
sr if r > s (i.e., we force ω(ℓ)

to be symmetric). Integrating1 P(A|g, ω) with respect to the probability measure

that is induced by P(ω) yields the posterior distribution

P(A|g) =
L∏

ℓ=1

∏
1≤r≤s≤k

m
(ℓ)
rs !(t

(ℓ)
rs −m

(ℓ)
rs )!

(t
(ℓ)
rs + 1)!

, (4.25)

1See [68] for the computation of similar integrals.
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where

t(ℓ)rs :=
∑

1≤i,j≤n; i ̸=j

(
δg(i,ℓ),rδg(j,ℓ),s

)
,

m(ℓ)
rs :=

∑
1≤i,j≤n; i ̸=j

A
(ℓ)
ij

(
δg(i,ℓ),rδg(j,ℓ),s

)
for r ̸= s and

t(ℓ)rr :=
1

2

∑
1≤i,j≤n; i ̸=j

δg(i,ℓ),rδg(j,ℓ),r ,

m(ℓ)
rr :=

1

2

∑
1≤i,j≤n; i ̸=j

A
(ℓ)
ij

(
δg(i,ℓ),rδg(j,ℓ),r

)
.

That is, for r ̸= s, the quantity t
(ℓ)
rs is the number of pairs of distinct node-layers

(i, ℓ) and (j, ℓ) for which (i, ℓ) is in community r and (j, ℓ) is in community s. Simi-

larly, m
(ℓ)
rs is the number of such pairs that are connected directly by an edge. The

expressions for t
(ℓ)
rr andm

(ℓ)
rr have an additional factor of 1/2 to avoid double-counting.

We consider three choices of P(g): a uniform distribution on community assign-

ments (see Section 4.2.3.1), the discrete-time Markov-process approach of Bazzi et

al. [1] (see Section 4.2.3.2), and our exchangeability-based approach (see Section

4.2.3.3). None of these three probability distributions include additional parame-

ters beyond the number k (which we fix) of communities. Recall that each of the

examined generative models has the form

P(A, g) = P(A|g)P(g) . (4.26)

As we discussed in Section 4.2.1, given a network with adjacency structure A, we

perform statistical inference using a generative model to determine the community

assignment g. We sample from the posterior distribution P(g|A), which we recall
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from (4.3) has the form

P(g|A) = P(A|g)P(g)
P(A)

. (4.27)

However, due to the relatively complicated nature of the expressions for P(A|g) and

P(g), directly sampling from the posterior distribution is not tractable. Therefore,

we use Gibbs sampling [63] to approximately sample from the posterior distribution

P(g|A). In one iteration of Gibbs sampling, we loop over each node-layer (i, ℓ) and

sample g(i,ℓ) from

P(g(i,ℓ)|g̃, A) , (4.28)

where g̃ is the set of current community assignments aside from g(i,ℓ). In our Gibbs-

sampling procedure, we begin by sampling from the posterior (4.28) to generate

g(1,1), g(1,2), . . . , g(1,L) in that order. We then continue sampling in the same fashion

for each node i ∈ {2, . . . , n} in order.

In practice, we sample from the distribution P(g(i,ℓ)|g̃, A) by computing

P(g(i,ℓ) = r|g̃, A) =
P(A, g(i,ℓ) = r, g̃)∑k
s=1 P(A, g(i,ℓ) = s, g̃)

, (4.29)

where P(A, g(i,ℓ) = r, g̃) is P(A, g) evaluated for the specified adjacency structure A

and for a community assignment g that includes all current community assignments

aside from g(i,ℓ), which we take to be r.

Unfortunately, applying this naive Gibbs-sampling approach often does not lead

to correct community identifications in temporal networks. The reason is that the

posterior distribution P(g|A), which we approximate via Gibbs sampling, has many

local maxima that cause the Gibbs-sampling algorithm to often become stuck at

suboptimal maxima. In Figure 4.10, we illustrate common patterns that we observe

at such suboptimal maxima.
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(a) Seeded community structure

(b) Example of local extremum

Figure 4.10: Heat maps of (a) an example of actual community structure and (b)

an illustration of the permuted community structure that we observe commonly at

local maxima of P(g|A) in a 100-node network with 5 layers. Each rectangle in

a heat map corresponds to one node-layer (i, ℓ). Dark blue rectangles signify the

community assignment g(i,ℓ) = 1, and light blue rectangles signify the community

assignment g(i,ℓ) = 2.
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In this example, the inferred community structure for each layer is accurate (as

either community can be assigned the label “1”), but the overall community structure

is not accurate. To mitigate this issue, we augment the Gibbs-sampling procedure

with multi-node moves. With probability p, instead of sampling g(i,ℓ) according to

the Gibbs-sampling procedure that we discussed above, we choose r, s ∈ {1, . . . , k}

and ℓ ∈ {1, . . . , L} uniformly at random and propose a move that permutes two

community labels r and s for all layers at or beyond layer ℓ. The proposed community

assignment g∗ satisfies

g∗(i,ℓ′) =


s , ℓ′ ≥ ℓ and g(i,ℓ′) = r

r , ℓ′ ≥ ℓ and g(i,ℓ′) = s

g(i,ℓ′) , otherwise .

With Metropolis–Hastings acceptance probability

min

{
1,

P(g∗|A)
P(g|A)

}
, (4.30)

we accept the move and change the current community assignment to the proposed

community assignment g∗. Otherwise, we reject the move and keep the previous com-

munity assignment g. In either case, we then proceed with the previously-discussed

Gibbs-sampling procedure. If we do not accept the move, then we do not change the

community assignment. By (4.26) and (4.27), the acceptance probability (4.30) is

equivalent to

min

{
1,

P(A, g∗)
P(A, g)

}
.

In Section 4.4.3, we demonstrate that using these multi-node moves significantly im-

proves the performance of both the Bazzi et al. [1] approach and our exchangeability-

based approach.
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We now discuss in detail how we compute P(A, g) for a uniform distribution on

community assignments, the Bazzi et al. [1] approach, and our exchangeability-based

approach. It suffices to discuss how we compute P(g) for each of our three choices,

as

P(A, g) = P(A|g)P(g)

from (4.26) and P(A|g) is specified in (4.25) as

P(A|g) =
L∏

ℓ=1

∏
1≤r≤s≤k

m
(ℓ)
rs !(t

(ℓ)
rs −m

(ℓ)
rs )!

(t
(ℓ)
rs + 1)!

,

which is relatively simple to compute. To compute P(g), it is sufficient to compute

an expression that is directly proportional to it because (4.29) remains unchanged

when all terms are multiplied by the same constant.

We begin by discussing the case of a uniform distribution on community assign-

ments (see Section 4.2.2.1). From (4.9), we have

P(g) =
1

knL
∝ 1 .

That is, for this case, we do not need to consider P(g) when computing P(A, g).

We now consider the Bazzi et al. discrete-time Markov-process approach (see

Section 4.2.3.2). In Appendix B.1, we derive the expression

P(g(ℓ)|g(ℓ−1)) =

˙
[0,1]×∆n−1

n∏
i=1

(
αℓ δg(i,ℓ),g(i,ℓ−1)

+ (1− αℓ)κ
(ℓ)
g(i,ℓ)

)
dµ(αℓ, κ

(ℓ)) ,

(4.31)

where µ is the product measure of a uniform measure on [0, 1] and a uniform measure

on ∆k−1 ∩ [0, 1]k. Recall from (4.8) that ∆k−1 = {(v1, . . . , vk)|
∑k

i=1 vi = 1} ∩ [0, 1]k.

There does not exist a simple closed form for the integral (4.31), so we approximate it
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using Monte-Carlo integration with 1000 sample points. For community assignments

g and g′ that differ only in the community assignment of the node-layer (k, ℓ), we

have

P(g(m)|g(m−1)) = P(g′(m)|g′(m−1))

for any m ̸∈ {ℓ, ℓ+ 1}. In Appendix B.1, we derive

P(g) = P(g(1))
L∏

ℓ=2

P(g(ℓ)|g(ℓ−1)) . (4.32)

From (4.32), varying the community assignment of node-layer (k, ℓ) with all other

community assignments fixed yields

P(g) ∝


P(g(1))P(g(2)|g(1)) , ℓ = 1

P(g(ℓ+1)|g(ℓ))P(g(ℓ)|g(ℓ−1)) , 2 ≤ ℓ ≤ L− 1

P(g(L)|g(L−1)) , ℓ = L ,

which reduces the number of times that one needs to use Monte-Carlo integration to

compute the integral (4.31) from L− 1 to at most 2.

Finally, we discuss our exchangeability-based approach (see Section 4.2.3.2). In

Appendix B.2, we derive

P(g(ℓ)|g(ℓ−1)) =
k∏

r=1

 1(nr(g(ℓ−1))−c
(ℓ)
rr +k−2

nr(g(ℓ−1))−c
(ℓ)
rr

)(
nr(g(ℓ−1))
cr,1,...,cr,k

) × J
(
nr(g(ℓ−1))− c(ℓ)rr , nr(g(ℓ−1))

) ,

(4.33)

where

J(k1, k2) =

ˆ 1

0

xk1
x− 1

xk2+1 − 1
dx .

To minimize computational cost we precompute

J(k1, k2) =

ˆ 1

0

xk1
x− 1

xk2+1 − 1
dx
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for all k1 and k2 such that 0 ≤ k1 ≤ k2 ≤ n using the procedure in Section B.2.1.

This precomputation allows us to avoid needing to repeatedly recompute J(k1, k2)

when computing (4.33).2 For g and g′ that differ only in the community assignment

of node-layer (k, ℓ), recall that

P(g(m)|g(m−1)) = P(g′(m)|g′(m−1)) (4.34)

for any m ̸∈ {ℓ, ℓ+ 1}. In Appendix B.2, we derive

P(g) = P(g(1))
L∏

ℓ=2

P(g(ℓ)|g(ℓ−1)) . (4.35)

Therefore, if we vary the community assignment of node-layer (k, ℓ) and fix all other

community assignments, we obtain

P(g) ∝


P(g(1))P(g(2)|g(1)) , ℓ = 1

P(g(ℓ+1)|g(ℓ))P(g(ℓ)|g(ℓ−1)) , 2 ≤ ℓ ≤ L− 1

P(g(L)|g(L−1)) , ℓ = L ,

(4.36)

which reduces the number of times that we need to compute (4.33) from L− 1 to at

most 2.

To help ensure that any observed differences in performance are not due to our

choice of generative model P(A|g) or our choice of posterior-sampling algorithm, we

2If n is sufficiently large, the integral J(k1, k2) can become very small, which causes finite-
precision issues and thereby leads to inaccurate results when computing J(k1, k2) using (B.14). To
mitigate this problem, we use the approximation

J(k1 + 1, k2)

J(k1, k2)
≈ 1

for large k1 and k2. In particular, for fixed k2, we set the computed values of J(k1, k2) to exp(−16)
for all k1 ≥ k′1, where k′1 is the smallest k′1 such that J(k′1, k2) < exp(−16).
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also compare the performance of the three methods to the performance of another

method that uses both a different generative model P(A|g) and a different approach to

approximately sample from the posterior P(g|A). For this comparison, we consider

the method of Yang et al. [88]. As with the other three approaches (see (4.24)),

P(A|g, ω) consists of an independent SBM for each layer (see (4.24)). Namely,

P(A|g, ω) =
L∏

ℓ=1

P(A(ℓ)|g(ℓ), ω(ℓ)) =
L∏

ℓ=1

∏
1≤i<j≤n

(
ω(ℓ)
g(i,ℓ)g(j,ℓ)

)A(ℓ)
ij
(
1− ω(ℓ)

g(i,ℓ)g(j,ℓ)

)1−A
(ℓ)
ij

.

However, the Yang et al. approach uses a different prior distribution P(ω) than the

one in the other three approaches. First, the Yang et al. approach assumes that

ωrs := ω
(1)
rs = · · · = ω

(L)
rs (i.e., the SBM parameters do not change between layers)

and that ωrs = ωsr. Second, Yang et al. used

ωrs ∼ Beta(αrs, βrs)

for all r ≥ s, where αrs and βrs are user-provided parameters. In our implementation

of their approach, we let αrs = βrs = 1 for all r ≥ s, which implies that

ωrs ∼ Uniform(0, 1)

for all r ≥ s. As we previously discussed Yang et al.’s approach for sampling from

the community-evolution probability distribution P(g|ω) in Section 4.2.3.2, we do

not discuss it again here.

To sample from the posterior distribution P(g|A), Yang et al. [88] used Gibbs

sampling with simulated annealing. This choice differs from our Gibbs-sampling

approach because it uses the target distributions

exp{logP(g|A)/Tm} ,
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where Tm is the mth temperature, which is a parameter that impacts the sensi-

tivity of the sampler to the distribution, and log denotes the base-e logarithm.

When Tm is large, the sampler is sensitive to coarser variations; when Tm is small,

the sampler is sensitive to finer variations. In our implementation, we use the

temperature sequence {1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1} that was employed by

Yang et al. [88]. For each temperature Tm, we perform Nm Gibbs-sampling itera-

tions. We also use the iteration-number sequence {20, 10, 10, 10, 10, 10, 10, 5, 5, 5}

of Yang et al. Our implementations of these methods are available at https:

//github.com/tfaust0196/TemporalCommunityComparison.

4.4.2 Setup of our Comparison

To compare the behavior of the four approaches on networks with different com-

munity sizes, we generate several networks with known community structure and

different community sizes. We begin by considering k = 2 communities in tem-

poral networks with n = 100 nodes and L = 5 layers. We then choose the pa-

rameters ω ∈ [0, 1]k×k (which encode the strength of the community structure) and

q ∈ {0, . . . , 100} (which is the size of community 1). We use the parameter q to

assign the seeded community structure g as follows. For each layer ℓ ∈ {1, . . . , L},

we set g(i,ℓ) = 1 for nodes i ∈ {1, . . . , q + τℓ} and g(i,ℓ) = 2 for all other nodes.

The quantity τ = (τ1, . . . , τL) is a vector of “offsets” for each layer that we use to

avoid having the same seeded community structure for each layer. In Figure 4.11,

we show examples of the seeded community structure for q = 50 and q = 90, with

τ = (0,−5,−10,−5, 0) in each case. We use g to generate the networks A(ℓ) via
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independent SBMs with parameters

ω(ℓ) =

0.25 0.1

0.1 0.25


for each layer ℓ ∈ {1, . . . , L}.

(a) q = 50

(b) q = 90

Figure 4.11: Heat maps of the seeded community structure that we use to generate

the adjacency structure A for (a) community-1 size q = 50 and (b) community-1 size

q = 90. Each rectangle in a heat map corresponds to one node-layer (i, ℓ). Dark

blue rectangles signify the community assignment g(i,ℓ) = 1, and light blue rectangles

signify the community assignment g(i,ℓ) = 2.
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In our experiments, we consider q ∈ {50, 60, 70, 80, 90}. For each choice of q,

we run 500 instantiations of each approach and record the inferred community as-

signments g′ of each instantiation of each approach. To quantitatively measure the

performance of each approach, we compute normalized mutual information (NMI)

NMI(g′; g) [14], which is a commonly employed similarity measure for analyzing the

performance of a classification, between the inferred community structure g′ and the

seeded community structure g for each instantiation and approach. The formula for

the NMI is

NMI(g′; g) =
I0(g

′; g)
1
2
[I0(g; g) + I0(g′; g′)]

, (4.37)

where

I0(g
′; g) = nL

∑
1≤r,s≤k

p(gg
′)

rs log

(
p
(gg′)
rs

p
(g′)
r p

(g)
s

)
,

p(gg
′)

rs =
1

nL

n∑
i=1

L∑
ℓ=1

δg′
(i,ℓ)

,rδg(i,ℓ),s ,

p(g)r =
1

nL

n∑
i=1

L∑
ℓ=1

δg(i,ℓ),r .

The NMI quantifies the similarity between the inferred community structure g′ and

the seeded community structure g. The maximum NMI value of 1 occurs when g′

and g coincide up to a permutation of the community labels.

4.4.3 Results

We begin by comparing the performances of the Bazzi et al. [1] approach and our

exchangeability-based approach with and without multi-node moves (see Section

4.4.1). We set the probability of a multi-node move to 3× 10−3. In Figure 4.12, we

plot the mean of NMI(g′; g) over each of the posterior samples g′ for community-1
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sizes q ∈ {50, 60, 70, 80, 90}.

We obtain larger mean NMI values for both the Bazzi et al. approach and our

exchangeability-based approach when we use multi-node moves, indicating that they

are less likely to become stuck at local extrema (of the type in Figure 4.10) than

when we do not include multi-node moves. We use hypothesis testing to make this

observation statistically rigorous. The distributions of the NMI values are not normal

distributions, so we compute the p-values for a one-sided Mann–Whitney U test [15]

for each layer ℓ, community-1 size q, and community-structure strength ω. For both

approaches, we see that the p-values are significant for all values of q except q = 50.

Therefore, we conclude that employing multi-node moves improves the performance

of both our exchangeability-based approach and the Bazzi et al. approach.

60



Figure 4.12: The mean NMI for our exchangeability-based approach and the Bazzi et

al. approach with and without multi-node moves for several values of the community-

1 size q.

q = 50 q = 60 q = 70 q = 80 q = 90

ω = 0.28 0.56 0.017 0.45 9.1× 10−5 0.96

ω = 0.25 0.12 0.063 9.4× 10−6 3.3× 10−6 3.4× 10−7

Table 4.4: The p-values for our comparison of our exchangeability-based approach

with and without multi-node moves.
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q = 50 q = 60 q = 70 q = 80 q = 90

ω = 0.25 0.015 6.5× 10−4 3.3× 10−6 3.1× 10−16 7.8× 10−5

ω = 0.28 2.4× 10−3 0.40 8.9× 10−9 5.9× 10−15 2.5000× 10−6

Table 4.5: The p-values for our comparison of the Bazzi et al. [1] approach with and

without multi-node moves.

We also compare the performance of the four approaches — a uniform distribu-

tion on community assignments, the Yang et al. [88] and Bazzi et al. [1] discrete-time

Markov-process approaches, and our exchangeability-based approaches — when we

incorporate multi-mode moves. We again consider community-1 sizes

q ∈ {50, 60, 70, 80, 90} and plot the overall-network NMI for each of the four ap-

proaches in Figure 4.13.
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Figure 4.13: The mean NMI for each of the four examined approaches for generating

community assignments for various choices of 1-community sizes q.

Our exchangeability-based approach performs worse than the Bazzi et al. ap-

proach for community-1 sizes of q = 50 and q = 60. However, our approach out-

performs the Bazzi et al. approach for q = 70, q = 80, and q = 90. Our approach

outperforms the Yang et al. approach for all values of q. Using Mann–Whitney U

tests, we see that these results are significant (with p-value p < 0.01) for all but one

value of q (this value is q = 80 for the Yang et al. method) when our exchangeability-

based approach performs better than the other methods.

In Figures 4.12 and 4.13, the mean NMIs for each method are smaller for community-

1 size q = 90 than for q = 80. We believe that this is an artifact of our choice to

use NMI to measure the similarity between the inferred community structure and
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the seeded community structure.3 When we use the number of correct community

assignments to measure such similarity, we find that the mean numbers of correct

community assignments for community-1 sizes q = 80 and q = 90 are almost identical

for each method.

4.5 Conclusions and Discussion

When applying statistical inference to community detection, it is important impor-

tant to use a generative model that is based on realistic assumptions [66]. One such

assumption is that the generative model is not biased against communities with large

or small numbers of nodes. In this chapter, we showed that many statistical-inference

models that generate community assignments via either a uniform distribution on-

community assignments or discrete-time Markov processes are biased against gener-

ating communities with large or small numbers of nodes. We then formulated a gen-

erative model with an exchangeability-based community-assignment approach that

mitigates this bias. We observed in tests on synthetic networks with small and large

community sizes that our generative model outperforms existing generative models at

statistical inference. We focused in this chapter on analyzing the effect of group-size

biases in the setting of community structure. Similar group-size assumptions also

arise in statistical-inference methods for identifying other mesoscale structures. For

example, in Chapter 5, we show that using discrete-time Markov-process models for

detecting core–periphery structure causes associated statistical-inference methods to

underestimate the number of groups in networks.

3For a detailed discussion of biases in NMI, see [36].
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There are many viable ways to build on our work. First, we considered the per-

formance of a small number of representative approaches, and it is certainly worth-

while to also study other methods (e.g., [35]) with similar community-assignment

probability distributions to those in Sections 4.2.3.1 and 4.2.3.2. Second, in our

exchangeability-based approach (see Section 4.2.3.3), we assumed that the commu-

nity assignments for a given layer depend only on those in the previous layer. Relax-

ing this assumption and allowing community assignments to depend on additional

previous layers may lead to improved community-detection performance. Third, it is

beneficial to derive bounds on the amount of localization of the community-size dis-

tributions for both our approach and other approaches. In contrast to the situation

for monolayer networks, where community-size distributions tend to have a relatively

simple form, there often is not a simple closed-form expression for the single-layer

community-size distributions in temporal networks. Consequently, we used numer-

ical simulations to examine these community-size distributions instead of obtaining

analytical results (such as Conjecture 1) about the single-layer community-size dis-

tributions in the limit of infinitely many layers. Deriving such analytical results can

provide important insights into the behavior of community-assignment approaches,

which in turn can lead to the development of better-performing and more efficient

methods.
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CHAPTER 5

Detection of Hierarchical Core–Periphery

Structure in Temporal Networks

5.1 Introduction

As we discussed in Section 2.1, it is common in network analysis to study various

types of mesoscale structures [56]. In this chapter, we examine core–periphery struc-

ture, in which well-connected nodes (so-called “core” nodes) are connected densely to

each other and potentially densely connected to other nodes (so-called “peripheral”

nodes), which are connected sparsely to other nodes [12, 71, 87]. Core–periphery

structure has been studied in many time-independent networks in the past few

decades, leading to insights into topics such as social networks [26,84], academic net-

works [16, 86], economic networks [76, 85], transportation networks [45], and many

other areas. In many situations — including in the analysis of the spread of dis-

eases through face-to-face contacts [21], transportation systems [53], and legislation

cosponsorships [46,55] — it is important to consider relationships and/or interactions

that change with time. In such situations, one can study a temporal network [30–32].

In a temporal network, the entities in the network and/or the ties between them can

change with time. As we discussed in Section 2.2, one can study such a temporal

network using a multilayer-network representation [40]. Many approaches have been
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developed to study community structure in time-dependent networks [23, 68, 71, 89]

(as we mentioned in Section 4.1), but there are only a few studies of core–periphery

structure in multilayer networks. For example, Bergermann et al. used spectral

methods to identify core–periphery structure in multilayer networks [4, 5], Nie et

al. used a rich-club approach to identify core–periphery structure in multiplex net-

works [58], and Hashemi and Behrouz generalized the concept of k-cores to multiplex

networks [27].

In the present chapter, we study a hierarchical notion of core–periphery structure

in temporal networks (which we represent as multilayer networks). We generalize the

hierarchical core–periphery structure of Polanco and Newman [68] from ordinary net-

works (i.e., graphs) to temporal networks. This notion of hierarchical core–periphery

structure encompasses a rich variety of possible mesoscale structures, including ones

that are not nested. In a nested (i.e., onion-like) core–periphery structure [23], each

node of a network is part of exactly one group, with higher-numbered groups signi-

fying nodes that are deeper into a core. In such a setting, the probability that there

is an edge between two nodes depends on the lower of the two group assignments of

those nodes. By contrast, in the hierarchical core–periphery structure in [68], each

node of a network can be in several groups simultaneously. One determines the edge

probability between two nodes using the highest-numbered group that includes both

nodes. This hierarchical formulation allows the generation of networks with nested

structure, tree-like structure (where any two groups must either be disjoint or have

one be a strict subset of the other), and general non-nested mesoscale structures

(where the group assignments of nodes do not have to be nested in any way).1

1For illustrations of the types of structures that one can generate using this hierarchical core–
periphery structure, see Figure 1 of [68].
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To identify hierarchical core–periphery structure in temporal networks, we use

statistical inference. This makes our approach more computationally costly than

spectral methods to detect core–periphery structure, but it also yields several im-

portant benefits [66]. For example, the use of statistical inference guarantees that

posterior-sampling methods yield samples precisely from the specified posterior dis-

tribution in the limit as the number of nodes of a network goes to infinity. Indeed, in

this chapter, we prove in this limit that the stable distribution of a slightly-modified

version of the Markov-chain Monte Carlo (MCMC) approach that we use for sta-

tistical inference is the same as the desired posterior distribution. Additionally, in

contrast to many other approaches, such as non-inferential optimization approaches,

statistical-inference methods avoid identifying mesoscale structures in completely

random networks, which (by construction) arise from models without any mesoscale

structure [66].

After we discuss our approach and give reasons for various choices that we make,

we use it to study two real-world temporal networks. These two example networks

are a network of ties between terrorist organizations in the Indian states of Jammu

and Kashmir [77] and a network of co-appearances in the Luke Gospel [29]. For each

example, we show that the identified core–periphery structure is plausible.

This chapter proceeds as follows. In Section 5.2, we present the details of the

generative model that we use for statistical inference of hierarchical core–periphery

structure. In Section 5.3, we present the MCMC approach that we use to identify

such structure. In Section 5.4, we discuss the consequences of the choice of generative

model on the performance of our MCMC approach. In Section 5.5, we use our

statistical-inference approach to identify hierarchical core–periphery structure in two

real-world temporal networks. In Section 5.6, we conclude and discuss several future
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directions.

5.2 A Hierarchical Generative Model for Core–Periphery

Structure in Temporal Networks

As in [68], we think of core–periphery structure as a hierarchy with groups of nodes

that do not need to be nested. We allow each node-layer to be a member of each of

k groups, which we label with the indices 0, 1, . . . , k − 1. In our hierarchical core–

periphery setting, the probability of an edge between two nodes is determined by

the highest-numbered group that includes both nodes [68]. By contrast, in a nested

core–periphery setting [23], researchers typically require each node of a network to

be a member of exactly one group with indices in 0, 1, . . . , k− 1. In the nested core–

periphery setting, the probability that there is an edge between two nodes depends

on the lower of the two group assignments of the nodes.

To ensure that the hierarchical structure has a “base level”, we assume (as in [68])

that every node is in group 0. We define a set of indicator variables gr(i,ℓ), where

gr(i,ℓ) = 1 if node-layer (i, ℓ) is in group r and gr(i,ℓ) = 0 otherwise.

To generate a temporal network A given group assignments g, we use the model in

[68] independently for each layer. For each pair of node-layers (i, ℓ), (j, ℓ) in the same

layer, we place an edge between them independently with probability ω
(ℓ)
h((i,ℓ),(j,ℓ)) ∈

[0, 1], where h((i, ℓ), (j, ℓ)) is the highest common group that includes both nodes

(i.e., the largest r such that gr(i,ℓ) = gr(j,ℓ) = 1). Applying the argument in equations
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(1)–(3) from Section II of [68], we then have

P (A|ω, k, g) =
L∏

ℓ=1

k−1∏
r=0

[
(ω(ℓ)

r )m
(ℓ)
r (1− ω(ℓ)

r )t
(ℓ)
r −m

(ℓ)
r

]
,

where

t(ℓ)r =
∑

1≤i<j≤n

δr,h((i,ℓ),(j,ℓ))

is the number of node-layer pairs (i, ℓ), (j, ℓ) in layer ℓ that have highest common

group r and

m(ℓ)
r =

∑
1≤i<j≤n

A
(ℓ)
ij δr,h((i,ℓ),(j,ℓ))

is the number of such pairs that are adjacent to each other.

To avoid a dependence on the parameters ω
(ℓ)
r , we follow the approach in [68]. For

all r and ℓ, we assume that there is a uniform prior P(ω(ℓ)
r ) = 1. The computations

in equation (4) of [68] show that marginalizing according to these choices of prior

distributions yields

P(A|k, g) =
L∏

ℓ=1

k−1∏
r=0

m
(ℓ)
r !(t

(ℓ)
r −m

(ℓ)
r )!

(t
(ℓ)
r + 1)!

. (5.1)

We break the discussion of our model into two parts. In Section 5.2.1, we consider

a variant of our model in which we fix the number k of groups. In Section 5.2.2, we

remove this assumption and introduce our main model, in which the number k of

groups is unspecified.

5.2.1 Fixed Number of Groups

Suppose that we fix the number k of groups. To perform Bayesian inference on a tem-

poral network A to yield a posterior distribution P(g|A), we need a prior distribution
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P(g|k) for the group assignments of nodes. There are many possible choices, such as

a uniform distribution over group assignments (i.e., P(g|k) ∝ 1) for such a prior dis-

tribution. However, we showed in Section 4.3 in the context of community structure

that many common choices for this prior distribution, such as a uniform distribution

and generating g via a discrete-time Markov process, make it prohibitively unlikely

to obtain large or small groups, which typically is an undesirable situation. This, in

turn, impacts the accuracy of statistical inference of small and large groups.

To mitigate the group-size bias, we determine group assignments using a simi-

lar approach to the exchangeability-based community-evolution approach in Section

4.2.3.3. We start by selecting the group sizes for the first layer uniformly at ran-

dom. Given these group sizes, we choose the group assignments of nodes uniformly

at random from all group assignments with the chosen group sizes. In other words,

we choose the group assignments g(1) of the nodes in the first layer according to the

probability distribution

P (g(1)|k) =
k−1∏
r=1

(n1(g
r
(1)))!× (n− n1(g

r
(1)))!

(n+ 1)!
, (5.2)

where n1(g
r
(1)) is the number of nodes in layer 1 that have group-r indicator variables

of 1.

To generate each layer beyond the first one, we use the group assignments from
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the previous layer to generate those in the next layer via the probability distribution

P(gr(ℓ)|gr(ℓ−1)) =
1∏

s=0


1ns(g
r
(ℓ−1))

c
(ℓ)
r;ss


×
ˆ 1

0

pr;s,ℓ
ns(gr(ℓ−1)

)−c
(ℓ)
r;ss

pr;s,ℓ − 1

pr;s,ℓ
ns(gr(ℓ−1)

)+1 − 1
dpr;s,ℓ


,

(5.3)

where gr(ℓ) is the set of indicator variables of group r for all nodes in layer ℓ, the

quantity ns(g
r
(ℓ−1)) is the number of nodes in layer ℓ− 1 that have group-r indicator

variables of s, the quantity c
(ℓ)
r;ss is the number of nodes i such that gr(i,ℓ−1) = s and

gr(i,ℓ) = s, and where each pr;s,ℓ is the parameter of an independent geometric distri-

bution Geom(pr;s,ℓ) (see equation (4.16)).2 For notational convenience, we define

J(k1, k2) =

ˆ 1

0

xk1
x− 1

xk2+1 − 1
dx ,

as in (B.14). Using this notation, we can write (5.3) as

P(gr(ℓ)|gr(ℓ−1)) =
1∏

s=0


1ns(g
r
(ℓ−1))

c
(ℓ)
r;ss


× J(ns(g

r
(ℓ−1))− c(ℓ)r;ss, ns(g

r
(ℓ−1)))


. (5.4)

Finally, we set

P(g|k) = P(g(1))
L∏

ℓ=2

k−1∏
r=1

P(gr(ℓ)|gr(ℓ−1)) , (5.5)

2For a full discussion of the approach that we use to generate gr(ℓ) from gr(ℓ−1), see Section 4.2.3.3

and Appendix B.2.
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and we thereby obtain the prior distribution P(g|k). Using the notation

F (g|k) =
L∏

ℓ=2

k−1∏
r=1

P(gr(ℓ)|gr(ℓ−1)) , (5.6)

we write (5.5) as

P(g|k) = P(g(1)|k)F (g|k) . (5.7)

By Bayes’ rule,

P(g|A, k) = P(A|g, k)P(g|k)
P(A|k)

. (5.8)

Because we have expressions for P(A|g, k) and P(g|k) (and because P(A|k) ∝ 1), we

can use (5.8) to sample from the posterior distribution P(g|A, k).

5.2.2 Main Model: Unspecified Number of Groups

In our main model for hierarchical core–periphery structure, we suppose that the

number k of groups is unspecified. For this case, as in [68], we use a Poisson prior

distribution on k with mean 1. Namely,

P(k) =
e−1

(k − 1)!
. (5.9)

We then have

P(g, k|A) = P(k)P(g|A, k) . (5.10)

Using the expression (5.10), in Section 5.3, we derive our main MCMC algorithm

for sampling from the posterior distribution (5.10) and prove that the stationary

distribution of a slightly-modified version of this algorithm is the same as (5.10). In

Section 5.3.1.3, we discuss the required modifications of our main MCMC algorithm.
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5.3 Statistical-Inference Approach

To sample from the posterior distribution (5.10), we use an MCMC method that is

similar to the ones in [68].

In Sections 5.3.1, 5.3.2, and 5.3.3, we introduce our MCMC method (see Al-

gorithm 4). To prove that the stable distribution of a slightly-modified version of

Algorithm 4 is the same as the desired posterior distribution (5.10), we introduce

versions of Algorithm 4 that do not include certain types of moves and prove in-

termediate results involving their stable distributions. In Section 5.3.4, we consider

Algorithm 6, which is an MCMC algorithm for a fixed number of groups. In Section

5.3.5, we consider Algorithm 7, which is similar to Algorithm 4 but (1) allows the

number of groups to vary and (2) does not allow one class of moves that we consider

in Algorithm 4. In Section 5.3.6, we prove that the stable distribution of a slightly-

modified version of Algorithm 4 is the same as the desired posterior distribution

(5.10).

5.3.1 Our Main MCMC Algorithm

We begin by presenting the three types of MCMC moves in Algorithm 4.

5.3.1.1 Standard Moves

The first type of MCMC move, which we call a standard move (see Algorithm 1),

is a move that adds a node-layer to a group, removes a node-layer from a group, or

removes an empty group (i.e., a group that has no nodes). In this type of move, we

first uniformly randomly choose a group r and a layer ℓ. The specific move that we
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propose is different for the first layer ℓ = 1 and the other layers ℓ ≥ 2.

First consider layer ℓ = 1. With probability 1/2, we propose a move that adds

a node-layer in layer 1 to group r. With probability 1/2, we propose a move that

removes a node-layer in layer 1 from group r. If are choose to add a node-layer to a

group, we select a node-layer (i, 1) in layer 1 that is not in group r (i.e., gr(i,1) = 0)

uniformly at random from the set of all node-layers (i, 1) in layer 1 that are not in

group r. If all node-layers in layer 1 are already in group r, then we do nothing.

Analogously, if we choose to remove a node-layer from a group, we select a node-layer

(i, 1) in layer 1 that is currently in group r (i.e., gr(i,1) = 1) uniformly at random from

the set of all node-layers (i, 1) in layer 1 that are in group r. If no node-layers are in

group r, we reduce the number k of groups by 1 by removing group r and shifting

the labels of all groups above r down by 1. If group r has no node-layers in layer 1

but at least one node-layer in another layer, then we do nothing.

If layer ℓ ≥ 2, we choose a node i uniformly at random. If node-layer (i, ℓ) is in

group r, then we propose a move that removes it from group r. If node-layer (i, ℓ)

is not in group r, then we propose a move that adds it to group r. For ℓ ≥ 2, a

proposed move cannot remove a group.
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Algorithm 1 Proposal of a standard move

1. Choose a layer ℓ uniformly at random from 1, . . . , L.

2. Choose a group r uniformly at random from 1, . . . , k − 1.

3. If ℓ = 1:

(a) With probability 1/2, we choose to add a node-layer in layer 1 to group

r. With probability 1/2, we choose to remove a node-layer in layer 1 from

group r.

(b) If we choose to add a node-layer in layer 1 to group r:

i. If all node-layers (i, 1) in layer 1 are in group r:

A. Do nothing.

ii. Otherwise (i.e., if there is at least one node-layer in layer 1 that is not

in group r):

A. Choose a node-layer (i, 1) that is not in group r uniformly at

random from all node-layers (i, 1) that are not in group r.

B. Propose a move that adds (i, 1) to group r.
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Algorithm 1 Proposal of a standard move (continued)

3. (c) If we choose to remove a node-layer in layer 1 from group r:

i. If no node-layers (i, ℓ) are in group r:

A. Propose a move that removes group r and shifts the labels of all

groups above r down by 1.

ii. Otherwise, if no node-layers (i, 1) in layer 1 are in group r but group

r has at least one node-layer from another layer:

A. Do nothing.

iii. Otherwise (i.e., if group r has at least one node-layer from layer 1):

A. Choose a node-layer (i, 1) from group r uniformly at random from

all node-layers (i, 1) in group r.

B. Propose a move that removes (i, 1) from group r.

4. Otherwise (i.e., if ℓ ≥ 2):

(a) Choose a node i uniformly at random from 1, . . . , n.

i. If (i, ℓ) is in group r:

A. Propose a move that removes (i, ℓ) from group r.

ii. If (i, ℓ) is not in group r:

A. Propose a move that adds (i, ℓ) to group r.
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5.3.1.2 Group-Addition Moves

Our second type of MCMC move is a group-addition move (see Algorithm 2). This

type of move increases the number k of groups by 1.

Algorithm 2 Proposal of a group-addition move

1. Choose a group r uniformly at random from 1, . . . , k.

2. Propose a move that increases the labels of all groups r and higher by 1, creates

a new empty group with the label r, and increases the value of k by 1.

5.3.1.3 Multi-Node Moves

Our third type of MCMC move is a multi-node move (see Algorithm 3). This type

of move changes more than one group assignment at a time. For a layer ℓ and two

subsets G1 and G2 of the groups {1, . . . , k − 1}, we propose a new group assignment

g′ that satisfies

(g′)r(i,ℓ′) =


δG2,r , ℓ′ = ℓ and δG1,(i,ℓ′) = 1

δG1,r , ℓ′ = ℓ and δG2,(i,ℓ′) = 1

gr(i,ℓ′) , otherwise ,

(5.11)

where

δG,r =


1 , r ∈ G

0 , otherwise

and

δG,(i,ℓ) =


1 , gr(i,ℓ) = δG,r for all r ∈ {1, . . . , k − 1}

0 , otherwise .
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Algorithm 3 Proposal of a multi-node move

1. Select subsets G1 and G2 uniformly at random from the groups {1, . . . , k − 1}.

2. Choose a layer ℓ uniformly at random from 1, . . . , L.

3. Propose a move with a new group assignment g′ using (5.11).

As we discussed in Section 5.2.2, we need to slightly modify our main MCMC

algorithm (see Algorithm 4) to attain equality of the stationary distribution and the

desired posterior distribution (5.10). Specifically, we need to modify Algorithm 3

by choosing the layer ℓ uniformly from 2, . . . , L instead of from 1, . . . , L. In Section

5.3.6, we prove that the stationary distribution of the modified version of Algorithm

4 coincides with the desired posterior distribution (5.10) and discuss why we never-

theless use the unmodified version of Algorithm 4 to infer core–periphery structure.

5.3.2 Acceptance Probability

In Sections 5.3.1.1, 5.3.1.2, and 5.3.1.3, we discussed three types of MCMC moves.

In each step of our MCMC algorithm (see Algorithm 4), we propose a move of one of

these three types. After proposing a move from g, k to g′, k′, we need to determine

whether to accept or reject the move. Due to the design of our MCMC algorithm,

using the standard Metropolis–Hastings acceptance [70]

min

{
1,

P(A|g′, k′)P(g′|k′)
P(A|g, k)P(g|k)

}
(5.12)

would cause the stationary distribution of our Markov chain to differ from the desired

posterior distribution (5.10). Therefore, we slightly modify (5.12) and instead use
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the acceptance probability

α(g, k → g′, k′) = min

{
1,

P(A|g′, k′)F (g′|k′)
P(A|g, k)F (g|k)

}
, (5.13)

where we recall that F (g|k) is given by (5.6).

5.3.3 Statement of our Main MCMC Algorithm

Now that we have discussed the three types of MCMC moves (see Sections 5.3.1.1,

5.3.1.2, and 5.3.1.3) and the acceptance probability (see Section 5.3.2) of a move,

we now state Algorithm 4, which gives the MCMC approach that we use to identify

hierarchical core–periphery structure in temporal networks.

Let p ∈ [0, 1] denote the probability that a move is a multi-node move. We use

Algorithm 4 to sample from the posterior distribution (5.10) and identify hierarchical

core–periphery structure.
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Algorithm 4 Main MCMC algorithm

1. Propose a move:

(a) With probability p, propose a multi-node move (see Algorithm 3).

(b) Otherwise, with probability 1 − 1
2k(n+1)

, propose a standard move (see

Algorithm 1).

(c) Otherwise, propose a group-addition move (see Algorithm 2).

2. Accept the proposed move from g, k to g′, k′ with the acceptance probability

α(g, k → g′, k′) := min

{
1,

P(A|g′, k′)F (g′|k′)
P(A|g, k)F (g|k)

}
.

3. Otherwise, reject the proposed move.

5.3.4 MCMC Algorithm for a Fixed Number of Groups

As we discussed in the introduction of Section 5.3, we prove that the stationary

distribution of a slightly-modified version of Algorithm 4 is the same as the desired

posterior distribution (5.10) by proving similar results for intermediate algorithms

that build up to the main result. In this section, we consider a fixed number k of

groups. In this case, we use only standard moves (see Section 5.3.1.1) in our MCMC

algorithm.

Because we fix k, we slightly modify our algorithm for proposing a standard move

(see Algorithm 1). In this modified version of the algorithm, if we choose to remove

a node-layer in layer 1 and no node-layers are in group r, we do nothing (instead of

removing group r, as we did before). In Algorithm 5, we give our modified algorithm
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for proposing a standard move.

Algorithm 5 Proposal of a standard move when we fix the number of groups

1. Choose a layer ℓ uniformly at random from 1, . . . , L.

2. Choose a group r uniformly at random from 1, . . . , k − 1.

3. If ℓ = 1:

(a) With probability 1/2, add a node-layer in layer 1 to group r. With prob-

ability 1/2, remove a node-layer in layer 1 from group r.

(b) If we choose to add a node-layer in layer 1 to group r:

i. If all node-layers (i, 1) in layer 1 are in group r:

A. Do nothing.

ii. Otherwise (i.e., if there is at least one node-layer in layer 1 that is not

in group r):

A. Choose a node-layer (i, 1) that is not in group r uniformly at

random from all node-layers (i, 1) that are not in group r.

B. Propose a move that adds (i, 1) to group r.
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Algorithm 5 Proposal of a standard move when we fix the number of groups (con-

tinued)

3. (c) If we choose to remove a node-layer in layer 1 from group r:

i. If no node-layers (i, 1) in layer 1 are in group r:

A. Do nothing.

ii. Otherwise (i.e., if group r has at least one node-layer from layer 1):

A. Choose a node-layer (i, 1) that is in group r uniformly at random

from all node-layers (i, 1) that are in group r.

B. Propose a move that removes (i, 1) from group r.

4. Otherwise (i.e., if ℓ ≥ 2):

(a) Choose a node i ∈ {1, . . . , n}.

i. If (i, ℓ) is in group r:

A. Propose a move that removes (i, ℓ) from group r.

ii. If (i, ℓ) is not in group r:

A. Propose a move that adds (i, ℓ) to group r.

Because we fix the number k of groups, we slightly modify the acceptance prob-

ability (5.13). The acceptance probability of a move from g to g′ for this algorithm

is

α(g → g′) = min

{
1,

P(A|g′, k)F (g′|k)
P(A|g, k)F (g|k)

}
. (5.14)

In Algorithm 6, we give this algorithm for sampling from the posterior distribution

(5.8).
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Algorithm 6 MCMC algorithm for the case of a fixed number of groups

1. Propose a move:

(a) Propose a standard move (see Algorithm 5).

2. Accept the proposed move from g to g′ with the acceptance probability

α(g → g′) := min

{
1,

P(A|g′, k)F (g′|k)
P(A|g, k)F (g|k)

}
.

3. Otherwise, reject the proposed move.

We now show that the equilibrium distribution of this MCMC process is the

same as the desired posterior distribution P(g|A, k) that we stated in (5.8). To show

this, it is sufficient to show that the MCMC process satisfies ergodicity and detailed

balance [70]. To prove ergodicity, we need to show that one can access every state in

the system from every other state using a finite sequence of moves. To prove detailed

balance, we need to show that the mean rate of g → g′ moves equals the mean rate

of g′ → g moves at equilibrium. That is, we need to verify that

P(g|A, k)P(g → g′) = P(g′|A, k)P(g′ → g) . (5.15)

In Algorithm 6, ergodicity clearly holds because we can first remove all node-layers

from all groups and then re-add node-layers to attain any desired group assignment

g. We thus only need to prove that the MCMC process satisfies detailed balance.

To prove detailed balance, we need to verify (5.15). We write P(g → g′) = π(g →

g′)α(g → g′), where π is the probability of proposing a move and α is the probability
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of accepting it. This implies that equation (5.15) is equivalent to

P(g′|A, k)
P(g|A, k)

=
π(g → g′)α(g → g′)

π(g′ → g)α(g′ → g)
. (5.16)

Because P(g|A, k) = P(A|g,k)P(g|k)
P(A|k) =

P(A|g,k)F (g|k)P(g(1)|k)
P(A|k) by (5.8) and (5.7) and α(g →

g′) = min
{
1, P(A|g′,k)F (g′|k)

P(A|g,k)F (g|k)

}
by (5.13), equation (5.16) is equivalent to

P(A|g′, k)F (g′|k)P(g′(1)|k)
P(A|g, k)F (g|k)P(g(1)|k)

=
π(g → g′)P(A|g′, k)F (g′|k)
π(g′ → g)P(A|g, k)F (g|k)

,

which in turn is equivalent to

P(g′(1)|k)
P(g(1)|k)

=
π(g → g′)

π(g′ → g)
. (5.17)

We now show that (5.17) holds for a standard move g → g′ that adds node-layer

(i, 1) to group r. First, because P(g(1)|k) =
∏k−1

s=1
n
(1)
s !(n−n

(1)
s )!

(n+1)!
, we have

P(g′(1)|k)
P(g(1)|k)

=
k−1∏
s=1

n′
s
(1)!(n− n′

s
(1))!

n
(1)
s !(n− n

(1)
s )!

.

By adding a node-layer in layer 1 to group r, we obtain n′
r
(1) = n

(1)
r + 1 and n′

s
(1) =

n
(1)
s , which then yields

P(g′(1)|k)
P(g(1)|k)

=
n
(1)
r + 1

n− n
(1)
r

.

From Algorithms 5 and 6, the probability of proposing the move g → g′ is

π(g → g′) =
1

L
× 1

k − 1
× 1

2
× 1

n− n
(1)
r

.

Similarly, π(g′ → g) = 1
L
× 1

k−1
× 1

2
× 1

n
(1)
r +1

. Therefore,

π(g → g′)

π(g′ → g)
=
n
(1)
r + 1

n− n
(1)
r

=
P(g′(1)|k)
P(g(1)|k)

.
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The detailed-balance equation (5.17) is thus satisfied in this instance.

We now verify (5.17) for a standard move g → g′ that adds node-layer (i, ℓ) to

group r when ℓ ≥ 2. First, n′
r
(1) = n

(1)
r for all r (because adding a node-layer in layer

ℓ ≥ 2 does not affect the group sizes in layer 1). This yields

P(g′(1)|k)
P(g(1)|k)

= 1 .

From Algorithms 5 and 6, the probability of proposing the move g → g′ is

π(g → g′) =
1

L
× 1

k − 1
× 1

n
.

Similarly, π(g′ → g) = 1
L
× 1

k−1
× 1

n
, so

π(g → g′)

π(g′ → g)
= 1 =

P(g′(1)|k)
P(g(1)|k)

.

Consequently, the detailed-balance equation (5.17) is satisfied.

We omit the proofs of (5.17) for the cases where g → g′ removes a node-layer

in layer ℓ ≥ 1, as they are extremely similar to the arguments above. Now that

we have verified both ergodicity and detailed balance, we see that the equilibrium

distribution of Algorithm 6 is the same as the desired posterior distribution (5.8).

5.3.5 Intermediate Algorithm for a Variable Number of Groups

We now allow the number k of groups to vary, and we consider an MCMC algorithm

for sampling from the desired posterior distribution (5.10). In contrast to our main

algorithm (see Algorithm 4), this algorithm does not use multi-node moves (see

Section 5.3.1.3). The number of groups is allowed to vary, so we use our main

algorithms for proposing a standard move (see Algorithm 1) and for proposing a
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group-addition move (see Algorithm 2). We also again use the acceptance probability

α(g, k → g′, k′) = min

{
1,

P(A|g′, k′)F (g′|k′)
P(A|g, k)F (g|k)

}
that we specified previously in (5.13). In Algorithm 7, we give our MCMC algorithm

that samples from the desired posterior distribution (5.10) without using multi-node

moves.

Algorithm 7 MCMC algorithm with no multi-node moves for the case of a variable

number of groups

1. Propose a move:

(a) With probability 1− 1
2k(n+1)

, propose a standard move (see Algorithm 1).

(b) Otherwise, propose a group-addition move (see Algorithm 2).

2. Accept the proposed move from g, k to g′, k′ with acceptance probability

α(g, k → g′, k′) := min

{
1,

P(A|g′, k′)F (g′|k′)
P(A|g, k)F (g|k)

}
.

3. Otherwise, reject the proposed move.

Algorithm 7 is the same as Algorithm 4 except that it does not allow multi-node

moves.

We now show that the equilibrium distribution of this MCMC process is the same

as the desired posterior distribution P(g, k|A) (see (5.10)). As in the fixed-k case,

ergodicity clearly holds for this MCMC procedure. Therefore, it suffices to prove

detailed balance. However, in contrast to the fixed-k case, detailed balance holds

only in the limit n→ ∞. Following similar logic to the logic for (5.15)–(5.17) for the
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fixed-k case, to prove detailed balance for the variable-k case, we need to show that

P(g′(1), k
′)

P(g(1), k)
=
π(g, k → g′, k′)

π(g′, k′ → g, k)
. (5.18)

First suppose that k = k′, which occurs when g, k → g′, k′ is a standard move that

does not change the number of groups. Algorithms 5 and 1 have the same probability

of proposing a specific standard move, so the proposed-move probabilities π(g, k →

g′, k′) and π(g′, k′ → g, k) in Algorithm 7 are (aside from a factor of 1 − 1
2k(n+1)

)

the same as the probabilities π(g → g′) and π(g → g′), respectively, in Algorithm

6. Additionally, by the definition of conditional probability, P(g, k) ∝ P(g|k) and

P(g′, k′) ∝ P(g′|k′) with the same proportionality constant. The detailed-balance

result (5.17) for the fixed-k case then implies that

P(g′(1), k
′)

P(g(1), k)
=
π(g, k → g′, k′)

π(g′, k′ → g, k)
,

so the detailed-balance equation (5.18) holds for this case.

Now suppose that k′ ̸= k. We will show that detailed balance holds when g, k →

g′, k′ is a group-addition move. Because P(g(1)|k) =
∏k−1

r=1
n
(1)
r !(n−n

(1)
r )!

(n+1)!
and P(k) =

e−1

(k−1)!
, we obtain

P(g′(1), k
′)

P(g(1), k)
=

(k − 1)!
∏k

r=1
n′
r
(1)!(n−n′

r
(1))!

(n+1)!

k!
∏k−1

r=1
n
(1)
r !(n−n

(1)
r )!

(n+1)!

=
1

k(n+ 1)
.

From Algorithms 1, 2, and 7, the proposal probabilities π(g, k → g′, k′) and π(g′, k′ →

g, k) are

π(g, k → g′, k′) =
1

L
× 1

2k(n+ 1)
× 1

k
,

π(g′, k′ → g, k) =
1

L
×
(
1− 1

2(k + 1)(n+ 1)

)
× 1

k
× 1

2
,
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where the expression for π(g′, k′ → g, k) follows from the fact that g′, k′ → g, k must

be a standard move that removes a group. Therefore,

π(g, k → g′, k′)

π(g′, k′ → g, k)
=

1

k(n+ 1)
+ Θ

(
1

n2

)
.

Because P(g′,k′)
P(g,k) = 1

k(n+1)
, we have that

P(g′, k′)
P(g, k)

=
π(g, k → g′, k′)

π(g′, k′ → g, k)

as n→ ∞. Therefore, the detailed-balance equation (5.18) holds in the limit n→ ∞.

As with the fixed-k case (see Section 5.3.4), we omit the proof of detailed balance

when g, k → g′, k′ is a standard move that removes a group, as it is extremely similar

to the proof of detailed balance when g, k → g′, k′ is a group-addition move.

5.3.6 Revisiting our Main MCMC Algorithm

Although we proved in Section 5.3.5 that the stationary distribution of the MCMC

approach in Algorithm 7 is the same as the desired posterior distribution (5.10)

in the limit n → ∞, in practice, this approach often does not lead to the correct

identification of core–periphery structure in temporal networks. This occurs because

the posterior distribution P(g|A) from which we sample using this approach has

many local maxima, so the algorithm often becomes stuck at suboptimal maxima.

In Figure 4.1, we illustrate the behavior that we commonly see at such suboptimal

maxima.
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(a) Actual core–periphery structure

(b) Illustration of a local maximum

Figure 5.1: Heat maps of (a) an example of actual core–periphery structure and (b)

an illustration of the permuted group structure that we commonly observe at local

maxima of P(g|A) for a 100-node network with 5 layers. Each rectangle in a heat

map corresponds to one node-layer (i, ℓ). The dark blue rectangles signify the value

g1(i,ℓ) = 1, and the light blue rectangles signify the value g1(i,ℓ) = 0.

In this example, we consider a network with 100 nodes and 5 layers. We observe

that the group structure of the local maximum is permuted from the actual core–

periphery structure in some layers. Specifically, for the nodes in layers ℓ = 2 and

ℓ = 3, the group assignment g coincides with the group assignment of the actual core–

periphery structure if we swap the values 0 and 1 of the group-assignment indicator

variables g1(i,ℓ). If g1(i,ℓ) is initially equal to 1, then g1(i,ℓ) becomes 0 after the swap; if
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g1(i,ℓ) = 0, then g1(i,ℓ) becomes 1 after the swap.

To mitigate this issue, we incorporate multi-node moves into our main MCMC

algorithm (see Algorithm 4). In Section 4.4.3, we showed that including multi-node

moves in posterior sampling methods for community detection in temporal networks

greatly reduces the frequency at which such methods get stuck at suboptimal local

maxima where the inferred community assignments become permuted from the cor-

rect community assignments in some layers. This observation motivates our choice

to include multi-node moves in our main MCMC algorithm.

We now prove that the stationary distribution of our main algorithm (see Al-

gorithm 4) coincides with the desired posterior distribution (5.10). Recall that Al-

gorithm 4 is the same as Algorithm 7 except for the addition of multi-node moves.

Including this additional type of move does not impact the detailed-balance calcu-

lations in Section 5.3.5 (aside from an additional factor of 1 − p in all terms), so it

suffices to show the detailed-balance equation

P(g′(1), k
′)

P(g(1), k)
=
π(g, k → g′, k′)

π(g′, k′ → g, k)
(5.19)

when g, k → g′, k′ and g′, k′ → g, k are multi-node moves. From Algorithms 3 and 4,

we have

π(g, k → g′, k′) =
1

L
× p× 1

2k−1
× 1

2k−1
,

π(g′, k′ → g, k) =
1

L
× p× 1

2k′−1
× 1

2k′−1
.

A multi-node move does not change the number of groups, so k′ = k. Therefore,

π(g, k → g′, k′) = π(g′, k′ → g, k). Recall that we define g′ by equation (5.11) for a

multi-node move g, k → g′, k′. From this definition, we see for ℓ ∈ {2, . . . , L} that g
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and g′ have the same group assignments in the first layer, so

P(g′(1), k
′) = P(g(1), k) .

Therefore, the detailed-balance equation (5.19) holds for multi-node moves g, k →

g′, k′ for ℓ ∈ {2, . . . , k}. However, because a multi-node move for ℓ = 1 nearly always

changes the group sizes in layer 1, the detailed-balance equation (5.19) does not hold

for such a move. If we choose to restrict Algorithm 3 to allow multi-node moves only

in layers ℓ ∈ {2, . . . , k} (as we discussed previously in Section 5.3.1.3), the stationary

distribution of our main algorithm (see Algorithm 4) would be the same as the desired

posterior distribution (5.10). However, this choice would cause our MCMC algorithm

to become stuck at local extrema with permuted group assignments in the first layer.

This would significantly decrease the performance of our approach. Therefore, we

do not do this, and we instead allow multi-node moves in all layers.

5.3.7 Computation of Acceptance Probability

We now discuss how we compute the acceptance probability (5.13). Recall from

(5.13) that we must compute

α(g, k → g′, k′) = min

{
1,

P(A|g′, k)F (g′|k)
P(A|g, k)F (g|k)

}
.
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It is straightforward to compute P(A|g, k) from (5.1). To compute F (g|k), recall

from (5.6) and (5.4) that

P(gr(ℓ)|gr(ℓ−1)) =
1∏

s=0


1n(ℓ−1)

r;s

c
(ℓ)
r;ss


× J(ns(g

r
(ℓ−1))− c(ℓ)r;ss, ns(g

r
(ℓ−1)))


,

where

F (g|k) =
L∏

ℓ=2

k−1∏
r=1

P(gr(ℓ)|gr(ℓ−1))

and

J(k1, k2) =

ˆ 1

0

xk1
x− 1

xk2+1 − 1
dx .

As in Section 4.4.1, to minimize computational cost, we precompute

J(k1, k2) =

ˆ 1

0

xk1
x− 1

xk2+1 − 1
dx

for all k1 and k2 such that 0 ≤ k1 ≤ k2 ≤ n using the procedure in Section B.2.1.

This precomputation allows us to avoid needing to repeatedly recompute J(k1, k2)

when computing (4.33).3 We also use analogous arguments to those in equations

(4.34)–(4.36) to avoid directly calculating terms in (5.6) that will cancel out in the

expression (5.13) for the acceptance probability α(g, k → g′, k′). This reduces the

3If n is sufficiently large, the integral J(k1, k2) can become very small, which causes finite-
precision issues and thereby leads to inaccurate results when computing J(k1, k2) using (B.14). To
mitigate this problem, we use the approximation

J(k1 + 1, k2)

J(k1, k2)
≈ 1

for large k1 and k2. In particular, for fixed k2, we set the computed values of J(k1, k2) to exp(−16)
for all k1 ≥ k′1, where k′1 is the smallest k′1 such that J(k′1, k2) < exp(−16).
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number of times that we need to evaluate J(k1, k2). Our implementation of Algorithm

4 is available at https://github.com/tfaust0196/mhCorePeriphery.

5.4 Discussion of our Group-Assignment Approach

We are equipped to discuss an additional rationale behind our choice of group-

assignment probability distribution P(g|k) now that we have introduced Algorithm

4 (see Section 5.3.3, which we use to sample from the desired posterior distribution

P(g, k|A) in (5.10). Recall from Algorithm 4 and Section 5.3.2 that the acceptance

probability α(g, k → g′, k′) is

α(g, k → g′, k′) = min

{
1,

P(A|g′, k′)F (g′, k′)
P(A|g, k)F (g, k)

}
. (5.20)

By (5.2) and (5.5), we generate the group assignments for each group independently.

Therefore, if we propose a group-addition move that adds an empty group r, the

acceptance probability becomes

P(gr(i,ℓ) = 0 for all i ∈ {1, . . . , n} and ℓ ∈ {1, . . . , L}) .

Consequently, if a generative model is biased against groups with few node-layers,

then the acceptance probability (5.20) is very small. This, in turn, causes an associ-

ated statistical-inference method to underestimate the number of groups.

For a monolayer network (i.e., an ordinary graph), one can resolve the above issue

by generating the group sizes uniformly at random. With this choice, the probability

of generating an empty group is 1
n+1

. However, for a temporal network, it is difficult

to choose a generative model that is not biased against groups with few node-layers.

In Section 4.3, we showed that the commonly-used approach (see, e.g., [1,25,50,88]) of
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evolving group assignments via a discrete-time Markov process (where one bases the

group assignment of a node in a given layer on its group assignment in the previous

layer) leads to an increased bias against small and large groups in later layers. This, in

turn, leads to a strong bias of a generative model against small and large groups in a

network. In our context of hierarchical core–periphery structure, this bias makes the

acceptance probability (5.20) of a group-addition move prohibitively small, leading

to an underestimation in the number of groups.

Our novel group-assignment approach is much less biased against small and large

groups than such Markov-process approaches. This is the case because our approach

generates the group assignments for a layer based on all of the previous group as-

signments in the previous layer, instead of using a discrete-time Markov process to

evolve the group assignments of each node individually. (See Sections 4.2.3.3 and 4.3

for more information.) Therefore, our method is much less likely to underestimate

the number of groups in a network.

This discussion illustrates the practical importance of carefully considering po-

tentially undesirable assumptions of the generative models in statistical-inference

methods. See Chapter 4 for further discussion and examples in the context of com-

munity structure.

5.5 Application to Real-World Networks

In this section, we apply our hierarchical core–periphery detection method to two

real-world networks and discuss the structures that we identify in these networks.

In Section 5.5.1, we consider a network of terrorists in the Indian states of Jammu

and Kashmir. In Section 5.5.2, we consider a network of co-appearances in the Luke
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Gospel.

5.5.1 Jammu–Kashmir Terrorist Network

We first apply our method to a network of links between terrorist organizations in

the Indian states of Jammu and Kashmir from 2000 to 2003 [77]. This temporal

network consists of n = 34 nodes (which represent terrorist organizations) and L = 4

layers (which represent years). Applying our hierarchical core–periphery detection

method to this network yields k = 2 groups and the core–periphery structure in

Figure 5.2. To generate the core–periphery structure in Figure 5.2, we perform 5

runs of 106 steps of our main MCMC algorithm (see Algorithm 4) with the number

k of groups initialized to 4, the probability p of a multi-node move set to 10−3, and

the initial group assignments selected uniformly at random for each run. We then

save the output group assignments every 104 steps. For each node-layer (i, ℓ), we

set the group assignment for (i, ℓ) to be the most frequent group assignment among

each of the saved group assignments (across all runs).
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Figure 5.2: The inferred core–periphery structure in the Jammu–Kashmir terrorist

network. The dark blue rectangles signify the value g1(i,ℓ) = 1, and light blue rectan-

gles signify the value g1(i,ℓ) = 0. The horizontal axis indicates years and the vertical

axis indicates terrorist organizations.

To demonstrate that the detected core–periphery structure is reasonable, we plot

heat maps (see Figure 5.3) of the adjacency matrices A(ℓ) for each layer ℓ. In these

heat maps, we permute the rows and columns so that all node-layers (i, ℓ) with

g1(i,ℓ) = 1 preferentially occur earlier. We also include a dividing line between the

node-layers with g1(i,ℓ) = 1 and the node-layers with g1(i,ℓ) = 0. In Figure 5.3, we

show these heat maps, and we can see that the node-layers with g1(i,ℓ) = 1 (i.e., the

core node-layers) are densely connected to other nodes with g1(i,ℓ) = 1 and that the

node-layers with g1(i,ℓ) = 0 (i.e., the peripheral node-layers) are sparsely connected to
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all other node-layers.

(a) Layer 1 (year 2000) (b) Layer 2 (year 2001)

(c) Layer 3 (year 2002) (d) Layer 4 (year 2003)

Figure 5.3: Permuted adjacency matrices to illustrate the inferred core–periphery

structure in the Jammu–Kashmir terrorist network. We show (a) layer 1 (the year

2000), (b) layer 2 (the year 2001), (c) layer 3 (the year 2002), and (d) layer 4 (the

year 2003).

5.5.2 Literary Co-Appearance Network

We also apply our method to a network of co-appearances in the Luke Gospel [29].

This temporal network consists of n = 76 nodes (which represent characters) and
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L = 5 layers (which represent non-overlapping ranges of 4 consecutive chapters). We

place an edge between two nodes in a given layer if the two associated characters

encounter each other in those chapters. As in Section 5.5.1, we perform 5 runs of 106

steps of our main MCMC algorithm (see Algorithm 4) with the number k of groups

initialized to 4, the probability p of a multi-node move set to 10−3, and the initial

group assignments selected uniformly at random for each run. We then save the

output group assignments every 104 steps. In contrast to the results from Section

5.5.1, the inferred group assignments differ greatly between runs. Therefore, unlike

for the Jammu–Kashmir terrorist network, we cannot reasonably choose to set the

group assignment for each node-layer (i, ℓ) to be the most frequent group assignment

across all runs.

One of the reasons that different runs yield different group assignments is that

group assignments are permuted between layers in two of the five runs. In Figure

5.4, we illustrate this with an example of such a run.
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Figure 5.4: The inferred core–periphery structure from one run of Algorithm 4 ap-

plied to the Luke Gospel literary co-appearance network. The light blue rectangles

signify the value g1(i,ℓ) = 1, and the dark blue rectangles signify the value g1(i,ℓ) = 0.

The horizontal axis indicates non-overlapping ranges of 4 consecutive chapters and

the vertical axis indicates characters.

Recall from Section 5.3.6 that we commonly observe permutations of group as-

signments between layers in local maxima of the MCMC algorithm without multi-

node moves. This suggests that multi-node moves are less effective at avoiding such

extrema for the Luke Gospel literary co-appearance network than for the Jammu–

Kashmir terrorist network. We do not have an explanation for why multi-node moves

are less effective for this example. However, the inferred core–periphery structure for

each of the layers appears to be plausible. When we permute the adjacency matri-
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ces according to the core–periphery structure in Figure 5.4 (as in Section 5.5.1), the

densities of the edges between node-layers depend on the groups that the node-layers

are in.

In runs where group assignments are not permuted between layers, we detect

reasonable core–periphery structure. In particular, one of the runs of our core–

periphery detection method on the Luke Gospel literary co-appearance network yields

k = 3 groups and the core–periphery structure in Figure 5.5. Observe that the group

assignments are not permuted between layers (except possibly for the last layer).
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Figure 5.5: The inferred core–periphery structure from one run of Algorithm 4 ap-

plied to the Luke Gospel literary co-appearance network. The light blue rectangles

signify the values g1(i,ℓ) = 0 and g2(i,ℓ) = 0, the dark blue rectangles signify the values

g1(i,ℓ) = 1 and g2(i,ℓ) = 0, the light purple rectangles signify the values g1(i,ℓ) = 0 and

g2(i,ℓ) = 1, and the dark purple rectangles signify the values g1(i,ℓ) = 1 and g2(i,ℓ) = 1.

The horizontal axis indicates non-overlapping ranges of 4 consecutive chapters and

the vertical axis indicates characters.

To demonstrate that the detected core–periphery structure in Figure 5.5 is rea-

sonable, we plot heat maps (see Figure 5.6) of the adjacency matrices A(ℓ) for each

layer ℓ. In these heat maps, we permute the rows and columns so that all node-layers

(i, ℓ) with g1(i,ℓ) = 1 and g2(i,ℓ) = 1 appear earliest, followed by node-layers (i, ℓ) with

g1(i,ℓ) = 0 and g2(i,ℓ) = 1, node-layers (i, ℓ) with g1(i,ℓ) = 1 and g2(i,ℓ) = 0, and finally
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node-layers (i, ℓ) with g1(i,ℓ) = 0 and g2(i,ℓ) = 0. We observe that the densities of the

edges between node-layers depend on the groups that the node-layers are in. For

example, in layers 2–4, node-layers with group assignments g1(i,ℓ) = 1 and g2(i,ℓ) = 0

tend to be densely connected to node-layers with group assignments g1(i,ℓ) = 0 and

g2(i,ℓ) = 0 but sparsely connected to node-layers with group assignments g1(i,ℓ) = 1

and g2(i,ℓ) = 1. However, the validity of the inferred core–periphery structure is less

evident than the inferred core–periphery structure of the Jammu–Kashmir terrorist

network. We hypothesize that this is because the Luke Gospel literary co-appearance

network is less dense than the Jammu–Kashmir terrorist network.
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(a) Layer 1 (b) Layer 2

(c) Layer 3 (d) Layer 4

(e) Layer 5

Figure 5.6: Permuted adjacency matrices to illustrate the inferred core–periphery

structure in the Luke Gospel literary co-appearance network. We show (a) layer 1,

(b) layer 2, (c) layer 3, (d) layer 4, and (e) layer 5.
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5.6 Conclusions and Discussion

We proposed a method to identify hierarchical core–periphery structure in temporal

networks. We applied this method to two real-world networks and obtained reason-

able inferred structures when our MCMC method converged.

By using the group-evolution probability distribution from Section 4.2.3.3 (in-

stead of a group-evolution probability distribution that is based on a discrete-time

Markov process), our Markov-chain Monte Carlo (MCMC) approach for statistical

inference is able to mitigate the underestimation of the number of groups in net-

works in the detection of hierarchical core–periphery structure. Additionally, by

using multi-node moves, we sped up the convergence to the inferred core–periphery

structure.

There are a variety of ways to build on our work. The primary weakness of our

approach is the high computational cost of each iteration in our MCMC approach,

which (despite the use of multi-node moves to reduce the number of iterations to

achieve convergence) makes it prohibitive to apply our method to networks with

many nodes or layers. Therefore, it is important to develop and implement more

computationally efficient methods to identify hierarchical core–periphery structure

in temporal networks and more generally in multilayer networks.

We hypothesized in Section 5.5.2 that our method identifies hierarchical core–

periphery structure less accurately for sparse networks than for dense networks. It

is important to examine the peformance of our method on synthetic networks with

different densities to better understand the effect of density on it. Finally, we empha-

size that there have been very few studies of core–periphery structure in temporal

and multilayer networks — a situation that contrasts with the voluminous analysis
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of temporal and multilayer community structure [33, 72] — and such efforts deserve

more attention. We expect that such studies will yield both theoretical and practical

insights.
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CHAPTER 6

Conclusion

6.1 Summary

One of the fundamental areas of network science is the algorithmic detection of

mesoscale structures, which involve groups of nodes that are larger than a sin-

gle node but smaller than an overall network [56]. There have been a variety

of approaches have been developed to detect mesoscale structures, including opti-

mization of objective functions [2, 51, 54], non-negative matrix and tensor factor-

ization [17, 24, 74], information-theoretic methods (such as ones that minimize de-

scription length) [67, 75, 78], local methods [34, 37, 47], and spectral methods [4, 5].

In this thesis, we analyzed techniques for statistical inference of mesoscale struc-

tures [68, 81, 89]. Statistical-inference approaches have a variety of favorable prop-

erties, including convergence guarantees and better abilities than other methods at

avoiding overfitting [66].

When applying statistical inference to network applications, it is important to

use a generative model that is based on realistic assumptions [66]. In this thesis, we

illustrated the effects of unrealistic generative models on the detection of mesoscale

structures, and we developed an approach that mitigates them. We demonstrated

(see Section 4.4.3) that biases against communities with large or small numbers
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of nodes cause methods to infer community structure less accurately in networks

with small or large communities. We also demonstrated (see Section 5.4) that biases

against groups without any node-layers cause our multilayer core–periphery detection

method to greatly underestimate the number of mesoscale groups in a network. Such

examples illustrate the importance of carefully evaluating the behavior of generative

models.

When performing statistical inference in temporal networks, which change with

time, using multi-node moves can can yield significant improvement in the perfor-

mance of inference methods. For example, in Section 4.4.3, we saw that multi-node

moves greatly improve the performance of Gibbs sampling for several community-

detection approaches. Analyzing the behavior at the local extrema that we obtained

from unmodified Gibbs sampling allowed us to effectively employ multi-node moves.

We were able to understand the behavior at local extrema by applying unmodified

Gibbs sampling to networks with known ground-truth mesoscale structure. We rec-

ommend such an approach when possible, as it is much simpler to identify patterns

in local extrema when they can be compared with a known ground truth.

6.1.1 Future Directions

There are many viable ways to build on our work. For example, one can improve the

running time per iteration of our statistical-inference methods, modify our generative

models to incorporate more previous layers when generating the community or other

group assignments for a given layer, and apply similar statistical-inference methods

to other types of mesoscale structure. We now discuss each of these possible future

directions in more detail.
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First, although multi-node moves improve the convergence behavior of both

our Gibbs-sampling approach for community detection (see Section 4.4.1) and our

MCMC approach for core–periphery detection (see Section 5.3.1), the iterations of

each method are computationally costly. Consequently, it is time-consuming to apply

our methods to networks with many nodes or many layers. An improvement in the

running time of such methods — either through more efficient implementations of

our existing algorithms or through the creation of new and more efficient algorithms

— would make it possible to apply our approaches to a wider variety of networks.

Second, our generative models for community structure and core–periphery struc-

ture assume that the group assignments for a given layer depend only on those in the

previous layer. This choice is necessary for our statistical-inference methods to be

computationally tractable. However, such models are somewhat unrealistic. If one is

able to devise tractable generative models that allow more general group evolution,

such that group assignments in a layer depend on more than just the previous layer,

it would likely lead to more realistic inference results.

Third, although this thesis focused on the application of statistical-inference

methods to community detection and core–periphery detection in temporal net-

works, there are many other important types of mesoscale structure for which in-

ference methods have been considered sparingly or not at all. One example of such

a mesoscale structure is a “ranked community”, which is a subset of nodes in a di-

rected network whose edge directions are biased according to some hierarchy [44].

The application of inference methods to identify this and other structures — such

as role structures [73], motifs [52,62], and others — would improve understanding of

these structures and hence yield insights into a variety of complex systems, such as

faculty hiring networks [82], transaction networks [41], and biological networks [48].
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APPENDIX A

Table of Commonly-Used Notation

In this appendix, we give a table (see Table A.1) of commonly-used notation. Each

entry of this table includes the notation, an accompanying short definition, and a

location of the full definition.

Table A.1: Table of commonly-used notation.

Notation Short Definition Chapter, Section,

or Equation

n Number of nodes in a network Chapter 3

L Number of layers in a temporal network Chapter 3

i, j Indices of specific nodes Chapter 3

ℓ Index of a specific layer Chapter 3

(i, ℓ1), (j, ℓ2) Indices of specific node-layers Chapter 3

A Adjacency structure of a network Chapter 3

A(ℓ) Adjacency matrix of layer ℓ in a temporal

network

Chapter 3

k Number of communities or other groups Section 4.2.1 and

Section 5.2

g(i,ℓ) Community assignment of node-layer (i, ℓ) Section 4.2.1
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Notation Short Definition Chapter, Section,

or Equation

gr(i,ℓ) Group-assignment indicator variable of

node-layer (i, ℓ) and group r

Section 5.2

g(ℓ) Set of community assignments of all node-

layers in layer ℓ

Section 4.2.1

gr(ℓ) Set of group-assignment indicator variables

of all node-layers in layer ℓ and group r

Section 5.2.1

h(((i, ℓ), (j, ℓ)) Highest common group of node-layers (i, ℓ)

and (j, ℓ)

Section 5.2

Dir(γ) Dirichlet distribution with parameters γ =

(γ1, . . . , γr)

Section 4.2.2.2

Markov({K(ℓ)}) Markov process with transition kernels

{K(ℓ)}

Section 4.2.3.2

Geom(n, p) Modified geometric distribution with pa-

rameters n and p

Equation (4.16)

Ck
n Set of weak compositions of n with k parts Section 4.2.3.3

c Vector of community sizes Section 4.2.3.3

G(c) Set of all community assignments for which

community r has size cr for each

r ∈ {1, . . . , k}

Section 4.2.3.3

J(k1, k2)
´ 1
0
xk1 x−1

xk2+1−1
dx Equation (B.12)

∆k−1
{
(v1, . . . , vk)

T |
∑k

r=1 vr = 1
}
∩ [0, 1]k Equation (4.8)
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APPENDIX B

Expressions for the Community-Assignment

Probabilties

In this appendix, we derive closed-form expressions for the community-assignment

probability distributions P(g) for the Bazzi et al. approach [1] (see Section 4.2.3.2)

and our exchangeability-based approach (see Section 4.2.3.3). We use these expres-

sions in the Gibbs-sampling procedures that we described in Section 4.4.1.

B.1 Closed-Form Expression for P(g) for the Bazzi et al. Ap-

proach

Recall from Section 4.2.3.2 that the Bazzi et al. approach samples community as-

signments g via the discrete-time Markov process (4.12). This Markov process is

π ∼ Dir(γ) ,

g(i,1) | π ∼ π ,

{g(i,ℓ)}Lℓ=2 |α,K ∼ Markov
({
αℓI + (1− αℓ)K

(ℓ)
})
.
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where γ = (1, . . . , 1) and α = (α2, . . . , αL). In the Bazzi et al. approach,

αℓ ∼ Unif(0, 1) ,

κ(ℓ) ∼ Dir(µ(ℓ)) ,

K(ℓ)
s∗ = κ(ℓ) ,

where we also assume that µ(ℓ) = (1, . . . , 1) for each layer ℓ ∈ {2, . . . , L}.

Because we generate {g(i,ℓ)}Lℓ=1 via a discrete-time Markov process, the community

assignment of a node in a given layer depends only on its community assignment in

the previous layer. Therefore,

P(g) = P(g(1))
L∏

ℓ=2

P(g(ℓ)|g(ℓ−1)) (B.1)

and

P(g(ℓ)|g(ℓ−1), K, α) =
n∏

i=1

P
(
g(i,ℓ)

∣∣∣g(i,ℓ−1), K, α
)
. (B.2)

To derive a closed-form expression for P(g), it suffices to derive closed-form expres-

sions for P(g(1)) and P(g(ℓ)|g(ℓ−1)).

Because the procedure

π ∼ Dir(γ) ,

g(i,1)|π ∼ π ,

for sampling g(1) is identical to the nodewise community-assignment approach for

monolayer networks that we discussed in Section 4.2.2.2, it is equivalent to sample

g(1) using a uniform distribution on community sizes. Namely, we first choose the

sizes n1, . . . , nk of communities 1, . . . , k uniformly at random from the set

{(n1, . . . , nk)|
∑k

i=1 ni = n} ∩ {0, . . . , n}k of ordered pairs of k non-negative integer
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elements that sum to n, and we then choose g(1) uniformly at random from the set

of all community assignments with ni nodes in community i for all i ∈ {1, . . . , k}.

Therefore,

P(g(1)) =
1(

k+n−1
n

) n1(g(1))!× · · · × nk(g(1))!

n!
, (B.3)

where we recall that nr(g(1)) is the number of times that r appears in g(1).

To derive a closed-form expression for P(g(ℓ)|g(ℓ−1)), we recall from (4.11) that

P(g(i,ℓ) = r|g(i,ℓ−1) = s, α,K) = αℓ δrs + (1− αℓ)K
(ℓ)
sr .

It thus follows directly from (B.2) that

P(g(ℓ)|g(ℓ−1), K, α) =
n∏

i=1

P
(
g(i,ℓ)

∣∣∣g(i,ℓ−1), K, α
)

=
n∏

i=1

(
αℓ δg(i,ℓ),g(i,ℓ−1)

+ (1− αℓ)K
(ℓ)
g(i,ℓ−1)g(i,ℓ)

)
.

Finally, because

αℓ ∼ Unif(0, 1) ,

κ(ℓ) ∼ Dir(µ(ℓ)) ,

K(ℓ)
s∗ = κ(ℓ) ,

with µ(ℓ) = (1, . . . , 1) for each ℓ ∈ {2, . . . , L}, we have

P(g(ℓ)|g(ℓ−1)) =

˙
[0,1]×∆k−1

n∏
i=1

(
αℓ δg(i,ℓ),g(i,ℓ−1)

+ (1− αℓ)κ
(ℓ)
g(i,ℓ)

)
dµ(αℓ, κ

(ℓ)) ,

(B.4)

where we recall from (4.8) that ∆k−1 = {(v1, . . . , vk)|
∑k

i=1 vi = 1} ∩ [0, 1]k and µ is

the product measure of a uniform measure on [0, 1] and a uniform measure on ∆k−1.

(The measure is uniform because µ(ℓ) = (1, . . . , 1).) Combining equation (B.4) with

(B.1) and (B.3) yields a closed-form expression for P(g).
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B.2 Closed-Form Expression for P(g) for our Exchangeability-

Based Approach

Recall from Section 4.2.3.3 that our exchangeability-based approach samples com-

munity assignments g via the process in (4.14) and (4.17). For each r ∈ {1, . . . , k},

we sample g′
r,ℓ according to the following procedure:

π ∼ Dir(γ) ,

g(i,1)|π ∼ π ,

pr,ℓ ∼ Unif(0, 1) ,

c(ℓ)rr | pr,ℓ ∼ Geom(nr(g(ℓ−1)), pr,ℓ) ,

c
(ℓ)
r,−r | c(ℓ)rr ∼ Unif

(
Ck−1

nr(g(ℓ−1))−c
(ℓ)
rr

)
,

g′
r,ℓ | c(ℓ)r ∼ Unif

(
G(ℓ−1)
r (c(ℓ)r )

)
,

where we recall that γ = (1, . . . , 1). We then set g(ℓ) =
⊕k

r=1 g
′
r,ℓ. The above

procedure implies that the community assignments in a given layer depend only on

the community assignments in the previous layer. We thus obtain

P(g) = P(g(1))
L∏

ℓ=2

P(g(ℓ)|g(ℓ−1)) , (B.5)

which takes the same form as (B.1). Additionally, because the procedure to sample

g(1) and the choice of γ is the same as in the Bazzi et al. [1] approach, we obtain

(using the same logic as in Appendix B.1) the expression

P(g(1)) =
1(

k+n−1
n

) n1(g(1))!× · · · × nk(g(1))!

n!
, (B.6)

where we recall that nr(g(1)) is the number of times that r appears in g(1).
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To derive a closed-form expression for P(g(ℓ)|g(ℓ−1)), we first note that we obtain

the set g(ℓ) of community assignments for layer ℓ by concatenating g′
r,ℓ, which is the

set of community assignments for layer ℓ when restricted to nodes in community r

in layer ℓ− 1 for each r ∈ {1, . . . , k}. Therefore,

P(g(ℓ)|g(ℓ−1)) =
k∏

r=1

P(g′
r,ℓ) . (B.7)

Recall that we generate g′
r,ℓ using the procedure

c(ℓ)rr | pr,ℓ ∼ Geom(nr(g(ℓ−1)), pr,ℓ) ,

c
(ℓ)
r,−r | c(ℓ)rr ∼ Unif

(
Ck−1

nr(g(ℓ−1))−c
(ℓ)
rr

)
,

g′
r,ℓ | c(ℓ)r ∼ Unif

(
G(ℓ−1)
r (c(ℓ)r )

)
.

By the definition (4.16) of the probability mass function of Geom(nr(g(ℓ−1)), pr,ℓ), we

have

P(c(ℓ)rr |pr,ℓ) = p
nr(g(ℓ−1))−c

(ℓ)
rr

r,ℓ

pr,ℓ − 1

p
nr(g(ℓ−1))+1

r,ℓ − 1
. (B.8)

Because c
(ℓ)
r,−r|c

(ℓ)
rr ∼ Unif

(
Ck−1

nr(g(ℓ−1))−c
(ℓ)
rr

)
, a combinatorial argument combined with

the definition of weak compositions implies that

P(c(ℓ)r,−r|c(ℓ)rr ) =
1(nr(g(ℓ−1))−c

(ℓ)
rr +k−2

nr(g(ℓ−1))−c
(ℓ)
rr

) . (B.9)

Recall that we sample g′
r,ℓ|c

(ℓ)
r ∼ Unif(G(c(ℓ)r )). It follows from a combinatorial

argument along with the definition of G (see Section 4.2.3.3) that

P(g′
r,ℓ|c(ℓ)r ) =

1(
nr(g(ℓ−1))
cr,1,...,cr,k

) , (B.10)
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where
(

n
k1,...,kj

)
= n!

k1!k2!...kj !
and

∑j
i=1 ki = n. Combining (B.8), (B.9), and (B.10)

yields

P(g′
r,ℓ|pr,ℓ) = P(c(ℓ)rr |pr,ℓ)P(c

(ℓ)
r,−r|c(ℓ)rr )P(g

′
r,ℓ|c(ℓ)r )

= p
nr(g(ℓ−1))−c

(ℓ)
rr

r,ℓ

pr,ℓ − 1

p
nr(g(ℓ−1))+1

r,ℓ − 1
× 1(nr(g(ℓ−1))−c

(ℓ)
rr +k−2

nr(g(ℓ−1))−c
(ℓ)
rr

)(
nr(g(ℓ−1))
cr,1,...,cr,k

) .
Because pr,ℓ ∼ Unif(0, 1), integrating P(g′

r,ℓ|pr,ℓ) with respect to the probability mea-

sure induced by P(pr,ℓ) yields

P(g′
r,ℓ) =

1(nr(g(ℓ−1))−c
(ℓ)
rr +k−2

nr(g(ℓ−1))−c
(ℓ)
rr

)(
nr(g(ℓ−1))
cr,1,...,cr,k

) × ˆ 1

0

p
nr(g(ℓ−1))−c

(ℓ)
rr

r,ℓ

pr,ℓ − 1

p
nr(g(ℓ−1))+1

r,ℓ − 1
dpr,ℓ .

(B.11)

While we can directly compute P(g′
r,ℓ) using equation (B.11), we make the com-

putations more efficient by precomputing the integrals

ˆ 1

0

p
nr(g(ℓ−1))−c

(ℓ)
rr

r,ℓ

pr,ℓ − 1

p
nr(g(ℓ−1))+1

r,ℓ − 1
dpr,ℓ .

For notational simplicity, we write

J(k1, k2) =

ˆ 1

0

xk1
x− 1

xk2+1 − 1
dx . (B.12)

Combining (B.7), (B.11), and (B.12) then yields

P(g(ℓ)|g(ℓ−1)) =
k∏

r=1

 1(nr(g(ℓ−1))−c
(ℓ)
rr +k−2

nr(g(ℓ−1))−c
(ℓ)
rr

)(
nr(g(ℓ−1))
cr,1,...,cr,k

) × J
(
nr(g(ℓ−1))− c(ℓ)rr , nr(g(ℓ−1))

) .

(B.13)

In concert, the relations (B.13), (B.5), and (B.6) yield a closed-form expression for

P(g).
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B.2.1 Computing J(k1, k2)

To compute (B.13), we need to compute J(k1, k2) (see (B.12)). Because nr(g(ℓ−1))−

c
(ℓ)
rr ≤ nr(g(ℓ−1), we are able to compute (B.13) by computing J(k1, k2) only when

0 ≤ k1 ≤ k2. When 0 ≤ k1 < k2, we use a partial-fractions expansion to obtain

J(k1, k2) =

ˆ 1

0

xk1
x− 1

xk2+1 − 1
dx

=

k2∑
r=1

cr

[
log
(
1− e

2πir
k2+1

)
− log

(
−e

2πir
k2+1

)]
, (B.14)

where

cr =
e

2πirk1
k2+1∏k2

s=1, s ̸=r

(
e

2πir
k2+1 − e

2πis
k2+1

) , (B.15)

the symbol i denotes the imaginary unit, and log denotes the complex base-e loga-

rithm with a branch cut on the negative real line. To compute J(k2, k2), we note

that

k2∑
k1=0

(ˆ 1

0

xk2
x− 1

xk2+1 − 1
dx

)
=

ˆ 1

0

(
k2∑

k1=0

xk2
x− 1

xk2+1 − 1

)
dx =

ˆ 1

0

1 dx = 1 .

We thereby obtain

J(k2, k2) =

ˆ 1

0

xk2
x− 1

xk2+1 − 1
dx

= 1−
k2−1∑
k1=0

ˆ 1

0

xk2
x− 1

xk2+1 − 1
dx

= 1−
k2−1∑
k1=0

J(k1, k2) . (B.16)
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[6] José M. Bernardo. The concept of exchangeability and its applications. Far
East Journal of Mathematical Sciences, 4:111–122, 1996.

[7] Stephen P. Borgatti and Martin G. Everett. Models of core/periphery struc-
tures. Social Networks, 21(4):375–395, 2000.

[8] Ieva Brauksa. Use of cluster analysis in exploring economic indicator differ-
ences among regions: The case of Latvia. Journal of Economics, Business and
Management, 1(1):42–45, 2013.

[9] Jane Carlen, Jaume de Dios Pont, Cassidy Mentus, Shyr-Shea Chang, Stephanie
Wang, and Mason A. Porter. Role detection in bicycle-sharing networks using
multilayer stochastic block models. Network Science, 10(1):46–81, 2022.

[10] Bolin Chen, Weiwei Fan, Juan Liu, and Fang-Xiang Wu. Identifying protein
complexes and functional modules—From static PPI networks to dynamic PPI
networks. Briefings in Bioinformatics, 15(2):177–194, 2013.

119



[11] Meggan E. Craft. Infectious disease transmission and contact networks in
wildlife and livestock. Philosophical Transactions of the Royal Society B: Bio-
logical Sciences, 370(1669):20140107, 2015.

[12] Peter Csermely, András London, Ling-Yun Wu, and Brian Uzzi. Structure and
dynamics of core/periphery networks. Journal of Complex Networks, 1(2):93–
123, 2013.

[13] Valentin Danchev and Mason A. Porter. Neither global nor local: Heterogeneous
connectivity in spatial network structures of world migration. Social Networks,
53:4–19, 2018.

[14] Leon Danon, Albert Dı́az-Guilera, Jordi Duch, and Alex Arenas. Comparing
community structure identification. Journal of Statistical Mechanics: Theory
and Experiment, 2005(09):P09008, 2005.

[15] Yadolah Dodge. Mann–Whitney test. In The Concise Encyclopedia of Statistics,
pages 327–329, Heidelberg, Germany, 2008. Springer.

[16] Patrick Doreian. Structural equivalence in a psychology journal network. Jour-
nal of the American Society for Information Science, 36(6):411–417, 1985.

[17] Daniel M. Dunlavy, Tamara G. Kolda, and Evrim Acar. Temporal link predic-
tion using matrix and tensor factorizations. ACM Transactions on Knowledge
Discovery from Data, 5(10):1–27, 2011.

[18] Theodore Y. Faust, Arash A. Amini, and Mason A. Porter. Community-size
biases in statistical inference in temporal networks. In preparation.

[19] Theodore Y. Faust and Mason A. Porter. A statistical-inference method for
identifying hierarchical core–periphery structure in temporal networks. In
preparation.

[20] Santo Fortunato and Darko Hric. Community detection in networks: A user
guide. Physics Reports, 659:1–44, 2016.

[21] Julie Fournet and Alain Barrat. Contact patterns among high school students.
PLoS ONE, 9(9):e107878, 2014.

[22] Thorben Funke and Till Becker. Stochastic block models: A comparison of
variants and inference methods. PLoS ONE, 14(4):e0215296, 2019.

120



[23] Ryan J. Gallagher, Jean-Gabriel Young, and Brooke Foucault Welles. A
clarified typology of core-periphery structure in networks. Science Advances,
7(12):eabc9800, 2021.
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